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SAU-Net: A Unified Network for Cell Counting in
2D and 3D Microscopy Images

Yue Guo, Oleh Krupa, Jason Stein, Guorong Wu, and Ashok Krishnamurthy

Abstract—Image-based cell counting is a fundamental yet challenging task with wide applications in biological research. In this paper,
we propose a novel unified deep network framework designed to solve this problem for various cell types in both 2D and 3D images.
Specifically, we first propose SAU-Net for cell counting by extending the segmentation network U-Net with a Self-Attention module.
Second, we design an extension of Batch Normalization (BN) to facilitate the training process for small datasets. In addition, a new 3D
benchmark dataset based on the existing mouse blastocyst (MBC) dataset is developed and released to the community. Our SAU-Net
achieves state-of-the-art results on four benchmark 2D datasets - synthetic fluorescence microscopy (VGG) dataset, Modified Bone
Marrow (MBM) dataset, human subcutaneous adipose tissue (ADI) dataset, and Dublin Cell Counting (DCC) dataset, and the new 3D
dataset, MBC. The BN extension is validated using extensive experiments on the 2D datasets, since GPU memory constraints
preclude use of 3D datasets. The source code is available at https//github.com/mzlr/sau-net.

Index Terms—Cell counting, batch normalization, deep learning, neural networks

1 INTRODUCTION

MAGE-BASED cell counting is a powerful technique for

computational analysis in various biological studies [1],
[2] because the quantification of a specific cell type can
provide valuable insights into the underlying cellular mech-
anism. Cell biological applications using optogenetic tools
[3], for example, often require the count of opsin expressing
cells for cancer biology and neurobiology. Despite previ-
ous successes focusing on specific cell images [4], [5], [6],
universal image-based cell counting remains a challenging
task due to the large variations in the cell type, staining
technique and imaging modality. Additionally, most recent
image-based cell counting studies focus on 2D images [7],
[8], [9] and the lack of reliable 3D cell quantification methods
hinders the impact brought about by the rapid advancement
in 3D microscopy [10]. Therefore, it is of great importance
to provide a unified framework to perform cell-counting for
various cell types imaged with different techniques.

Due to the large number of cells in images, complete
annotations for each cell are usually costly. Instead, dot-
annotations are widely used in public benchmarks for
image-based cell counting [4], [8], [9], [11]. As shown in
Figure 1, each cell is represented by a single pixel at its
center, and these dot-annotations are considered density
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maps. Given this labeling, recent methods [4], [6], [9], [12]
approach the cell counting task by learning a mapping from
an input image to the corresponding density map, and the
cell count can be inferred by integration of the density map.
Inspired by the recent success of U-Net based methods for
image segmentation [13], [14], [15], we choose U-Net as the
base mapping model in both the 2D and 3D cases. One
of the main obstacles in this learning process is that the
density maps are dot-annotated and thus extremely sparse,
rendering the model difficult to train. Previous methods [4],
[6] remedy this problem by applying a Gaussian kernel at
each dot annotation to blur the density map, which also
maintains the same cell count. Building upon this technique,
we propose to use Self-Attention module [16] in conjunction
with U-Net to learn long-range, non-local dependencies in
images, forcing the model to ”focus” on the foreground in-
stead of background pixels. The proposed structure, named
SAU-Net, outperforms U-Net in both 2D and 3D scenarios.
In addition, given the lack of a 3D public benchmark, we
introduce a 3D cell counting dataset based on the work in
[17]. This dataset was originally released for inter-cellular
communication research, and largely overlooked by the
cell counting research community. We have modified and
release that dataset for 3D evaluations.

Another challenge with Deep Learning methods is hy-
perparameter optimization, such as for Batch Normalization
(BN) [18] when training small datasets. BN has been widely
adopted in various state-of-the-art deep learning models,
e.g., ResNet [19], DenseNet [20], and EfficientNet [21]. De-
spite its successes, it remains challenging to analytically de-
termine the optimal value of the BN hyperparameter mov-
ing average momentum. A commonly adopted strategy for
hyperparameter optimization is to perform a grid-search or
random search [22], but this process is computationally ex-
pensive since it requires repeated trials. Instead, BN moving
average momentum is often empirically set to 0.9 [19], [20]
or 0.99 [21], which is also the default value in popular deep
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Fig. 1: A sample image from Modified Bone Marrow (MBM)
dataset [11] with dot annotations shown as red cross over-
lays (left image) and the corresponding dot annotations
used in training (right image).

learning libraries, e.g., TensorFlow!, MXNet?, or PyTonch3.
These recommended empirical values are usually based on
large datasets, like CIFAR [23] or ImageNet [24], which
have thousands, if not millions, of images, and it does not
guarantee these values work for small datasets, a common
scenario in cell counting research. In our experiments, we
find these values often lead to sub-optimal performance
with smaller datasets. Rather than performing the costly
manual search, we propose a simple extension of BN: only
during inference, we re-estimate the statistics of the training
data and use these values for normalization rather than
the moving averages. Our proposed extension of BN has
a negligible impact on computation since it does not affect
training process, meaning that we can easily take advantage
of standard BN trained models.

To validate the effectiveness of SAU-Net, we test on four
public 2D benchmarks for cell counting, plus the newly
introduced 3D benchmark. In 2D cases, state-of-the-art per-
formance is obtained in the Modified Bone Marrow (MBM)
dataset [11], human subcutaneous adipose tissue (ADI)
dataset [9] and Dublin Cell Counting (DCC) datasets [8].
On the synthetic fluorescence microscopy (VGG) dataset [4],
our result is on par with the leading method. Similarly, for
the 3D datasets [17] on mouse blastocyst (MBC), SAU-Net
outperforms other popular 3D methods. Moreover, results
on four 2D datasets also sustain our hypothesis that our
BN extension expedites the training process. We argue this
should also hold in 3D cases, although we are unable to
empirically verify this conjecture due to memory limitation
in our GPUs, which opens up a possibility for further
exploration.

In summary, our contributions are three-fold:

« We propose a novel deep architecture, SAU-Net, to
incorporate U-Net [13] with Self-Attention module [16]
for cell counting and provide a unified framework in
both 2D and 3D cases. An extension of Batch Normal-
ization is also developed to facilitate the training in

1. https:/ /www.tensorflow.org/api_docs/python/tf/keras/layers/
BatchNormalization

2. https:/ / mxnet.apache.org/versions /master/api/ python/docs/
api/npx/ generated /mxnet.npx.batch_norm.html

3. https:/ / pytorch.org/docs/ stable/ generated / torch.nn.
BatchNorm2d.html#torch.nn.BatchNorm2d

small datasets.

« SAU-Net outperforms state-of-the-art methods in four
out of five cell counting benchmarks and achieves com-
petitive results in the other synthetic benchmark, high-
lighting the universal nature of the proposed method.

« The source code is available to the research community
at https://github.com/mzlr/sau-net, aimed at stim-
ulating further investigations on this topic. The 3D
benchmark used in the experiment based on [17] is
also released to promote more research for emerging
3D microscopy.

The paper serves as an extended version of a preliminary
work in [25]. Since then, we have made two key improve-
ments: 1) we expand the original architecture from 2D use
case to 3D. Along with the release of a new 3D benchmark
modified from [17], a unified framework for image-based
cell counting is presented; 2) To address computational
overhead in the online version of BN in [25], we propose
a BN extension as an efficient implementation of online BN
and conduct more numerical analysis to offer an empirical
explanation for the performance gain of the proposed exten-
sion.

The rest of the paper is organized as follows: We will
first review the related work for cell counting in Section 2
and then present the proposed method in Section 3. Next,
Section 4 will briefly describe the benchmarks used in this
study, followed by Section 5, which will conduct an ablation
study on each proposed component and compare our re-
sults with the state-of-the-art methods for each benchmark.
Additional analysis for the results is provided in Section 6.
Finally, Section 7 will conclude the paper with a discussion
for future work.

2 RELATED WORK

There are generally two categories of cell counting meth-
ods: detection based [26], [27] and regression based [4],
[6], [8], [9], [12]. The former approaches use a detector to
localize each cell, and the cell count can be obtained by
counting the detected cells. Cell detection, however, remains
a challenging task due to occlusion, shape variation, etc.,
and training such a model typically requires whole-cell
annotations for individual cells, which is time-consuming
given the high cell density in images. On the other hand,
regression based methods require simple dot annotation for
training, and cell counts can be obtained via integration on
the predicted density maps. Therefore, this paper focuses on
the regression-based method.

2.1 2D Cases

Earlier regression based methods learned a mapping from
dense local image features to a density map. Lempitsky
and Zisserman [4] first used linear regression with dense
SIFT features to predict the density map. Later, a regression
forest was proposed in [5] to replace the linear regression for
better density map estimation. Arteta et al. [28] extended the
pipeline by a local feature vocabulary and ridge regression
in an interactive fashion.

Recent methods favor Deep Neural Network due to
its versatility in various research areas, e.g., computer vi-
sion [29], [30], medical imaging [15], [31], natural language
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processing [16]. Xie et al. [6] relied on fully convolutional
regression networks [32] to estimate the density map filtered
by a Gaussian kernel. Cohen et al. [9] followed this direction
but constructed the density map based on the receptive
fields of the networks. They first filtered the dot annotations
with a square kernel and then summed the value in a
sliding window fashion, with each window corresponding
to a receptive field in the network. This redundant counting
improved the counting accuracy but could over-fit to the
background in some cases. This is because the network no
longer obtained the cell count by identifying individual
cells in a density map, and it could simply average the
regression prediction when large areas of background exist
in images. Alternatively, Xue et al. [7] divided the input into
multiple sub-images and tested multiple neural networks to
map sub-images to a single scalar, namely the cell count.
Similarly, [8] used a pre-trained network to learn the same
mapping for cross-domain counting. This direct mapping,
however, is difficult to learn since the mapping from an
image to a number for cell count is highly non-linear and the
model tends to focus on artifacts instead of cells in images

[9].

2.2 3D Cases

Fewer efforts have been made to tackle the 3D image-
based cell counting task. Due to the lack of public bench-
marks, most data-driven approaches, including the family
of modern deep learning methods, have not been explored
in the context of 3D image-based cell counting. Most algo-
rithms first perform cell segmentation via thresholding or
watershed and then run connected component analysis to
obtain the cell count. We refer readers to [33] for a detailed
review of related models and datasets. Notably, MINS [34]
improves the generic pipeline by refining segmentation
results via a Geodesic model and applying RANSAC and
ellipse fitting for outlier removal and is widely used in the
community. Compared to modern end-to-end deep neural
networks, this multi-stage model still lacks the representa-
tional power and is likely to yield suboptimal results, as
indicated by our experiment results in Section 5.

To address the limitations mentioned above, we propose
SAU-Net, a U-Net [13] with a Self-Attention module [16]
tailored for counting cells in both 2D and 3D image data.
We also extend the Batch Normalization [18] to expedite
the training process. It exhibits outstanding performance
across various datasets and avoids the background over-
fitting problem. As part of this study, a 3D dataset based on
[17] is released to spur further investigations. Note that there
is a similarity between our work and an attention based U-
Net for image segmenting in [14], but our model differs in
the way we incorporate the attention module and in the
scope of data dimension; also our application is different.

3 METHODS

In this section we will first introduce the overview of our
regression based cell counting method and then present our
novel contributions.

3.1 Overview

Following the idea from [4], the goal of our regression based
cell counting method is to learn a mapping F' from an image
I to a density map D, denoted as

F:I—+D (I,DeR*"*WorI,DeRT*WxDy (1)

where I and D can be either 2D or 3D images of the same
shape.

The density map D is obtained by convolution with a
Gaussian kernel on the dot-annotated binary labels L, where
the center of a cell is set to 1 otherwise 0. This process is
necessary since L is too sparse for learning F'. For simplicity,
we choose a fixed bandwidth for all the Gaussian kernels.
Finally, the cell count can be computed by integration over
the density map D. The method overview is shown in
Figure 2 in the 2D case, and the 3D case is a generalization
of this approach.

Q o n Z

Input Image: [ Cell

------- o Count: 2

Binary Label: L Density Map: D

Fig. 2: Overview of our regression based cell counting
method with a 2D image containing two cells. The counting
problem is addressed in two steps: 1) learn a mapping
F from the input image I to the density map D and 2)
integrate D to predict the final count. We apply convolution
with a Gaussian kernel on the binary labels L to obtain D
for the learning process.

3.2 SAU-Net

We propose a novel model, called SAU-Net, to represent
the mapping F' in Equation 1. SAU-Net incorporates the
Self-Attention module [16] on top of a U-Net architecture
[13], whose encoding-decoding structure proves suitable for
various medical imaging tasks [13], [14], [15]. We expand
both the underlying U-Net and the Self-Attention module so
that SAU-Net is capable of handling both 2D and 3D images.
In addition, we add a Batch Normalization [18] layer after
every convolution and deconvolution layer in U-Net. The
overall structure of SAU-Net is illustrated in Figure 3.

Self-Attention can be viewed as a non-local weighted
averaging operation in deep neural networks [35]. Mathe-
matically, we have

Self- Attention(X) = softmaz(f(X)2g9(X)T)®@h(X), (2)

where X € RHEXWXC o RHXWXDXC 5ra the activations
from the previous layers and used as inputs to the Self-
Attention module. H,W, D and C represent the height,
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Fig. 3: The overall structure of SAU-Net (left) with details of each block (right). SAU-Net seamlessly unifies 2D and 3D
image-based cell counting. The number after conv, maxpooling, deconv indicates the filter size, e.g., 3 for 3 x 3
or 3 x 3 x 3 depending on the dimension of the input images. The output layer is implemented as conv_1. All the
convolutions and deconvolutions use ReLU nonlinearity except the linear embeddings, f,g and h in the Self-Attention

module. ® denotes matrix multiplication.

width, depth and channel number of the activations, re-
spectively. f, g and h are linear embeddings, implemented
as 1 x 1 or 1 x 1 x 1 convolution, and proper reshap-
ing is performed for matrix multiplication, i.e., reshape :
RHXWXC _, R(HW)XC or REXWxDxC _, R(HWD}XC_
softmaz here works as a scaling function so that the weights
for the averaging sum to 1, and ® denotes matrix multipli-
cation.

Self-Attention computes weights based on feature rela-
tionships, i.e., softmaz(f(X)®g(X)T) in Equation 2, across
the whole image region, whereas conventional convolu-
tional layers can only process local information, e.g., 3 x 3
convolution. By combining the Self-Attention module with
convolutional layers in U-Net, SAU-Net can enjoy a richer
hierarchy that can learn the mapping based on both local
and global relationship. Given the encoding and decoding
structure of U-Net, it is generally believed the deeper con-
volutional layer of U-Net has the more abundant feature
information. Therefore, we choose to incorporate the Self-
Attention module at the end of U-Net’s encoding path for
more accurate feature relationships.

3.3 Batch Normalization Extension

Batch Normalization [18], as outlined in Algorithm 1 below,
is a technique to accelerate the training of deep neural
networks, which introduces additional network layers to
normalize the inputs for subsequent layers, effectively stabi-

lizing the distributions of layer inputs. BN applies normal-
ization on each sample in a batch* B (Line 5-7), which is
randomly subsampled from the training set T". For normal-
ization during inference, BN tracks the moving averages of
the mean /i and variance &, using the momentum m (Al-
gorithm 1, Lines 8-9). During inference, batch normalization
uses the moving average estimates as an approximation of
the population statistics, since tracking moving averages is
compatible with stochastic optimization (Algorithm 1, Line
12-14). This relies on a hyperparameter, the moving average
momentum m, to control the estimation.

When dealing with small datasets, it is natural to assume
the training process would require fewer iterations because
from an optimization standpoint, the loss function is an
average over the training set [36], and we have less data to
perform the averaging operation. In practice, however, we
have observed the training still needs to iterate thousands
of steps, as in other much larger datasets. This motivated
us to investigate the reason behind this. We argue that the
empirical values of BN moving average momentum from
larger datasets are not suitable for small datasets, and it
would be computationally prohibitive to perform a grid
search for the optimal value of m.

Rather than using the estimated moving averages, we are
proposing recalculating the mean and standard deviation
derived from the entire training set to obtain more accurate

4. Some publications also refer to it as minibatch.
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Algorithm 1: A layer of Batch Normalization [18] Algorithm 2: A layer of Proposed BN Extension
Input: Training set of size ¢ with activations x from Input: Training set of size ¢ with activations x from
prior layers: T = {x1,...,;}; test set of size t": prior layers: T = {x1,...,;}; test set of size t":
T' = {z),...,z}}; trainable affine transformation T' = {z),...,z}}; trainable affine transformation
parameters: v, 3; constant for numerical stability: parameters: v, 3; constant for numerical stability:
€; current batch statistics: up, 0g; moving €; current batch statistics: ug,op.
average estimation: fi, &; moving average Output: Normalized output for next layers: y’
momentum: m. Training;:
Output: Normalized output for next layers: y’ 1 repeat
Training: 2 randomly sample a batch B with size b from T
1 repeat /* calculate batch statistics =/
2 randomly sample a batch B with size b from T s | BB+ % Z
/+ calculate batch statistics +/ z,EB
1 1
3 #B*bz 4 oB + —Z(Ii—#B)Q
z;EB b o EB
1 ) + normalize using batch statistics =«
4 78 w b z;(xl —me)? 5 éor r; € Bdo 7 /
/* normal‘ize using batch statistics #/ X Ti KB
5 for z; € B do 7 ¢ yﬁ—’y‘/a?g_i_e-kﬁ
T; — g 7 end
6 Y \/ﬁ +8 8 | optimize v, 8 via back-propagation
7 end 9 until number of iteration reaches nteration
/+ update moving averages +*/ Post-Training:
8 ,(fa{—m,&—i—(l —m)ps /+ calculate population statistics =/
9 g+ mo+(l—m)os 1
10 optimize 7,(,8 via b)ack-propagation 1 KT I; o
11 until number of iteration reaches nieration 1‘
Inference: n or & [ > (zi — pr)?
/+ normalize using moving averages =/ zi €T
12 forz} € T' do Inference: . . . o
t o /+* normalize using population statistics
13 y; — a}/ﬂ + ,8 */
VoZ+e 12 forz, € T’ d?o
14 end - yi{—’yzi;’uT + B
14 end
population statistics as a post-training, pre-inference step.
Algorithm 2 implements our proposed BN extension. In values during inf
Line 10-11 of Algorithm 2, we add a one-time post-training § mierence.
step to calculate population statistics, denoted p7 and o7,
from the training set T', and then, in Line 12-14, normalize 3.4 |Loss Functions
test data using population statistics. Our empirical results . .
show that our proposed extension to BN enables faster con- We use a pixel-wise L2 loss for our model:
vergence. As a result, our method effectively eliminates the 1 5
hyperparameter of the BN moving averaging momentum N Z(Sﬁ — D), 3)
]

m.

Notice that our approach does not affect the BN train-
ing process since the moving averages are only used for
inference. This property makes it ideal to apply our exten-
sion on existing BN-trained models for immediate potential
improvement. Our extension can be easily implemented in
popular deep learning libraries, as shown in our released
code. Compared to Online Batch Normalization (OBN) in
our early work [25], we have made a key improvement
in terms of efficiency: OBN incurs computational overhead
because it estimates the population statistics using the test-
ing sample in addition to the training data. This means
it has to perform the calculation each time when making
a prediction. Since a single sample has a negligible effect
on the population statistics estimation, we compute the
population statistics once on the training data and use these

where () represents the trainable parameters set in SAU-Net,
and S is the mapping, F'(I) in Equation 1, namely the out-
put from the SAU-Net. The subscript i denotes individual
pixel or voxel, and N is the total pixel or voxel number.
During training, the actual loss value can be very small due
to the Gaussian filtering, which renders the network difficult
to train. Following [6], we solve this by scaling the loss with
a large constant value, e.g., 100. This technique is applied
throughout all the experiments.

We also tried to add a loss function to minimize the cell
counts explicitly but this change only learned the artifacts
in the images. We believe this is caused the ambiguity in
the loss function since the loss function only requires the
model to predict the overall cell count instead of detecting
actual cells; as a result, there are numerous mappings from
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the input image to yield a correct cell count. A similar result
was observed in [9].

4 DATASETS

We evaluate the proposed method on four public 2D bench-
marks: synthetic fluorescence microscopy (VGG) dataset
[4], Modified Bone Marrow (MBM) dataset [11], human
subcutaneous adipose tissue (ADI) dataset [9], and Dublin
Cell Counting (DCC) dataset [8]. Additionally, a 3D mouse
blastocyst dataset (MBC) based on [17] is used to experi-
ment in 3D cases. We also provide results on a 3D light-
sheet dataset for mouse cortex from recent work [37]. For
conciseness, we defer to Appendix A the details regarding
this dataset.

e VGG: Lempitsky and Zisserman [4] used the method
in [38] to create VGG dataset, which simulated bacte-
rial cells from fluorescence-light microscopy at various
focal distances.

« MBM: Cohen et al. [9] introduced the Modified Bone
Marrow (MBM) dataset based on the dataset first re-
leased by Kainz et al. [11]. This dataset contains real
images of human bone marrow with various cell types
stained blue.

e« ADI: Human subcutaneous adipose tissue (ADI)
dataset [9] is constructed from the Genotype Tis-
sue Expression Consortium [39] with densely packed
adipocyte cells.

e« DCC: Marsden et al. [8] built Dublin Cell Counting
(DCC) dataset to represent a wide range of cells, includ-
ing embryonic mice stem cells, human lung adenocar-
cinoma, human monocytes, etc. The image size ranges
from 306 x 322 to 798 x 788, intended to increase the
variation of the dataset.

« MBC: Saiz et al. [17] first constructed this mouse blasto-
cyst dataset (MBC) to model cellular proliferation dur-
ing embryonic development for intercellular commu-
nication study. Since their work focused on biological
impact from the cell count, the cell locations sometimes
were approximated by the nearest neighbor during the
manual labeling, rendering them unfit for our work.
After removing the images containing duplicate cell
locations, we obtained 158 valid 3D images for exper-
iments. These 3D confocal images have a resolution of
0.29 % 0.29 x 1 u3m/voxel with a fixed size of 512 x 512
in XY-axis and Z-axis ranging from 53 to 159.

A comparison of the datasets is listed in Table 1 and
sample images from each dataset are shown in Figure 4.

5 EXPERIMENTS

In this section, we first describe implementation details for
training and then the configurations for the experiments,
followed by quantitative results across multiple datasets.
The implementation parameters mentioned in the section,
except the batch size, are shared across all five datasets to
further demonstrate the versatility of the proposed model.
Based on the size of the image for each dataset, the batch
size is set to 15 for MBM dataset, 16 for MBC dataset, and
75 for the remaining three datasets.

5.1 Implementation Details
5.1.1 Prepossessing

Our network can work with the raw image without so-
phisticated prepossessing and we simply normalize images,
ie., subtracting the mean and dividing by the standard
deviation. Given the varied image size in DCC dataset, we
resize the image and the density map together to 256 x 256
and linearly scale the density map to ensure the same cell
count. We also pad the image edge from 150 x 150 to
152 x 152 with zeros in ADI dataset so that the image size is
a multiple of 8, convenient to max-pooling in the network.
The image size in the other three datasets remains the same.

5.1.2 Data Augmentation

During training, we randomly crop 87.5% region of the
images in four 2D datasets and a patch of 128 x 128 x 32
in the 3D dataset. Random horizontal flipping, vertical flip-
ping, and 90-degree-rotation are also applied. Other non-90
degree rotation is not considered due to potential informa-
tion loss during interpolation. Dropout is also added in the
Self-Attention module of SAU-Net to reduce over-fitting, as
shown in Figure 3.

5.1.3 Memory Limitation for 3D

The increase of the model dimension from 2D to 3D comes
with a surge of GPU memory usage, and special attention
is needed to accommodate this increase. Besides using a
smaller patch size in training, a modification is adapted for
the inference stage. Since it is infeasible to fit a whole 3D
image in the GPU memory, we cut each image into tiles
with the size of 128 x 128 x 32, the same as training inputs.
For example, given a input of 512 x 512 x 100, we 1) zero-
pad along the Z-axis to 128, a multiple of 32, 2) split it by a
4 x 4 x 4 grid, 3) feed these 64 sub-images into the trained
model, and 4) merge the predictions for those sub-images
accordingly to the final prediction.

Despite our efforts to tackle the memory issue, we are
unable to apply the proposed BN extension for 3D cases. As
shown in the previous section, this extension relies on more
accurate population statistics estimation using all the train-
ing images, while our current hardware settings encounter
difficulty fitting one image. Significant downsampling, e.g.,
by a factor of 64, could alleviate the memory shortage, but it
would lead to inferior results due to the loss of fine details at
high resolution. Alternatively, we attempted to employ the
proposed BN extension for those sub-images separately and
average the statistics afterward; this workaround, however,
did not achieve the similar improvement as in 2D cases
given that the standard deviation operation is not linear.
This is further complicated by the fact that the subsequent
layers in deep networks take as inputs the normalized
activations from prior layers, and the error could propagate
throughout the networks. As a result, we need to train
the model for substantially more steps with standard BN
compared to 2D cases with our BN extension empirically
shown in the next section. A potential solution would be
distributed training with multi-GPU hardware [40], and we
leave this for future work.
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VGG

MEBC: 3D projection w/ raw data

MBC: XY projection w/ overlays

Fig. 4: Sample images from the five datasets used in the experiment. The dot annotations are represented as the red cross
overlays. The projections are generated using Volume Viewer in Image].

TABLE 1: A comparison of five datasets. Nirqin and Nigiqr are the training image number and total image number,
respectively. Nirqin is chosen to facilitate comparison with competing methods. Cell Count denotes the mean cell count
per image and the corresponding standard deviation over all the images.

Dataset Name Image Size  Nirqin/Niotar  Cell Count Type Dimension  Bit Depth Color
VGG [4] 256 x 256 64,/200 174+ 64 synthetic 2D 8 RGB
MBM [11] 600 x 600 15/44 126 4+ 33 real 2D 8 RGB
ADI [9] 150 = 150 50/200 165 4+ 44 real 2D 8 RGB
DCC [8] varied 100/176 34 +22 real 2D 8 RGB
MBC [17] varied 58/158 63 +24 real 3D 8 Grayscale

5.1.4 Optimization

We choose Adam optimizer with decoupled weight decay
[41], which explicitly enforces weight decay instead of Lo
regularization, to train our network. The weight decay for
the Adam optimizer is set to 0.001. The weights of the
network are randomly initialized by Glorot method [42]
for every experiment. For the learn rate, we use a cosine
annealing schedule with warm restarts [43], which incre-
mentally lowers the learning rate based on a cosine decay
function. The initial value for the schedule is set to 0.001,
and the restart step is set to 50 with a multiplier of 2. Each
experiment is iterated for 350 steps for the 2D datasets and
12750 for the 3D dataset. On an NVIDIA Tesla V100, training
on 2D and 3D cases takes approximately 5 minutes and 3

hours, respectively. In total, 2D SAU-Net has 2.2 million
parameters, and 3D SAU-Net has 5.9 million parameters for
optimization.

5.2 Experiment Configurations

We use Mean Absolute Error (MAE) of cell counts between
prediction and ground-truth per image as the evaluation
criteria. The training and testing split in each dataset are
randomly selected for each trial, and we repeat the experi-
ment 10 times, reporting the mean and variance of MAE. We
first conduct an ablation study to examine the effectiveness
of each proposed component, and then we compare our
method with the state-of-the-art techniques in each dataset
and list the best performance from their original work.
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Fig. 5: The evaluation comparison between the proposed BN extension and standard BN with three common moving
average momentums, m, on VGG, MBM, ADI, and DCC. All models were initialized with zero-mean and unit-variance at
Step 0 (not shown) and are trained on SAU-Net under the same settings.
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Fig. 6: The L1 distance of the statistics between standard
BN and our extension under three common moving average
momentums, m.

5.3 Results

5.3.1 Ablation Study

We conduct the ablation study to demonstrate the benefits
of the proposed BN extension and SAU-Net and replace
one component at a time with either standard BN or U-
Net to evaluate its separate improvement. For our proposed
BN extension, we test it against standard BN with varying
moving average momentums on four 2D datasets. All ex-
periments use SAU-Net with the same configurations. Due
to the memory bottleneck, we skip the 3D dataset. Similarly,
we report the results between SAU-Net and U-Net, both
with the proposed BN extension on all five datasets, except
the 3D dataset, which we only present with the difference
between SAU-Net and U-Net with standard BN for the same
memory issue.

53.1.1 BN extension vs. BN: We attribute our
method’s advantage against the standard BN to this reason:
standard BN requires more training steps for the moving av-
erage to estimate the population statistics while our method
directly calculates the population statistics. To show this,
we conduct additional experiments and analyze them from
a dynamic perspective. We train the model continuously for
a large period of time and evaluate it periodically. Figure
5 plots the test performance as a function of training steps
with BN under three common moving average momentum
values, i.e.,, m = 0.5,0.9 and 0.99, against our BN extension.
These empirical values cover all the common values recom-
mended in [36] and are also the default values in main-
stream deep learning libraries, e.g., TensorFlow, PyTorch,
and MXNet. The experiments show our BN extension helps
achieve more stable results in a much earlier stage during
training, further validating our argument: the training steps
can be significantly reduced by applying our BN extension
instead of moving averaging with commonly used empirical
values, as in standard BN.

We also investigate the difference in the population
statistics between standard BN and our extension. The dif-
ference, D, is measured in L1 distance over the statistics in
all the BN layers:

D= Z || BN extension — TBN]|; 5 4

e

where () denotes the set of BN statistics, namely, the mean
and standard deviation, and ||- || is the L1 distance. Figure 6
shows that statistics from both methods eventually converge
during the course of training, and this also explains why the
performance across different methods converges in Figure
5. Note that these statistics are based on the activations
from each layer, and these activations are also updating
at each step via optimization. Each dataset has its unique
training dynamics, and some datasets may take longer for
convergence, e.g., ADI dataset. Nonetheless, the general
converging trend remains the same for all the datasets.

Overall, the results in Figure 5 and 6 indicate that the
difference of standard BN, and our extension diminish
gradually and the moving average momentums, m control
the convergence speed. High m leads to fast convergence
with large oscillation, while low m yields a stable yet
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Fig. 7: Sample predicted density map on the test set for VGG dataset. Groundtruth Cell Count: 100, Predicted: 100.9
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Fig. 8: Sample predicted density map on the test set for MBM dataset. Groundtruth Cell Count: 134, Predicted: 135.8

slow convergence. This process is further complicated by
varying training dynamics, and it is challenging to develop
a heuristic way to obtain the optimal other than the costly
grid search. Therefore, this observation highlights the merits
of the proposed extension: it facilitates training by reducing
the steps needed for convergence and achieves more stable
performance than the standard BN.

5.3.1.2 SAU-Net vs. U-Net: Table 2 and 3 demon-
strates that the proposed network expansion with the Self-
Attention module can further improve the performance of
our model, and SAU-Net compares favorably to U-Net in
both 2D and 3D. Our BN extension is applied in the experi-
ment with all the 2D datasets, while in the 3D MBC dataset,
we still reply on standard BN with two empirical moving
average momentum values due to memory limitation. This
leads a prolonged training, 12750 iterations, as compared
to 350 for the 2D case. Regardless of BN choice, each
experiment is conducted using the same BN method, with
Self-Attention module being the only variable.

532 VGG

In this synthetic dataset, our performance is on par with
the leading methods. The result and a sample prediction
are shown in Table 4 and Figure 7. Note that the leading
models are highly engineered for this synthetic dataset, and

TABLE 2: MAE between U-Net and SAU-Net for 2D datasets
w/ BN extension.

Method VGG MBM ADI DCC
U-Net 29+0.7 7.8+16 17.8 +2.3 32405
SAU-Net 26404 57412 142416 3.040.3

TABLE 3: MAE between U-Net and SAU-Net for 3D dataset
w/ standard BN. Due to memory limitation, BN extension
is replaced by standard BN with various common momen-
tums, denoted by m.

Method MBC MBC MBC
m = 0.5 m=0.9 m = 0.99

U-Net 3.5+04 3.3+04 3.24+04

SAU-Net 26403 26403 27403

our method achieves state-of-the-art performance in the rest
real datasets.

5.3.3 MBM

Our method outperforms other leading methods in this real
dataset. Table 5 and Figure 8 show the result and a sample
prediction.
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Fig. 9: Sample predicted density map on the test set for ADI dataset. Groundtruth Cell Count: 149, Predicted: 142.1

Input image Predicted density map Groundtruth density map

0.1z
0.10
0.08
0.06
0.04
0.02
0.00

Fig. 10: Sample predicted density map on the test set for DCC dataset. Groundtruth Cell Count: 55, Predicted: 58.9

TABLE 4: VGG (200 images in total) challenging scenario given the complicated cell structure.

Method MAE Nirain TABLE 6: ADI (200 images in total)

ResNet-152 (R), Xue et al. [7] 7.5+2.2 100

GMN, Lu et al. [12] 3.6 +0.3 32 Method MAE Nirain

FCRN?A’ Xie etal. [6] 2.9+0.2 64 Count-Ception, Cohen et al. [9] 194422 50

CCE Jiang et al. [44] 2.6 +0.1 50 Adi i Gal L 45 14.8 4 13.6*

Count-Ception, Cohenetal [9] 2.3+ 0.4 50 iposoft, Galarraga et al [45] ) : -

SAU-Net (proposed) 2.6+ 0.4 64 CCE Jiang et al. [44] 14.5+04 50
SAU-Net (proposed) 1424+ 1.6 50

TABLE 5: MBM (44 images in total) Implemented by Jiang et al. [44]
Method MAE Nirain 535 DCC
EersTi_A! )?eleESE;l. [6] 221635:::%45‘ }g Table 7 also shows the superior result of our method in
a en et al. . - . . 2 .

Count-Ception, Cohenetal. [9] 8.8 +2.3 15 this Feoen.tly r.eleased real dataset. A sample prediction is

CCE, Jiang et al. [44] 8.6+0.3 15 provided in Figure 10.

SAU-Net (proposed) 5.7+ 1.2 15

“Implemented by Cohen et al. [9] TABLE 7: DCC (176 images in total)

Method MAE N train
534 ADI Marsden et al. [8] 8.4% 100
.. . Shi et al. [46] 3.2? 100
Similarly, the proposed method achieves state-of-the-art per- U-Net, Ronneberger et al. [13] 3.2 + 0.5° 100
formance in this dataset. Table 6 shows the result include SAU-Net (proposed) 3.0+0.3 100
Adiposoft [45], an unsupervised method specialized for ab Reported in a fixed split in their work.
adipose tissues like in ADI, and other general supervised © Implemented in this work.

methods. As illustrated in Figure 9, this dataset represents a
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Fig. 11: Sample predicted density map on the test set for MBC dataset. Groundtruth Cell Count: 59, Predicted: 60.4

5.3.6 MBC

In this 3D dataset, our method compares favorably to stan-
dard 3D U-Net [47] and a popular conventional method,
MINS [34], as observed in Table 8. MINS, as an unsu-
pervised method, does not require training data but still
performs worse than our method, given the fact it was
initially designed for this specific mouse blastocyst data like
MBC. A sample prediction is provided in Figure 11.

TABLE 8: MBC (158 images in total)

Method

MINS, Lou et al. [34]
3D U-Net, Cicek et al. [47]
SAU-Net (proposed)

2 Implemented by Saiz et al. [17]
bf mplemented in this work.

MAE N train

5.8 +0.29 -
3.340.4"b 58
2.6 4+ 0.3 58

6 DISCUSSION
6.1 Cell Detection

In addition to cell counts, cell detection can be obtained
from the predicted density map via post-process techniques.
Following [37], we apply Connected Component Analy-
sis® after thresholding and then calculate cell centroid as
the final positions. A detection is considered successful if
the predicted centroid lies within a tolerance R from the
groundtruth location, where R is set as the empirical cell
radius. Table 9 lists the precision, recall, and F; score for cell
detection.

TABLE 9: The detection results across five datasets.

Dataset Name Precision Recall F; score

VGG [4] 99.94 +0.02 89.65+0.28 94.51 +0.16
MBM [11] 88.76 =1.19 92.83+1.35 90.73+0.40
ADI [9] 88.57+0.97 93.13+0.78 90.78 = 0.48
DCC [8] 92,52+ 0.79 93.10+0.72 92.81 +0.48
MBC [17] 92.52+0.44 98.11+0.24 95.231+0.25

5. https:/ / scikit-image.org/docs/dev/ api/skimage.measure.html#
label

An analysis of the detection results indicates that false
positive detection usually happens when the background is
cluttered with other objects. On the other hand, the border
area with only partial cells visible or the area with clustered
cells tends to have false negative detection. Typical results
can be found in Appendix B.

6.2 Impact of Batch Size

Since the batch size is another hyperparameter for our pro-
posed BN extension, we investigate the impact by varying
the batch size, B. Specifically, we shrink the batch size by
using a fraction of B, e.g,, %, %, %, and B is the same as in
the previous Section, namely 15 for MBM and 75 for the
rest three 2D datasets (3D MBC excluded due to memory
limitations). All the experiments trained on SAU-Net with
the identical settings except the training steps extended
accordingly, which is needed for convergence. The results
in Figure 12 show that our BN extension is not sensitive to
batch size, and larger batch sizes can reduce the training
time. We additionally test the extreme case with B = 1,
and the gradient descent training becomes unstable since
the gradients are calculated only based on 1 sample and
become very noisy. In general, we recommend using a large
batch size to avoid unstable training and reduce the training
time.

7 CONCLUSION

In this paper, we propose a novel deep network structure
that employs a self-attention module with U-Net and is
capable of universally solving the cell counting task for
different cell types. Furthermore, the proposed SAU-Net
applies to both 2D and 3D images, allowing a unified
framework for multi-dimension counting. We also extend
the current Batch Normalization method to better adapt
to small datasets. Based on prior work, we introduce a
new benchmark for 3D image-based cell counting. Together,
we assess the proposed method on five benchmarks, and
our model has consistently shown superior or competitive
performance to the state-of-the-art methods.
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Fig. 12: The impact of batch size B on our proposed BN
extension with various datasets. B is set to 15 for MBM and
75 for the rest three 2D datasets as in the previous section.

Despite our model only requiring simplified dot-
annotated labels, there is still an urgent need to reduce
the reliance on laborious manual annotations. Future work
in this area includes adversarial adaption, which transfers
knowledge from source data type to target data type via
adversarial training. On the other hand, semi-supervised
learning utilizes unlabeled data jointly with labeled data
to facilitate training. Both directions aim to take advantage
of unlabeled data or data from other sources, effectively
minimizing the need for labels and could lead to further
improvement.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Nestor Saiz for his
helpful comments on the 3D dataset MBC. This work was
supported in part by the National Science Foundation under
grants OCI-1153775 and OAC-1649916.

REFERENCES

[1] R Bernier, C. Golzio, B. Xiong, H. A. Stessman, B. P. Coe, O. Penn,
K. Witherspoon, J. Gerdts, C. Baker, A. T. Vulto-van Silfhout et al.,
“Disruptive chd8 mutations define a subtype of autism early in
development,” Cell, vol. 158, no. 2, pp. 263-276, 2014.

[2] M.-Y. C. Polley, S. C. Leung, L. M. McShane, D. Gao, J. C. Hugh,
M. G. Mastropasqua, G. Viale, L. A. Zabaglo, E. Penault-Llorca,
J. M. Bartlett ef al., “An international ki67 reproducibility study,”
Journal of the National Cancer Institute, vol. 105, no. 24, pp. 1897—
1906, 2013.

[3] A. Mukherjee, N. A. Repina, D. V. Schaffer, and R. S. Kane, “Op-
togenetic tools for cell biological applications,” Journal of thoracic
disease, vol. 9, no. 12, p. 4867, 2017.

[4] V. Lempitsky and A. Zisserman, “Learning to count objects in
images,” in Advances in neural information processing systems, 2010,
pp- 1324-1332.

[5] L. Fiaschi, U. Koethe, R. Nair, and F. A. Hamprecht, “Learning to
count with regression forest and structured labels,” in Proceedings
of the 21st International Conference on Pattern Recognition (ICPR2012),
Nov 2012, pp. 2685-2688.

[6] W. Xie, ]. A. Noble, and A. Zisserman, “Microscopy cell counting
and detection with fully convolutional regression networks,” Com-
puter methods in biomechanics and biomedical engineering: Imaging &
Visualization, vol. 6, no. 3, pp. 283-292, 2018.

[7] Y.Xue, N. Ray, J. Hugh, and G. Bigras, “Cell counting by regres-
sion using convolutional neural network,” in European Conference
on Computer Vision. Springer, 2016, pp. 274-290.

12

[8] M. Marsden, K. McGuinness, 5. Little, C. E. Keogh, and N. E.
O’'Connor, “People, penguins and petri dishes: Adapting object
counting models to new visual domains and object types without
forgetting,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 8070-8079.

[9] ]. P. Cohen, G. Boucher, C. A. Glastonbury, H. Z. Lo, and Y. Ben-
gio, “Count-ception: Counting by fully convolutional redundant
counting,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 18-26.

[10] T. Dumur, S. Duncan, K. Graumann, 5. Desset, R. S. Randall,
O. M. Scheid, H. W. Bass, D. Prodanov, C. Tatout, and C. Baroux,
“Probing the 3d architecture of the plant nucleus with microscopy
approaches: challenges and solutions,” Nucleus, vol. 10, no. 1, pp.
181-212, 2019.

[11] P. Kainz, M. Urschler, S. Schulter, P. Wohlhart, and V. Lepetit, “You
should use regression to detect cells,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2015, pp. 276-283.

[12] E. Lu, W. Xie, and A. Zisserman, “Class-agnostic counting,” arXiv
preprint arXiv:1811.00472, 2018.

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted inter-
vention. Springer, 2015, pp. 234-241.

[14] O. Oktay, ]J. Schlemper, L. L. Folgoc, M. C. H. Lee, M. E. Heinrich,
K. Misawa, K. Mori, 5. G. McDonagh, N. Y. Hammerla, B. Kainz,
B. Glocker, and D. Rueckert, “ Attention u-net. Learning where to
look for the pancreas,” CoRR, vol. abs/1804.03999, 2018.

[15] Y. Guo, Q. Wang, O. Krupa, ]. Stein, G. Wu, K. Bradford, and
A. Krishnamurthy, “Cross modality microscopy segmentation via
adversarial adaptation,” in Bioinformatics and Biomedical Engineer-
ing, I. Rojas, O. Valenzuela, E. Rojas, and E Ortufio, Eds. Cham:
Springer International Publishing, 2019, pp. 469-478.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomegz, L. Kaiser, and L Polosukhin, “Attention is all you need,”
CoRR, vol. abs/1706.03762, 2017.

[17] N. Saiz, K. M. Williams, V. E. Seshan, and A.-K. Hadjantonakis,
“Asynchronous fate decisions by single cells collectively ensure
consistent lineage composition in the mouse blastocyst,” Nature
communications, vol. 7, no. 1, pp. 1-14, 2016.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR, vol.
abs/1502.03167, 2015.

[19] K He, X. Zhang, S. Ren, and ]. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778.

[20] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
4700-4708.

[21] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” arXiv preprint arXiv:1905.11946,
2019.

[22] ]. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13, no. Feb,
pp- 281-305, 2012.

[23] A. Krizhevsky, G. Hinton et al, “Learning multiple layers of
features from tiny images,” Citeseer, Tech. Rep., 2009.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, 5. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211-252, 2015.

[25] Y. Guo, J. Stein, G. Wu, and A. Krishnamurthy, “Sau-net: A
universal deep network for cell counting,” in Proceedings of the
10th ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics, 2019, pp. 299-306.

[26] C. Arteta, V. Lempitsky, J. A. Noble, and A. Zisserman, “Learning
to detect cells using non-overlapping extremal regions,” in Medi-
cal Image Computing and Computer-Assisted Intervention — MICCAI
2012, N. Ayache, H. Delingette, P. Golland, and K. Mori, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 348-356.

[27] , “Detecting overlapping instances in microscopy images us-
ing extremal region trees,” Medical Image Analysis, vol. 27, pp. 3 -
16, 2016, discrete Graphical Models in Biomedical Image Analysis.

[28] , “Interactive object counting,” in European conference on com-
puter vision. Springer, 2014, pp. 504-518.




JOURNAL OF ITEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[29] A. Krizhevsky, L. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1097-1105.

[30] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” in
Advances in Neural Information Processing Systems 28, C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds.
Curran Associates, Inc., 2015, pp. 91-99.

[31] Yue Guo, J. Wrammert, K. Singh, A. KC, K. Bradford, and
A. Krishnamurthy, “ Automatic analysis of neonatal video data to
evaluate resuscitation performance,” in 2016 IEEE 6th International
Conference on Computational Advances in Bio and Medical Sciences
(ICCABS), Oct 2016, pp. 1-6.

[32] ]J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015, pp.
3431-3440.

[33] E Xing and L. Yang, “Robust nucleus/cell detection and segmenta-
tion in digital pathology and microscopy images: a comprehensive
review,” IEEE reviews in biomedical engineering, vol. 9, pp. 234-263,
2016.

[34] X. Lou, M. Kang, P. Xenopoulos, 5. Munoz-Descalzo, and A.-K.
Hadjantonakis, “ A rapid and efficient 2d/3d nuclear segmentation
method for analysis of early mouse embryo and stem cell image
data,” Stem cell reports, vol. 2, no. 3, pp. 382-397, 2014.

[35] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 7794-7803.

[36] L Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http: / /www.deeplearningbook.org.

[37] O. Krupa, G. Fragola, E. Hadden-Ford, J. T. Mory, T. Liu,
Z. Humphrey, B. W. Rees, A. Krishnamurthy, W. D. Snider, M. ].
Zylka, G. Wy, L. Xing, and J. L. Stein, “Numorph: tools for cellular
phenotyping in tissue cleared whole brain images,” bioRxiv, 2021.

[38] A. Lehmussola, P Ruusuvuori, J. Selinummi, H. Huttunen, and
O. Yli-Harja, “Computational framework for simulating fluores-
cence microscope images with cell populations,” IEEE transactions
on medical imaging, vol. 26, no. 7, pp. 1010-1016, 2007.

[39] J. Lonsdale, ]. Thomas, M. Salvatore, R. Phillips, E. Lo, S. Shad,
R. Hasz, G. Walters, E. Garcia, N. Young et al., “The genotype-
tissue expression (gtex) project,” Nature genetics, vol. 45, no. 6, p.
580, 2013.

[40] M. Yamazaki, A. Kasagi, A. Tabuchi, T. Honda, M. Miwa, N. Fuku-
moto, T. Tabaru, A. Tke, and K. Nakashima, “Yet another acceler-
ated sgd: Resnet-50 training on imagenet in 74.7 seconds,” arXiv
preprint arXiv:1903.12650, 2019.

[41] L Loshchilov and E Hutter, “Fixing weight decay regularization
in adam,” CoRR, vol. abs/1711.05101, 2017.

[42] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010, pp.
249-256.

[43] L Loshchilov and E Hutter, “Sgdr: Stochastic gradient descent
with warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[44] N. Jiang and E Yu, “A cell counting framework based on random
forest and density map,” Applied Sciences, vol. 10, no. 23, p. 8346,
2020.

[45] M. Galarraga, J. Campioén, A. Mufioz-Barrutia, N. Boqué,
H. Moreno, J. A. Martinez, E Milagro, and C. Ortiz-de Solérzano,
“ Adiposoft: automated software for the analysis of white adipose
tissue cellularity in histological sections,” Journal of lipid research,
vol. 53, no. 12, pp. 27912796, 2012.

[46] Z. Shi, P. Mettes, and C. G. Snoek, “Counting with focus for free,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 4200—4209.

[47] O. Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ron-
neberger, “3d u-net: learning dense volumetric segmentation from
sparse annotation,” in International conference on medical image
computing and computer-assisted intervention. Springer, 2016, pp.
424-432.

13

Yue Guo is working toward his Ph.D. degree in
computer science from the University of North
Carolina at Chapel Hill. His research interests
include deep learning algorithms and their appli-
cations broadly in bioinformatics and computer
vision, with an emphasis on neonatal video anal-

’ & ) ysis and image-based cell counting.

Oleh Krupa received a BS degree in biological
engineering and a MEng degree in biomedical
engineering from Cornell University, Ithaca, New
York. He is currently working toward a PhD de-
gree in the Joint Department of Biomedical En-
gineering at the University of North Carolina -
Chapel Hill and North Carolina State University.
His research focuses on identifying the genetic
influences on human brain structure at cellular
resolution.

Jason Stein is an assistant professor in the
Department of Genetics and the UNC Neuro-
science Center at the University of North Car-
olina at Chapel Hill. His research interests are on
how genetic variation influences brain develop-
ment and structure, leading to risk for neuropsy-
chiatric disorders. His lab uses tissue clearing in
brain samples to study microscale brain struc-
ture.

Guorong Wu received the Ph.D. degree in com-
puter science and engineering from Shanghai
Jiao Tong University, Shanghai, China. He is
currently an Assistant Professor at the Depart-
ment of Psychiatry and Computer Science, The
University of North Carolina, Chapel Hill, as an
Assistant Professor. He has published more than
200 papers in international journals and confer-
ence proceedings. His research interests focus
on fast and robust analysis of large population
data, computer assisted diagnosis, and image
guided radiation therapy. In 2016, he received the Independent Career
Award from NIH for the contribution on non-invasive neurobiological
basis for early diagnosis of Alzheimer's disease. He won the best paper
award in MICCAI 2017. Dr. Wu is the associate editor for Neuroinformat-
ics since 2019.

Ashok Krishnamurthy is Deputy Director at
the Renaissance Computing Institute (RENCI), a
Research Professor in the Department of Com-
puter Science at the University of North Carolina
at Chapel Hill. He is also Faculty Director for In-
formatics and Data Science at NC TraCS. His re-
search interests are in Data Science, Biomedical
Informatics, Machine Learning, and Research
Cyberinfrastructure. Ashok received a PhD in
electrical and computer engineering from the
University of Florida. He is a member of IEEE

and ACM.



JOURNAL OF ITEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

APPENDIX A
3D LIGHT-SHEET MOUSE CORTEX DATASET

In this appendix, we provide additional results on a 3D light-sheet dataset for mouse cortex from recent work [37]. This
dataset has a resolution of 0.75 x 0.75 x 2.5 u3m/voxel and contains 16 patches of 224 x 224 x 64 voxels. Each patch
includes 908 & 270 cells, and the cell count is significantly higher than the previous datasets. Note that this dataset is
intended for segmentation-based methods and contains whole-cell annotation. For consistency, we convert it into dot-
annotations by using the centroids of whole-cell annotations. We compare our SAU-Net against the standard 3D U-Net,
and both models are trained with standard BN. The results from the original segmentation-based work are omitted since it
requires whole-cell annotations, preventing a direct comparison.

We follow the 1 : 2 training/ test split ratio as in most previous datasets and randomly select 6 for training with the rest
for evaluation. Similarly, we repeat this process 10 times and report the mean and standard deviation of MAE, precision,
recall, and F; score in Table 10. Although the MAE is higher than the previous datasets, this is caused by the high cell
density, and the performance under other metrics is on par with the other datasets. The results on this high-density dataset
further corroborate the versatility of SAU-Net. Figure 13 shows a sample input data with the corresponding prediction and
groundtruth density map.

TABLE 10: 3D Light-sheet Dataset (16 images in total)

Method MAE Precision Recall F1 score Nirain
3D U-Net*, Cicek et al. [47] 85.3 £28.2 97.8904+1.00 93.704+0.92 95.74 4+ 0.60 6
SAU-Net (proposed) 72.74+19.7 98.26 +0.19 95.344+0.36 96.78 £0.17 6

" Implemented in this work.

3D projection /w raw data 3D projection w/ overlays Predicted density map Groundtruth density map

Fig. 13: Sample predicted density map on the test set for the 3D light-sheet dataset. The dot annotations are represented as
the red cross overlays. Groundtruth Cell Count: 1257, Predicted: 1194.6.

APPENDIX B
FAILURE CASES
Figure 14 shows some typical failure cases across all six datasets. These cases show that our method is able to deal with

a large variety of scenarios, including both 2D and 3D data. However, scenes with extremely dense objects or noisy
backgrounds remain a challenge, opening up opportunities for future work.
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+ correct detection  Fig 14 Typical failure cases across all six datasets. Images are zoomed in for details. Dashed
boxes denote the border cases, and the blank space within the boxes is beyond the border.

x false positive
false negative



