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Abstract—Insulation system health is crucial for reliable,
lifelong operation of almost any electrical apparatus. While many
studies have focused on the testing, modeling, and analysis of
insulation aging mechanisms, research is needed to overcome new
challenges in electric power systems. Fortunately, the progress
in data analytics methods has opened up new opportunities to
extract information from datasets. This study aims to make
use of deep learning algorithms to lay the foundation for an
online condition monitoring system that is capable of discrimi-
nating single- and multi-source corona discharges. In this article,
we report the results of experimental testing and conversion of
the data into phase-resolved partial discharge images, which
we fed into deep neural networks. We begin by reviewing
some of the most successful image recognition models including
AlexNet, Inception-V3, residual network (ResNet), and DenseNet.
Thereafter, we develop and optimize a ResNet model to achieve
the highest accuracy model with the lowest computational cost.

Index Terms— Convolutional neural network (CNN), corona
discharge, deep learning, partial discharge (PD).

I. INTRODUCTION

OR more than a century, high-voltage engineering has
dealt with the challenges that occur when electrical
equipment is exposed to high-voltage levels. An inseparable
part of any piece of electrical equipment is its insulation
system. Dielectrics (insulating materials) keep conductive parts
electrically apart and prevent short circuits between them. The
behavior of dielectrics is highly dependent on the electric
field distribution, which can become extremely high in a
high-voltage apparatus. The understanding of high-voltage and
insulation engineering has significantly improved with the
development of numerical models and powerful computers.
The proper functioning of equipment is strongly dependent
on the health of its insulation system. Dielectrics can be in
the form of a gas, liquid, or solid, and the insulating material
may undergo various electrical, mechanical, thermal, chemical,
and radiation tensions during operation. Aggregation of these
factors can cause irreversible degradation of the insulating
properties and reduce life expectancy.
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One of the main aging mechanisms in dielectrics is par-
tial discharge (PD). According to the International Elec-
trotechnical Commission (IEC) standard 60270 [1], “Partial
discharge (PD) is a localized electrical discharge that only
partially bridges the insulation between conductors and which
may or may not occur adjacent to a conductor.” Three types of
PD can happen depending on the medium, the electrode type,
and the electric field distribution: internal discharge, surface
discharge, and corona discharge.

Some of the principal factors that influence PDs and other
such discharges are the gaseous environment pressure, gas
composition, magnitude and frequency of the applied volt-
age, electrode arrangement and geometry, and the properties,
condition, and age of the insulation [2].

Measurement of PDs has been carried out since the 1940s
and has provided us with an extensive amount of data [3].
Traditionally, experimental data provide useful information
regarding the type of discharge, intensity, and frequency of
discharges, as well as the phase-resolved PD (PRPD) patterns
used to adjust simulation models. However, with the rapid
advancement of data science, these invaluable data resources
can now be used to provide novel insights that could not be
obtained through traditional methods.

Machine learning (ML) provides a widely accepted tool
for the extraction of useful information from datasets.
However, to feed the ML models with experimental data,
the datasets should first be turned into vectors of fea-
tures. These features can be obtained through statistical,
fractal, temporal, or frequency feature extraction methods.
Below are summaries of some of the works that study PD
using ML.

In [4], the PD measurements of different PD types (corona,
internal, and surface discharges) were preprocessed using the
wavelet decomposition process. The preprocessed dataset was
then normalized and, after selecting the Gaussian radial basis
function as the kernel, the support vector machine (SVM)
was used to identify PD sources. Liao et al. [5] proposed a
data mining approach to recognize different PD patterns in
substations based on the shape of PD signals obtained from
sensors. In this study, principal component analysis (PCA) was
used to reduce the dimensionality and extract features. Then,
the normalized autocorrelation functions (NACFs) were used
to choose features for clusters. Finally, unsupervised clustering
algorithms such as K-means and hierarchical clustering were
used to form classes. Song et al. [6] performed PD defect-type
classification based on 3-D phase-resolved pulse sequence
(PRPS) graphs of the ultrahigh-frequency (UHF) detection
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system of a gas-insulated substation (GIS). First, a set of
features were extracted from these graphs using the histogram
of oriented gradient (HOG) technique. Then, a naive Bayes
classifier was adopted to classify defect types to achieve
99.32% accuracy.

In addition, in [7], extensive experimental data were
obtained for eight types of defects in a 220 kV GIS, which
were classified through a random forest sequential forward
selection method based on analysis of variance (RF-VA).
In [8], electromagnetic interference (EMI) signals were used
to distinguish between various PD and noise types using
adaptive local iterative filtering (ALIF). In this study, an SVM
was used for classification. Morette et al. [9] used K-means
and transudative SVM learning methods to discriminate sur-
face PD from noise signals. The features for classification
were the mean, variance, skewness, and kurtosis of wavelet
detail coefficient distribution at five levels of decomposition.
In [10], real-time PD occurrence detection was used after
transforming pulse sequence data into a feature vector stream
and using an anomaly detection method based on the differ-
ence against normal data vectors. Also, Ardila-Rey ef al. [11]
gave an overview of the advances in clustering techniques
used for discrimination of multiple PD sources and electrical
noise.

Conventionally, the features used for PD classification are
engineered not learned. Statistical parameters, image process-
ing features, frequency/time features, and fractal features are
among those used for this purpose. However, a set of features
that successfully represent one dataset may not suit another
dataset.

Recently, deep learning, a subfield of ML, has received a
tremendous amount of attention due to its ability to auto-
matically extract features and its relative independence from
human intervention. Deep neural networks (DNNs) can make
informed decisions based on the input data without manual
feature engineering. Significant success has been reported
using DNN in image classification, speech recognition, and
language processing. A convolutional neural network (CNN)
is a class of DNN that uses convolution (instead of matrix
multiplication) in at least one of its layers. It has been
observed that DNNs offer higher accuracy than the conven-
tional ML methods as they are faster and do not require human
intervention.

PD researchers recently targeted the use of deep learning
models due to their promising performance. Recent progress
in the application of deep learning for automated PD iden-
tification was reviewed in [12]. In [13], a deep CNN was
developed to use UHF signals of a 120-kV GIS for the identifi-
cation of PD sources. In this model, through a time-frequency
analysis, UHF signals were represented as 2-D spectral frames
using short-time Fourier transform (STFT). Wan et al. [14]
developed a 1-D CNN to classify five types of PD defects in
GIS based on the images of unstructured time-domain UHF
waveforms. A CNN was used in [15] to automatically extract
features from 3-D PRPD images and to classify four types
of defects in GIS. In [16], the MobileNets CNN (MCNN),
developed by Google in 2018, was used to recognize PD
patterns and classify faults in a GIS with four defect types.
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In [17], the method of deep convolutional generative adver-
sarial networks (DCGANSs) was used to artificially produce
PD image data. This can be helpful when there are not
sufficient PD data, such as in industrial places where noise
interference does not allow one to obtain valid measurements.
Wang et al. [18] developed a generative adversarial network
(GAN)-based method to augment the UHF PD dataset. This
method also automatically generates deep features and per-
forms classification of PD types.

The deep belief network (DBN) method was developed
in [19] by stacking restricted Boltzmann machines for both
feature extraction and classification of PRPD patterns based
on PD type (corona, internal, and surface discharges). In [20],
four defect types of GIS PD were classified based on a
combination of UHF and simulation data. A denoising-stacked
autoencoder was used for classification, which achieved 82.2%
accuracy. In [21], a recurrent neural network (RNN) structure
with two long short-term memory (LSTM) layers classified
artificially generated PD sources in a 345-kV GIS. This
method achieved 96.62% accuracy, which was higher than that
obtained by SVM and conventional artificial neural network
(ANN). In [22], a stacked sparse autoencoder (SSAE) model
was used for PRPD patterns based on UHF PD signals to
classify four levels of PD severity from normal to dangerous.
This method had an average of 90% accuracy, which is
10% higher than that of the SVM method. Balouji et al. [23]
targeted the recognition of internal PD location and size when
a bipolar voltage was applied. For this purpose, bagging trees
and LSTM RNNs presented the best performance by achieving
95.5% and 98.3% accuracy, respectively. Instead of using
signal measurements, five features were used as input for the
RNN method, which was acquired as sequences of information
correlating a PD to other PDs in the same cycle.

In this study, we aimed to use PD measurements to discrim-
inate single- and double-source corona discharges. For this,
PRPD patterns were used for identifying the PD source, which
was advantageous as it represented the evolution of the signal
over time. However, PRPD patterns become harder to interpret
in the presence of high electrical noise or when multiple PD
sources exist in an object. For this purpose, ML-based methods
were used on the spectral domain to discriminate PD sources
and electrical noise.

In real-world cases, it is common to have multiple sources
of PD working at the same time. It is not a trivial task to
detect multiple sources of PD from the patterns within a
short period of time. In this study, we address this research
gap by testing single and double sources of corona dis-
charge and provide a deep learning framework to discriminate
these different sources. Hence, the main contributions of this
study are.

1) Experimentation on coronas under strongly inhomo-
geneous electric fields. This allowed us to simulate
real-world cases where insulation systems undergo this
type of electric stress. We then transformed the raw data
into clean, normalized PRPDs patterns.

2) A review of some of the most successful DNN mod-
els in the recent decade is introduced and briefly
discussed. These models include AlexNet (2012),
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Fig. 1.
room.

Experimental setup. (a) Inside shielded room. (b) Outside shielded

Inception-V3 (2015), Residual
(2015), and DenseNet (2016).

3) After the application of different variations in these
DNN concepts, the ResNet model was optimized to
capture the highest amount of useful information from
PRPD images.

To the best of the authors’ knowledge, the use of very
DNNs for the identification of corona discharge sources has
not been addressed before. This approach demonstrates a
great potential for being used in online monitoring systems of
electrical equipment with highly exposed insulation systems.
Specifically, in the case of electric ships or aircraft, this
approach can ensure the safety of electric machinery and
prevent disastrous consequences due to insulation failure.

Network (ResNet)

II. TEST SETUP

The test setup was assembled following the IEC 60270 stan-
dard and is shown in Fig. 1. To perform tests in a radio-silent
environment and prevent EMI, a shielded room made of two
layers of copper was used.

The test samples were combinations of four fundamental
configurations in terms of the electric field homogeneity. The
configurations considered in this work were: 1) sphere—plane;
2) sphere—sphere; 3) needle—plane; and 4) needle—needle (see
Fig. 2). Among these four configurations, the first two led to
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Fig. 3. Test procedure based on IEC standard 61287 [24].

weakly nonuniform electric field distributions and the other
two produced extremely nonuniform fields.

Moreover, three double-source corona discharges, as fol-
lows, were tested.

1) Needle—needle and sphere—sphere.

2) Needle—plane and sphere—sphere.

3) Sphere—plane and needle—needle.

A standardized test procedure was used for all these scenar-
i0s to generate comparative datasets. The test procedure was
inspired by IEC 61287-1 [24] (Fig. 3).

III. OVERVIEW OF DEEP LEARNING MODELS

ML approaches have shown groundbreaking performance
in object recognition and classification. Specifically, CNNs
have revolutionized computer vision approaches. Using large
datasets and developing models that are resistant to overfitting,
neural networks can achieve the lowest loss. The great success
achieved by this deeper network has resulted in the move
from LeNet architecture (1989) with five layers to VGG with
19 layers and, later, to residual neural networks, which have
up to 1000 layers. However, due to the vanishing gradient
problem, the deeper CNNs suffer from their long pathway
from input to output to retrieve useful information. As we
see in the following sections, different data science research
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Fig. 6.  Sample inception block [26].

groups have come up with different strategies to tackle this
issue.

A. AlexNet

AlexNet is a CNN named after its creator Alex, which
was described in collaboratory work published in 2012 [25].
AlexNet architecture includes eight weighted layers, five of
which are convolutional and the rest are fully connected layers
as shown in Fig. 4. The output of the last fully connected layer
goes to an n-way softmax activation function to generate seven
classes. The input to the first convolutional layer includes
images of 32 x 32 x 1 with 96 kernels of size (11, 11)
with a stride of 4 pixels. The second convolutional layer has
256 filters with kernel size (5, 5). The next three convolutional
layers also have (3, 3) kernels and 384, 384, and 256 filters,
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respectively. All the convolutional layers are followed by a
batch normalization layer and a rectified linear unit (ReLU)
activation function. The first two and the last convolutional
layers have a maximum pooling layer with a pool size of
(2, 2) and a stride of 2 pixels. The number of neurons in
fully connected layers is 4096.

B. Inception-V3

Led by a group of researchers from Google, Inception-
V3 was proposed in 2015. Inception-V3 architecture is based
on the idea of approximating an optimal local sparse structure
in a convolutional network [26]. The concept that helps
achieve this goal is the inception module. Instead of limiting
to a single filter size, an inception module allows using several
types of filter sizes for a single image block and concatenating
their outputs into a single vector. This helps capture more
information from the input images in deep weighted layers.

A basic module is shown in Fig. 5 where three convolutional
layers with filter sizes of 1 x 1,3 x 3, and 5 x 5 are used
in a single block followed by a pooling layer, which is key
to the success of convolutional networks. The modules stack
upon each other and as the number of layers increases, more
abstract features are discovered by the model [27].

However, an issue arises from the expensive computational
burden imposed by 5 x 5 convolutions even when there is
only a small number of them. In Inception-V3, the authors
deployed two ideas to tackle this challenge. First, they per-
formed a dimension reduction using 1 x 1 convolutions before
the troublesome 3 x 3 and 5 x 5 convolutions. Also,
additional ReLU activation functions add to the beneficial
effect. Szegedy et al. [26] proposed the replacement of the
factorization of larger convolutions, such as 5 x 5, with
two 3 x 3 convolutions on top of each other. In this way,
25 parameters in a 5 x 5 filter are reduced to 18 parameters
in two 3 x 3 convolutions. This results in the inception block
shown in Fig. 6. Later, a 3 x 3 convolution was replaced
by two asymmetric 3 x 1 and 1 x 3 convolutions. Also,
some auxiliary classifiers were placed between the layers to
regularize neurons. The architecture of the entire model is
shown in Fig. 7.

C. ResNet

In 2015, a group of Microsoft researchers proposed a
deep residual learning scheme to overcome two well-known
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Fig. 8. Sample residual block [28].

problems of DNNs: high computation time and overfit-
ting [28]. In this method, the ResNet fits a residual mapping
using the block shown in Fig. 8 that shows a feed-forward
neural network. In this figure, identity mapping occurs after
two layers, but this number can vary depending on the problem
and, as seen in the next sections, we use this parameter as a
tool to optimize ResNet architecture. Compared with CNNss,
ResNets have a lower number of filters and are relatively less
complex in training.

D. DenseNet

In 2016, this notion was proposed “to ensure maximum
information flow between layers in the network, we connect all
layers directly to each other” [29]. In a feed-forward network,
each layer receives inputs from all preceding layers, which
provides input for all the subsequent layers. In contrast to
ResNet, in this approach, the features are concatenated instead
of aggregated. Therefore, the number of connections in an
L-layer network is L(L+1)/2 instead of L as in conventional
networks. The dense connection of layers in DenseNet leads
to a lower number of parameters needed for the convolutional
networks due to decreased redundancy. The basic architecture
of DenseNet is shown in Fig. 9.

IV. DATA PREPROCESSING

The measured corona signals were used to train deep
network models introduced in the previous section. The inputs

Fig. 9. Basic DenseNet architecture [29].

Fig. 10. Sample PRPD image fed to DNNs.

were in the form of PRPD patterns. However, PRPD images
must be preprocessed before use in the model. The preprocess-
ing stage was implemented in MATLAB and followed these
steps.

1) Importing raw data to MATLAB.

2) Filtering discharges that are too small in magnitude.

3) Defining proper time intervals for generating PRPD

patterns.
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TABLE I
LEARNING RESULTS FOR THE STANDARD NEURAL NETWORK MODELS

Model Layers Training Loss ~ Validation Loss ~ Training Acc.  Validation Acc. Time/epoch
AlexNet 8 0.003 0.560 1 0.869 48s
Inception-V3 48 0.208 0.569 0.924 0.807 14.3s
DenseNet121 121 0.037 1.446 0.988 0.748 9.7s
DenseNet 169 169 0.028 1.424 0.992 0.789 1235
DenseNet201 201 0.028 1.376 0.991 0.761 153s
ResNet50 50 0.052 1.190 0.983 0.760 9s
ResNet101 101 0.028 1.172 0.991 0.780 16.3s
ResNet152 152 0.064 1.078 0.978 0.747 214s

4) Generating PRPD patterns of the desired size and under
a unified x and y range.

For PD measurement, the aforementioned process was
applied to the 60-s period in Fig. 3 where the voltage ampli-
tude was 1.5U,,/+/2 since this was the interval over which
the most intense PDs occurred. Fig. 10 shows a sample PRPD
pattern. Note that since the range of the x- and y-axes is both
unified, we have omitted the x- and y-axes to prevent exhaus-
tion of the ResNet model with useless visual information. The
y-axis extends from 0.5 to 25 nC, which was the highest
observed PD magnitude in all cases. The sampling rate was ten
cycles (60 Hz) per PRPD plot, meaning that each image stands
for 167 ms of data. The PRPD images were produced at a rate
of 20 patterns per second. This gives about 1200 images per
electrode configuration. Therefore, we had a dataset containing
8400 images.

The generated images were all in greyscale and 75 x 75 pix-
els. However, depending on the model, the images could
be reshaped. The PRPD pixels were scaled and normalized.
Also, the classes/labels (which are the type of discharge) were
converted into a one-hot vector for adaptability to the deep
learning models. Each of the above electrode configurations
received a numerical value to ease the labeling process.
The label numbers started from O for the needle—needle
configuration and continued until 6 for the double-source
sphere—plane and needle—needle configurations. About 70% of
the 8400 images were allocated for training and the remaining
30% was used for validation of the performance of the neural
network.

For this stage, eight standard neural networks, based on the
four deep learning concepts discussed earlier, were used to
discriminate seven corona discharge sources.

1y
2)
3)
4)
5)
6)

AlexNet standard model.
Inception-V3 standard model.
ResNet50.

ResNet101.

ResNet152.

DenseNet121.

7) DenseNet169.

8) DenseNet201.

The numbers at the end of the variations in the ResNet
and DenseNet models correspond to the number of weighted

layers used in these networks. For all cases, the batch size
and the number of epochs were 128 and 120 m respectively.
All the deep learning networks were implemented in Python
with the aid of the Keras (Tensorflow), Numpy, Pandas,
and SciKit Learn libraries. The computer server used for
simulation had two 16-core Intel Xeon Gold processing units,
192 GB of RAM, and 5 GB of dedicated GPU memory that
is used for speeding up the training process.

V. PRELIMINARY RESULTS

After training the explained models with the corona dis-
charge data, examination of the accuracy level, loss, and
training time provided insightful comparisons. A summary of
these quantities, as well as the number of layers, is shown
in Table I.

Based on these results, the use of deeper models did not
significantly improve the accuracy of discrimination. AlexNet,
which has the lowest depth, gave the best performance. But
that did not necessarily mean that as the model goes deeper,
the level of loss increases. There is agreement among data
scientists that deeper models require larger training datasets.
Therefore, for our 8400-image dataset, we expected that a
deeper model would not lead to better performance.

In Fig. 11, the variations in loss and accuracy for different
models over the 120 iterations are shown at both the training
and validation levels. These figures provide more insight,
in terms of monotonicity, stability of models, and how fast
these models reach their best performance level. The accuracy
figure for AlexNet shows the severe fluctuations during the
first 100 iterations. In fact, for about 90 iterations, the model
had less than 40% accuracy while it exceeded 80% about
20 iterations later. Therefore, it takes at least 100 epochs (each
takes 4.8 s) to reach a plateau.

On the other hand, the fluctuation degree was consider-
ably lower for deeper models, especially the ResNet and
DenseNet models. Still, the deepest models of ResNet and
DenseNet (i.e., ResNet152 and DenseNet201) presented infe-
rior performance compared with those models with less depth.
Inception-V3’s performance, in contrast, fluctuated somewhere
between AlexNet’s and DenseNet’s. A severe accuracy drop
of 60% occurred in the 110th iteration; however, it returned
to the normal 80% accuracy soon afterward.
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Fig. 11.  Comparison of training and validation accuracy level among different models.

Therefore, we conclude that even though AlexNet presents stability. On the other hand, the ResNet and DenseNet models
the highest ultimate accuracy, it has broad swings at a very reach a stable level of high accuracy within 20 iterations.
high level and requires at least 100 iterations for mid-level As mentioned in the literature, based on the dataset, there is
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TABLE 11
LEARNING RESULTS FOR THE NEURAL NETWORKS WITHIN OPTIMIZATION FRAMEWORK

Model No. Block Size Initial Filter Layers Tr. Loss Val. Loss Tr. Acc. Val. Acc. Time/epoch
1 2 16 16 0.010 0.762 1.000 0.830 3.7s
2 2 32 16 0.010 0.618 1.000 0.854 5.1s
3 2 64 16 0.010 0.576 1.000 0.876 9.2s
4 2 128 16 0.010 0.522 1.000 0.881 235s
5 3 16 22 0.010 0.898 1.000 0.820 49s
6 3 32 22 0.010 0.732 1.000 0.852 7.15s
7 3 64 22 0.022 1.517 0.996 0.727 1335
8 4 16 26 0.010 0.868 1.000 0.831 5.1s
9 4 32 26 0.010 0.716 1.000 0.863 92s
10 5 64 30 0.010 0.693 1.000 0.876 21.4s
11 7 16 38 0.010 0.911 1.000 0.836 82s
12 9 16 46 0.010 0.886 1.000 0.835 10.2s
13 2 16 16 0.010 0.762 1.000 0.830 3.7s
Input layers, the layers had the same number of filters as the output

Conv2D-BN-ReLLU

Residual
Block

Transition Layer

Residual
Block

Transition Layer

Residual
Block

Average Pooling -
Flatten

Dense - SoftMax

Predictions

Fig. 12. Base ResNet model for optimization.

an optimal depth for the best model performance, which is not
necessarily the lowest or highest depth. In searching for this
optimal depth, we built a customized ResNet architecture that
had the high accuracy of the AlexNet model while benefitting
from the stability of deep ResNets.

VI. OPTIMIZATION OF RESNET

As discussed in the previous section, deeper neural networks
provided more stable results and converged quickly. However,
a standardized approach did not suit our database. In this
regard, we built a customized model based on the concept of
residual neural networks. In Fig. 12, the base ResNet model
that we used for optimization is shown. The residual block
concept was used, which used network layers to fit a residual
mapping, instead of directly trying to fit a desired underlying
map (see the residual block). In the design of convolutional

feature size.

In addition, to maintain the computational complexity
relatively constant, the number of filters had an opposite
relationship with the feature map size. This meant that the
number of filters doubled if the feature map size was cut in
half. Therefore, the number of filters was doubled and each
dimension was halved periodically.

Moreover, there were transition layers between residual
blocks (a 1 x 1 2-D convolutional layer with a stride of 2) to
shrink the number of feature maps and make the model more
compact. After each convolutional layer, the batch of data was
normalized to reduce the internal covariant shift. This layer
was followed by a ReL.U activation function.

At the end of the residual blocks, we conducted down
sampling by having convolutional layers that had a stride of 2.
The network concluded with a global average pooling layer
and a seven-class fully connected layer with softmax. Two
parameters were used as degrees of freedom to optimize the
ResNet model.

1) The repetition rate of residual double convolutional
layers in each residual block (n).
2) The initial number of filters (in the first layer).

The performance of this proposed framework, using differ-
ent values for these two parameters, is reported in Table II.
A summary of the models in Table II shows that the optimized
network provided a highly accurate model for this study.
Almost all the models have 100% training accuracy and more
than 80% validation accuracy.

The previous section showed that going deeper than
50 weighted layers did not improve the overall performance
of the model (for this dataset). The best performance was
obtained when the number of filters in the convolutional layers
was the highest. In the fourth model, the initial number of
filters was 128, which doubled after each residual block,
reaching 512 filters in the last convolutional layer. Although
this model offered slightly higher accuracy compared with the
other models, the higher number of filters translated into a
longer iteration time. The third model was the second most
accurate model and only had 16 layers and 64 initial filters.
Note that the training time in each iteration of this model
was 60% lower than the fourth model. Therefore, we chose
model 3 as the optimal model for our dataset. Fig. 13 shows
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Fig. 14.  Visualization of features in the first residual block after (a) first

convolutional layer and (b) last convolutional layer.

the architecture of this model and Fig. 14 demonstrates the
16 filters’ outputs of two convolutional layers on a test image
(shown in Fig. 10) in the first residual block. Fig. 14(a) shows
the first convolutional layer output characterizing 16 features
from the test image. Fig. 14(b) shows the 16 relatively more
sophisticated features extracted by the last convolutional layer
in the first residual block.

To further investigate the performance of this model, Fig. 15
shows the evolution of training and validation accuracy/loss
over the iterations. These figures imply that this model reaches
its peak performance within 40 iterations and remains almost
intact thereafter. Comparing the convergence time of this
model with AlexNet, we determined that this optimized model
reached a completely stable result after 368 s, while AlexNet
required 528 s to reach a rough plateau. Therefore, our
proposed model offers superior performance compared with
AlexNet. Finally, one should consider that for a much larger
dataset, the proposed ResNet can be easily adjusted to achieve
high performance.
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Fig. 15.  Training and validation accuracy and loss of the third model.

(a) Accuracy. (b) Loss.
VII. CONCLUSION

In this study, we investigated one of the most detrimental
phenomena in highOvoltage engineering: PDs. Even though
PDs have been studied for more than a century, new tech-
nologies and applications have introduced new challenges
and threats to insulation systems. These new technologies
have expanded the domain of PD activity and, in cases such
as more electric aircraft, low-pressure environments lead to
unprecedentedly vulnerable dielectric performance against the
PD phenomenon.

To this end, this study aimed to experiment with single-
and double-source corona discharges and use deep learning to
develop a PD source discrimination model. The breakthrough
of DNNs has furnished us with opportunities to learn useful
information from large datasets. In this regard, we evaluated
the performance of some of the most successful DNNSs in iden-
tifying PD sources, specifically, corona discharge. Standard-
ized measurement data were used to generate PRPD patterns
and we then used these figures to feed neural networks. The
initial examination of DNNs showed that there was no need to
go deeper than 50 layers to achieve accurate results. However,
deeper networks, such as ResNets, were found to provide faster
convergence and more stability. Thus, to use these merits, we
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developed a customized residual neural network and optimized
it to meet our needs. The optimized ResNet offered 100%
training accuracy and more than 87% validation accuracy after
40 iterations. In future work, we will cover a variety of PD
types and expand our dataset to improve the deep learning
model for fast and accurate discharge source discrimination.
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