
MULTISCALE CONTROL OF GENERIC SECOND ORDER TRAFFIC
MODELS BY DRIVER-ASSIST VEHICLES∗

FELISIA ANGELA CHIARELLO† , BENEDETTO PICCOLI‡ , AND ANDREA TOSIN†

Abstract. We study the derivation of generic high order macroscopic traffic models from a
follow-the-leader particle description via a kinetic approach. First, we recover a third order traffic
model as the hydrodynamic limit of an Enskog-type kinetic equation. Next, we introduce in the vehi-
cle interactions a binary control modelling the automatic feedback provided by driver-assist vehicles
and we upscale such a new particle description by means of another Enskog-based hydrodynamic
limit. The resulting macroscopic model is now a Generic Second Order Model (GSOM), which con-
tains in turn a control term inherited from the microscopic interactions. We show that such a control
may be chosen so as to optimise global traffic trends, such as the vehicle flux or the road congestion,
constrained by the GSOM dynamics. By means of numerical simulations, we investigate the effect
of this control hierarchy in some specific case studies, which exemplify the multiscale path from the
vehicle-wise implementation of a driver-assist control to its optimal hydrodynamic design.
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1. Introduction. Vehicular traffic models incorporating the presence of driver-
assist or autonomous vehicles are gaining a lot of momentum. The reason is at
least twofold: on one hand, Advanced Driver-Assistance Systems (ADAS), like all
technological innovations, call naturally for a quantitative mathematical approach
to their understanding and design. On the other hand, ADAS pose new theoretical
problems, which motivate interesting developments of mathematical techniques in
quite challenging realms such as the one of Artificial Intelligence.

In the literature, several mathematical models at various scales may already be
found. Without pretending to be exhaustive, we mention that in [32] microscopic
vehicle-wise control models are reviewed while in [14] the contribution of adaptive
cruise control systems is included in a second order hydrodynamic traffic model. The
model is then extended in [15] to the case of multilane traffic. In [22, 30] a hy-
brid microscopic-macroscopic description, inspired by the one introduced for moving
bottlenecks [16, 28] and crowd dynamics [11], is used to simulate a few individually
controlled autonomous vehicles within a continuous traffic stream modelled by the
Lighthill-Whitham-Richards traffic equation [31, 35]. In [33, 38, 40] a Boltzmann-type
kinetic approach is proposed to account statistically for the presence of driver-assist
vehicles in hydrodynamic traffic models and study their impact on mesoscopic traffic
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features, such as e.g., the local mean speed and speed variability.
Although mathematically different, these models share and convey the idea that

driver-assist and autonomous vehicles do not only enhance driver comfort and safety,
which were the primary goals for which they were conceived. They also impact in
a non-negligible manner on the global traffic flow, to such an extent that one may
realistically imagine to take advantage of them as inner traffic controllers, as also
confirmed by recent field experiments [36]. In a traffic stream composed mostly of
human-manned vehicles but including a certain percentage (the so-called penetration
rate) of driver-assist vehicles, they make possible an effective bottom-up control of
traffic trends by exploiting simply the physiological vehicle-to-vehicle interactions.
No particular top-down rules imposed by outer traffic controllers are required, whose
efficiency would strongly depend also on the hardly controllable voluntary observance
by individual drivers.

Inspired by these arguments, in this paper we pursue the research line set up
in the already cited papers [33, 38, 40]. In particular, we aim to derive high order
macroscopic traffic models accounting for the presence of driver-assist vehicles to
be used as traffic optimisers. The novelties of our contribution with respect to the
aforementioned literature may be summarised as follows:

i) unlike [14, 15], we do not postulate the modifications needed in classic hydro-
dynamic equations of traffic to reproduce the impact of driver-assist vehicles.
Instead, we derive them rigorously from an organic upscaling of microscopi-
cally controlled particle dynamics;

ii) unlike [22, 30], we do not regard driver-assist vehicles as point particles, viz.
singularities, in a continuous traffic stream. Instead, we derive genuinely
macroscopic particle-free models, in which the contribution of driver-assist
vehicles is naturally consistent with the upscaling of the whole system;

iii) unlike [33, 38, 40], we derive hydrodynamic models of order greater than one,
which may better account for traffic perturbations and instabilities [34], and
we design driver-assist control algorithms having in mind multiscale optimi-
sation criteria.

The mathematical literature offers several techniques to derive macroscopic de-
scriptions of microscopic particle systems, many of them dealing just with vehicular
traffic. As an example, we mention micro-macro many particle limits [9, 12, 17, 18, 24]
and mean-field limits [5, 7]. Nevertheless, when it comes to controlled particle systems
classical approaches become more delicate and difficult due to smoothness issues in
the upscaling of the control, see e.g., [1, 21]. In this paper, we adopt a “collisional”
kinetic technique, which is particularly suited to vehicular traffic and is basically free
from the technical difficulties just mentioned. Consistently with the classical kinetic
approach, we describe the interactions among the vehicles by means of binary alge-
braic rules relating instantaneously the post-interaction states of any two interacting
vehicles to their pre-interaction states. We notice that binary interactions fit well the
follow-the-leader particle description classically used in vehicular traffic [23]. With a
probability depending on the penetration rate of driver-assist vehicles, these interac-
tions include furthermore a control term. Therefore, at the particle level we deal with
binary control problems, which can be easily solved in feedback form: the optimal
control can be computed explicitly as a function of the pre-interaction states of the
interacting vehicles out of the optimisation of a binary cost functional related to their
reciprocal distance (headway). As a result, we obtain an explicit characterisation of
controlled interactions, that we subsequently upscale taking advantage of the clas-
sical statistical approach of kinetic theory. In doing so, we adopt in particular an
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Enskog-type kinetic description rather than a more common Boltzmann-type one like
in [33, 38, 40]. Indeed, the Enskog description allows us to properly take into account
the fact that the interacting vehicles do not occupy the same spatial position, which is
at the basis of the correct reproduction of the anisotropic propagation of traffic waves
in high order macroscopic models [3, 13, 27].

The obtained macroscopic description with driver-assist vehicles consists in a sec-
ond order model belonging to the GSOM class [2, 29], which includes as particular
cases also the celebrated Aw-Rascle-Zhang model [3, 43] and its generalised version
(GARZ) [20]. This model keeps track of the vehicle-wise control in several aspects
but notably in a structural parameter of the control, corresponding to a recommended
headway, which enters the hydrodynamic equations. In order to fix the recommended
headway, we propose to set up a further control problem, directly at the macroscopic
scale, where this parameter itself plays the role of a control variable for the optimi-
sation of certain cost functionals related to macroscopic traffic features, such as e.g.,
the vehicle flux and the road congestion. The background idea is to investigate the
possibility to design multiscale control algorithms for single vehicles which, once em-
bedded in the collective flow, produce bottom-up optimisations of the whole traffic
stream.

In more details, the paper is organised as follows. In Section 2, we illustrate
the general procedure to derive high order macroscopic traffic models from a generic
follow-the-leader particle description via the Enskog-type kinetic approach and its
hydrodynamic limit. In Section 3, we introduce controlled microscopic vehicle inter-
actions and we apply the previous procedure to obtain the corresponding bottom-up
controlled macroscopic description in terms of GSOMs. In Section 4, we tackle the
problem of designing the parameters of the vehicle-wise control in such a way to pursue
hydrodynamic optimisations. In Section 5, we show the numerical results produced
in some case studies by the macroscopic model with optimally controlled driver-assist
vehicles and we compare them with those produced by the more standard GARZ
model. As previously anticipated, the latter is in turn a GSOM but in our context we
may interestingly interpret it as a model without driver-assist vehicles or alternatively
with driver-assist vehicles which do not obey any specific hydrodynamic optimisation
criterion. Finally, in Section 6, we draw some conclusions and we briefly sketch future
research prospects.

2. Kinetic derivation of generic high order hydrodynamic models. We
begin by showing how hydrodynamic traffic models of order higher than 1 can be
derived from an elementary description of pairwise interactions among the vehicles
using a kinetic formalism. This derivation will be the basis to include subsequently a
microscopic binary control in the interactions and upscale it at the level of the global
macroscopic flow of vehicles.

2.1. Microscopic Follow-the-Leader description. We begin by considering
a generic Follow-the-Leader (FTL) formulation of microscopic traffic dynamics:

(2.1)

ẋi = V

(
1

xi+1 − xi
, ωi

)
,

ω̇i = 0,

where:
(i) xi, xi+1 ∈ R, xi < xi+1, are the dimensionless positions of two consecutive

vehicles in the traffic stream;
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(ii) ωi ∈ Ω ⊆ R+ is the so-called Lagrangian marker, i.e. a characteristic of the
driving style of the drivers, which remains constant in time for each driver.
In most cases, ωi is interpreted as the maximum speed of the ith driver;

(iii) V ∈ [0, 1] is the dimensionless speed of a vehicle expressed as a function of
the distance from the leading vehicle and the Lagrangian marker.

Denoting si := xi+1 − xi ∈ R+ the headway between the ith and (i + 1)th vehicles,
we can restate the model as

(2.2)

ṡi = V

(
1

si+1
, ωi+1

)
− V

(
1

si
, ωi

)
,

ω̇i = 0.

Assumption 2.1. We assume that:
(i) ∂sV ( 1

s , ω) > 0, ∀ (s, ω) ∈ R+ × Ω (1);
(ii) ∃C > 0 such that V

(
1
s , ω

)
≤ Cs, ∀ (s, ω) ∈ R+ × Ω.

Remark 2.2. In different derivations of high order macroscopic traffic models from
the FTL description (2.1), see e.g., [8, 20], further assumptions are made on the
function V , which however are not needed in the present context.

A function V complying with Assumption 2.1 is

(2.3) V

(
1

s
, ω

)
=

ωs

a+ s

with a > 0 constant and ω ∈ Ω := [0, 1]. This function is motivated by the form of
the speed of vehicles in classical FTL models, cf. e.g., [33, 39].

Following [6], we now use (2.2) to obtain a set of binary interaction rules between
any two consecutive vehicles. Specifically, we approximate (2.2) with the forward
Euler formula in a small time interval γ > 0, understood as the reaction time of the
drivers. Denoting by s := si(t), s∗ := si+1(t) the pre-interaction headways and by
s′ := si(t+γ), s′∗ := si+1(t+γ) the post-interaction headways, and using an analogous
notation for the Lagrangian markers, we get

(2.4) s′ = s+ γ

[
V

(
1

s∗
, ω∗

)
− V

(
1

s
, ω

)]
, ω′ = ω,

that we may further complement with s′∗ = s∗ to express the anisotropy of vehicle
interactions, in particular the fact that the leading vehicle is not affected by the rear
vehicle.

For physical consistency, the interaction (2.4) has to guarantee s′ ≥ 0 for all
s, s∗ ≥ 0 and all ω, ω∗ ∈ Ω. Thanks to Assumption 2.1(ii), we easily see that this
condition is met if γ ≤ 1

C .

2.2. Enskog-type kinetic description. The aggregate outcome of the mi-
croscopic binary interactions (2.4) may be investigated through a kinetic approach
upon introducing the distribution function f = f(t, x, s, ω) ≥ 0, which is such that

1We point out that, here and henceforth, the notation ∂sV ( 1
s
, ω) stands for

∂sV

(
1

s
, ω

)
:= (∂sV )

(
1

s
, ω

)
= −

1

s2
(∂σV )

(
1

s
, ω

)
,

where σ denotes the first variable of the function V . In practice, we consider V = V (σ, ω) along
with the composition σ(s) = 1

s
and we take the derivatives accordingly.
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f(t, x, s, ω) dx ds dω gives, at time t > 0, the fraction of vehicles located in the in-
terval [x, x + dx] with headway comprised in [s, s + ds] and Lagrangian marker in
[ω, ω + dω].

In this work, we assume that f satisfies an Enskog-type kinetic equation rather
than a more classical Boltzmann-type equation. The inspiration comes from [19, 26,
27], where it is stressed that traffic models derived from a Boltzmann-type kinetic
description cannot reproduce backward wave propagation because in a Boltzmann-
type equation the interacting vehicles are assumed to occupy the same space position.
Conversely, in an Enskog-type kinetic description they are assumed to occupy two
different positions, which in our case is also particularly consistent with the fact that
their microscopic state includes the headway, viz. the reciprocal distance. We write
therefore:

(2.5) ∂tf + V

(
1

s
, ω

)
∂xf = QE(f, f),

where QE(f, f) is the Enskog collision operator. The precise definition of QE(f, f)
is better given in weak form, i.e. through its action on an arbitrary macroscopic
observable (test function) φ = φ(s, ω):

(2.6) (QE(f, f), φ) :=

1

2

∫
Ω2

∫
R2

+

(φ(s′, ω′)− φ(s, ω))f(t, x, s, ω)f(t, x+ s, s∗, ω∗) ds ds∗ dω dω∗,

where s′, ω′ are given by (2.4). Notice that the two distribution functions describing
the interacting vehicles are computed in x and x+ s, respectively. Indeed, if s is the
headway of the rear vehicle located in x then the leading vehicle is located in x+ s.

In order to make (2.5), (2.6) more amenable to analytical investigations, it is
useful to approximate

(2.7) f(t, x+ s, s∗, ω∗) ≈ f(t, x, s∗, ω∗) + ∂xf(t, x, s∗, ω∗)s,

which, for s sufficiently small, coincides with the first order Taylor expansion of f in
x. Then (2.6) takes the form

(QE(f, f), φ) =
1

2

∫
Ω2

∫
R2

+

(φ(s′, ω′)− φ(s, ω))f(t, x, s, ω)f(t, x, s∗, ω∗) ds ds∗ dω dω∗

+
1

2

∫
Ω2

∫
R2

+

(φ(s′, ω′)− φ(s, ω))f(t, x, s, ω)∂xf(t, x, s∗, ω∗)s ds ds∗ dω dω∗

=: (Q(f, f), φ) + (Q(f, s∂xf), φ).

(2.8)

The first term on the right-hand side, i.e. Q(f, f), is now a classical Boltzmann-type
collision operator with the two distribution functions computed in the same point
x. The second term Q(f, s∂xf) is instead a first order correction, which will be
fundamental to recover consistent macroscopic models.

The passage from (2.5) to a macroscopic traffic description is performed via the
so-called hydrodynamic limit. Let 0 < η � 1 be a small scale parameter (the analogous
of the Knudsen number in gas and fluid dynamics) and let us introduce the following
hyperbolic scaling of time and space:

(2.9) t→ t

η
, x→ x

η
,
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which formalises the passage from microscopic to macroscopic time and space scales.
Then (2.5), (2.8) become

(2.10) ∂tf + V

(
1

s
, ω

)
∂xf =

1

η
QE(f, f)

and

(QE(f, f), φ) =
1

2

∫
Ω2

∫
R2

+

(φ(s′, ω′)− φ(s, ω))f(t, x, s, ω)f(t, x, s∗, ω∗) ds ds∗ dω dω∗

+
η

2

∫
Ω2

∫
R2

+

(φ(s′, ω′)− φ(s, ω))f(t, x, s, ω)∂xf(t, x, s∗, ω∗)s ds ds∗ dω dω∗

= (Q(f, f), φ) + η(Q(f, s∂xf), φ)

(for simplicity, we still denote by f = f(t, x, s, ω) the distribution function in the
scaled time and space variables). Hence, QE(f, f) = Q(f, f) + ηQ(f, s∂xf), which
plugged into (2.10) yields

(2.11) ∂tf + V

(
1

s
, ω

)
∂xf =

1

η
Q(f, f) +Q(f, s∂xf).

Owing to the smallness of η, this equation can be split in two contributions. On one
hand, local interactions among the vehicles, which take place on a microscopic (quick)
time scale and reach rapidly the equilibrium:

(2.12) ∂tf = Q(f, f)

(we have scaled the time back to the microscopic scale as t→ ηt using the factor 1
η in

front of the collision operator); on the other hand, a transport of the local equilibrium
distribution generated by (2.12) on a hydrodynamic (slow) time scale:

(2.13) ∂tf + V

(
1

s
, ω

)
∂xf = Q(f, s∂xf).

Here, we use the local Maxwellian, viz. the equilibrium distribution produced by (2.12),
to obtain the macroscopic evolution of the hydrodynamic parameters locally conserved
by the interactions.

2.3. Hydrodynamic limit.

2.3.1. Local Maxwellian. The first step of the strategy just outlined is the
study of the local equilibrium distribution resulting from (2.12). In weak form, (2.12)
reads

∂t

∫
Ω

∫
R+

φ(s, ω)f(t, x, s, ω) ds dω

=
1

2

∫
Ω2

∫
R2

+

(φ(s′, ω′)− φ(s, ω))f(t, x, s, ω)f(t, x, s∗, ω∗) ds ds∗ dω dω∗.(2.14)

Choosing φ(s, ω) = 1 and defining the macroscopic density of the vehicles in x as

ρ(t, x) :=

∫
Ω

∫
R+

f(t, x, s, ω) ds dω
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we immediately observe that ρ is conserved in time by the local interactions. Likewise,
choosing φ(s, ω) = s and defining the mean headway in x as

h(t, x) :=
1

ρ(t, x)

∫
Ω

∫
R+

sf(t, x, s, ω) ds dω

we see that also h is locally conserved in time owing to (2.4). Finally, choosing
φ(s, ω) = ω and defining the mean Lagrangian marker in x as

w(t, x) :=
1

ρ(t, x)

∫
Ω

∫
R+

ωf(t, x, s, ω) ds dω

we obtain from (2.4) that also w is locally conserved in time. We conclude that
φ(s, ω) = 1, s, ω are “collisional invariants” and therefore that the local Maxwellian
will be parametrised by the hydrodynamic quantities ρ, h, w.

More in general, choosing in (2.14) a macroscopic observable φ(s, ω) = ψ(ω)
independent of s and using (2.4) we deduce

∂t

∫
Ω

∫
R+

ψ(ω)f(t, x, s, ω) ds dω = 0,

i.e. the whole marginal distribution of ω is locally constant in time. Consequently,
the local Maxwellian should be parametrised by all the statistical moments of the ω-
marginal. To avoid an infinite proliferation of hydrodynamic parameters, we assume
that the ω-marginal is of the form δ(ω − w), where δ denotes the Dirac delta, so
that all its moments can be expressed in terms of w. This leads us to consider a
distribution function f of the form

(2.15) f(t, x, s, ω) := ρ(x)gh(x)(t, s)δ(ω − w(x)),

where gh is the marginal of s parametrised by the conserved mean headway h:∫
R+

gh(t, s) ds = 1,

∫
R+

sgh(t, s) ds = h ∀ t ≥ 0.

We point out that in (2.15) we have omitted the dependence of ρ, h, w on t because
these hydrodynamic parameters are constant on the time scale of the microscopic
interactions.

Plugging (2.15) into (2.14) and choosing a macroscopic observable φ(s, ω) = ϕ(s)
independent of ω we deduce the following equation for gh:

d

dt

∫
R+

ϕ(s)gh(t, s) ds

=
ρ

2

∫
Ω2

∫
R2

+

(ϕ(s′)− ϕ(s))gh(t, s)gh(t, s∗)δ(ω − w)δ(ω∗ − w) ds ds∗ dω dω∗,(2.16)

which, in view of (2.4), admits

(2.17) g∞h (s) := δ(s− h)

as an equilibrium distribution. Indeed, a direct calculation shows that such a g∞h
makes the right-hand side of (2.16) vanish. In general, (2.17) may not be the only
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possible equilibrium distribution of (2.16) under the interaction rules (2.4) due to the
arbitrariness of the speed function V . In the following we prove however that (2.17) is
the unique equilibrium distribution at least in a particular regime of the parameters
of the interactions (2.4), which allows us to identify a “universal” trend substantially
independent of V .

Let us consider quasi-invariant interactions, namely interactions which induce a
small change of the microscopic state of the vehicles. This concept is inspired by
the grazing collisions of the classical kinetic theory [41, 42] and has been introduced
in the kinetic theory of multi-agent system in [10]. In (2.4), this is the case if e.g.,
V ( 1

s∗
, ω∗)−V ( 1

s , ω) is small so that s′ ≈ s. Let us assume that V is parametrised by
a parameter ε > 0 such that

V

(
1

s
, ω

)
∼ εc(ω)s for ε→ 0+,

where c(ω) ≥ 0 denotes a function of ω. This implies that there exists a function
Vε(s) such that Vε(s)→ 1 when ε→ 0+ and

(2.18) V

(
1

s
, ω

)
= εc(ω)sVε(s).

We will further assume that Vε(s) is bounded for all ε > 0 and s ∈ R+. For example,
if we let a = 1

ε then the function V given in (2.3) satisfies (2.18) with c(ω) = ω and
Vε(s) = 1

1+εs .
Obviously, with the sole assumption of small ε we cannot observe any interesting

universal trend of the interactions towards the equilibrium. Indeed, in the limit ε→ 0+

we simply get s′ = s in (2.4), which implies definitively a constant solution f to (2.14)
coinciding with the arbitrarily chosen initial local distribution. To compensate for the
smallness of ε we increase simultaneously the frequency of the interactions as 1

ε , so
as to balance the small transfer of microscopic state from one vehicle to another in a
single interaction with a high number of such interactions per unit time. Hence, in
the quasi-invariant regime we consider (2.16) in the form

d

dt

∫
R+

ϕ(s)gh(t, s) ds

=
ρ

2ε

∫
Ω2

∫
R2

+

(ϕ(s′)− ϕ(s))gh(t, s)gh(t, s∗)δ(ω − w)δ(ω∗ − w) ds ds∗ dω dω∗.(2.19)

Notice that the scaling of the interaction frequency does not affect either the equi-
librium distributions or the conservation of h. The first statistical moment of gh(x)

which in general is not conserved by the microscopic interactions is still the second
moment, namely the energy

E(t) :=

∫
R+

s2gh(t, s) ds,

whose trend is provided by (2.19) with ϕ(s) = s2:

dE

dt
=
γρ

ε

∫
R2

+

s

[
V

(
1

s∗
, w

)
− V

(
1

s
, w

)]
gh(t, s)gh(t, s∗) ds ds∗

+
γρ

2ε

∫
R2

+

[
V

(
1

s∗
, w

)
− V

(
1

s
, w

)]2

gh(t, s)gh(t, s∗) ds ds∗.
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Recalling (2.18), this yields

dE

dt
= γρc(w)

∫
R2

+

s(s∗Vε(s∗)− sVε(s))gh(t, s)gh(t, s∗) ds ds∗

+
γε

2
ρc2(w)

∫
R2

+

(s∗Vε(s∗)− sVε(s))2
gh(t, s)gh(t, s∗) ds ds∗

and finally, passing to the limit ε→ 0+ by dominated convergence to obtain a universal
trend for small ε,

(2.20)
dE

dt
= γρc(w)(h2 − E).

From this equation we deduce E → h2 for t → +∞, thus the variance E − h2 of
the equilibrium distribution g∞h vanishes asymptotically. This proves that (2.17) is
the unique distribution towards which the system converges for large times in the
quasi-invariant regime.

Motivated by these arguments, we finally consider the following local Maxwellian
as the result of the local interaction step (2.12):

(2.21) Mρ,h,w(s, ω) = ρδ(s− h)⊗ δ(ω − w).

2.3.2. Macroscopic equations. Macroscopic equations are obtained by plug-
ging the local Maxwellian (2.21) into (2.13) to determine evolution equations for the
hydrodynamic parameters ρ, h, w:

(2.22) ∂tMρ,h,w + V

(
1

s
, ω

)
∂xMρ,h,w = Q(Mρ,h,w, s∂xMρ,h,w).

We stress that here we need to restore the dependence of the hydrodynamic parameters
on time because they are in general not constant on the time scale of the hydrodynamic
transport.

Writing (2.22) in weak form and using (2.21) we get

∂t (ρφ(h, w)) + ∂x

(
ρφ(h, w)V

(
1

h
, w

))
=
γ

2
ρ2h∂xV

(
1

h
, w

)
∂sφ(h, w),

whence for φ(s, ω) = 1, ω, s (the collisional invariants) we obtain the third order
hydrodynamic system

(2.23)



∂tρ+ ∂x

(
ρV

(
1

h
, w

))
= 0

∂t(ρw) + ∂x

(
ρwV

(
1

h
, w

))
= 0

∂t(ρh) + ∂x

(
ρhV

(
1

h
, w

))
=
γ

2
ρ2h∂xV

(
1

h
, w

)
.

The first two equations express a classical conservative transport of the density of
the vehicles and of their mean Lagrangian marker by the velocity field V . The third
equation deserves instead a couple of further comments. First, this additional equation
is present because the microscopic interactions (2.4) conserve locally also h. Second,
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it expresses a balance and not a conservation, i.e. the right-hand side is not zero,
because of the non-local correction to the vehicle interactions included in the Enskog
collision operator (2.8). Third order models were already occasionally proposed in the
traffic literature, see [4, 25], however not within an organic derivation from microscopic
principles like in this case.

System (2.23) can be written in quasilinear vector form as

∂tU + A(U)∂xU = 0,

with U := (ρ, w, h)T and

A(U) :=

V ( 1
h , w) ρ∂ωV ( 1

h , w) ρ∂sV ( 1
h , w)

0 V ( 1
h , w) 0

0 −γ2ρh∂ωV ( 1
h , w) V ( 1

h , w)− γ
2ρh∂sV ( 1

h , w)

 ,

cf. Assumption 2.1 for the correct interpretation of ∂sV . The eigenvalues λ1, λ2, λ3

and eigenvectors r1, r2, r3 of this matrix are

λ1 = λ2 = V

(
1

h
, w

)
with r1 = (1, 0, 0), r2 =

(
0, ∂sV

(
1

h
, w

)
, ∂ωV

(
1

h
, w

))
and

λ3 = V

(
1

h
, w

)
− γ

2
ρh∂sV

(
1

h
, w

)
with r3 =

(
1, 0, −γ

2
h
)
.

Since the eigenvalues are real and A(U) is diagonalisable, system (2.23) is hyper-
bolic. Nevertheless, since λ1 = λ2 it is not strictly hyperbolic. Furthermore, under
Assumption 2.1(i) it results λ3 < λ1 = λ2 = V , therefore no characteristic speed
is greater than the flow speed. Hence (2.23) complies with the Aw-Rascle consis-
tency condition [3]. The first and second characteristic fields are linearly degenerate:
∇λ1 · r1 = ∇λ2 · r2 = 0, thus the associated waves are contact discontinuities. Con-
versely, the third characteristic field is genuinely nonlinear: ∇λ3 · r3 6= 0, hence the
associated waves are either shocks or rarefactions.

3. Derivation of GSOM with driver-assist vehicles. In this section, we
take advantage of the procedure illustrated in Section 2 to derive similar macroscopic
traffic models incorporating the presence of driver-assist vehicles. At the microscopic
scale, the latter are regarded as special vehicles equipped with automatic feedback
controllers, which respond locally to the actions of the human drivers with the aim of
optimising a certain cost functional in each binary interaction. We anticipate that the
introduction of controlled vehicles will give rise to second (rather than third) order
hydrodynamic models.

3.1. Microscopic binary control. To implement the presence of driver-assist
vehicles, we restate the interaction rules (2.4) as follows:

(3.1) s′ = s+ γ

[
V

(
1

s∗
, ω∗

)
− V

(
1

s
, ω

)
+ Θu

]
, ω′ = ω.

Here, u ∈ R denotes the control applied to the dynamics of a driver-assist vehicle and
Θ ∈ {0, 1} is a Bernoulli random variable expressing the fact that a randomly chosen
vehicle may or may not be equipped with a driver-assist technology with a certain
probability. In particular, by letting

Prob(Θ = 1) = p, Prob(Θ = 0) = 1− p
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we mean that p ∈ [0, 1] is the percentage of driver-assist vehicles in the traffic stream,
namely the so-called penetration rate.

Aiming at collision avoidance, the control u is chosen so as to minimise the
following cost functional:

(3.2) J(s′, u) :=
1

2

(
(sd(ρ, w)− s′)2

+ νu2
)
,

where sd(ρ, w) ≥ 0 is a recommended headway that vehicles should maintain depend-
ing on the local hydrodynamic parameters ρ, w and ν > 0 is a penalisation parameter
(cost of the control). By minimising the functional (3.2), the control u tries to align
the headway of the vehicle to the recommended one, thereby implementing a form of
collision avoidance. The optimal control u∗ is chosen as

u∗ := arg min
u∈U

J(s′, u)

subject to (3.1), where U = {u ∈ R : s′ ≥ 0} is the set of the admissible controls.
Plugging the constraint (3.1) into (3.2) and equating to zero the derivative with

respect to u, we deduce the following optimality condition:

γΘ

{
s− sd(ρ, w) + γ

[
V

(
1

s∗
, ω∗

)
− V

(
1

s
, ω

)]}
+
(
ν + γ2Θ2

)
u∗ = 0

yielding

(3.3) u∗ =
Θγ

ν + Θ2γ2
(sd(ρ, w)− s)− Θγ2

ν + Θ2γ2

[
V

(
1

s∗
, ω∗

)
− V

(
1

s
, ω

)]
.

Notice that u∗ is a feedback control because it is a function of the pre-interaction states
s, s∗, ω, ω∗ of the vehicles. This allows us to plug it straightforwardly into (3.1),
whence we obtain the following controlled binary interactions:
(3.4)

s′ = s+
γ

ν + Θ2γ2

{
ν

[
V

(
1

s∗
, ω∗

)
− V

(
1

s
, ω

)]
+ Θ2γ (sd(ρ, w)− s)

}
, ω′ = ω.

Finally, we check that u∗ ∈ U , which amounts to checking the physical admissi-
bility of the controlled interaction (3.4). Recalling Assumption 2.1(ii) and considering
that 0 ≤ Θ2 ≤ 1, we easily see that the condition s′ ≥ 0 is fulfilled if e.g.,

ν ≥ γ2

1− Cγ

under the further restriction γ ≤ 1
C already established in Section 2.1. This condition

implies that there is a physiological lower bound on the cost of the implementation of
the driver-assist control, which cannot be assumed too cheap.

Remark 3.1. If ν → +∞ then u∗ = 0. In this case, from (3.4) we recover the
uncontrolled interaction rules (2.4). Another case in which we obtain (2.4) from (3.4)
is if Θ = 0, which corresponds to a vehicle without driver-assist control.

3.2. Enskog-type kinetic description and hydrodynamic limit. The Enskog-
type description is the same as the one discussed in Section 2.2 but for the fact that
the collision operator QE(f, f) takes now into account also the presence of the random
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parameter Θ in the interaction rules (3.4). Specifically, the generalisation of (2.6) to
the present case reads

(QE(f, f), φ) =
1

2

〈∫
Ω2

∫
R2

+

(φ(s′, ω′)− φ(s, ω))f(t, x, s, ω)f(t, x+ s, s∗, ω∗) ds ds∗ dω dω∗

〉
,

where 〈·〉 denotes the expectation with respect to the law of Θ.
The same expansion (2.7) followed by the hyperbolic scaling (2.9) leads again

to (2.11), where the Boltzmann-type collision operator Q(f, f) includes in turn the
expectation with respect to Θ:

(Q(f, f), φ) =
1

2

〈∫
Ω2

∫
R2

+

(φ(s′, ω′)− φ(s, ω))f(t, x, s, ω)f(t, x, s∗, ω∗) ds ds∗ dω dω∗

〉
.

Choosing φ(s, ω) = 1 and φ(s, ω) = ψ(ω) (a function of ω alone) and using (3.4) we
see that

(Q(f, f), 1) = (Q(f, f), ψ(ω)) = 0,

hence the mass of the vehicles as well as any statistical moment of the ω-marginal are
locally conserved by the controlled interactions. Conversely, choosing φ(s, ω) = s we
discover

(Q(f, f), s) =
pγ2ρ2

2 (ν + γ2)
(sd(ρ, w)− h) ,

meaning that on the scale of the local interactions the evolution of the mean headway
is ruled by

(3.5)
dh

dt
=

pγ2ρ

2 (ν + γ2)
(sd(ρ, w)− h) .

We point out that in this equation we are omitting the dependence of ρ, h, w on x for
brevity, considering that for local interactions x is a parameter. Moreover, here ρ, w
have to be regarded as constant with respect to t in view of the conservations discussed
above. From (3.5) we deduce that h is no longer conserved by the interactions (3.4)
and, in particular, that it converges exponentially fast in time to sd(ρ, w) at a rate
proportional to the penetration rate p.

Out of these arguments, we conclude that an admissible form of the kinetic dis-
tribution function in the local interaction step is

f(t, x, s, ω) = ρ(x)g(t, s)δ(ω − w(x)),

where the ω-marginal is chosen based on the same considerations as in Section 2.3.1.
Conversely, the distribution g now satisfies only the normalisation condition∫

R+

g(t, s) ds = 1 ∀ t ≥ 0

because the mean headway is not conserved by the controlled interactions. Similarly
to (2.16), the evolution equation for g can then be written in the form

d

dt

∫
R+

ϕ(s)g(t, s) ds

=
ρ

2

〈∫
Ω2

∫
R2

+

(ϕ(s′)− ϕ(s)) g(t, s)g(t, s∗)δ(ω − w)δ(ω∗ − w)

〉
ds ds∗ dω dω∗
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for an arbitrary macroscopic observable ϕ depending only on the headway s. From
here, we easily check that

g∞ρ,w(s) = δ(s− sd(ρ, w))

is a possible equilibrium distribution, which, consistently with the discussion set forth
above, has mean sd(ρ, w). To prove that this is actually the only possible equilibrium
distribution, at least in the quasi-invariant regime, we perform a quasi-invariant scal-
ing inspired by that of Section 2.3.1. In particular, we assume (2.18) and we observe
that in order for interactions (3.4) to be quasi-invariant we also need to ensure that
the additional term proportional to sd(ρ, w)− s gives a small contribution when the
scaling parameter ε is small. To this end, we may further scale either ν = 1

ε or p = ε.
In both cases, letting ϕ(s) = s2 we find that the trend of the energy in the quasi-
invariant limit ε → 0+ is ruled exactly by (2.20), which, together with (3.5), implies
E → s2

d(ρ, w) for t→ +∞.
In conclusion, the local Maxwellian that we consider is

Mρ,w(s, ω) = ρδ(s− sd(ρ, w))⊗ δ(ω − w).

Notice that in this case it is parametrised only by the hydrodynamic quantities ρ, w.
As a consequence, from the transport step (2.13) we expect a second order macroscopic
traffic model with state variables ρ, w. Indeed, proceeding like in Section 2.3.2 with
φ(s, ω) = 1, ω (the collisional invariants) we end up with

(3.6)


∂tρ+ ∂x

(
ρV

(
1

sd(ρ, w)
, w

))
= 0

∂t(ρw) + ∂x

(
ρwV

(
1

sd(ρ, w)
, w

))
= 0,

namely a Generic Second Order Model (GSOM) of the type introduced in [2, 29].
A few remarks about model (3.6) are in order. First, it is strictly hyperbolic

provided ∂ρsd 6= 0 and complies with the Aw-Rascle consistency condition if ∂ρsd ≤ 0,
indeed its eigenvalues are

λ1 = V

(
1

sd(ρ, w)
, w

)
+ ∂sV

(
1

sd(ρ, w)
, w

)
∂ρsd(ρ, w), λ2 = V

(
1

sd(ρ, w)
, w

)
.

Second, we stress again that, unlike (2.23) and despite the analogous derivation, it is
a second order model, the ultimate reason being that the introduction of the control
in the microscopic interactions destroys the local conservation of the mean headway.
In particular, when locally in equilibrium the mean headway becomes a function of
ρ, w, thus it no longer enters the macroscopic equations. Interestingly, the kinetic
derivation of the hydrodynamic models (2.23), (3.6) unveils the microscopic origin
of their structural differences. Third, we observe that the penetration rate p of the
driver-assist vehicles does not appear explicitly in (3.6). The reason is again linked to
the non-conservation of the local mean headway: as (3.5) shows, p affects the rate of
convergence of h to its local equilibrium but not the local equilibrium itself. However,
it is clear that the time scale separation between local interactions and transport,
which is at the basis of the hydrodynamic limit leading to (3.6), is more or less valid
depending on the speed of convergence of the interactions to the local equilibrium.
Thus, (3.6) is implicitly valid only for a sufficiently high penetration rate p. In other



14 FELISIA ANGELA CHIARELLO, BENEDETTO PICCOLI, AND ANDREA TOSIN

words, it describes universal macroscopic trends of a traffic stream with a large enough
percentage of driver-assist vehicles. Fourth, with the particular choice

(3.7) sd(ρ, w) =
1

ρ
,

which satisfies ∂ρsd < 0 and reflects the usual relationship empirically assumed be-
tween the local mean headway and the traffic density, cf. e.g., [23], we obtain

(3.8)

{
∂tρ+ ∂x(ρV (ρ, w)) = 0

∂t(ρw) + ∂x(ρwV (ρ, w)) = 0,

i.e. the Generalised Aw-Rascle-Zhang (GARZ) model proposed in [20]. Apart from
this particular case, the design of the recommended headway sd(ρ, w) will be the
specific object of the next section.

4. Hydrodynamic optimisation. The recommended headway sd appears in
the hydrodynamic model (3.6) in consequence of the feedback control (3.3) imple-
mented in the microscopic interaction rules (3.1) and subsequently upscaled via the
Enskog-type kinetic description. The idea is now to understand the function sd(ρ, w)
as a control in the hydrodynamic equations and to design it so as to optimise macro-
scopic traffic trends, such as the global flux or the global congestion of the vehicles.
This corresponds to a multiscale traffic control, which is explicitly implemented at
the scale of single vehicles and finally produces a hydrodynamic optimisation.

Remark 4.1. In this work, we do not investigate the local mesoscopic (statistical)
effects produced by a generic sd. Instead, we refer the interested readers to [33, 38]
for thorough analyses of this aspect.

Assume that the space domain of (3.6) is the interval [−L, L], L > 0, with
periodic boundary conditions. This simulates a circular track, a setting often used
in real experiments on traffic flow [36, 37]. We consider the following macroscopic
functionals to be optimised:

(i) to maximise the global flux of vehicles we look for a control u = u(t, x) which
maximises

(4.1) JρV (u) :=

∫ T

0

∫ L

−L

(
ρV

(
1

u
, w

)
− µF (u)

)
dx dt

subject to (3.6), where, as anticipated, we understand sd(ρ, w) as u. Notice
that, once determined as u∗ := arg max JρV (u), the optimal control u∗ will
be expressed in feedback form as a function of ρ, w, thus it will be suited to
play the role of the recommended headway sd(ρ, w);

(ii) to minimise the global traffic congestion we look for a control u = u(t, x)
which minimises

(4.2) Jρ(u) :=

∫ T

0

∫ L

−L
(ρα + µF (u)) dx dt

subject to (3.6) with the same relationship between u and sd(ρ, w) set forth
above. This time, however, the optimal control is determined as u∗ =
arg min Jρ(u).
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In both (4.1) and (4.2) T > 0 is a finite time horizon for the optimisation, F (u)
is a convex penalisation function (cost of the control) and µ > 0 is a proportionality
parameter. Furthermore, in (4.2) the exponent α > 0 is a parameter which stresses
locally high and low density regimes.

Since u represents sd(ρ, w), the admissible controls are non-negative functions:
u(t, x) ≥ 0 for all t ≥ 0 and all x ∈ [−L, L]. Therefore, the optimisation of the
functionals JρV and Jρ should be performed under the further constraint u ≥ 0,
which however typically increases the technicality of the problem with no particular
added value to the model itself. For this reason, we prefer to take into account the
non-negativity of the control by choosing a penalisation function defined only for
u ≥ 0, so that on the whole both functionals (4.1), (4.2) are not defined for u < 0. A
convex function F complying with this requirement is

(4.3) F (u) = u (log u− 1) + 1,

which is also continuous on R+ up to letting F (0) := limu→0+ F (u) = 1 and such that
F ′(u) = log u for u > 0.

4.1. Instantaneous control. Consistently with the instantaneous response of
the driver-assist vehicles to the actions of the human drivers, it is reasonable to
understand the recommended headway as an instantaneous control strategy. In other
words, sd(ρ, w) should be defined in terms of the instantaneous values of ρ, w, that a
driver-assist vehicle can readily detect and use, rather than on their time history over
a long time horizon.

We implement this idea by considering first the functional (4.1). Let ∆t > 0 be a
small time interval and let us consider the following discrete-in-time version of (4.1)
over a time horizon [t, t+ ∆t]:

(4.4) JρV (u) = ∆t

∫ L

−L

(
ρ(t+ ∆t, x)V

(
1

u(t, x)
, w(t+ ∆t, x)

)
− µF (u(t, x))

)
dx

subject to the following discrete-in-time version of (3.6):

(4.5)


ρ(t+ ∆t, x) = ρ(t, x)−∆t∂x

(
ρ(t, x)V

(
1

u(t, x)
, w(t, x)

))
w(t+ ∆t, x) = w(t, x)−∆tV

(
1

u(t, x)
, w(t, x)

)
∂xw(t, x).

Plugging these values of ρ(t+ ∆t, x), w(t+ ∆t, x) into (4.4) we obtain

JρV (u) = ∆t

∫ L

−L

(
ρV

(
1

u
, w

)
− µF (u)

)
dx+ o(∆t),

where we have omitted the variables (t, x) of the quantities ρ, w, u for brevity. Here,
o(∆t) denotes higher order terms in ∆t that we may formally neglect under the
assumption of small time horizon. To find the optimality condition associated with
the maximisation of JρV we consider u = u∗+ εv, where u∗ is the (unknown) optimal
control, v is an arbitrary test function and ε > 0 is a parameter. Imposing the
stationarity of JρV at u∗:

d

dε
JρV (u∗ + εv)

∣∣∣∣
ε=0

= 0,
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we find the equation∫ L

−L

(
ρ∂sV

(
1

u∗
, w

)
− µF ′(u∗)

)
v dx+ o(1) = 0,

which in the limit ∆t→ 0+ and owing to the arbitrariness of v implies

(4.6) ρ∂sV

(
1

u∗
, w

)
− µF ′(u∗) = 0.

From (4.6), solving for u∗ we get the instantaneously optimal control in terms of ρ,
w, which represents the recommended headway sd(ρ, w) for the maximisation of the
flux of vehicles. For instance, if V, F are given respectively by (2.3), (4.3) we obtain

(4.7) (a+ u∗)
2

log u∗ =
a

µ
ρw,

which admits a unique solution u∗ ≥ 1 because the left-hand side is one-to-one and
onto as a function of u from R+ to R.

Let us repeat now these arguments for the functional (4.2). Its discrete-in-time
version over a time horizon [t, t+ ∆t] with ∆t > 0 small is

Jρ(u) = ∆t

∫ L

−L
(ρα(t+ ∆t, x) + µF (u(t, x))) dx

subject to (4.5). Using these constraints we determine in particular

ρα(t+ ∆t, x) = ρα(t, x)− α∆tρα−1(t, x)∂x

(
ρ(t, x)V

(
1

u(t, x)
, w(t, x)

))
+ o(∆t)

= ρα(t, x)− α∆t∂x

(
ρα(t, x)V

(
1

u(t, x)
, w(t, x)

))
+ (α− 1)V

(
1

u(t, x)
, w(t, x)

)
∂xρ

α(t, x) + o(∆t)

and we observe that ∂x
(
ραV

(
1
u , w

))
integrates to zero on [−L, L] because of the

periodic boundary conditions. Hence we obtain

Jρ(u) = ∆t

∫ L

−L

(
ρα + (α− 1)∆tV

(
1

u
, w

)
∂xρ

α + µF (u)

)
dx+ o(∆t2),

which, imposing
d

dε
Jρ(u

∗ + εv)

∣∣∣∣
ε=0

= 0

for an arbitrary test function v, produces the optimality condition∫ L

−L

(
(α− 1)∆t∂sV

(
1

u∗
, w

)
∂xρ

α + µF ′(u∗)

)
v dx+ o(∆t) = 0.

If the penalisation coefficient µ is independent of ∆t then in the limit ∆t → 0+ we
get F ′(u∗) = 0, namely an equation for the optimal control independent of ρ, w. If
instead we scale the penalisation coefficient as µ = κ∆t with κ > 0, meaning that the
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cost of the control is proportional to the length of the time horizon of the optimisation,
then for ∆t→ 0+ we have

(4.8) (α− 1)∂sV

(
1

u∗
, w

)
∂xρ

α + κF ′(u∗) = 0,

whence we get in general a richer instantaneous optimal control, viz. recommended
headway sd, depending on ρ, w. Notice however that for α = 1, i.e. if the goal is to
minimise ρ itself, (4.8) reduces in turn to F ′(u∗) = 0. On the other hand, if α > 0 is
generic and V, F are given by (2.3), (4.3) then (4.8) yields

(4.9) (a+ u∗)
2

log u∗ = (1− α)
a

κ
w∂xρ

α,

which admits a unique solution u∗ ≥ 0. In particular, for α = 1 this solution is u∗ = 1,
viz. a constant unitary recommended headway.

4.2. Application to the Aw-Rascle-Zhang model. The Aw-Rascle-Zhang
(ARZ) model is a very popular traffic model of the form (3.8) with

V (ρ, w) = w − p(ρ),

p : R+ → R+ being a monotonically increasing function called the traffic pressure.
This model was proposed by Aw and Rascle [3], and independently by Zhang [43], to
overcome some drawbacks of second order macroscopic traffic models pointed out by
Daganzo [13]. The traffic pressure is usually taken of the form

(4.10) p(ρ) = ρδ, δ > 0.

Recalling that, in the present context, (3.8) is obtained from (3.6) with the
choice (3.7), we can recast the ARZ model in the controlled setting (3.6) by letting

(4.11) V

(
1

s
, ω

)
= ω − p

(
1

s

)
,

then we can exploit the results of Section 4.1 to deduce instantaneous optimal controls
for flux maximisation and congestion minimisation.

Specifically, condition (4.6) for the maximisation of the flux becomes

ρ

(u∗)
2 p
′
(

1

u∗

)
− µF ′(u∗) = 0,

which for F, p like in (4.3), (4.10) produces

(4.12) (u∗)
1+δ

log u∗ =
δ

µ
ρ.

This equation admits a unique solution u∗ ≥ 1 because the left-hand side is one-
to-one and onto as a function of u from [1, +∞) to R+. Notice that the resulting
recommended headway sd(ρ, w) = u∗ is actually independent of w.

On the other hand, condition (4.8) for the minimisation of the traffic congestion
becomes

α− 1

(u∗)
2 p
′
(

1

u∗

)
∂xρ

α + κF ′(u∗) = 0,
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Table 1
Values of the parameters used in the numerical tests of Section 5

Parameter Value Reference equations

µ 0.1 (4.7), (4.12)
a 1 (4.7), (4.9)
κ 0.1 (4.9)
α 1, 2 (4.9)
δ 3 (4.12)

which with F, p like in (4.3), (4.10) yields

(u∗)
1+δ

log u∗ = (1− α)
δ

κ
∂xρ

α.

This equation is ill posed if (1 − α)∂xρ
α ≤ 0. Indeed, the mapping u 7→ u1+δ log u

is decreasing for 0 < u < e−
1

1+δ , increasing for u > e−
1

1+δ and reaches the absolute

minimum − 1
(1+δ)e at u = e−

1
1+δ . Consequently, if − 1

(1+δ)e ≤ (1 − α)∂xρ
α ≤ 0 there

are two solutions whereas if (1 − α)∂xρ
α < − 1

(1+δ)e there is no solution.

Remark 4.2. The speed function (4.11), together with the choice (4.10) of the
traffic pressure, complies neither with Assumption 2.1(ii) nor with (2.18). Therefore,
the inclusion of the ARZ model among the particular cases obtainable from (3.6) is
only formal, being not strictly supported by the derivation performed in Sections 2, 3.
We point out that a genuine Enskog-type kinetic derivation of the ARZ model with
uncontrolled speed-based vehicle interactions may instead be found in the recent pa-
per [19].

5. Numerical tests. We exemplify now the results of Section 4 through selected
numerical tests. In more detail, we solve numerically the hydrodynamic model (3.6)
with sd chosen out of the instantaneous optimisation of either functional (4.1), (4.2)
and we compare the results with those obtained by fixing a priori sd like in (3.7),
which produces the GARZ model (3.8).

We consider both the speed function (2.3), motivated by FTL microscopic dy-
namics, and the speed function (4.11), directly suggested by the ARZ macroscopic
model.

In all cases, we solve the hydrodynamic model by means of an upwind scheme
coupled with a non-linear algebraic solver of (4.6), (4.8) at each grid point (x, t).
Consistently with the theory developed in Section 4, we take as spatial domain the
interval [−1, 1] with periodic boundary conditions, which simulates a circular track.
As initial conditions ρ0(x) := ρ(0, x), w0(x) := w(0, x), we prescribe

ρ0(x) =

{
0.8 if x ≤ 0

0 if x > 0,
w0(x) =

{
0.55 if x ≤ 0

0.5 if x > 0,

which mimic a platoon of vehicles filling initially one half of the circular track. The
values of all other relevant parameters that we use in the numerical tests are listed in
Table 1.

The first three columns from the left of Figure 1 show the density profiles (solid
lines) at the three successive computational times t = 1, 2.5, 5 obtained with the
GSOM (3.6) with V given by (2.3) in the cases of flux maximisation and congestion
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Fig. 1. Density profiles at three successive computational times obtained from the numerical
solution of the GSOM (3.6) with the speed function (2.3) (first three columns from the left) and
the speed function (4.11) (fourth column from the left). Solid lines: optimal choice of sd for the
optimisations indicated on the top of the columns. Dashed lines: “standard” choice sd = 1

ρ
, cf. (3.7).

minimisation. The flux maximisation (first column) is ruled by the optimality condi-
tion (4.7) whereas the congestion minimisation (second and third columns) is ruled
by (4.9). The dashed line is instead the density profile obtained from (3.6) with sd
given by (3.7), i.e. with no specific optimisation. It is clear that the optimal sd’s
operate so as to keep the platoon of vehicles compact. In particular, they avoid the
formation of a rarefaction wave responsible for the spreading of the density across
the whole domain. This effect is further emphasised by the wave diagrams in the
xt-plane shown in Figure 2(a). Finally, Figure 3(a) shows the instantaneous values of
the functionals JρV , Jρ with the optimal sd’s (solid line) and with sd given by (3.7)
(dashed line). It is interesting to observe that, starting approximately from the com-
putational time t = 4, the functionals take the same values both in the optimised and
in the non-optimised cases. This is probably a consequence of the periodic boundary
conditions, which, in the long run, tend to make the integral values of the flux and the
density uniform despite persisting differences in the corresponding pointwise profiles.

The fourth column from the left of Figure 1 compares the density profiles with
(solid line) and without (dashed line) flux maximisation obtained from the ARZ
model, i.e. the GSOM (3.6) with V given now by (4.11). In this case, the flux maximi-
sation is ruled by (4.12) while the non-optimised case is again obtained taking sd like
in (3.7). We observe that the flux maximisation is achieved through a redistribution
of the vehicles in the platoon. Initially they are slowed down, whereby their density
diminishes and the rear part of the platoon elongates. Subsequently, the platoon re-
mains compact and recovers essentially the same speed as in the non-optimised case,
cf. the wave diagrams in Figure 2(b). From Figure 3(b) we observe that, unlike the
previous cases, the instantaneous values of the non-optimised functional JρV (dashed
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(a) GSOM

(b) Aw-Rascle-Zhang

Fig. 2. Wave diagrams in the xt-plane corresponding to: (a) the first three columns from the
left of Figure 1; (b) the fourth column from the left of Figure 1.

line) depart more and more consistently from those of the optimised one (solid line),
probably as a consequence of a much higher implementation cost (viz. penalisation)
of the non-optimal sd.

6. Conclusions. In this paper, we have derived generic high order macroscopic
traffic models from a feedback-controlled particle description via an Enskog-type ki-
netic approach.

At the microscopic scale, we have considered a class of generic Follow-the-Leader
(FTL) models which include a Lagrangian marker, i.e. a label attached to each vehicle
representing a constant-in-time driving characteristic, such as e.g., the maximum
speed. We have shown that the corresponding natural macroscopic description is
provided by a third order hyperbolic system of conservation/balance laws for the
density of vehicles, their mean Lagrangian marker and the mean headway among
them. These are the hydrodynamic parameters conserved by the FTL interactions,
or in classical kinetic terms the “collisional” invariants.

Next, we have included a feedback control in the FTL interaction rules, which
mimics the action of a driver-assistance system trying to maintain a recommended
distance sd from the leading vehicle. We have modelled sd as a parameter depending
on the local traffic congestion and the local mean Lagrangian marker. Moreover, we
have taken into account that all vehicles may not be equipped with such a controller.
For this, we have assumed that a randomly selected vehicle is controlled with a certain
probability p understood as the penetration rate of the driver-assist technology in the
traffic stream. In the regime of sufficiently high p, we have upscaled the controlled FTL
model to a macroscopic model by taking the hydrodynamic limit of the corresponding
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(a) GSOM

(b) Aw-Rascle-Zhang

Fig. 3. Instantaneous values of the functionals JρV , Jρ corresponding to: (a) the first three
columns from the left of Figure 1 and to Figure 2(a); (b) the fourth column from the left of Figure 1
and to Figure 2(b). Solid lines: optimal choice of sd for the optimisations indicated on the top of
the pictures. Dashed lines: “standard” choice sd = 1

ρ
, cf. (3.7).

Enskog-type kinetic description.
We have shown that the resulting hydrodynamic model describes universal traf-

fic trends for large enough penetration rates. Indeed, p does not parametrise the
macroscopic equations but affects the convergence rate of the microscopic interac-
tions to their local equilibrium. Remarkably, this hydrodynamic model turns out to
be a second order one belonging to the GSOM class. The order reduction with re-
spect to the uncontrolled case has its origin in the fact that the introduction of the
driver-assist control destroys the local conservation of the mean headway among the
vehicles. Furthermore, this model is parametrised by the recommended distance sd,
which we have proposed to understand as a further control to be fixed in such a way
to optimise macroscopic traffic dynamics. Using the technique of the instantaneous
control, which is particularly meaningful for driver-assist vehicles, we have proved
that there exist instantaneously optimal choices of sd (i.e. optimal sd’s based on
the instantaneous values of the hydrodynamic variables describing the traffic stream)
which e.g., maximise the flow of vehicles or minimise the traffic congestion. Apart
from these two examples, the technique that we have proposed is quite general and
may also be applied to other macroscopic functionals to be optimised.

Summarising, in this paper we have provided a conceptual way to perform multi-
scale control and optimisation of traffic. Indeed, starting from a microscopic control,
which optimises the interaction of a single vehicle with its leading vehicle, we have
shown that it is possible to design explicitly the control parameters so as to optimise
global traffic trends. This also suggests that vehicle-wise automatic decision algo-
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rithms may successfully turn driver-assist vehicles into bottom-up traffic controllers,
provided their penetration rate in the traffic stream is sufficiently high. On the other
hand, we believe that the conceptual scheme we have proposed in this paper may be
fruitfully applied also to the multiscale control of several other multi-agent systems,
such as e.g., human crowds or social systems, in which desired collective trends cannot
be simply obtained by top-down impositions but need rather to emerge spontaneously
from suitably controlled individual interactions.
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