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ABSTRACT

There is considerable interest in Al systems that can assist
a cardiologist to diagnose echocardiograms, and can also be
used to train residents in classifying echocardiograms. Prior
work has focused on the analysis of a single frame. Classify-
ing echocardiograms at the video-level is challenging due to
intra-frame and inter-frame noise. We propose a two-stream
deep network which learns from the spatial context and op-
tical flow for the classification of echocardiography videos.
Each stream contains two parts: a Convolutional Neural Net-
work (CNN) for spatial features and a bi-directional Long
Short-Term Memory (LSTM) network with Attention for
temporal. The features from these two streams are fused
for classification. We verify our experimental results on a
dataset of 170 (80 normal and 90 abnormal) videos that have
been manually labeled by trained cardiologists. Our method
provides an overall accuracy of 91.18%, with a sensitivity of
94.11% and a specificity of 88.24%.

Index Terms— Echocardiography, Classification, Deep
learning

1. INTRODUCTION

Echocardiography presents unique challenges to machine
learning algorithms compared to other medical imaging ap-
plications. Unlike CT and MRI, where each patient is care-
fully positioned within the scanner and static images are
generated, echocardiography generates video loops which are
subject to variations in technique (e.g., patient position, probe
position and angulation, patient respiration), and machine
settings (e.g., probe selection, depth, gain, and compression
settings). Not only does the machine learning method need
to recognize the anatomical findings, but it needs to learn
the image variables caused by technical variations vs. true
pathology.

Due to the versatility and cost-effectiveness of echocar-
diography, it is typically the first-line imaging study for most
cardiac diagnoses. As such, the ability to instantaneously
and automatically detect echocardiogram findings could have
broadly impactful clinical applications. In particular, rapidly
identifying a normal echocardiogram would rule out several

clinical findings, enabling providers to focus on other causes
of the patient’s presentation.

Deep neural networks (DNNs) have recently achieved
state-of-the-art results in computer vision[1, 2] and medical
image analysis[3]. Deep learning-based approaches also play
an increasing role in automatic echocardiography analysis.
There have been numbers of prior works on image-based
echocardiogram analysis: 1) viewpoint classification[4, 5], 2)
identification of certain diseases[5, 6] (for example, left ven-
tricular hypertrophy and hypertrophic cardiomyopathy), and
3) chamber identification and segmentation[5, 7, 8]. Most
of these applications take a single frame as input and only
consider spatial information. Videos contain not only spatial
information but also temporal (motion) information, which
will better guide echo analysis. Moreover, video-based clas-
sification problems, like abnormality detection and disease
identification, only require video-level labels, which are eas-
ier to get than frame-level labels in image-based methods.
Lee et al.[9] proposed a video-based method to determine
the fetal cardiac cycle in ultrasound automatically. However,
while their method only uses video frames as input, it does
not use any explicit motion information.

In this paper, we propose a two-stream attention spatial-
temporal network for classification of parasternal long view
echocardiography videos. First, our two-stream network
takes video frames and optical flow as input to exploit spatial
context and motion information. Second, in each stream,
a pre-trained auto-encoder, which will be fine-tuned with
LSTM and classifier, extracts visual features fed into the tem-
poral network. Third, we employ the Attention module to let
the LSTM focus on task-related time steps.

2. ECHOCARDIOGRAPHY DATASET

Consecutive patients aged 18-65 without prior cardiac disease
undergoing routine outpatient echocardiography at UNC
Hospital and clinics were included. 121 echocardiography
videos were included, and the parasternal long 2D loop for
each study was anonymized and independently evaluated
by 3 expert (COCATS Level III) cardiologists. Of the 121
echocardiography videos evaluated, 54 videos had a consen-
sus read of normal. 35 echocardiography videos were split
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Fig. 1: Architecture of proposed network. (a): Architecture of overall two-stream network. (b): Architecture of each stream,
taking the spatial context stream for example. (c): Architecture of CNN auto-encoder. (d): Architecture of Attention layer. The
details of the purple dotted box in part (a) are shown in part (b), and the details of the gray dotted box in part (b) are shown in

part (c).

into two or more 30-frame segments without any overlap,
only 30 frames from each video were kept for processing. In
total, our dataset consists of 170 (80 normal and 90 abnor-
mal) 30-frame echocardiography video segments from 121
(54 normal and 67 abnormal) subjects.

The original resolution of each frame is 640 x 480. In this
study, we followed [6] and resized all videos to 320 x 240 per
frame and used 30 frames (1 second).

3. METHODS

3.1. Network Architecture

Our proposed network architecture is shown in Figure 1. The
network consists of two streams: a spatial context stream that
takes echo frames as input and a motion stream that takes
optical flow as input. These two streams use the same ar-
chitecture that consists of two sub-networks: a convolutional
encoder and an Attention LSTM. The learned features from
these two streams are concatenated and fed into the top layer
for class prediction.

3.1.1. Optical Flow

Optical flow plays an important role in video analysis. Op-
tical flow is computed from successive frames and provides
the pattern of apparent motion of objects in the visual scene
caused by the relative motion between the observer and a
scene. Dense optical flow can be considered as a displace-
ment vector field, which moves the point in the video frame
at time ¢ to the corresponding point in frame ¢ + 1. Optical
flow is usually computed by conventional algorithms, such as
the Lucas—Kanade (L-K) method[10], which requires several
hyperparameters to be tuned.

Here, we use a pre-trained FlowNet2 model[11], a CNN-
based method, for optical flow computation. A pre-trained
FlowNet2 model is hyperparameter-free and only takes two
frames as input to compute the optical flow. FlowNet2, com-
pared with the conventional algorithm, gives a smoother dis-
placement field when there is noise in the input frames.

3.1.2. Convolutional Encoder

We pre-train an auto-encoder on each of the two streams in-
dependently and use the encoding part of the auto-encoder to
provide the spatial features. The convolutional auto-encoder
is shown in Figure 1(c). The encoder with 5 down-sampling
steps and a fully convolutional layer maps the input video



frame (or optical flow) to a 512-D vector. In each down-
sampling step, two convolution layers and one max-pooling
layer are used. The number of convolution filters is set to 16
at the first stage and doubled after each max-pooling. Further-
more, the decoder is the inverse of the same architecture and
reconstructs the input video frame (or optical flow) from the
embedded 512-D vector.

During the pre-training, the auto-encoder is optimized
with mean square error (MSE) loss:
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where 6 4 denotes the parameters of auto-encoder, 7 denotes
the index of pixels, X and Z are input and reconstructed echo
frame (or optical flow). Only the encoder is used in the fol-
lowing training and inference stages.

3.1.3. Bi-directional LSTM with Attention

To temporally aggregate features learned from the convolu-
tional encoder, we employ a 4-layer bi-directional LSTM net-
work. The first LSTM layer takes features from the CNN
encoder as input, returns the hidden state at each time step,
and feeds these hidden states into the next LSTM layer. The
hidden size of each layer is set to 256, and the dropout rate
is 0.3. One problem of the LSTM network is that the per-
formance deteriorates as the length of the input sequence in-
creases. The Attention mechanism is adopted to address this
challenge and make the network ‘focus’ on task-related time
steps.

The Attention mechanism, introduced by Bahdanau et al
[12] to solve machine translation problems, is designed to re-
trieve information from a set of features {h;} related to a
query vector c. Let H be the matrix that consists of output
features [hq, ha, ..., hy], where n is the length of input videos.
The computation of the Attention layer is as follows:
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where ¢e;, the jth element in vector e, is the matching score
of cand h;, o is the softmax score of e;. The dimensions of
{H,c,e,a} are {dxn,dx1,1xn,1xn} respectively, where
d is the hidden size. The query vector c is obtained from H
after a 1-D convolutional layer and a fully connected layer.
The output of the Attention layer is the weighted average of
{h;}, described by Equation 5.

3.1.4. Feature Fusion and Loss Function

In the final stage of the network, the features from the two
streams (spatial context and motion) are concatenated and
used to predict the final class using a fully connected layer
with sigmoid activation. The overall network is trained us-
ing a binary cross-entropy (BCE) loss as the task is a binary
classification problem:

Lpcr(8) =— ZYk logyr — (1 —Yi)log (1 —yx) (6)
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where 6 denotes all parameters in the network, k& denotes the
index of videos, Y}, is the training label for the video, and yy,
is the predicted probability.

3.2. Network training

Our proposed network is trained in three stages: 1) pre-
training of the CNN auto-encoder; 2) pre-training the entire
network but with fixed CNN weights; and 3) fine-tuning of
the entire network. In the first stage, the auto-encoders in both
streams are pre-trained for 30 epochs. In the second stage,
we fix the convolutional encoders’ weights and train the rest
of the network for 30 epochs. In the third stage, we train all
parameters in the network for 30 epochs. The learning rates
of these three stages are set to le™%, le™*, 1e~® respectively.

Our proposed network was implemented in Pytorch and
optimized using the Adam optimizer in all three stages with
parameters: betal=0.9, beta2=0.999, and the learning rates
mentioned above. We trained and tested our network on a
Tesla V100 GPU. And the number of total parameters is 23M.

4. TESTING AND EXPERIMENTAL RESULTS

We evaluated our proposed network architecture from three
aspect: 1) two-stream; 2) Attention mechanism; and 3) train-
ing strategy. The training and testing set splits are shown in
Table 1. Note that the entire network including the CNN
auto-encoder were trained on the training set only. We aug-
mented our data by randomly rotating the input by angles
in [—30°,30°] during training. We also used 4-fold cross-
validation on the training set to select the best parameter for
testing. In the experiments, accuracy, sensitivity ,and speci-
ficity are adopted to evaluate our classification performance.

) B TP +TN -
Y = TP Y FP+ TN + FN
L TP
Sensitivity = TP FN (8)
Cp TN
Speci ficity = TN+ FP )

where {TP, FP, TN, FN} denote the numbers of {true pos-
itive, false positive, true negative, false negative} cases re-
spectively.



Table 1: Training and testing splits of the dataset.

Training Testing
#subjects #videos #subjects #videos
Abnormal (P) 50 73 17 17
Normal (N) 37 63 17 17

4.1. Impact of two-stream design

As mentioned in Section 3.1, our proposed network takes
both spatial context and optical flow as input. To investigate
the impact of the two-stream design, we trained the network
with different settings: 1) spatial context stream only; 2) mo-
tion stream only; and 3) using two-stream. Moreover, we
also compared different optical flow computation methods:
FlowNet2 and the L-K method. Note that we trained all these
models following the training details in Section 3.2. The per-
formance of above four different settings is shown in Table 2.

Table 2: Comparison of one- and two-stream networks.The
bold font denotes the best performance. Accuracy (Acc), Sen-
sitivity (Sen) and Specificity (Spe).

Method Acc(%) Sen(%) Spe(%)
Spatial context stream only 82.35 88.24 76.47
Motion stream only (FlowNet2) 73.53 82.35 64.71
Two-stream (L-K method) 85.29 88.24 82.35
Two-stream (FlowNet2) 91.18 94.11 88.24

4.2. Impact of the Attention mechanism

As mentioned in Section 3.1.3, the Attention module is added
to the original LSTM to ensure focus on task-related time
steps. To evaluate its impact, we compared the networks with
and without the Attention module. In the latter case, The At-
tention layer was replaced by the unweighted average of the
LSTM outputs. The results are shown in Table 3.

Figure 2 shows the Attention weights (« in Eq. 4) aligned
to the electrocardiogram (ECG) corresponding to the echo
video. The figure shows that, the Attention layer focuses on
different phases of a cardiac cycle when predicting normal vs.
abnormal echo videos.

Table 3: Comparison of networks with and without the At-
tention module. The bold font denotes the best performance.

Method Acc(%) Sen(%) Spe(%)
Without Attention module 88.24 88.24 88.24
With Attention module 91.18 94.11 88.24
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Fig. 2: Visualization of Attention weights.

4.3. Impact of network training

In Section 3.2, we have introduced the training strategy of
our network. To explore the impact of network training, we
trained three networks with different strategies. The first net-
work was trained entire network from scratch (i.e., without
pre-training and fine-tuning) with learning rates of 1e~* for
60 epochs followed by a learning rate of 1e~° for 30 epochs.
The second network pre-trained the convolutional encoder in
the first stage with learning rate 1e=* for 30 epochs and only
pre-trained and fine-tuned the entire network but with fixed
CNN weights in the following two stages with learning rates
of {1e~*, 1e=?} for {30, 30} epochs. The third network was
trained following the strategy in Section 3.2. The results com-
paring these training strategies are shown in Table 4.

Table 4: Comparison of network training strategies.

Method Acc(%) Sen(%) Spe(%)
No pre-training 50 52.94 47.06
Only CNN pre-trained ~ 85.29 88.24 82.35
Proposed training 91.18 94.11 88.24

5. CONCLUSIONS

In this paper, we have described a two-stream attention spatio-
temporal network to recognize normal/abnormal echocardio-
graphy videos. The two-stream network utilizes spatial con-
text and motion information by taking raw frames and optical
flow as input. In each stream, spatio-temporal features are ex-
tracted and aggregated by the CNN-LSTM network. Also, the
Attention module helps the network give a better prediction.
The results show that the proposed method is able to achieve
good performance on the datasets used. We are in the process
of increasing the number of datasets and understanding the
clinical significance of the mis-classifications.



6. ACKNOWLEDGMENTS

No funding was received for conducting this study. The au-
thors have no relevant financial or non-financial interests to
disclose.

7.

COMPLIANCE WITH ETHICAL STANDARDS

This research was conducted under IRB 18-2345 approved
by the University of North Carolina, Chapel Hill IRB Board,
Joseph Sivak, PI.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8. REFERENCES

Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” International Conference on Learning Represen-
tations, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical image
segmentation,” in International Conference on Med-
ical image computing and computer-assisted interven-
tion. Springer, 2015, pp. 234-241.

Ali Madani, Ramy Arnaout, Mohammad Mofrad, and
Rima Arnaout, “Fast and accurate view classification
of echocardiograms using deep learning,” NPJ digital
medicine, vol. 1, no. 1, pp. 1-8, 2018.

Jeffrey Zhang, Sravani Gajjala, Pulkit Agrawal, Ge-
offrey H Tison, Laura A Hallock, Lauren Beussink-
Nelson, Mats H Lassen, Eugene Fan, Mandar A Aras,
ChaRandle Jordan, et al., “Fully automated echocardio-
gram interpretation in clinical practice: feasibility and
diagnostic accuracy,” Circulation, vol. 138, no. 16, pp.
1623-1635, 2018.

Ali Madani, Jia Rui Ong, Anshul Tibrewal, and Mo-
hammad RK Mofrad, “Deep echocardiography: data-
efficient supervised and semi-supervised deep learning
towards automated diagnosis of cardiac disease,” NPJ
digital medicine, vol. 1, no. 1, pp. 1-11, 2018.

Mohammad H Jafari, Hany Girgis, Amir H Abdi, Zhibin
Liao, Mehran Pesteie, Robert Rohling, Ken Gin, Terasa
Tsang, and Purang Abolmaesumi, “Semi-supervised
learning for cardiac left ventricle segmentation using
conditional deep generative models as prior,” in 2079
IEEE 16th International Symposium on Biomedical
Imaging (ISBI 2019). IEEE, 2019, pp. 649-652.

(8]

[9]

(10]

[11]

[12]

Tingyang Yang, Jiancheng Han, Haogang Zhu, Tiantian
Li, Xiaowei Liu, Xiaoyan Gu, Xiangyu Liu, Shan An,
Yingying Zhang, Ye Zhang, et al., “Segmentation of five
components in four chamber view of fetal echocardio-
graphy,” in 2020 IEEE 17th International Symposium
on Biomedical Imaging (ISBI). IEEE, 2020, pp. 1962—
1965.

Lok Hin Lee and J Alison Noble, “Automatic determina-
tion of the fetal cardiac cycle in ultrasound using spatio-
temporal neural networks,” in 2020 IEEE 17th Interna-
tional Symposium on Biomedical Imaging (ISBI). IEEE,
2020, pp. 1937-1940.

Bruce D Lucas, Takeo Kanade, et al., “An iterative im-
age registration technique with an application to stereo
vision,” 1981.

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Ke-
uper, Alexey Dosovitskiy, and Thomas Brox, “Flownet
2.0: Evolution of optical flow estimation with deep net-
works,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2017, pp. 2462—
2470.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio, “Neural machine translation by jointly learning to
align and translate,” International Conference on Learn-
ing Representations, 2015.



	 Introduction
	 Echocardiography Dataset
	 Methods
	 Network Architecture
	 Optical Flow
	 Convolutional Encoder
	 Bi-directional LSTM with Attention
	 Feature Fusion and Loss Function

	 Network training

	 Testing and Experimental Results
	 Impact of two-stream design
	 Impact of the Attention mechanism
	 Impact of network training

	 Conclusions
	 acknowledgments
	 Compliance with Ethical Standards
	 References

