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Abstract

We give sufficient conditions for local Input-to-State Stability in C* norm of general quasilinear hyper-
bolic systems with boundary input disturbances. In particular the derivation of explicit Input-to-State
Stability conditions is discussed for the special case of 2 X 2 systems.
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1 Introduction

Hyperbolic systems are found everywhere in physical systems and sciences. From fluid dynamics to elec-
tromagnetism, cell growth, traffic transport, their ability to model propagation phenomena made them an
unavoidable tool in many applications and led to hundreds of studies in the past decades. In most ap-
plications, one-dimensional quasilinear hyperbolic systems, around any steady state, can be written in the
following form [28, 5, 19]:

Oru+ A(u,z)0,u+ B(u,z) =0, te0,+0), = €][0,L], (1.1)

(i) =e (i) =
where
(a) u :[0,400) x [0,L] = R",
(b) the maps A, B and G are C' and such that A(0,z) = A(x) is diagonal, B(0,z) = 0 and G(0) =0,

(c¢) the diagonal entries of A(x) are denoted A;(z) and there exists m € {1,...,n} such that, Vx € [0, L],
Ai(xz) >0fori=1,..,mand A;(z) <0 for i =m+1,...,n, and for any i # j, A;(z) # A;(x).

(d) up € R™ and u_ € R"™™ are defined such that u™ = (ul,ul). Hence, uy represent the components
with positive propagation speeds and u_ the components with negative propagation speeds.

(e) u(z) =0, Vx € [0, L], is the considered steady state.



The issue of the exponential stability of this system has attracted much attention in the last decades.
The first result in the sup norm goes probably back to [16] in 1984 where Li and Greenberg studied a
homogeneous system where B = 0 and G’(0) is diagonal, m = 1 and n = 2. This result was then generalized
by [26, 35, 41, 12, 27, 7] to any n € N\ {0}, and any G, but still with B = 0. Inhomogeneous systems, when
B # 0, were first treated in [4, 5] in the H? norm which is easier to deal with, and then treated in the sup
norms in [19, 20]. A more detailed review about these results and the main difficulties at each step of the
generalization can be found in [22, Section 1.6.1].

In the present paper we address a slightly more general stability issue, namely the Input-to-State Stability
(ISS) of the system (1.1) when it is forced by a bounded boundary disturbance such that the boundary

conditions are (llll+ ((f 2)) ) G (1111 +((ig))) L d), (1.3)

where d(t) € R™ is the boundary disturbance at time ¢. In this case the ISS measures the resilience of the
system stability with respect to this disturbance or, in other words, how strongly the exponential stability of
the steady state is changed by adding this disturbance. A precise definition is given in Definition 2.2 below
where it can be seen that this ISS notion is more general since it implies the exponential stability of the
steady state when the disturbance vanishes. The converse is false and the exponential stability of a system
does not always imply its ISS and the existence of a Lyapunov function for a given steady state does not
guarantee the ISS either as explained in [23, Section 1.5 (C)].

A natural question therefore arises: can the exponential stability results we mentioned above for system
(1.1)—(1.2) be extended to Input-to-State Stability for system (1.1)-(1.3)? In this article we will show that
the answer is yes for the most up to date results, providing at the same time an improvement to the known
ISS results in the sup norm.

The notion of ISS was first introduced by Sontag in 1989 [36] for finite dimensional systems. It was then
extended to time delay systems, and then generalized to PDEs (see [23, Chapter 1] for more details). In [23,
Part I-Part II], for instance, the authors give sufficient conditions for the ISS of a semilinear parabolic PDE
or a linear hyperbolic PDE in the LP norm for any p € N\ {0} U {+00}, including therefore the sup norm.
In [10] the authors study ISS-Lyapunov functions and apply them to the ISS of semilinear reaction-diffusion
equations for the LP? and H' norm. In [29] the authors study a linear parabolic system for the L? norm.
In [34] the authors study a linear hyperbolic system with time varying coefficients and disturbances in the
dynamics and for the L? norm. In [11] the authors show an ISS property for the semilinear wave equations
for the sup norm, as well as a partial ISS property for the L? norm. In [38] the authors look at homogeneous
linear hyperbolic systems in the H' norm and show an ISS estimate using a dynamical controller obtained
as the solution of an ODE. In [1] the authors link the ISS for a nonlinear system in the H? norm to the
behavior of storage functional, in [31] the authors link the ISS with the ISS with respect only to constant
disturbances for monotonic nonlinear systems (which include parabolic PDEs with boundary disturbances).
In [40], the authors show that the exponential stability results in the H? norm given in [5] can be extended
under the same condition to ISS results (the linear case for the L? norm was shown in [14]). A more detailed
review about the genesis of ISS notions for PDEs and some variations about the notion of ISS in infinite
dimensional systems can be found in [23, Chapter 1]. Some link with stability properties can also be found
in [33, 30], and recent results and open questions can be found in [32]. Other results about ISS have been
developed in particular cases: in [21] is shown an ISS property for the Saint-Venant equations ; in [25] the
authors study the ISS of a linear reaction-diffusion equation with a delay on the control input and a PI
controller, etc. But, to our knowledge, no general result exists in the sup norm. In practice, however, the
sup norms (L or C'? norms) are natural norms as, in physical systems, boundary disturbances are more
likely to be uniformly bounded than to have a bounded LP or W% norm with (p,q) € (N\ {0})2. And
from a mathematical point of view the C! norm is also the most natural norm for classical solutions of a
quasilinear hyperbolic system. This is the problem we are investigating in this article. In our main result,
Theorem 2.8, we give sufficient conditions to get ISS of general quasilinear hyperbolic systems for the C?
norm (g > 1), or the L® norm when the system is linear. To our knowledge, this is the first such general
existing ISS result in sup norms for such systems.



The second part of the paper is devoted to the particular case of 2 x 2 systems of the following form

0, (Z;Ei g) + A(u,2)0, (z;gg) + B(w,z) =0 (1.4)
A(z) 0

where A(0,) — < ! Az(x)> and 9uB(0,z) — (b(‘;) a(o‘“)) (1.5)

Any quasilinear hyperbolic 2 x 2 system can reduced to the form (1.4) (see [4, 24] for instance). These
systems are interesting both from a practical and mathematical point of view. From a practical point of
view they cover numerous physical systems in many areas from fluid mechanics (Euler Isentropic, Saint-
Venant equations, etc.) to traffic flows ([3, 15, 13]), etc. From a mathematical point of view they represent
the basic example of a coupled system that cannot be reduced to a homogeneous system. As already
mentioned, the most general known ISS results for hyperbolic systems deal with 2 x 2 systems which are in
addition linear, and where Ay and A, are constants, and the state of the art is given in [23, Chapter 9]. We
will show in Proposition 3.2 that our conditions provide an improvement to the previous conditions when
the system has constant source term, i.e. 9,B(0,x) is constant; and are necessary and sufficient when the
system is homogeneous.

2 Main results

We consider the system (1.1), (1.3). As stated in Theorem 2.1 herafter, this system is well posed in C!
(resp. C? for ¢ > 1) for sufficiently small initial conditions satisfying the first order (resp. g¢-th order)
compatibility conditions associated to (1.3) (see [19] or [5, (4.137)(4.142)] for a precise definition of the first
order compatibility condition).

Throughout the paper, the C? norm is denoted ||-|| ¢« and defined as follows for a function ¥ = (31, ...,,)T €
ce([o, LI R™),

q

Iplee =" sup }||¢£’“’\|Lw. (2.1)

=0 i€{l,..n
Also, for a vector x = (7);cq1,... k), the sup norm is denoted by |z| = max; |;|.
For a function ug € C1([0, L]), we define the first order compatibility conditions associated to (1.3):
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(“6: ) ( (A(u°(0),0)0,u’ (0 )+B(u0(0),o))_+> +d’(0).

We have the following theorem (see [39]).

|
Q

Theorem 2.1 (Well-posedness). For all T > 0 there exist C1(T) > 0 and §(T) > 0 such that, for every
d € CH[0,T)), up € C*([0,L];R™) satisfying the first order compatibility conditions (2.2) and such that
luollcr + [|dljer < 6(T), the system (1.1), (1.3), with A and B of class C*, has a unique solution on
[0,T] x [0, L] with initial condition ug. Moreover one has:

T7€[0,t]

a(t, )ler < C(T) <||U(0,-)01 + Sel[léat](\d(T)D + sup (Id’(T)|)> , Vi e[0,T]. (2.3)

Remark 2.1. When the maps A, B and G are of class C'%, this theorem can be generalized to the C? norm
for any ¢ > 1, by considering the augmented system (u, d;u, ..., 821_1u). In this case the right-hand side of
the estimate 2.3 includes the derivatives of d up to order ¢. Besides, when the system is semilinear, i.e.
A(u, ) = A(z), this theorem holds also for the C° norm for u and the L> norm for d



We now introduce the definition of local Input-to-State Stability,

Definition 2.2. We say that a system of the form (1.1), (1.3) is locally (strongly) Input-to-State Stable (or
ISS) with fading memory for the C? norm if there exist positive constants C1 >0, Co >0, v >0, and § >0
such that, for any T > 0, for any up € C4([0, L]; R™) and for any d € C1([0,T); R™) satisfying the q-th order
compatibility conditions (see [5, 4.5.2]), |luo|lce < 6 and ||d||ce < 0,

q
Ju(t, )lles < Cre ™ fulca + Cs (Z sup (e‘”“‘”icl““)(ﬂl)) , (2.4

k=0 T€[0,t]

Note the fading-memory factor e=7*~7) in the last term which makes our definition of ISS slightly more
strict than the usual definitions. For weaker notions of ISS, one can look for instance at [23] or [33]. Note
that the fading memory effect here is a particular case of the so-called Input-to-State-Dynamical-Stability
[17]. Finally, note also that this definition is a local ISS, and in this article we only deal with local ISS.
This is to obtain general strong stability results without adding any assumptions on the system, while one
would need additional assumptions of some sort to consider global ISS in C'? norm. Indeed, for such general
quasilinear systems, even global well-posedness in C'? norm is not granted in general. When the system is
linear, however, all the results hold globally.

Remark 2.2. In Definition 2.2 the ISS estimate is given with respect to the C'? norm of and therefore involves
q derivatives of d. This is sometimes denoted as D?-ISS when ¢ > 1 (see for instance [37] or [2]). However,
here, there are exactly the same number of derivative involved for the state of the system u and for the
disturbances d so there is no additional derivative considered for and we do not require the disturbance to
be smoother than the solution.

In this article our major contribution is to show that the sufficient conditions derived in [7, 19] for the expo-
nential stability of quasilinear hyperbolic systems can be extended to the (strong) Input-to-State Stability of
these systems. For the sake of clarity, in the next subsection, we start with the special case of homogeneous
systems for which B = 0. The general case will be considered next.

2.1 The homogeneous case

Let us first study the special case of homogeneous systems in which B = 0. In this case the system (1.1)

becomes
opu+ A(u,z)0,u=0, tel0,+0), x€][0,L], (2.5)

with boundary conditions (1.3).

We recall the definition of the function p, : M, — R which was already considered in [26, (2.7)], [7, (1.4)],
and [9, (1.18)], and which is intrinsically linked to the stability of homogeneous systems in C? with boundary
conditions of the form (1.2):

pu(K) = inf{AKA |, : A € D} } (2.6)

where M,, is the space of n x n real matrices, D, is the space of diagonal matrices with strictly positive
diagonal entries, and

I3l = max, (IME). VM € Mo, k€ N\ {0} U {+oc) )
with

n 1/k
€11k = <Z€f> for k€ N\ {0}, [[¢]lcc = max{|&]; i€ {L,---,n}}, VE=(&,....&)" €R™. (28)
=0

We have the following ISS theorem.



Theorem 2.3. Let a homogeneous quasilinear hyperbolic system be of the form (2.5), (1.3), with A and G
of class C1, with ¢ € N\ {0}. If
Po(G'(0)) < 1, (2.9)

then the system is Input-to-State Stable for the C'? norm.

The proof of this theorem is given in Section 5.

Remark 2.3 (Computing the values of the ISS gains). The gains C; and Cs in the ISS estimate (2.4) obtained
by Theorem 2.3 can be expressed explicitly as a function of any matrix A such that ||AG’(0)Al|e < 1 (which
exists from Condition (2.9)) and the system parameters (see 5.1).

Simple extensions of Theorem 2.3 are given in the two following propositions.

Proposition 2.4 (Particular case of semilinear systems). If the system (2.5) is semilinear (i.e. A(u,z) =
A(x)), then Theorem 2.3 also holds true for g = 0.

This is shown in Appendix B.

Remark 2.4 (Case ¢ = 0 in general). Note that when the system is quasilinear, Theorem 2.3 does not hold
with ¢ = 0. This comes from the fact that the nonlinear quadratic perturbations coming from A(u,z)d,u
cannot be bounded by the C° norm.

Proposition 2.5 (Internal disturbances). The same result holds if one includes an internal distributed
disturbance da(t,z) € C([0,T]; C°([0, L];R™)) N C4=1([0,T] x [0, L]). Namely, system (2.5) becomes

Ou+ A(u,2)0,u = do(t,z), te0,+0), z€[0,L], (2.10)

and Theorem 2.3 holds with an ISS estimate rewritten as

q

[u(t,)llca < Cre™|lugllca + C2 (Z sup] (67(t7)|d(k)(7)|)>

k=0 TE[0,t

+Cy [ s (e a)) + Y sip (e gf ok du(ra)) |
(r,2)€[0,t] x[0,L] Ky thaeq_1 (@)€[0,t]x[0,L]

(2.11)

instead of (2.4).

A way to adapt the proof is given in Appendix E.
Before to consider the inhomogeneous case in the next subsection, it is still interesting to point out the two
following methodological remarks.

Remark 2.5. First let us note that Condition (2.9) is exactly the same as the sufficient condition that was
given in [26, 35, 41] and [7] for the exponential stability (in C?) of the unforced system (2.5), (1.2) (i.e.
without disturbance). In the references [35, 41, 26], the result relies on a careful estimate of the solutions
and their derivatives along characteristics which might be hard to adapt to the ISS case. In contrast, in the
reference [7], the exponential stability relies on a Lyapunov function equivalent to a sup-norm. In Theorems
2.3 and 2.8, we shall show that the same Lyapunov function can be used as a so-called ISS Lyapunov function
to extend the ISS property to the system (2.5), (1.3) (i.e. in presence of the boundary disturbance). However,
it should be noted that this extension is not as straightforward as one might think. The reason is that, in
the ISS framework, it will appear that we are not able to get the usual differential inequality of the standard
Lyapunov theory
q
W) oy, ) ++(3 sup [d9@)), (2.12)
dt L—o TE0,]

where V' denotes the Lyapunov function, C is a positive constant and ~ is a class K function. In Sections
4 and 5 we will see how it is possible to adapt the analysis to nevertheless prove Theorem 2.3 and get an
estimate of the form (2.4) (see in particular (5.27)—(5.28)).



Remark 2.6. Tt is also worth noting that (2.9) is only a sufficient condition. It is hard to decide whether this
condition could be necessary or not, and if not, what would be the necessary condition. In fact, even for
the exponential stability of the unforced system (i.e. without disturbances), this question remains unsolved.
The difficulty comes from the fact that, for nonlinear systems like (2.5), the stability conditions in different
norms are not equivalent. To clarify this point, let us define ISS for the H? norm as follows.

Definition 2.6. We say that a system of the form (2.5), (1.3) is locally (strongly) ISS with fading memory
for the H? norm if there exist positive constants C, > 0, Cy > 0, v > 0, and § > 0 such that, for any T > 0,
for any ug € H?([0, L];R™) and for any d € C?([0,T];R") satisfying first order compatibility conditions,
ol < 6 and [[dfjc= <9,

2

[t ) < Coe™ ol s + Co (Z e, (““”ld“”ml)) - (213)

k—0TE [0,¢
With this definition, we have the following sufficient condition for ISS in the H? norm.

Proposition 2.7. Let a homogeneous quasilinear hyperbolic system be of the form (2.5), (1.3), with A and
G of class C%. If
p2(G'(0)) < 1, (2.14)

then the system is 1SS for the H? norm.

This proposition can be easily proved with a standard quadratic Lyapunov function similar to the one used
in [8] (see also [40] for linear systems in the L? norm). This case is easier than the one we are dealing with
in this article as one then obtains a classical Lyapunov estimate of the form (2.12).

The point here is that (see [5, Proposition 4.7])
p2(G'(0)) < poo (G'(0)) (2.15)

and, furthermore, that there are systems of the form (2.5), (1.3) for which this inequality is strict. From [9,
Theorem 2], we even know that, for any € > 0, there are systems such that p2(G'(0)) < 1 < poo(G'(0)) <
(1 + €) which are ISS for the H? norm but are Input-to-State unstable for the C'* norm.

2.2 The inhomogeneous case

Let us now consider the general case, where B # 0. In other words the system is inhomogeneous and has
a source term. From a stability point of view, this changes the problem a lot. Indeed, the source term can
strongly couple the equations : while for the homogeneous case the system can be diagonalized such that the
equations of the linearized system are coupled through the boundary conditions only, this cannot be done
anymore when B # 0. For the exponential stability it was shown in [19] that the stability conditions of the
homogeneous case can be generalized to inhomogeneous systems when B # 0, but an additional internal
condition appears on the length of the domain [0, L] or equivalently the magnitude of the source term (see
also [5, Proposition 5.12; Theorem 6.6]). In this paper, we shall see that similar limitations appear for ISS.

Theorem 2.3 can be generalized as follows.

Theorem 2.8. Let a quasilinear hyperbolic system be of the form (1.1) with A and B of class C%, with
g € N\ {0}. Let us denote M(x) = 0,B(0,x). Let us assume that the system

n 3/2
Sz
M@ fi) < -2 | Ma@ @)+ Y (M) ) (2.16)
k=1,k#i ()
has a solution (f1,..., fn) : [0, L] = R™ such that f;(x) > 0 for alli € [1,n] and all x € [0, L] and there exists
a diagonal matriz A with positive coefficients such that

i

[AG(0)A™ oo < ——r 5,
Ji(L=1;)
sup, (457

(2.17)



where l; = L if A; > 0 and l; = 0 otherwise. Then the system (1.1), (1.3) is Input-to-State Stable for the C

norm.

A way to adapt the proof of Theorem 2.3 is given in Appendix A. Again, the gain of the ISS estimate (2.4)
can be computed from A, the values f;(L —l;) and the parameters of the system. Moreover, Propositions
2.4 and 2.5 still apply.

3 Comparison with existing ISS results and 2 x 2 systems.

3.1 Comparison with Karafyllis-Krstic condition for linear 2 x 2 systems

To our knowledge, there are no other results in the literature for ISS in the sup-norm for general quasilinear
systems. In the particular case of 2 x 2 linear systems, the best existing result is the following, obtained by
Karafyllis and Krstic in [23, Section 9.4]. Consider a linear system of the form

o (i)« (5 ) (e = (i ) (nfi) =0 o)
<3;g(1)§) N (132 ]f)l> (3;88) +d(), (3.2)
where a(z) and b(z) are continuous functions in C°([0,1]), A; > 0 and Ay < 0 are constant speed propa-

gations, ki and ko are constant parameters, and d € L*°(R,) is the boundary disturbance. Karafyllis and
Krstic showed, using a small-gain analysis, that if there exists K > 0 such that

(k1| + [k2) exp(=K) < 1,

exp(2K) —exp K 1 —exp(—K)
(\/ |Ao| K B+ /|k2| ALK A+ k] <1, (3.3)

here A := 2K B := —2K
where (nax, la(z) exp(2K z)| and (nax, |b(z) exp( 2)|,

then the system (3.1)—(3.2) is ISS for the C° norm. Note that it is assumed here without loss of generality
that L = 1. In this setting, we can apply Theorem 2.8 to the system (3.1)—(3.2) and, if we assume in addition
that a and b are constants, we can compare our conditions to (3.3). We have the following preliminary lemma.

Lemma 3.1. For the system (3.1)—(3.2) with a and b constant, the conditions (2.16)—~(2.17) of Theorem 2.8
are respectively equivalent to
)=o

Y L 3.4
a3 MAy| ) (3.4)
1

tan | atan &\lﬂ + ab _
& ata CLAQ ! A1A2

This lemma can then be used to prove the following proposition.

ab

AN

T
(interior condition) <2 — ’

ahy
bA,

(boundary conditions) |ki| <

bA,
k - -
| 2| < ‘QAQ

Proposition 3.2. Consider the system (3.1)—~(3.2) with a and b constant. Suppose there exists K > 0 such
that (3.3) holds. Then the conditions (3.4) of Lemma 3.1, and consequently the two conditions (2.16)—(2.17)
of Theorem 2.8, are satisfied.

Lemma 3.1 and Proposition 3.2 are proved in Section 6.1.
It is interesting to note that Proposition 3.2 is a strict implication. The converse does not hold in general.

In fact it only holds when a = b = 0, in which case both conditions are equivalent to |k1k2| < 1 which is the
optimal (i.e. necessary and suflicient) condition [5, Section 2.2.1]. This is shown in Appendix F.



3.2 Limit length of ISS

Another way to interpret these results is by looking at the limit length under which we can guarantee ISS
of a given system when the boundary conditions (1.3) correspond to a boundary control with a boundary
disturbance. This length is defined as the maximal length below which ISS holds with G = 0, as stated in
the following definition.

Definition 3.3. Let a system be of the form (1.1). We call maxzimal length of ISS the length Lyax > 0
such that for any L € (0, Lyax), the system (1.1), (1.3) with G =0 defined on [0, L] is ISS.

Our result gives a lower bound on this length L., as follows.

Corollary 3.4. Let a system be of the form (1.1), (1.3) with G = 0. The length Lyax is strictly positive,
possibly infinite.

This follows directly from Theorem 2.8. In practice, Theorem 2.8 allows obtain a numerical lower bound of
Lppax, as follows: for any constant C' > 0 let L(C) € (0, +o0] be such that the maximal solution of

- £ (@)
Ai(@) fi(z) = =2 | —Mii(x) fi(x) + Z | M ()| ;o2 0,
k=1,ki fr(x)

(3.5)
£0)=Cif1<i<m,
fi(0)=0ifm+1<i<n.

is defined on [0, L(C')). Then L(C) is a nondecreasing function of C' > 0 and, for every C' > 0, L(C) <
Liax € (0,400]. Therefore a lower bound of L.y can be estimated in practice by choosing C' > 0 large
enough and by solving numerically system (3.5) in order to estimate L(C).

Finally, to show the added value of this result, note that in the case of a 2 x 2 system, Theorem 2.8 provides
an estimate of the limit length of ISS at least as good as the existing known result given in [23] as stated in
the following proposition.

Proposition 3.5. Let k; = ko = 0 and assume that the condition (3.3) holds. Then, the conditions (2.16)—-
(2.17) of Theorem 2.8 are satisfied.

4 Definition of an ISS Lyapunov function for the C'? norm

We define an ISS Lyapunov function for the C'? norm.

Definition 4.1. An ISS Lyapunov function for the C? norm and the system (1.1)~(1.3) is a functional V
on C1([0, L]) such that there exists §, v, ¢1, ca, C1 and Cy positive constants such that for any T > 0, for
any solution u € C1([0,T] x [0, L]; R™) to the system (1.1)—(1.3) with |ju(t,-)]lce <0 and ||d|jca <9,

cillu(t,)los < V(u(t,-)) < ealful, )|, (4.1)

and
q

V(u(t,-)) < Cre "V (u(s, ) + Cy (Z sup (e“’(tT)|d(k)(7)|)> . (4.2)

k=0 TE[s,t]

Obviously if there exists an ISS Lyapunov function for the C'? norm the system is ISS for the C? norm.

Remark 4.1 (Noticeable difference with the usual approach to ISS Lyapunov stability analysis). In the usual
approach for ISS stability analysis with ISS Lyapunov functions it is generally required to get a differential
inequality of the form

W) <oy uge, )+ (3 sup [a(7)), (13)
k=0 T€[0,t



where C' > 0 is a positive constant and -~y is a class IC function. This inequality is then used to obtain an ISS
stability estimate. It is remarkable that, with the Lyapunov function (5.5) for the C'? norm that we shall
use in the proof of Theorem 2.3, it will appear that we are unable to obtain a differential inequality of the
form (4.3) (see (5.27)—(5.28) hereafter), but we can nevertheless get the ISS estimate of the form (4.2). Note
that this feature does not occur when studying ISS for H? norms (see Definition 2.13 and Proposition 2.14)
or even HY norms, where it is still possible to obtain the required differential inequality (e.g. [40, 14]).

5 Proof of Theorem 2.3

In this section we prove Theorem 2.3.

Proof of Theorem 2.3. The proof is based on some of the computations provided in [19]. For more conve-
nience we use here the same notations as in [19]. We will deal with the exponential stability of the nonlinear
system for the C'! norm as it is the most difficult case. The exponential stability for the L> norm can be
done exactly similarly and this will be detailed in the appendix B, while the extension of the proof to the
C? norm simply follows by considering an augmented system (see Appendix D).

The idea is first to approximate a basic C! Lyapunov function by a function equivalent to the W'? norm,
then to prove some estimate independent of p on these functions and finally to let p tend to infinity. Let
us consider a hyperbolic system of the form (2.5), (1.3) with A of class C2, let T > 0 and let u be a C?
solution on [0,77] x [0, L] such that ||u(0,-)||c: < e, and ||d||c: < 6 where € and J are positive constants to
be determined. From Theorem 2.1, such a solution exists provided the initial condition u(0, ) satisfies the
C' compatibility conditions. Here we assume a C9t! regularity for the computations but we will recover
the result for C? functions by density later on. For any p € N\ {0} and any p > 0, we define the following

function:
L n 1/2p
Wip = (/ foe_%“s”u?p(t,x)dx> , (5.1)
0 =0

where f; are positive constants to be chosen and s; =1 for i € {1,...,m} and s, = —1 for i € {m + 1,...n}.
Similarly we define

L n 1/21)
Wa, = < / Z fPe=2nsiT(B(u, x)atu(t,x))?pdm> , (5.2)
0 =0
Wp = Wl,p + Wg,p. (5.3)

where (u,z) — E(u,z) is C! and E(u,z) is a matrix diagonalizing A(u,z)!, and where, by a slight abuse
of notation, we use the compact notation J;u to denote the function of the single variable x defined as:

ou := —A(u, )0, u. (5.4)

Note that, for a function u € C'*(]0, L]) of one variable, this definition is consistent with the value of d;u for
any solution of (5.4). Therefore W, can be defined for C' functions of one variable and depends on time
only indirectly through u. This justifies the slight abuse of notation (5.4). Clearly, W, is an approximation
of the following C! Lyapunov function candidate

Vu) = [V fre " ug, oy N fne 5 U | pe + [V fre TP (B, ooy frne P (EOU) || oo (5.5)

Indeed, as long as u is C*, W,, — V when p — +o0. In order to show that V is an ISS Lyapunov function,
we will first study W, and show some ISS estimate which has a limit when p — +oo and then deduce an
estimate on V. For simplicity in the following, we will sometimes drop the dependance in t. Let us start
by studying Wi ,. Differentiating Wi, with respect to ¢ along the C? solutions of (2.5), (1.3), from [7,

lthis function and matrix always exists from the strict hyperbolicity of A, provided [lu]|co is small enough, see [5, Lemma
6.7]



(3.23)-(3.29), (3.42)-(3.45)] (see also [19, (5.19)-(5.30)]), there exist 1 > 0, py € N\ {0} and a9y > 0 a
constant independent of u and p such that for any p > p; and any positive € < g

dwi

< I - ;‘0 Wi, + CWipllullcs (5.6)
where C' > 0 is a positive constant independent of p and u,
1-2p [ n L
Z Ai(u, ) fPuP e 2prsiv (5.7)
= 0

with A\;(u,z),4 € {1,...,n}, being the eigenvalues of A(u,z) such that \;(0,2) = A;(0),7 € {1,...,n}. Let us
look at Is which is the only term where the boundary disturbance occurs. We know that under assumption
(2.9), there exists a diagonal matrix A = diag(Ay, ..., A,) with positive components such that

0 :=|AG"(0)A™ o = ZZI G'(0 ml <1 (5-8)

j=11i=1

where we recall that {; = L if A; > 0 and [; = 0 otherwise. In fact this implies that there exists a > 0 such
that
1+a)@<l (5.9)

Note that when knowing G and A one can derive an explicit maximal bound on «. Let us now define the
vector & = (£1,...,&,)T b

¢ = { Aju;i(t, L) for i € [1,m], (5.10)

Aju;(t,0) for i € [m + 1,n],

thus, the &; correspond to the outgoing information of the system. Note that from (1.3) G is only a function of
§. Therefore, to simplify the notations in the following computations we define the function F' = (F});eq1,... n)
such that

F§)=¢ (?i%;) (5.11)

Using the boundary conditions (1.3), (5.7) and (5.10), I becomes

W11;2p m fp ) ol
_ L _ P o —2pH
I 5 ;)\l(u(t,L) )M’g
! fzp 2p
+ Z |Az(u(t70)70)| pri
i=m-+1 Ai

- (5.12)
= > Ai(u(t,0),01f7 (Fi(€) +di)*
i=1

n

= 3 N, L), D)|fF (Fi(€) + dy) P Pt

i=m-+1

where d = (d;);e(1,..,n} 18 the boundary disturbance. Now, as A; are C* functions of u, and using (1.3), we
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have

1-2p m D
Bz =2 | Y (Ai(L) + O(€) Ly re -2t

Y (A0)] + 0(€) Lo e
1=m-+1 Ai
m (5.13)
-3 (a0 ( (Fi<s>|+|di|)>> 17 (Fi(€) + di)?”
=1 =1

- <Ai<L)| RGE: |di|>>) FPEL (FL(E) + i)
i=m+1 i=1

Here the O represents a continuous function independent of p such that O(z)/|x| is bounded when |z| tends
to 0. As we have a bound on u, hence on F;(§), and a bound on d;, a natural idea would be to develop
(F3 (&) + di)gp and bound each of the terms that appear. However, this would pose a problem when making
p tends to +00 as we would end up with an infinite number of small terms and their sum might not be small
anymore. Note that this problem does not occur if one want to transpose the same type of result for the H?
norm, where the Lyapunov function candidate would have a form similar to W, with p = 1 and would be

q+1 1 Wi 1, where Wy, is defined in the Appendix (see (D.3)) and thus the number of terms would remain
ﬁmte In order to avoid this problem, we introduce the following estimate for any (a,d) € R?,

2p
(a+d)* < (1+a)*a® + <1 + ;) 2. (5.14)

Observe that this estimate holds for any positive o because we can separate the possible situations in two
cases, depending on which term is dominant between a and d. If |a|a < |d|, then

2 1 o 2
(a+d) < (14 ) d*. (5.15)

If |a|o > |d], then
(a+d)% < (1+ ) a®. (5.16)
So overall (5.14) holds in any cases. For simplicity we also denote dmax(t) = sup |d;(t)| and we recall the

notation /; defined in Theorem 2.8 by [; ;=L if 1 < ¢ <m and l; := 0 if m + 1 < i < n. Therefore, using
(5.14) in (5.13), we get

Wi [ Jid
I > —2— | > (ML) + O(€) <& et
L A
n Z (A0 + 0©) L2 ¢
+1 AP

(5.17)

n

= 3 (AL =+ O (FO] + ds)) 10 (1 ) E7(E)

n

1\*
=S (D =11+ O]+ ) 71 (141 di%’ax]-

Now, we would like to deal with the negative terms. As we have separated the influence of £ and d,.x, we
want to compensate all negative terms in Fz-zp (&) by using the two first positive terms of (5.17) so that the
sum is nonnegative. Note that the cross terms induced by the two last sums do not bring any difficulty as

11



both [£| (and therefore |F(£)|) and dmax can be made as small as desired by choosing e small enough (see
(2.3) and (5.10)). Using (1.3), (5.11) and the fact that G is C!, we have, denoting J := G’(0),

Fi(&) =3 Jig - +0(6), (5.18)

j
For a given t > 0, there exists 7o such that max;(|&;(t)]) = [&, |, thus, using the fact that sup |F;(£)[ = O(€),

n

> (A1) + 0(9) fgpé” “2l N (AG(L — 1) + O([€] + dnax)) (P2 ETI) (14 )| B (€)1
A;

i=1 =1

> (min [4(L)| + O(€)) min <£2> 202t

2p
\P . |
_ Tl(Su,P |A:(L —1;)| + O([¢] + dmax)> sup (i;) PP (1 4 )P (Z J”|§’) (1+ o(1))%)&;, | >
| 1 i Jj=1 J
> [(miin [A: (L) + O(ﬁ))mln (g;) o—2onl
fi

’L

i )

—n (St;p |A(L = 1)+ O(l¢] + dmax)> sup ( ) P (1 4 )P 0%P (1 + 0(1))%] ¢

(5.19)

where o(1) refers to a function that tends to 0 when || goes to 0. By definition of «, given in (5.9), there
exists po € N\ {0} and po > 0 such that for any p > ps and any p € (0, p2),

1/2p
n'/2 <sup A (L — ;)| + O(l¢] + dmax>) e"L(1+ a)f

< e ™ (min |A;(L)] + O(€))V/*P

(5.20)

Thus, from the definition of o(1), using (2.3) and (5.10), there exist €4 > 0 and §; > 0 such that for any
e € (0,e4) and ¢ € (0,61),

1/2
n'/r (sup [Ai(L = L)+ O(l¢] + dmax>> T (14 a)(L+ o(1))0

(5.21)
< e (min|A; (1)] + 0(€)
Thus, if we choose f; = A%, (5.21)implies that
i A1)+ (@) min (L) -2t
(5.22)
—n (sup |A:(L —1;)| + O(¢] + dmax)> sup ( /i ) PPl (1 4 )?P (1 + o(1))2P92P} &P >0,
and hence, using (5.19),
W11;2p . 2p_2pu(L—L;) 1\
> — | — i — Uy max i PHAETh 1+ — Ao : .
12 g | ( SOAE 1+ O]+ A (1+41) @l 62
This implies, using (5.6), that
dW Q
dtl’p < - 2 0VVl »+ CWiplualc

W : KDA DA >> (1+2) 0+ 0l e +dmax>>] .
(5.24)
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Similarly we can show the following Lemma.

Lemma 5.1. There exists ps € N\ {0}, us > 0 such that for any p > ps and any p € (0, pus3)

d
Ijl/;p< ‘LLaOW2,p+CW2P”u”Cl
1—
W 2p 2pu(L l;) l o / 2p .
Zm )|A3 L =) (has®)? (14 Ot )1 + dinas + i) |
(5.25)

where dy,,, (t) =: sup [d;(?)].

The proof is postponed to Appendix C. Using (5.3), (5.24) and Lemma 5.1, we have then

aw,
P < _@W + W, |lul|en

dt —
1-2 n 2p
W P [(Z |A A2p62pH(L l; )) <1 + 1) (drzr{)ax( ) (526)
«

(d’max( )*) (1+O(lu(t, )ller + dmax + dyax))] -

Using (2.3), there exists €4 > 0 such that for any ¢ € (0,64) we have Cllullcx < pag/8 +
CCL(T)(sup- o, (dmax(T)) + SUP-cfo,4(dnax(7))). Besides, recall that [[d[[c: < 6 where § > 0 has still to
be chosen. Thus, we can select § > 0 such that CC1(T)[|d[|cr < pew/8, thus CC1(T)(sup,¢o,4)(dmax(T)) +
SUP, (0,1 (dmax (7)) < pevo /8 and Cllufler < pao/4. Hence

de j2ze )
< 70
@ =" a
Wwi-2p 1\ 2P (5.27)
+ ;p [14 (1 * Oé) (drzrfax( ) (dinax( )) p) (]‘ + O(”u(tv ')”Cl + dmax + d;nax)) ’
where we set I := (Z |A; (L — li)A?pezp”(L_li)) Multiplying on both sides by 2pW2r~1, we get
i=1
dW;P) _ 2ppag s
< — P
dat  — 4 We
(5.28)

2p
I4 (1 + ;) (dIQI{)aX( ) (d;nax( )) p) (1 + O(Hu(t7 ')Hcl + dmax + dinax))‘| :

Thus using now Gronwall Lemma, we get

Wy(r) < (e 255w, (5)

r 2p 1/2p
s (e [u(ui) () + >>2p><1+0<||u<v,~>||c1+dmax<v>+d;nax<v>>>] dv> ,

forany 0 < s <7<t
(5.29)

Now, as & — /2P is a concave function, we have

Wy(t) < e T W (s)

¢ 2p 1/2p
' </ e [I“ (142) @00) + (s 0)) (4 Ol Vs + s (0) + d;nax<v>>>] d”) |
(5.30)
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We would like now to let p go to +oco to recover the basic C'' Lyapunov function V. To do so, using the
definition of I together with the concavity of 1/2p, there exists a constant C5 independent of p such that

¢ pag 1 2p
</ e []“ (142) @@0(0) + () (14 O(l(o. ) +dmax<v>+d;nax<v>>>p

1/2p
t e (g, n o 1 2p
<oyl ( e )<ZA?%2””<L ”) (1+2) @)+ o))
s i=1
(5.31)

Recall now that for a continuous function a, we have (fst S ai?P(v)dv)t/ 2P T MAXigels g la;],
p——+o00

t n 1 2p 1/217
C;/2p </ 672p%(t7v) (Z A?pEQP#(Lli)> <1 + a> di{’ax(’u)dv>
s 1=1

—_ (1 + 1) max (AiB”(Lili)) SUP] (ei%uivndma)c(v”) :

p—+o0 « ) ie{l,...,n} vE([s,t

therefore

(5.32)

and the same holds with d’

max

instead of dpax. Using now (5.30) and (5.32), we obtain by letting p go to

—+00
V(t) < e—w(t—S)V(S)
) 5.33
+(1+) max (26500 [ sup (€ Ddpun(r)) + s0p @), )
a ) ie{l,...,n} T€[s,t] TE[s 1]

which is exactly the desired ISS estimate, with v = pag/4. We conclude by saying that V' is equivalent to
the C! norm of u as, from (5.5), there exist positive constants Cin and Ciax such that

Cuinluller £V < Craxllullen, (5.34)

and Chyin and Ciax can be deduced explicitly from the (f;(L —1;))icq1,...n} and the parameters of the system
(1.1). Therefore, we have

Cmax —~(t—s
[utt, ler < Z2= us, llere™

. . (5.35)
b (147 o (Aieu@—lv)(sup (6 (7)) + s <e-v<t-7>|d;mx<f>>>.

Chin « ) ie{l,...,n} TE[s,t] TE[s,t]

Finally, this estimate is true for solutions u € C? with A which is a C? function, but it can be extended by
density to solutions in C'* with A of class C! (see [19] or [6, Lemma 4.2] where the same argument is detailed
precisely with the H? norm).

Remark 5.1. Note that from (5.5) and the choice f; = A?, the constants Cin and Cpax can be directly
computed from A. And from (5.8) and (5.9), a can be directly computed from A and G’(0). Thus from
(5.35) the gains of the ISS estimate can be explicitly computed from A and the system parameters.

O

6 Case n =2 and comparison with existing conditions

In this section we prove Lemma 3.1 and Proposition 3.2. We first introduce a proposition which was shown
in [20, Theorem 3.2]? and simplifies the condition of Theorem 2.8 in the case of a 2 x 2 system.

2The conditions stated in [20, Theorem 3.2] are in fact different than (2.16)—(2.17), but are shown to be equivalent in the
same paper (see [20, Section 4])
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Proposition 6.1. Let a system be of the form (3.1), (3.2), with a and b two continuous functions on [0,1]

and denote M = ((b) g) and G(u) = <k(;) k(:)1> u. Then the two following are equivalent:
2

e Condition (2.16)—-(2.17) hold.

o There ezists a solution n on [0, 1] to

r_ i + ’b 2
K Ay |As " (6.1)
n(0) = |k1|
such that
n(1)<|ka| . (6.2)

6.1 Proof of Lemma 3.1

When a and b are constant, i can be computed explicitly. Indeed, denoting ¢; = |a|/A; and co = |b|/|Az],
we have

n(z) = \/gtan(atan(\/fMlD + V/cicaz), on [0,x1), (6.3)

where ;1 is given by

(W/Q — atan( %\kﬂ))

= 6.4
1 \/01702 ’ ( )
and
lim 7n(x) = 4o0. (6.5)
T—T1
Therefore the existence of i to (6.1) and (6.2) becomes
(7r/2 — atan( %\kﬂ))
1< (6.6)

VC1C2

|ka| < <\/Ztan(atan(\/§|k1) + @)>_1 (6.7)

which is equivalent to (3.4). Together with Proposition 6.1, this ends the proof of Lemma 3.1.

6.2 Proof of Proposition 3.2

In this subsection we prove Proposition 3.2, by using Lemma 3.1 and comparing the two conditions.

Proof of Proposition 3.2. Assume that a and b are constant. In this case, A = |a|e?’ and B = |b|. Thus,
assuming that (3.3) holds, we have

exp(2K) — exp(K) |b] exp(2K) — exp(K) |al
(\/ K @ + |]€2|> \/ I A + Ikl | <1, (6.8)

b a
<”|1|X2||+ |k2|> %—i— k1] | < 1. (6.9)
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Denoting again ¢; = |a|/A; and ¢y =

|b|/|Az|, we have

0 < V|ka| < —————=— — Veq, (6.10)
\FJF V k1l
and .
0< ik < ————— — a1 (6.11)
Vez + 4/ |k
From Lemma 3.1, it is enough to show that this implies that
5 —atan(,/2[k1])
- > 1, 6.12
o Jeics (6.12)
and that
k2| <m7H(1), (6.13)
where n(x) is defined again by
n(x) =4 [ tan(atan(, /9|k1|) + \/c1eaz), on [0, 21). (6.14)
C2 C1
e Proof that 3 > 1. From (6.11),
|1 | ( 1 )
P ——1), 6.15
C1 4/ C1C2 ( )
which implies that
1 1/4)
(7r/2 — atan(, /%\kﬂ)) /2 — atan ((()/ — (c1e2)Y/ ) )
7y = > . (6.16)

4/ C1C2

Note that from (6.15) \/c1¢; < 1. Then, if 1 > \/éi¢ > 1/2 then x; > /2 — atan((2Y/2 —
7/3>1. If 1/3 < \/e1¢; < 1/2 then z; > 2(7/2 — atan((3'/2 —

vV C1C2

1/21/2)2) >
1/3Y/2)2)) > 27/5 > 1. Tt remains now

only the case \/c1¢z < 1/3. We use the two following facts for every x > 0:

/2 — atan(z) = atan(1/x),

6.17
atan(z) > — x3/3. o
Therefore we have
> ! : -
. _
! verea \ ((erea) V4 — (cre)/4)?  3((crez) =4 — (cre)t/4)6 (6.18)

1

C1C2

B ((1 — (c1c2)172)?

Now, the function y — 1/(1—y)? —y/(3(1 —
one has

21 >max(1,1/(1 —1/3)2 — 1/(9(1 — 1/3)5)) =

Therefore in any cases x1 > 1.

we only need to prove that

(

1
(ver + v/ lki)

V@) <

3(1— (c1e2)'/2)8

)

y)®) is strictly increasing then decreasing on [0, 1/3], thus

(6.19)

Proof that |ka| < 71(1). As stated previously in (6.13) and using the definition of g given by (6.12),

C2
c1

16
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However, this could be rather tedious, thus we will look at an equivalent problem in order to bring
ourselves in a similar setting as the proof that x; > 1. Suppose |ko| fixed and define zo > 0 such that

tan(atan(, /22[k1]) + /c1c222)
n(xg) = = |ko| ™, (6.21)

c2
C1

which is the limiting case for condition (6.13) to hold. Such x5 exists and is positive as (0) = |k1| <
|ko| ! from (6.11), and lim,_,,, n(z) = +o00. Then we show that under the assumption (6.9), we have
x9 > 1. As g is strictly increasing this would give directly (6.13), hence (6.2). Thus it remains to show

that zo > 1. From (6.21) we have
atan(y/t|ka| ™) — atan(,/ 2 [ki])
(6.22)

Xrog = .

4/ C1C2

[ [c 1
§|k‘1| < 174 — (0162)1/4 . (623)
(cact)/4 + (%) VK2

Hence, using (6.23) in (6.22)

From (6.11) we have

2
atan(, /<2 |ky|~1) — atan L — (c1e9) /4
( Cl| 2| ) ((0201)1/4+<Z;> / m ( 1 2)
4/ C1C2

We have an expression with a priori 3 parameters, |ka|, ¢; and co. The first thing to realize is that,
as previously, we can reduce it to 2 parameters by setting X := y/c1/co|ka| and Y := /c1¢5. Indeed,

(6.24) becomes
1 1 1/2 2
atan (Y) — atan ((W -Y ) >
o > , (6.25)

xro > (624)

where Y € (0,1) and X € (0,(1/vVY — V/Y)?). Observe however that we can in fact simplify again
the expression with a new parametrization by setting Z = v X + /Y such that Z € (VY,1/VY).
Therefore (6.25) becomes

atan (m) — atan ((% — y1/2)2>
Y
z— [atan ((Z - \/?)2> + atan (<% - Y1/2)2>]
4 :

(6.26)

We define the function ¢ : z — atan(a — ) — atan(a) + /(1 + a?) where a > x > 0. We have ¢(0) = 0,

and
1 1

1+ (a—x)? - l+a
Thus, ¢(z) < 0 on [0, a] which implies that atan(a —z) < atan(a) —z/(1+ a?) for any z € [0, a]. Using

¢ (r) = 5 <0, for z €0,a). (6.27)
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this in (6.26) gives

T _ [atan(Z) +atan(Z71) — @vVYZ_Yy) (V¥Z_'-Y)

2 1+22 1+2Z-2
To > v
T _ [1 _VYz-y) (2\/?273/22)}
_ 2 2 1+22 1+22
VY Y (6.28)
a4Y Z
_ w2y
B Y

-7 (7))

Then if we look at the function I : z — x/(1 + 22), one has

, 1+ 22 — 222 1—a?
= = . .2
'@ =~ e ~arop (6.29)

Thus, [ is increasing on [0, 1] and decreasing on [1, +0c) which implies that for any Z € (vVY,1/VY)

4 Y 4
x2>—L2—1:7—1. (6.30)
VY 14VY 14+Y
Thus, as Y € (0, 1),
To > 1. (631)
This ends the proof of Proposition 3.2. O

Conclusion

In this paper we showed that the Lyapunov approach used to deal with the exponential stability of quasilinear
hyperbolic systems can be adapted to the Input-to-State Stability in the C'? norm, for any ¢ > 1. The
consequent sufficient conditions allow to derive explicit gains and lower bounds on the length of the interval
such that ISS can be guaranteed. They also represent an improvement to the existing conditions for ISS of
such systems.
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A  Proof of Theorem 2.8

When the system is inhomogeneous and B # 0, one can define, similarly to (5.1)—(5.2)—(5.3),

L n 1/2p
Wi, = </ > @ o) ) (A1)
0 =0

n 1/2p
Wap = </L Z fP(z)e Prsit(B(u, x)@tu(t,a:))?pdx> , (A.2)
0

Wy =Wip+ Wap, (A.3)

where f; are now C! functions with value in (0, +00) such that (2.16) and (2.17) hold with strict inequalities.
The existence of such f;’s follows from the assumptions of Theorem 2.8 and the continuity of differential
equations with respect to the right hand side (note that (2.17) is a strict inequality). When differentiating
W1, along C* solutions, we get from [19, (5.19)-(5.30)], that there exist e; > 0, p; € N\ {0} and a9 > 0 a
constant independent of u and p such that for any p > p; and any positive € < g1

dW,

at P < I — 13 — 7W17p + CWl p||11||cl (A4)

where C' > 0 is a positive constant independent of p and u, I is still defined by (5.7) and I3 is defined by

Wl 2p/ Zfzp(x)u?pil (Z Mik“k) e ATy

1-2
W P

(A.5)
/ ZA (w2) 7 @) e 2o da,

From [19, (5.35)-(5.38)], as (2.16) holds with strict inequalities by assumption, there exists e2 > 0 and p3 >0
such that for any positive u < 1, and any positive € < g5, I3 > 0. Let us now look at Is. The analysis has
now to take into account that f;(L) # f;(0) a priori. From (2.17), there exists a > 0 such that one has

inf (1)
f,»(L—li)) '

(1+a)f <

(A.6)

And (5.19) becomes now

S (A1) + 0(€) fiilp)s?”e*p“l =T AL )+ O]+ d)) (2L~ L)1) (14 )| ()

i=1 =1

> (min [A;(1)] + O(€)) mi (fiﬁ)) g2pe—2mnl

2p

A; , d fill =) " oo 2p En A 1 1))%&,|*
-n Sl}p| (L= 1) + O(I¢] + dimax) sup A2 € (14 a) |J17J|A_ (14 0(1))71&, |
i i i =1 j

> [t 0,0+ 0(€) min (LG ) ot

fill =)\ opur 2p 2 2p| c2
n(sup|Ai(L =)+ O] +dmax)> sup (A2> eZPrL(1 4 0)?0% (1 + o(1)) P} 2p
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By definition of o and o(1), there exist 4 > 0 and §; > 0 such that for any € € (0,e4) and § € (0, d),

1/2
n'/?r (Sup Ai(L = 1)| + O(l€] + dmax>) CeL(1 4 a)(1+ o1))0

min (fiA(l;))l/z (A8)
< e (min [A; ()] + O(6) 1/ — - :
7 Fi(L—1;) 1/2

aup (412

This implies that

W1172p n 1 2p
> _bLr | (T, — 1. P(T, _ ].)p2Pn(L—1;) il 2p ) )
L> =l [ (;MZ(L 1)1+ O(IE] + dmas) 2L — L) ) (1+2) >] (A9
And recalling that I3 > 0, we have

dWl,p < _ /LO[O

d = — Wi, + CW, pHu”Cl

17 2p
T [(Z AL~ L)AL~ b)e WM) (1+2) @0+ Offute. o + dmax»] .
(A.10)

The rest can be done similarly as previously to obtain the desired estimate

Cm'x _ _s
la(t, e < C.df (s, -)||cre w(t—s)

b (1+ 1) ~ max ( fi(L )e"(L‘“)) ( sup (e " |diax (7)) + sup (e |d] (7 )|)>-
Cint

« ) ie{l,...,n} TE[s,1] TE[s,t]
(A1)

B Adapting Theorem 2.8 for the L*° norm in the semilinear case
If the system is semilinear, we just have to keep W , defined as previously, and ignore W5 ,, such that

W, =Wy ,. (B.1)
When differentiating W, , along C? solutions of (1.1), (1.3), we obtain this time

AW
£m< b-g_gfwm+cwww%o (B.2)

The reason is that when differentiating once with respect to time along C? solutions, as A(z) = A(x) and is
diagonal, we have

L n
dV;/;,p =W, % (/ ZA PP 9 — ZA PP (M (u7x)U)i> , (B.3)

Thus the only nonlinear term is M (u,z)u < M(0,z)u + Co|lul|co, where Cp is a constant depending only
on the system, which explains that the only nonlinear corrections that appears in (B.3) involves |ul|co an
not ||uflc1. Then one can deal with I and I3 exactly similarly as in the proof of Theorem 2.3 and Theorem
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2.8 and we obtain instead of (5.24) (resp. (A.10) in the inhomogenous case),

aw o

ﬁ <- a OWLp + CWiplluflco
Wl’ 1\

Z AL = 1A= e | (1 )0 1+ Ot en + )

(B.4)

Now, assuming that ||ug||c1 < ¢, ||d||co < €, and from Theorem 2.1, there exists £; > 0 such that for any

e € (0,e1)

Q
~ B0, + CWalulln < ~E20Wh,,. (B.5)

The rest can be done identically as in (5.29)—(5.33).

C Proof of Lemma 5.1

In this appendix we show how to adapt the proof of estimate (5.24) to obtain Lemma 5.1. To avoid length-
ening the article we prove it directly in the general case B # 0. As in [19, (A.1)-(A.6) ], by differentiating
along the C? solutions of (1.1), (1.3), we get

dW- C
2P < Iy — Is1 — (pao — o~ ) Way + CsWa|ul|es, (C.1)
dt 2p
where C5 and Cg are constants that depend only on the system and
W172p n L
by = =2 [Z X fP (@) (B, 2)u,) e 2 ] (C2)
i=1 0

and

Isy =Wy, 2”/ pr )(Fug) 2Pt (ZR““ u,z)(Eug)g )ez"s””dx

Wl . (C.3)

/ ZAz‘(u,ar)ff_l(x)f{(af)(Eut)?pe’“mdx,
(| —

with R = (Rij)jet1,.ny = E(0,2)(Do(u,2) + 2BYE~1(u,z), and D, is the matrix with coeficients
> 0(A; r/0uj)(ug)k. As previously in the proof of Theorem 2.8 dealing with I3; can be done exactly as in
k=1

[19] (see (A.7) to (A.9)). Concerning I21, from the definition of E, and the fact that A is C° we have

Wl 2p n
I = 22’7” (Z(AZ +0o(1)) fP(L)((ug)i(t, L) + o(|(as)(t, L)|))?Pe=2Prsil
p - (C4)

= (i +0(1))FF(0)((we)i(t, 0) + o] (we) (¢, O)I))2p>

i=1

where o(z) refers to a function satisfying o(z)/|x| — 0 when ||u|lc: tends to 0. Then, differentiating (1.3),
we get



Thus, defining ¢ = (&1, ...,&,)T by

_ Ag(uy)(t, L) for i € [1,m],
“= { A;(uy);(¢,0) for i € [m + 1,n], (C.6)

and using (C.5) we have

W21_2p m P o ‘ n P )
I == (Z<Ai<m+o<1>>f§_”<gi+o<|f>> vt S (I00)]+ o) 2 0,1 + ol
i=1 v i=m-+1 v

- Z(Ai(L — 1) + o) fF (L = Li)e 2Pt (B 5(€) + o] + dirlax))2p> ;

i=1

where d’

max

and [; are defined as previously and F5(€) is defined by

=6 (300 (0 d). c3)

(&) =) Ji * +0(§), (C.9)
which is the analogous of (5.18) The rest can be done similarly as previously.

D Extension of the proof of Theorems 2.3 and 2.8 to the ('’ norm

In order to extend the proof to the C'? norm we consider the state y = (u, dyu, ..., 'u). One can see that
y is still solution of a quasilinear system of the form

aty + Al(yv x)axy + Bl (y7 :E) = Oa (Dl)

where A; is block diagonal as follows

A(u, x) (0)
A = 0) A(u, x) (0) (D.2)

and M, (z) := 0y B(0, z) is also block diagonal with blocks that are all M (z). Thus we can define again

L n 1/2p

Wii1p = </ Z fi(x)pe—%usm(Eatku)?pe—mwsmdx) ’ (D.3)
0 =1
q
and consider W, = >~ Wy41 . The rest can be done is a similar way as previously.
k=0

E Adding internal disturbances

In this Appendix we show how to extend the results when there are internal disturbances as well in the
system (see Remark 2.5). For simplicity, we deal with the homogeneous case when B = 0, even though the

22



same could be done with the general inhomogeneous case. If additional internal disturbances are included
in the system , then, the system becomes

Ou + A(u,2)0,u = do(t,z), te€[0,+00), z € [0,L]. (E.1)

This implies a few changes in the Lyapunov stability analysis. For any ¢ € N\ {0} we can define Wj,y1 , for
k€ {1,...,q} as in (D.3). However, now, for a C9"! solution u to (E.1) with boundary conditions (1.3), an
important difference occurs. One has

Opu = —A(u,z)0,u+da(t, )
Ofu = A%(u,2)02u + A(u, 2)0, (A(u, x))0,u + A(u, 2)0,da(t, x) + 07 da(t, x)

k—1 2 (E.2)
oFu = (—1)*A*(u, 2)0Fu + 0F ds(t,2) + O (Z |a;u|> + Y [ororda(ta)| |

i=0

i1+ia<k—1

for k € {1, ...,q}, where O(x) refers to a function such that O(z)/|z| is bounded when z — 0. Because of da
and its derivatives, it could be that dFu = 0 for any k € {1, ..., ¢} while there exists k € {1, ...,q} such that
Oku # 0. Therefore, the Lyapunov function candidate we previously used, i.e. V :=lim, o0 St o Witt,ps
is not equivalent anymore to the C? norm (recall that the C'? norm is taken with respect to the x derivatives
and Wy p is given in (D.3)). To remedy this problem we define

q L 1/2p
Vo= Wirip+ Y (/ |afla§zd2(t,x)|2pdx> . (E.3)
k=0 kitha<g—1 \”0
In this case, our Lyapunov function candidate is now V := lim V). Therefore, from (D.3) and (E.2), there

p——+oo

exist Chnin and Chax such that

Chin | [ullcs + Z sup ‘aflafzdg(t,x)‘
ky+ka<q—1 Z€[0.1]
(E.4)

<V < Chax | ufloe + Z sup
k1+k2<qg—1 z€[0,L]

oF 9k ds (1, )|

It suffices now to obtain an ISS estimate on W, = Y7 _( Wi1,p. Indeed, if there exist p; > 0 and C' > 0
independent of u, p and the disturbances such that for any p > p;

q t oL 1/2p
+C> ( / / e~ (=T) |9k dy (T, x)|2pdxdt> :
k=0 0 JoO

(E.5)

1/2p

q t
Wy(t) < Wp(0)e "' +C> ( / 62Pv<”>|d<k>(7)|2pd7>
k=0 \/0

then, from (E.3),

1/2p q 1/2p

q t t L
w0 < Wt o3 ([ermenatim) ey ( | ewT>|afd2<7,x>2pdxdt>
k=0 \/O o Jo

k=0
1/2p

L
X (/0 Iaflf)fzdz(t,x)lgpdfﬂ> ;

k1+k2<g—1
(E.6)
which, letting p tend to 400, implies that
q q
V(t) <V(0)e 7 + C’Z sup e dA®) ()] + CZ sup ek dy (1, 2)|
k—0 TE[0,1] o (T:@)€[0,¢] x[0,L] (B.7)

+ Z sup |9F dk2dy(t, x)|dx,
Fa+kz <g—17€[0-L]
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which implies, from (E.4),

Chinllu|lce <Caxllul|cae™ 'Yf—i-C’Z sup e~ 2py(t— T)d(k)( )|
= OTE[Ot]

F(CH Cune + 1) | sup e 0 dy (7, )] (ES)
(r,x)€[0,t]x[0,L] .

+ > sup le YT gk gk, (7, 2)] |
k14ka<q—1 (T:2)€[0,£]x[0,L]

which gives the desired ISS estimate (2.11). It remains now only to proceed as previously for W), to obtain
(E.5). When differentiating W , the only difference comes from the following additional term that appears
n (5.6),

L / Z FP(2)u2P ™ (t, @) doi(t, @) d, (E.9)

where ds ;(t, z) are internal disturbances. From there, using Young’s inequality we get

L n 1-2p 2p—1
-1 1 ag2p—1 W 8
1-2p p 2p 2p _ H&o 2p 1,p 2p
2wl [T ) (e + gt ) do = 2w e (),
(E.10)

L n 1/2p
Dy, = ( / > ff’dgf;(t,x)dx> . (E.11)
0 =0

where

and therefore (5.27) becomes

dW, Qo
dt S_YOW”
Wz}i% 1 o P 4 P
v la(ua) (E20lt) + (L)) (1+ O(u(t, Y e) (E12)

] 2p—1
2
() o)

The rest can be done similarly to get (E.5).

F Converse of Proposition 3.2 does not hold if a # 0 or b # 0

In this section we show that Proposition 3.2 is a strict implication when a # 0 or b # 0. Let a and b be such

that
T

< (F.1)

ab
ANy

Let ky satisfy the first condition of (3.4) , and let ¢ > 0 sufficiently small to be determined later on, and
define

ko =n"1(1) —¢, (F.2)

where 7 is given by (6.12). From Proposition 6.1, the conditions (2.16)—(2.17) of Theorem 2.8 are satisfied.
We will now show that for € small enough condltion (3.3) is not satisfied. Let assume by contradiction that
(3.3) is satisfied. Then 1/(\/c1 + v/|k1]) > /|kz|, and by continuity there exists ko > |ko| such that

Vo < ( - \/a) . (F.3)

1
Ver + |k
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Now, we define z such that n(z¢) = k; ', which is possible as 1(0) = k; < ky*. From (F.3), n is strictly
increasing and goes to +oo in finite time. Proceeding as previously in (6.21)—(6.31) (note that ko here
satisfies the same assumption as ko in the proof of Proposition 3.2), we have o > 1. As xg and k¢ do not
depend on ¢, and as 7 is strictly increasing, we can choose £ > 0 small enough such that

kyt = ) < n(xo) = kgt (F.4)

~ 1—en(1)

Thus ko < k. But, by definition, ko > ko so we have a contradiction and (3.3) is not satisfied.

G Proof of Proposition 3.5

In this section k; = k2 = 0 and we assume the existence of K > 0 such that (3.3) holds. We will show that
conditions (2.16)—(2.17) of Theorem 2.8 hold (for k1 = ko = 0). From (3.3) we have

el —1\?

Define 1 as the maximal solution of (6.1) with 7(0) = 0 and nx = ne*®. From Cauchy-Lipschitz Theorem

7 is defined on [0,z4) and 24 = +00 or lim,_,,, n(x) = +00. From Proposition 6.1, we only need to show
that ¢4 > 1. Using (6.1), we have
b(x)
I = e2KT 4 o pe2KT — a(w)GQKw + e~2K@ 2 4 oy
i =1 U e W Inxk K (@2)

nx (0) = 0.

This was done to make |a(x)e?5?| and |b(x)e~2K*| appear, whose maxima on [0, L] are respectively given
by A and B. Thus if we define h as the maximal solution of

h' = Ay + B1h? + 2Kh,

hO) 0. (G.3)

where A; = A/Ay and B; = B/|Az|, and [0, z5) its maximal domain of definition, by comparison [18] one
has 0 < ni(x) < h(x) on [0,25) and in particular x4 > x5. We will now show that x5 > 1. If By = 0, then
x5 = +00 as the equation is linear, so we can restrict ourselves to the case By > 0. Equation (G.3) can be
solved and we have, if v/A;B; > K2, then

| VAB = K7 tan (atan (i ) + 2VAB - K7) - K

h(z) B, (G.4)
and
1 {7? . < K )} atan (4141]?(171(2) (.5)
Ty = ———" | — — atan = )
° T VA B, - K2 |2 VA B, - K2 VA B, - K2
If we look at the function r : K — atan(v/A1B; — K?/K) — A1 B; — K2, we have
AV — 702
() = WAL B RZVAD R = Ry
K* + (VA B — K7)
_ (WAB, - K?)(K — K?) — A By — K2(1+ (VA1 By — K?)' (VA1 B, — K?)) (@6)

K? + (VA B — K2)°
(VA By — K2)(K — K?) — VA By — K2(1 — K)
K? + (VA B — K2)°

)
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where (v A1 B; — K?)" denotes the derivative with respect to K. As K < /A1 B; < 1l and (VA1 B, — K?)' <
0, we have r'(K) < 0 for K € (0,4/A1B1). And as r(v/A1B1) = 0, this implies that for any K € (0,+/A;B1),
r(K) > 0 and in particular x5 > 1. Thus x4 > 1, and 7 exists on [0, 1]. This ends the proof of Proposition
3.5 in the case K < /A1 By. If K > /A1 By, then

vV K2 — AlBlAl SiIlh(\/ K2 — Alle)

") = B coh (VR = AiBo) - KVET - ABsah(VET— b))
and
atanh (7@)
x5 = N (G.8)
We define ¢ : X — atanh (%) — X, one has
R = ©)

This implies that if K < 1, ¢ is increasing for X € [0, K') and if K > 1, ¢ is increasing for X € [VK? — K, K).
As ¢(0) = 0, we deduce that if K <1, as VK2 — A1B; >0, x5 > 1. If K > 1, then 4;B; <1 < K, thus
VEK? —A1B; > VK2 —1>+K2 - K. Therefore,

atanh( 17%) 10
x5 > RZ 1 . ( )

Now, let 5 : K — atanh (\/1 — %) — v/ K2 — 1. As previously for r we have

/ —VEK? - 1(K? - K) - 5—=(K* - K)
rh(K) = >0, for K > 1. (G.11)
K2 — (VK2 —1)2

And ry(1) = 0, thus for any K > 1, r2(K) > 0 and from (G.10) x5 > 1. Finally if K? = A; By, then the
expression (G.7) does not hold anymore but A;B; > 0 and (G.3) becomes

W = (VA + /Bih)?,

h(0) = 0 (G.12)
thus A
(VA1 + V/Bih(z)) = 1- VA Bz (G.13)

and x5 = \/m_l > 1. This ends the proof of Proposition 3.5.
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