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Abstract— Partial discharge (PD) is a major aging factor in
insulation systems. The first step toward ensuring the health of
insulation systems is the identification of PD sources. This would
enable the system operator to take proper actions before the
occurrence of the final breakdown. This fundamental study
targets building and training a deep residual neural network
(ResNet) model to detect and discriminate single and multiple
sources of corona discharge that are acting simultaneously. The
input of the ResNet model is the actual PD measurements under
atmospheric pressure for seven electrode configurations: four
single-source and three double-source configurations which
expands from weakly nonuniform to extremely nonuniform
electric field distribution. In this study, the measurement data
are converted into standardized phase-resolved PD (PRPD)
images that would be further used as input to the optimized
ResNet model. The validation of the 62-layer deep neural
network is evaluated through 30% randomly chosen images
from the original dataset.

Keywords—Artificial intelligence, corona discharge, deep
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I. INTRODUCTION

A crucial part of any electrical system is the insulation
system that separates the conductive parts and prevents the
short circuit between them. Therefore, the proper operation of
insulating material ensures the reliable operation of the
equipment. The dielectric (insulating material) can be in any
state (e.g., gas, liquid, or solid).

A primary aging factor in dielectrics is partial discharge
(PD) [1-7]. According to the standard of the International
Electrotechnical Commission (IEC) 60270 [8], “Partial
discharge (PD) is a localized electrical discharge that only
partially bridges the insulation between conductors, and which
may or may not occur adjacent to a conductor.”

Three types of PDs can happen depending on the medium
and insulation quality. If there is inclusion or cavity inside a
solid/liquid dielectric, an “internal discharge” can happen. If
there are protrusions or imperfections at the surface of the
dielectric or electrode, it is likely that “surface discharge”
happens. Under an inhomogeneous electric field around an
electrode in gas, a local and continuous discharge may happen
which is known as “corona discharge” [9].

Four types of internal PD modeling, in sequential order
from first to last developed, are three-capacitance (abc),
induced charge concept (ICC) [10], finite element analysis
(FEA) [11-19], and Multiphysics models [20, 21].

PD testing has a history of almost 100 years and has played
a pivotal role in the diagnosis and analysis of this
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phenomenon. As a result of PD measurements, several indices
and figures have been defined to facilitate PD analysis. One of
these figures is the phase-resolved PD pattern (PRPD) that has
helped engineers to identify the type of discharges simply by
looking at their PRPD pattern. For instance, in the case of
internal discharges, PRPD has a pattern like “rabbit-ear”. A
research gap lies in the possibility of identifying the sources
of discharge from the PRPD pattern. The challenge, however,
is due to the visibility of differences by human eyes,
specifically for short-term data.

With the proliferation of PD measurement units, an
extensive amount of PD signals is available. Extracting the
useful information from these invaluable resources manually
may not be possible. Therefore, the machine learning
approaches can help us to perform feature extraction and
classification automatically. Machine learning algorithms are
fed by a dataset to learn from the data and make proper
decisions about a parameter (or more). However, typical
machine learning approaches require the human user to
provide the features needed for classification. Recently, a
branch of machine learning — called deep learning (DL) — has
received substantial attention due to its independence from
feature engineering by the user. Especially, DL has achieved
significant advancements in the case of image recognition and
classification [22].

DL models can extract and integrate features at different
levels (low, mid, and high) and in different numbers to capture
as much variance as possible in a time-efficient manner [23].
There has much research on the impact of network depth on
the ability of DL models to achieve higher precision [24].
Evidence has proven that DL models can be effectively trained
and tested by challenging image datasets through a high
number of stacked layers [25]. This is beneficial for the case
of classification of PRPD images as they are not easy to
classify.

However, the difficulty of training increases by the depth
of the neural network. In [26], a deep residual learning
framework is proposed to facilitate the training of deep
networks. In this approach, the layers learn residual functions
with reference to input layers (instead of typical unreferenced
versions).

In this paper, we target the classification of a dataset
consisting of seven discharge sources including single- and
double-source corona discharges. After presenting the
measurement results for these test configurations, we deploy
a residual network (ResNet) model and optimize to
discriminate these corona discharge sources.



The rest of the paper is as follows: in section II, we present
the experimental setup and the testing procedure along with
the voltage source characteristics. In section III, the
architecture of the ResNet model is introduced and discussed.
Also, the production and processing of input images are
explained. The results of the deep learning approach are
presented in section IV. Finally, section V concludes the

paper.

II. EXPERIMENTAL SETUP

The experimental setup in this study provides the input to
the ResNet model through various test cells (i.e., electrode
configuration). The electrode configurations considered in
this study are sphere-sphere, sphere-plane, needle-needle,
and needle-plane. The first two configurations lead to weakly
nonuniform and the next two configurations lead to extremely
nonuniform electric field distributions which is the common
case in real-world applications. Besides these four single
sources of corona discharge, three double sources of corona
discharge will be investigated.

Fig. 1 shows the experimental setup. A standardized test
procedure is used for all these scenarios to generate
comparative datasets. The test procedure is based on IEC
61287-1 [27] (Fig. 2). The only modification of this
procedure is in the initial rise time of voltage that 20 s instead
of 10 s. The gap distance and the voltage peak (U,,) in all
cases are 2 cm and 6 kV, respectively. Note that the PRPD
images are extracted from the 60-second period in which the
test cell undergoes the highest voltage.

Fig. 1. The experiment system: (a) test setup, (b) sphere-sphere, (c) sphere-
plane, (d) needle-needle, and (e) needle-plane electrode configuration.
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Fig. 2. The test procedure defined in standard IEC 61287 [27].

The PRPD patterns of all seven test samples are shown in
Fig. 3. While a slight difference is observable after the whole
pattern is formed, it is not a trivial task to identify the source
of PD in the early stages. Also, the difference between the
patterns of a single-source discharge (e.g. sphere-plane) and
a double-source discharge (e.g. needle-needle and sphere-
plane) may not be visible while a data analytics tool can
accurately discriminate them. Hence, this paper targets the
discrimination of different single- and double-source
discharges using deep neural networks to enhance awareness
about the insulation system conditions.
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Fig. 3. Corona discharge PRPD pattern: (a) needle-needle, (b) needle-plane,
(c) sphere-plane, (d) sphere-sphere, () sphere-sphere and needle-needle, (f)
sphere-sphere and needle-plane, and (g) needle-needle and sphere-plane.
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III. RESNET ARCHITECTURE

The measured PD signals are used to train a deep residual
network model. The inputs of the model will be in form of
the phase-resolved PD (PRPD) patterns. However, the PRPD
images need to be preprocessed before being used in the
ResNet model.

The preprocessing stage is implemented in MATLAB and
follows these steps: (1) Importing raw data to MATLAB, (2)
filtering discharges that are too small in magnitude (those that
have charge magnitude below 0.5 nC), (3) defining proper
time interval for generating PRPD patterns, (4) generating
PRPD pattern in the desired size and under a unified x, and y
range. Fig. 4 shows a sample PRPD pattern. Note that since
the range of the x-axis and y-axis are both unified, we have
omitted the x and y axes to prevent the exhaustion of the
ResNet model with unimportant image aspects. The y-axis
extends from 0.5 nC to 25 nC which is the highest PD
magnitude observed in all cases. The sampling rate is 10 (60
Hz) cycles per PRPD plot meaning that each generated image
represents ~167 ms of the data. The PRPD images are
produced at the rate of 20 patterns per second. This gives
about 1200 images per electrode configuration and a total of
8400 images. The images are all in greyscale and 32x32
pixels.

Fig. 4. A sample PRPD image used as ResNet model input.

The PRPD pixels are normalized and the classes/labels
(which are the type of discharge) are converted into a one-hot
vector for adaptability to the ResNet model. The model will
be trained with each PD source separately and then, the test
data of the superimposition of these sources will demonstrate
the performance of the model. The ability of the model to
discriminate multiple PD sources will be evaluated using a
test dataset (30% of the original dataset is randomly chosen).

— Residual Network Concept

In residual networks, every few weighted layers, an
identity mapping is performed by adding the output of a
previous layer to the next layer after skipping connections.
This concept is shown in Fig. 5. In this figure, the identity
mapping occurs after 2 layers, but this number can vary
depending on the problem. Normally, the input x is
multiplied by the two weighted layers to achieve output y =
F(x); however, in the residual block shown in Fig. 5, the
output of the weighted layers are summed up with the identity
mapping of the input: y = F(x) + x. This helps to mitigate
the vanishing gradient problem. Moreover, the addition of

identity mapping ensures that the deeper layers perform at
least as good as the previous layers. In comparison with
CNN s, ResNet has fewer filters and is relatively less complex
in training.

weight layer

X
identity

Fig. 5. A sample residual block [26].

— Architecture

The architecture of the deep residual network designed for
this study is shown in Fig. 6. The idea behind ResNet is to use
network layers to fit a residual mapping instead of directly
trying to fit a desired underlying mapping (see the residual
block). In the design of convolutional layers, the layers have
the same number of filters as the output feature size. Also, to
maintain the computational complexity relatively constant,
the number of filters has an opposite relationship with the
feature map size. This means that the number of filters will be
doubled if the feature map size is cut in half. Thus, the number
of filters is doubled and each dimension is halved periodically.

Also, there are transition layers between residual blocks (a
1x1 2D convolutional layer with the stride of 2) to shrink the
number of feature maps and make the model more compact.
Also, at the end of each transition layer, a dropout layer is
placed to prevent overfitting (the dropout rate is 0.4). After
each convolutional layer, batch normalization is placed
followed by a rectified linear unit (ReLU) activation function.

At the end of the residual blocks, we conduct down-
sampling by having convolutional layers that have a stride of
2. The network concludes by a global average pooling layer
and a 7-class fully connected layer with softmax. The total
number of convolutional layers in this model is 62 assuming
that the repetition of double residual convolutional layers in
each residual block is n=10.
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Fig. 6. The proposed ResNet architecture.
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IV. RESULTS

The proposed ResNet model is developed in Python using
Tensorflow (Keras) library. The model has 62 weighted layers
while the batch size and number of epochs are 128 and 200,
respectively. However, an early stopping (with a 10 epoch
patience concerning vanishing loss function) may end the
iterations before reaching 200 epochs.

The loss function is categorical cross-entropy and the
Adam method is adopted as an optimizer. The training and
testing accuracy obtained by the ResNet model is 98.9% and
79.7%, respectively. This shows great potential for deep
learning methods to accurately discriminate the different
corona discharge sources using less than 100 iterations.

In Fig. 7, the training and validation accuracy is plotted
versus. This can help us to monitor overfitting. While at the
training level, the labeling of sources is done with almost
100% accuracy, the validation is 15%-50% less accurate. As
the number of iterations increases, the validation accuracy
tends to saturate giving a satisfactory value of ~80%.
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Fig. 7. The training vs validation accuracy.

In Fig. 8, a sample PRPD image is shown which is
followed by its feature map after the first convolutional layer
with 16 filters. This figure demonstrates how different aspects
of the pattern are detected by each filter. The high accuracy
level achieved by this method is representative of the efficacy
of the aggregated filters in the ResNet model. As the model
goes deeper, a higher level of information could be extracted
by the filters.

Fig. 8. The feature map of a sample image after the first convolutional layer.

V. CONCLUSION

In this paper, we proposed, designed, and optimized a deep
residual neural network for the discrimination of corona
discharge sources. The input of the model was PD
measurements performed in 7 different scenarios including
three  double-source and four single-source test
configurations. The measurement data was processed and
standardized to prepare a large set of PRPD images. While it
is not easy to manually discriminate the sources of corona
discharge — especially with short-term data —, neural networks
can help us to automatically do that within a short period. The
very deep ResNet model developed in this study could tackle
the problem using 62 convolutional layers and achieve about
~80% accuracy.
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