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Abstract— Partial discharge (PD) is a major aging factor in 
insulation systems. The first step toward ensuring the health of 
insulation systems is the identification of PD sources. This would 
enable the system operator to take proper actions before the 
occurrence of the final breakdown. This fundamental study 
targets building and training a deep residual neural network 
(ResNet) model to detect and discriminate single and multiple 
sources of corona discharge that are acting simultaneously. The 
input of the ResNet model is the actual PD measurements under 
atmospheric pressure for seven electrode configurations: four 
single-source and three double-source configurations which 
expands from weakly nonuniform to extremely nonuniform 
electric field distribution. In this study, the measurement data 
are converted into standardized phase-resolved PD (PRPD) 
images that would be further used as input to the optimized 
ResNet model. The validation of the 62-layer deep neural 
network is evaluated through 30% randomly chosen images 
from the original dataset. 

Keywords—Artificial intelligence, corona discharge, deep 
learning, partial discharge, residual neural network. 

I. INTRODUCTION 
A crucial part of any electrical system is the insulation 

system that separates the conductive parts and prevents the 
short circuit between them. Therefore, the proper operation of 
insulating material ensures the reliable operation of the 
equipment. The dielectric (insulating material) can be in any 
state (e.g., gas, liquid, or solid).  

A primary aging factor in dielectrics is partial discharge 
(PD) [1-7]. According to the standard of the International 
Electrotechnical Commission (IEC) 60270 [8], “Partial 
discharge (PD) is a localized electrical discharge that only 
partially bridges the insulation between conductors, and which 
may or may not occur adjacent to a conductor.” 

Three types of PDs can happen depending on the medium 
and insulation quality. If there is inclusion or cavity inside a 
solid/liquid dielectric, an “internal discharge” can happen. If 
there are protrusions or imperfections at the surface of the 
dielectric or electrode, it is likely that “surface discharge” 
happens. Under an inhomogeneous electric field around an 
electrode in gas, a local and continuous discharge may happen 
which is known as “corona discharge” [9]. 

Four types of internal PD modeling, in sequential order 
from first to last developed, are three-capacitance (abc), 
induced charge concept (ICC) [10], finite element analysis 
(FEA) [11-19], and Multiphysics models [20, 21]. 

PD testing has a history of almost 100 years and has played 
a pivotal role in the diagnosis and analysis of this 

phenomenon. As a result of PD measurements, several indices 
and figures have been defined to facilitate PD analysis. One of 
these figures is the phase-resolved PD pattern (PRPD) that has 
helped engineers to identify the type of discharges simply by 
looking at their PRPD pattern. For instance, in the case of 
internal discharges, PRPD has a pattern like “rabbit-ear”. A 
research gap lies in the possibility of identifying the sources 
of discharge from the PRPD pattern. The challenge, however, 
is due to the visibility of differences by human eyes, 
specifically for short-term data.  

With the proliferation of PD measurement units, an 
extensive amount of PD signals is available. Extracting the 
useful information from these invaluable resources manually 
may not be possible. Therefore, the machine learning 
approaches can help us to perform feature extraction and 
classification automatically. Machine learning algorithms are 
fed by a dataset to learn from the data and make proper 
decisions about a parameter (or more). However, typical 
machine learning approaches require the human user to 
provide the features needed for classification. Recently, a 
branch of machine learning – called deep learning (DL) – has 
received substantial attention due to its independence from 
feature engineering by the user. Especially, DL has achieved 
significant advancements in the case of image recognition and 
classification [22].  

DL models can extract and integrate features at different 
levels (low, mid, and high) and in different numbers to capture 
as much variance as possible in a time-efficient manner [23]. 
There has much research on the impact of network depth on 
the ability of DL models to achieve higher precision [24]. 
Evidence has proven that DL models can be effectively trained 
and tested by challenging image datasets through a high 
number of stacked layers [25]. This is beneficial for the case 
of classification of PRPD images as they are not easy to 
classify.  

However, the difficulty of training increases by the depth 
of the neural network. In [26], a deep residual learning 
framework is proposed to facilitate the training of deep 
networks. In this approach, the layers learn residual functions 
with reference to input layers (instead of typical unreferenced 
versions).  

In this paper, we target the classification of a dataset 
consisting of seven discharge sources including single- and 
double-source corona discharges. After presenting the 
measurement results for these test configurations, we deploy 
a residual network (ResNet) model and optimize to 
discriminate these corona discharge sources. 
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The rest of the paper is as follows: in section II, we present 
the experimental setup and the testing procedure along with 
the voltage source characteristics. In section III, the 
architecture of the ResNet model is introduced and discussed. 
Also, the production and processing of input images are 
explained. The results of the deep learning approach are 
presented in section IV. Finally, section V concludes the 
paper. 

II. EXPERIMENTAL SETUP 
The experimental setup in this study provides the input to 

the ResNet model through various test cells (i.e., electrode 
configuration). The electrode configurations considered in 
this study are sphere-sphere, sphere-plane, needle-needle, 
and needle-plane. The first two configurations lead to weakly 
nonuniform and the next two configurations lead to extremely 
nonuniform electric field distributions which is the common 
case in real-world applications. Besides these four single 
sources of corona discharge, three double sources of corona 
discharge will be investigated.  

Fig. 1 shows the experimental setup. A standardized test 
procedure is used for all these scenarios to generate 
comparative datasets. The test procedure is based on IEC 
61287-1 [27] (Fig. 2). The only modification of this 
procedure is in the initial rise time of voltage that 20 s instead 
of 10 s. The gap distance and the voltage peak (ܷ௠) in all 
cases are 2 cm and 6 kV, respectively. Note that the PRPD 
images are extracted from the 60-second period in which the 
test cell undergoes the highest voltage. 
 

 
(a) 

 
Fig. 1. The experiment system: (a) test setup, (b) sphere-sphere, (c) sphere-
plane, (d) needle-needle, and (e) needle-plane electrode configuration. 

 
Fig. 2. The test procedure defined in standard IEC 61287 [27]. 

The PRPD patterns of all seven test samples are shown in 
Fig. 3. While a slight difference is observable after the whole 
pattern is formed, it is not a trivial task to identify the source 
of PD in the early stages. Also, the difference between the 
patterns of a single-source discharge (e.g. sphere-plane) and 
a double-source discharge (e.g. needle-needle and sphere-
plane) may not be visible while a data analytics tool can 
accurately discriminate them. Hence, this paper targets the 
discrimination of different single- and double-source 
discharges using deep neural networks to enhance awareness 
about the insulation system conditions.  

 
(a)              (b) 

   
           (c)                 (d)    

    
          (e)                (f)  

    
                            (g)   
Fig. 3. Corona discharge PRPD pattern: (a) needle-needle, (b) needle-plane, 
(c) sphere-plane, (d) sphere-sphere, (e) sphere-sphere and needle-needle, (f) 
sphere-sphere and needle-plane, and (g) needle-needle and sphere-plane. 
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III. RESNET ARCHITECTURE 
The measured PD signals are used to train a deep residual 

network model. The inputs of the model will be in form of 
the phase-resolved PD (PRPD) patterns. However, the PRPD 
images need to be preprocessed before being used in the 
ResNet model.  

The preprocessing stage is implemented in MATLAB and 
follows these steps: (1) Importing raw data to MATLAB, (2) 
filtering discharges that are too small in magnitude (those that 
have charge magnitude below 0.5 nC), (3) defining proper 
time interval for generating PRPD patterns, (4) generating 
PRPD pattern in the desired size and under a unified x, and y 
range. Fig. 4 shows a sample PRPD pattern. Note that since 
the range of the x-axis and y-axis are both unified, we have 
omitted the x and y axes to prevent the exhaustion of the 
ResNet model with unimportant image aspects. The y-axis 
extends from 0.5 nC to 25 nC which is the highest PD 
magnitude observed in all cases. The sampling rate is 10 (60 
Hz) cycles per PRPD plot meaning that each generated image 
represents ~167 ms of the data. The PRPD images are 
produced at the rate of 20 patterns per second. This gives 
about 1200 images per electrode configuration and a total of 
8400 images. The images are all in greyscale and 32×32 
pixels.  

 

 
Fig. 4. A sample PRPD image used as ResNet model input. 
 

 The PRPD pixels are normalized and the classes/labels 
(which are the type of discharge) are converted into a one-hot 
vector for adaptability to the ResNet model. The model will 
be trained with each PD source separately and then, the test 
data of the superimposition of these sources will demonstrate 
the performance of the model. The ability of the model to 
discriminate multiple PD sources will be evaluated using a 
test dataset (30% of the original dataset is randomly chosen). 

 
― Residual Network Concept 

In residual networks, every few weighted layers, an 
identity mapping is performed by adding the output of a 
previous layer to the next layer after skipping connections. 
This concept is shown in Fig. 5. In this figure, the identity 
mapping occurs after 2 layers, but this number can vary 
depending on the problem. Normally, the input ܠ  is 
multiplied by the two weighted layers to achieve output ࢟ =ऐ(ܠ); however, in the residual block shown in Fig. 5, the 
output of the weighted layers are summed up with the identity 
mapping of the input: ࢟ = ऐ(ܠ) +  This helps to mitigate .ܠ
the vanishing gradient problem. Moreover, the addition of 

identity mapping ensures that the deeper layers perform at 
least as good as the previous layers. In comparison with 
CNNs, ResNet has fewer filters and is relatively less complex 
in training. 

 
Fig. 5. A sample residual block [26]. 

― Architecture 
The architecture of the deep residual network designed for 

this study is shown in Fig. 6. The idea behind ResNet is to use 
network layers to fit a residual mapping instead of directly 
trying to fit a desired underlying mapping (see the residual 
block). In the design of convolutional layers, the layers have 
the same number of filters as the output feature size. Also, to 
maintain the computational complexity relatively constant, 
the number of filters has an opposite relationship with the 
feature map size. This means that the number of filters will be 
doubled if the feature map size is cut in half. Thus, the number 
of filters is doubled and each dimension is halved periodically.  

Also, there are transition layers between residual blocks (a 
1x1 2D convolutional layer with the stride of 2) to shrink the 
number of feature maps and make the model more compact. 
Also, at the end of each transition layer, a dropout layer is 
placed to prevent overfitting (the dropout rate is 0.4). After 
each convolutional layer, batch normalization is placed 
followed by a rectified linear unit (ReLU) activation function.  

At the end of the residual blocks, we conduct down-
sampling by having convolutional layers that have a stride of 
2. The network concludes by a global average pooling layer 
and a 7-class fully connected layer with softmax. The total 
number of convolutional layers in this model is 62 assuming 
that the repetition of double residual convolutional layers in 
each residual block is n=10.  

 
Fig. 6. The proposed ResNet architecture. 
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IV. RESULTS 
The proposed ResNet model is developed in Python using 

Tensorflow (Keras) library. The model has 62 weighted layers 
while the batch size and number of epochs are 128 and 200, 
respectively. However, an early stopping (with a 10 epoch 
patience concerning vanishing loss function) may end the 
iterations before reaching 200 epochs.  

The loss function is categorical cross-entropy and the 
Adam method is adopted as an optimizer. The training and 
testing accuracy obtained by the ResNet model is 98.9% and 
79.7%, respectively. This shows great potential for deep 
learning methods to accurately discriminate the different 
corona discharge sources using less than 100 iterations.  

In Fig. 7, the training and validation accuracy is plotted 
versus. This can help us to monitor overfitting. While at the 
training level, the labeling of sources is done with almost 
100% accuracy, the validation is 15%-50% less accurate. As 
the number of iterations increases, the validation accuracy 
tends to saturate giving a satisfactory value of ~80%. 
 

 

Fig. 7. The training vs validation accuracy. 
 

In Fig. 8, a sample PRPD image is shown which is 
followed by its feature map after the first convolutional layer 
with 16 filters. This figure demonstrates how different aspects 
of the pattern are detected by each filter. The high accuracy 
level achieved by this method is representative of the efficacy 
of the aggregated filters in the ResNet model. As the model 
goes deeper, a higher level of information could be extracted 
by the filters. 
 

 
Fig. 8. The feature map of a sample image after the first convolutional layer. 

V. CONCLUSION 
In this paper, we proposed, designed, and optimized a deep 

residual neural network for the discrimination of corona 
discharge sources. The input of the model was PD 
measurements performed in 7 different scenarios including 
three double-source and four single-source test 
configurations. The measurement data was processed and 
standardized to prepare a large set of PRPD images. While it 
is not easy to manually discriminate the sources of corona 
discharge – especially with short-term data –, neural networks 
can help us to automatically do that within a short period. The 
very deep ResNet model developed in this study could tackle 
the problem using 62 convolutional layers and achieve about 
~80% accuracy.  
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