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Abstract

We give sufficient conditions for local Input-to-State Stability in C1 norm of general quasilinear hyper-
bolic systems with boundary input disturbances. In particular the derivation of explicit Input-to-State
Stability conditions is discussed for the special case of 2 × 2 systems.
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1 Introduction

Hyperbolic systems are found everywhere in physical systems and sciences. From fluid dynamics to elec-
tromagnetism, cell growth, traffic transport, their ability to model propagation phenomena made them an
unavoidable tool in many applications and led to hundreds of studies in the past decades. In most ap-
plications, one-dimensional quasilinear hyperbolic systems, around any steady state, can be written in the
following form [28, 5, 19]:

∂tu +A(u, x)∂xu +B(u, x) = 0, t ∈ [0,+∞), x ∈ [0, L], (1.1)(
u+(t, 0)
u−(t, L)

)
= G

(
u+(t, L)
u−(t, 0)

)
, (1.2)

where

(a) u : [0,+∞)× [0, L]→ Rn,

(b) the maps A, B and G are C1 and such that A(0, x) = Λ(x) is diagonal, B(0, x) = 0 and G(0) = 0,

(c) the diagonal entries of Λ(x) are denoted Λi(x) and there exists m ∈ {1, . . . , n} such that, ∀x ∈ [0, L],
Λi(x) > 0 for i = 1, ...,m and Λi(x) < 0 for i = m+ 1, ..., n, and for any i 6= j, Λi(x) 6= Λj(x).

(d) u+ ∈ Rm and u− ∈ Rn−m are defined such that uT = (uT
+,u

T
−). Hence, u+ represent the components

with positive propagation speeds and u− the components with negative propagation speeds.

(e) u(x) ≡ 0, ∀x ∈ [0, L], is the considered steady state.
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The issue of the exponential stability of this system has attracted much attention in the last decades.
The first result in the sup norm goes probably back to [16] in 1984 where Li and Greenberg studied a
homogeneous system where B = 0 and G′(0) is diagonal, m = 1 and n = 2. This result was then generalized
by [26, 35, 41, 12, 27, 7] to any n ∈ N \ {0}, and any G, but still with B = 0. Inhomogeneous systems, when
B 6= 0, were first treated in [4, 5] in the H2 norm which is easier to deal with, and then treated in the sup
norms in [19, 20]. A more detailed review about these results and the main difficulties at each step of the
generalization can be found in [22, Section 1.6.1].

In the present paper we address a slightly more general stability issue, namely the Input-to-State Stability
(ISS) of the system (1.1) when it is forced by a bounded boundary disturbance such that the boundary
conditions are (

u+(t, 0)
u−(t, L)

)
= G

(
u+(t, L)
u−(t, 0)

)
+ d(t), (1.3)

where d(t) ∈ Rn is the boundary disturbance at time t. In this case the ISS measures the resilience of the
system stability with respect to this disturbance or, in other words, how strongly the exponential stability of
the steady state is changed by adding this disturbance. A precise definition is given in Definition 2.2 below
where it can be seen that this ISS notion is more general since it implies the exponential stability of the
steady state when the disturbance vanishes. The converse is false and the exponential stability of a system
does not always imply its ISS and the existence of a Lyapunov function for a given steady state does not
guarantee the ISS either as explained in [23, Section 1.5 (C)].

A natural question therefore arises: can the exponential stability results we mentioned above for system
(1.1)–(1.2) be extended to Input-to-State Stability for system (1.1)-(1.3)? In this article we will show that
the answer is yes for the most up to date results, providing at the same time an improvement to the known
ISS results in the sup norm.

The notion of ISS was first introduced by Sontag in 1989 [36] for finite dimensional systems. It was then
extended to time delay systems, and then generalized to PDEs (see [23, Chapter 1] for more details). In [23,
Part I-Part II], for instance, the authors give sufficient conditions for the ISS of a semilinear parabolic PDE
or a linear hyperbolic PDE in the Lp norm for any p ∈ N \ {0} ∪ {+∞}, including therefore the sup norm.
In [10] the authors study ISS-Lyapunov functions and apply them to the ISS of semilinear reaction-diffusion
equations for the Lp and H1 norm. In [29] the authors study a linear parabolic system for the L2 norm.
In [34] the authors study a linear hyperbolic system with time varying coefficients and disturbances in the
dynamics and for the L2 norm. In [11] the authors show an ISS property for the semilinear wave equations
for the sup norm, as well as a partial ISS property for the L2 norm. In [38] the authors look at homogeneous
linear hyperbolic systems in the H1 norm and show an ISS estimate using a dynamical controller obtained
as the solution of an ODE. In [1] the authors link the ISS for a nonlinear system in the Hp norm to the
behavior of storage functional, in [31] the authors link the ISS with the ISS with respect only to constant
disturbances for monotonic nonlinear systems (which include parabolic PDEs with boundary disturbances).
In [40], the authors show that the exponential stability results in the H2 norm given in [5] can be extended
under the same condition to ISS results (the linear case for the L2 norm was shown in [14]). A more detailed
review about the genesis of ISS notions for PDEs and some variations about the notion of ISS in infinite
dimensional systems can be found in [23, Chapter 1]. Some link with stability properties can also be found
in [33, 30], and recent results and open questions can be found in [32]. Other results about ISS have been
developed in particular cases: in [21] is shown an ISS property for the Saint-Venant equations ; in [25] the
authors study the ISS of a linear reaction-diffusion equation with a delay on the control input and a PI
controller, etc. But, to our knowledge, no general result exists in the sup norm. In practice, however, the
sup norms (L∞ or Cq norms) are natural norms as, in physical systems, boundary disturbances are more
likely to be uniformly bounded than to have a bounded Lp or W q,p norm with (p, q) ∈ (N \ {0})2. And
from a mathematical point of view the C1 norm is also the most natural norm for classical solutions of a
quasilinear hyperbolic system. This is the problem we are investigating in this article. In our main result,
Theorem 2.8, we give sufficient conditions to get ISS of general quasilinear hyperbolic systems for the Cq

norm (q ≥ 1), or the L∞ norm when the system is linear. To our knowledge, this is the first such general
existing ISS result in sup norms for such systems.
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The second part of the paper is devoted to the particular case of 2 × 2 systems of the following form

∂t

(
u1(t, x)
u2(t, x)

)
+A(u, x)∂x

(
u1(t, x)
u2(t, x)

)
+B(u, x) = 0 (1.4)

where A(0, x) =

(
Λ1(x) 0

0 Λ2(x)

)
and ∂uB(0, x) =

(
0 a(x)
b(x) 0

)
. (1.5)

Any quasilinear hyperbolic 2 × 2 system can reduced to the form (1.4) (see [4, 24] for instance). These
systems are interesting both from a practical and mathematical point of view. From a practical point of
view they cover numerous physical systems in many areas from fluid mechanics (Euler Isentropic, Saint-
Venant equations, etc.) to traffic flows ([3, 15, 13]), etc. From a mathematical point of view they represent
the basic example of a coupled system that cannot be reduced to a homogeneous system. As already
mentioned, the most general known ISS results for hyperbolic systems deal with 2 × 2 systems which are in
addition linear, and where Λ1 and Λ2 are constants, and the state of the art is given in [23, Chapter 9]. We
will show in Proposition 3.2 that our conditions provide an improvement to the previous conditions when
the system has constant source term, i.e. ∂uB(0, x) is constant; and are necessary and sufficient when the
system is homogeneous.

2 Main results

We consider the system (1.1), (1.3). As stated in Theorem 2.1 herafter, this system is well posed in C1

(resp. Cq for q ≥ 1) for sufficiently small initial conditions satisfying the first order (resp. q-th order)
compatibility conditions associated to (1.3) (see [19] or [5, (4.137)(4.142)] for a precise definition of the first
order compatibility condition).

Throughout the paper, the Cq norm is denoted ‖·‖Cq and defined as follows for a function ψ = (ψ1, ..., ψn)T ∈
Cq([0, L];Rn),

‖ψ‖Cq =

q∑
k=0

sup
i∈{1,...n}

‖ψ(k)
i ‖L∞ . (2.1)

Also, for a vector x = (xi)i∈{1,...,k}, the sup norm is denoted by |x| = maxi |xi|.
For a function u0 ∈ C1([0, L]), we define the first order compatibility conditions associated to (1.3):(

u+(0)
u−(L)

)
= G

(
u0

+(L)
u0
−(0)

)
+ d(0),(

(A(u0(0), 0)∂xu
0(0) +B(u0(0), 0))+

(A(u0(L), L)∂xu
0(L) +B(u0(L), L))−

)
= G′

(
u0

+(L)
u0
−(0)

)(
(A(u0(L), L)∂xu

0(L) +B(u0(L), L))+

(A(u0(0), 0)∂xu
0(0) +B(u0(0), 0))−

)
+ d′(0).

(2.2)

We have the following theorem (see [39]).

Theorem 2.1 (Well-posedness). For all T > 0 there exist C1(T ) > 0 and δ(T ) > 0 such that, for every
d ∈ C1([0, T ]), u0 ∈ C1([0, L];Rn) satisfying the first order compatibility conditions (2.2) and such that
‖u0‖C1 + ‖d‖C1 ≤ δ(T ), the system (1.1), (1.3), with A and B of class C1, has a unique solution on
[0, T ]× [0, L] with initial condition u0. Moreover one has:

‖u(t, ·)‖C1 ≤ C1(T )

(
‖u(0, ·)‖C1 + sup

τ∈[0,t]

(|d(τ)|) + sup
τ∈[0,t]

(|d′(τ)|)

)
, ∀t ∈ [0, T ]. (2.3)

Remark 2.1. When the maps A, B and G are of class Cq, this theorem can be generalized to the Cq norm
for any q ≥ 1, by considering the augmented system (u, ∂tu, ..., ∂

q−1
t u). In this case the right-hand side of

the estimate 2.3 includes the derivatives of d up to order q. Besides, when the system is semilinear, i.e.
A(u, x) = A(x), this theorem holds also for the C0 norm for u and the L∞ norm for d.
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We now introduce the definition of local Input-to-State Stability,

Definition 2.2. We say that a system of the form (1.1), (1.3) is locally (strongly) Input-to-State Stable (or
ISS) with fading memory for the Cq norm if there exist positive constants C1 > 0, C2 > 0, γ > 0, and δ > 0
such that, for any T > 0, for any u0 ∈ Cq([0, L];Rn) and for any d ∈ Cq([0, T ];Rn) satisfying the q-th order
compatibility conditions (see [5, 4.5.2]), ‖u0‖Cq ≤ δ and ‖d‖Cq ≤ δ,

‖u(t, ·)‖Cq ≤ C1e
−γt‖u0‖Cq + C2

(
q∑

k=0

sup
τ∈[0,t]

(
e−γ(t−τ)|d(k)(τ)|

))
, (2.4)

Note the fading-memory factor e−γ(t−τ) in the last term which makes our definition of ISS slightly more
strict than the usual definitions. For weaker notions of ISS, one can look for instance at [23] or [33]. Note
that the fading memory effect here is a particular case of the so-called Input-to-State-Dynamical-Stability
[17]. Finally, note also that this definition is a local ISS, and in this article we only deal with local ISS.
This is to obtain general strong stability results without adding any assumptions on the system, while one
would need additional assumptions of some sort to consider global ISS in Cq norm. Indeed, for such general
quasilinear systems, even global well-posedness in Cq norm is not granted in general. When the system is
linear, however, all the results hold globally.

Remark 2.2. In Definition 2.2 the ISS estimate is given with respect to the Cq norm of and therefore involves
q derivatives of d. This is sometimes denoted as Dq-ISS when q > 1 (see for instance [37] or [2]). However,
here, there are exactly the same number of derivative involved for the state of the system u and for the
disturbances d so there is no additional derivative considered for and we do not require the disturbance to
be smoother than the solution.

In this article our major contribution is to show that the sufficient conditions derived in [7, 19] for the expo-
nential stability of quasilinear hyperbolic systems can be extended to the (strong) Input-to-State Stability of
these systems. For the sake of clarity, in the next subsection, we start with the special case of homogeneous
systems for which B = 0. The general case will be considered next.

2.1 The homogeneous case

Let us first study the special case of homogeneous systems in which B = 0. In this case the system (1.1)
becomes

∂tu +A(u, x)∂xu = 0, t ∈ [0,+∞), x ∈ [0, L], (2.5)

with boundary conditions (1.3).

We recall the definition of the function ρk :Mn → R which was already considered in [26, (2.7)], [7, (1.4)],
and [9, (1.18)], and which is intrinsically linked to the stability of homogeneous systems in Cq with boundary
conditions of the form (1.2):

ρk(K) = inf{‖∆K∆−1‖k : ∆ ∈ D+
n } (2.6)

where Mn is the space of n × n real matrices, D+
n is the space of diagonal matrices with strictly positive

diagonal entries, and

‖M‖k = max
‖ξ‖k=1

(‖Mξ‖k), ∀M ∈Mn, k ∈ N \ {0} ∪ {+∞}, (2.7)

with

‖ξ‖k =

(
n∑
i=0

ξki

)1/k

for k ∈ N \ {0}, ‖ξ‖∞ = max {|ξi|; i ∈ {1, · · · , n}} , ∀ξ = (ξ1, . . . , ξn)T ∈ Rn. (2.8)

We have the following ISS theorem.
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Theorem 2.3. Let a homogeneous quasilinear hyperbolic system be of the form (2.5), (1.3), with A and G
of class Cq, with q ∈ N \ {0}. If

ρ∞(G′(0)) < 1, (2.9)

then the system is Input-to-State Stable for the Cq norm.

The proof of this theorem is given in Section 5.

Remark 2.3 (Computing the values of the ISS gains). The gains C1 and C2 in the ISS estimate (2.4) obtained
by Theorem 2.3 can be expressed explicitly as a function of any matrix ∆ such that ‖∆G′(0)∆‖∞ < 1 (which
exists from Condition (2.9)) and the system parameters (see 5.1).

Simple extensions of Theorem 2.3 are given in the two following propositions.

Proposition 2.4 (Particular case of semilinear systems). If the system (2.5) is semilinear (i.e. A(u, x) =
A(x)), then Theorem 2.3 also holds true for q = 0.

This is shown in Appendix B.

Remark 2.4 (Case q = 0 in general). Note that when the system is quasilinear, Theorem 2.3 does not hold
with q = 0. This comes from the fact that the nonlinear quadratic perturbations coming from A(u, x)∂xu
cannot be bounded by the C0 norm.

Proposition 2.5 (Internal disturbances). The same result holds if one includes an internal distributed
disturbance d2(t, x) ∈ Cq([0, T ];C0([0, L];Rn)) ∩ Cq−1([0, T ]× [0, L]). Namely, system (2.5) becomes

∂tu +A(u, x)∂xu = d2(t, x), t ∈ [0,+∞), x ∈ [0, L], (2.10)

and Theorem 2.3 holds with an ISS estimate rewritten as

‖u(t, ·)‖Cq ≤ C1e
−γt‖u0‖Cq + C2

(
q∑

k=0

sup
τ∈[0,t]

(
e−γ(t−τ)|d(k)(τ)|

))

+ C3

 sup
(τ,x)∈[0,t]×[0,L]

(
e−γ(t−τ)|∂qt d2(τ, x)|

)
+

∑
k1+k2≤q−1

sup
(τ,x)∈[0,t]×[0,L]

(
e−γ(t−τ)|∂k1t ∂k2x d2(τ, x)|

) ,

(2.11)

instead of (2.4).

A way to adapt the proof is given in Appendix E.
Before to consider the inhomogeneous case in the next subsection, it is still interesting to point out the two
following methodological remarks.

Remark 2.5. First let us note that Condition (2.9) is exactly the same as the sufficient condition that was
given in [26, 35, 41] and [7] for the exponential stability (in Cq) of the unforced system (2.5), (1.2) (i.e.
without disturbance). In the references [35, 41, 26], the result relies on a careful estimate of the solutions
and their derivatives along characteristics which might be hard to adapt to the ISS case. In contrast, in the
reference [7], the exponential stability relies on a Lyapunov function equivalent to a sup-norm. In Theorems
2.3 and 2.8, we shall show that the same Lyapunov function can be used as a so-called ISS Lyapunov function
to extend the ISS property to the system (2.5), (1.3) (i.e. in presence of the boundary disturbance). However,
it should be noted that this extension is not as straightforward as one might think. The reason is that, in
the ISS framework, it will appear that we are not able to get the usual differential inequality of the standard
Lyapunov theory

dV (u(t, ·))
dt

≤ −CV (u(t, ·)) + γ(

q∑
k=0

sup
τ∈[0,t]

|d(k)(τ)|), (2.12)

where V denotes the Lyapunov function, C is a positive constant and γ is a class K function. In Sections
4 and 5 we will see how it is possible to adapt the analysis to nevertheless prove Theorem 2.3 and get an
estimate of the form (2.4) (see in particular (5.27)–(5.28)).
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Remark 2.6. It is also worth noting that (2.9) is only a sufficient condition. It is hard to decide whether this
condition could be necessary or not, and if not, what would be the necessary condition. In fact, even for
the exponential stability of the unforced system (i.e. without disturbances), this question remains unsolved.
The difficulty comes from the fact that, for nonlinear systems like (2.5), the stability conditions in different
norms are not equivalent. To clarify this point, let us define ISS for the H2 norm as follows.

Definition 2.6. We say that a system of the form (2.5), (1.3) is locally (strongly) ISS with fading memory
for the H2 norm if there exist positive constants C1 > 0, C2 > 0, γ > 0, and δ > 0 such that, for any T > 0,
for any u0 ∈ H2([0, L];Rn) and for any d ∈ C2([0, T ];Rn) satisfying first order compatibility conditions,
‖u0‖H2 ≤ δ and ‖d‖C2 ≤ δ,

‖u(t, ·)‖H2 ≤ C1e
−γt‖u0‖H2 + C2

(
2∑
k=0

sup
τ∈[0,t]

(
e−γ(t−τ)|d(k)(τ)|

))
. (2.13)

With this definition, we have the following sufficient condition for ISS in the H2 norm.

Proposition 2.7. Let a homogeneous quasilinear hyperbolic system be of the form (2.5), (1.3), with A and
G of class C2. If

ρ2(G′(0)) < 1, (2.14)

then the system is ISS for the H2 norm.

This proposition can be easily proved with a standard quadratic Lyapunov function similar to the one used
in [8] (see also [40] for linear systems in the L2 norm). This case is easier than the one we are dealing with
in this article as one then obtains a classical Lyapunov estimate of the form (2.12).

The point here is that (see [5, Proposition 4.7])

ρ2(G′(0)) ≤ ρ∞(G′(0)) (2.15)

and, furthermore, that there are systems of the form (2.5), (1.3) for which this inequality is strict. From [9,
Theorem 2], we even know that, for any ε > 0, there are systems such that ρ2(G′(0)) < 1 < ρ∞(G′(0)) ≤
(1 + ε) which are ISS for the H2 norm but are Input-to-State unstable for the C1 norm.

2.2 The inhomogeneous case

Let us now consider the general case, where B 6= 0. In other words the system is inhomogeneous and has
a source term. From a stability point of view, this changes the problem a lot. Indeed, the source term can
strongly couple the equations : while for the homogeneous case the system can be diagonalized such that the
equations of the linearized system are coupled through the boundary conditions only, this cannot be done
anymore when B 6= 0. For the exponential stability it was shown in [19] that the stability conditions of the
homogeneous case can be generalized to inhomogeneous systems when B 6= 0, but an additional internal
condition appears on the length of the domain [0, L] or equivalently the magnitude of the source term (see
also [5, Proposition 5.12, Theorem 6.6]). In this paper, we shall see that similar limitations appear for ISS.

Theorem 2.3 can be generalized as follows.

Theorem 2.8. Let a quasilinear hyperbolic system be of the form (1.1) with A and B of class Cq, with
q ∈ N \ {0}. Let us denote M(x) = ∂uB(0, x). Let us assume that the system

Λi(x)f ′i(x) ≤ −2

−Mii(x)fi(x) +
n∑

k=1,k 6=i

|Mik(x)| f
3/2
i (x)√
fk(x)

 , (2.16)

has a solution (f1, ..., fn) : [0, L]→ Rn such that fi(x) > 0 for all i ∈ [1, n] and all x ∈ [0, L] and there exists
a diagonal matrix ∆ with positive coefficients such that

‖∆G′(0)∆−1‖∞ <
infi

(
fi(li)
∆2
i

)
supi

(
fi(L−li)

∆2
i

) , (2.17)
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where li = L if Λi > 0 and li = 0 otherwise. Then the system (1.1), (1.3) is Input-to-State Stable for the Cq

norm.

A way to adapt the proof of Theorem 2.3 is given in Appendix A. Again, the gain of the ISS estimate (2.4)
can be computed from ∆, the values fi(L − li) and the parameters of the system. Moreover, Propositions
2.4 and 2.5 still apply.

3 Comparison with existing ISS results and 2× 2 systems.

3.1 Comparison with Karafyllis-Krstic condition for linear 2× 2 systems

To our knowledge, there are no other results in the literature for ISS in the sup-norm for general quasilinear
systems. In the particular case of 2× 2 linear systems, the best existing result is the following, obtained by
Karafyllis and Krstic in [23, Section 9.4]. Consider a linear system of the form

∂t

(
u1(t, x)
u2(t, x)

)
+

(
Λ1 0
0 Λ2

)
∂x

(
u1(t, x)
u2(t, x)

)
+

(
0 a(x)
b(x) 0

)(
u1(t, x)
u2(t, x)

)
= 0 (3.1)(

u1(t, 0)
u2(t, 1)

)
=

(
0 k1

k2 0

)(
u1(t, 1)
u2(t, 0)

)
+ d(t), (3.2)

where a(x) and b(x) are continuous functions in C0([0, 1]), Λ1 > 0 and Λ2 < 0 are constant speed propa-
gations, k1 and k2 are constant parameters, and d ∈ L∞(R+) is the boundary disturbance. Karafyllis and
Krstic showed, using a small-gain analysis, that if there exists K > 0 such that

(|k1|+ |k2|) exp(−K) < 1,(√
exp(2K)− expK

|Λ2|K
B +

√
|k2|

)√1− exp(−K)

Λ1K
A+

√
|k1|

 < 1,

where A := max
0≤z≤1

|a(z) exp(2Kz)| and B := max
0≤z≤1

|b(z) exp(−2Kz)| ,

(3.3)

then the system (3.1)–(3.2) is ISS for the C0 norm. Note that it is assumed here without loss of generality
that L = 1. In this setting, we can apply Theorem 2.8 to the system (3.1)–(3.2) and, if we assume in addition
that a and b are constants, we can compare our conditions to (3.3). We have the following preliminary lemma.

Lemma 3.1. For the system (3.1)–(3.2) with a and b constant, the conditions (2.16)–(2.17) of Theorem 2.8
are respectively equivalent to

(interior condition)

(
π

2
−

√∣∣∣∣ ab

Λ1Λ2

∣∣∣∣
)
≥ 0,

(boundary conditions) |k1| <

√∣∣∣∣aΛ2

bΛ1

∣∣∣∣ tan

(
π

2
−

√∣∣∣∣ ab

Λ1Λ2

∣∣∣∣
)
,

|k2| <
∣∣∣∣ bΛ1

aΛ2

∣∣∣∣
(

tan

(
atan

(√∣∣∣∣ bΛ1

aΛ2

∣∣∣∣|k1|

)
+

√∣∣∣∣ ab

Λ1Λ2

∣∣∣∣
))−1

.

(3.4)

This lemma can then be used to prove the following proposition.

Proposition 3.2. Consider the system (3.1)–(3.2) with a and b constant. Suppose there exists K > 0 such
that (3.3) holds. Then the conditions (3.4) of Lemma 3.1, and consequently the two conditions (2.16)–(2.17)
of Theorem 2.8, are satisfied.

Lemma 3.1 and Proposition 3.2 are proved in Section 6.1.

It is interesting to note that Proposition 3.2 is a strict implication. The converse does not hold in general.
In fact it only holds when a = b = 0, in which case both conditions are equivalent to |k1k2| < 1 which is the
optimal (i.e. necessary and sufficient) condition [5, Section 2.2.1]. This is shown in Appendix F.
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3.2 Limit length of ISS

Another way to interpret these results is by looking at the limit length under which we can guarantee ISS
of a given system when the boundary conditions (1.3) correspond to a boundary control with a boundary
disturbance. This length is defined as the maximal length below which ISS holds with G = 0, as stated in
the following definition.

Definition 3.3. Let a system be of the form (1.1). We call maximal length of ISS the length Lmax > 0
such that for any L ∈ (0, Lmax), the system (1.1), (1.3) with G = 0 defined on [0, L] is ISS.

Our result gives a lower bound on this length Lmax as follows.

Corollary 3.4. Let a system be of the form (1.1), (1.3) with G = 0. The length Lmax is strictly positive,
possibly infinite.

This follows directly from Theorem 2.8. In practice, Theorem 2.8 allows obtain a numerical lower bound of
Lmax, as follows: for any constant C > 0 let L(C) ∈ (0,+∞] be such that the maximal solution of

Λi(x)f ′i(x) = −2

−Mii(x)fi(x) +
n∑

k=1,k 6=i

|Mik(x)| f
3/2
i (x)√
fk(x)

 , x ≥ 0,

fi(0) = C if 1 ≤ i ≤ m,
fi(0) = 0 if m+ 1 ≤ i ≤ n.

(3.5)

is defined on [0, L(C)). Then L(C) is a nondecreasing function of C > 0 and, for every C > 0, L(C) ≤
Lmax ∈ (0,+∞]. Therefore a lower bound of Lmax can be estimated in practice by choosing C > 0 large
enough and by solving numerically system (3.5) in order to estimate L(C).

Finally, to show the added value of this result, note that in the case of a 2× 2 system, Theorem 2.8 provides
an estimate of the limit length of ISS at least as good as the existing known result given in [23] as stated in
the following proposition.

Proposition 3.5. Let k1 = k2 = 0 and assume that the condition (3.3) holds. Then, the conditions (2.16)–
(2.17) of Theorem 2.8 are satisfied.

4 Definition of an ISS Lyapunov function for the Cq norm

We define an ISS Lyapunov function for the Cq norm.

Definition 4.1. An ISS Lyapunov function for the Cq norm and the system (1.1)–(1.3) is a functional V
on Cq([0, L]) such that there exists δ, γ, c1, c2, C1 and C2 positive constants such that for any T > 0, for
any solution u ∈ Cq([0, T ]× [0, L];Rn) to the system (1.1)–(1.3) with ‖u(t, ·)‖Cq ≤ δ and ‖d‖Cq ≤ δ,

c1‖u(t, ·)‖Cq ≤ V (u(t, ·)) ≤ c2‖u(t, ·)‖Cq , (4.1)

and

V (u(t, ·)) ≤ C1e
−γ(t−s)V (u(s, ·)) + C2

(
q∑

k=0

sup
τ∈[s,t]

(
e−γ(t−τ)|d(k)(τ)|

))
. (4.2)

Obviously if there exists an ISS Lyapunov function for the Cq norm the system is ISS for the Cq norm.

Remark 4.1 (Noticeable difference with the usual approach to ISS Lyapunov stability analysis). In the usual
approach for ISS stability analysis with ISS Lyapunov functions it is generally required to get a differential
inequality of the form

dV (u(t, ·))
dt

≤ −CV (u(t, ·)) + γ(

q∑
k=0

sup
τ∈[0,t]

|d(k)(τ)|), (4.3)
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where C > 0 is a positive constant and γ is a class K function. This inequality is then used to obtain an ISS
stability estimate. It is remarkable that, with the Lyapunov function (5.5) for the Cq norm that we shall
use in the proof of Theorem 2.3, it will appear that we are unable to obtain a differential inequality of the
form (4.3) (see (5.27)–(5.28) hereafter), but we can nevertheless get the ISS estimate of the form (4.2). Note
that this feature does not occur when studying ISS for H2 norms (see Definition 2.13 and Proposition 2.14)
or even Hq norms, where it is still possible to obtain the required differential inequality (e.g. [40, 14]).

5 Proof of Theorem 2.3

In this section we prove Theorem 2.3.

Proof of Theorem 2.3. The proof is based on some of the computations provided in [19]. For more conve-
nience we use here the same notations as in [19]. We will deal with the exponential stability of the nonlinear
system for the C1 norm as it is the most difficult case. The exponential stability for the L∞ norm can be
done exactly similarly and this will be detailed in the appendix B, while the extension of the proof to the
Cq norm simply follows by considering an augmented system (see Appendix D).

The idea is first to approximate a basic C1 Lyapunov function by a function equivalent to the W 1,p norm,
then to prove some estimate independent of p on these functions and finally to let p tend to infinity. Let
us consider a hyperbolic system of the form (2.5), (1.3) with A of class C2, let T > 0 and let u be a C2

solution on [0, T ] × [0, L] such that ‖u(0, ·)‖C1 ≤ ε, and ‖d‖C1 ≤ δ where ε and δ are positive constants to
be determined. From Theorem 2.1, such a solution exists provided the initial condition u(0, ·) satisfies the
C1 compatibility conditions. Here we assume a Cq+1 regularity for the computations but we will recover
the result for Cq functions by density later on. For any p ∈ N \ {0} and any µ > 0, we define the following
function:

W1,p =

(∫ L

0

n∑
i=0

fpi e
−2pµsixu2p

i (t, x)dx

)1/2p

, (5.1)

where fi are positive constants to be chosen and si = 1 for i ∈ {1, ...,m} and si = −1 for i ∈ {m+ 1, ...n}.
Similarly we define

W2,p =

(∫ L

0

n∑
i=0

fpi e
−2pµsix(E(u, x)∂tu(t, x))2p

i dx

)1/2p

, (5.2)

Wp = W1,p +W2,p. (5.3)

where (u, x) → E(u, x) is C1 and E(u, x) is a matrix diagonalizing A(u, x)1, and where, by a slight abuse
of notation, we use the compact notation ∂tu to denote the function of the single variable x defined as:

∂tu := −A(u, x)∂xu. (5.4)

Note that, for a function u ∈ C1([0, L]) of one variable, this definition is consistent with the value of ∂tu for
any solution of (5.4). Therefore Wp can be defined for C1 functions of one variable and depends on time
only indirectly through u. This justifies the slight abuse of notation (5.4). Clearly, Wp is an approximation
of the following C1 Lyapunov function candidate

V (u) = ‖
√
f1e
−µsi·u1, ...,

√
fne
−µsi·un‖L∞ + ‖

√
f1e
−µsi·(E∂tu)1, ...,

√
fne
−µsi·(E∂tu)n‖L∞ . (5.5)

Indeed, as long as u is C1, Wp → V when p→ +∞. In order to show that V is an ISS Lyapunov function,
we will first study Wp and show some ISS estimate which has a limit when p → +∞ and then deduce an
estimate on V . For simplicity in the following, we will sometimes drop the dependance in t. Let us start
by studying W1,p. Differentiating W1,p with respect to t along the C2 solutions of (2.5), (1.3), from [7,

1this function and matrix always exists from the strict hyperbolicity of A, provided ‖u‖C0 is small enough, see [5, Lemma
6.7]
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(3.23)-(3.29), (3.42)-(3.45)] (see also [19, (5.19)-(5.30)]), there exist ε1 > 0, p1 ∈ N \ {0} and α0 > 0 a
constant independent of u and p such that for any p ≥ p1 and any positive ε ≤ ε1

dW1,p

dt
≤ −I2 −

µα0

2
W1,p + CW1,p‖u‖C1 (5.6)

where C > 0 is a positive constant independent of p and u,

I2 =
W 1−2p

1,p

2p

[
n∑
i=1

λi(u, x)fpi u
2p
i e
−2pµsix

]L
0

(5.7)

with λi(u, x), i ∈ {1, ..., n}, being the eigenvalues of A(u, x) such that λi(0, x) = Λi(0), i ∈ {1, ..., n}. Let us
look at I2 which is the only term where the boundary disturbance occurs. We know that under assumption
(2.9), there exists a diagonal matrix ∆ = diag(∆1, ...,∆n) with positive components such that

θ := ‖∆G′(0)∆−1‖∞ =
n∑
j=1

n∑
i=1

|(G′(0))i,j |
∆i

∆j
< 1 (5.8)

where we recall that li = L if Λi > 0 and li = 0 otherwise. In fact this implies that there exists α > 0 such
that

(1 + α)θ < 1 (5.9)

Note that when knowing G and ∆ one can derive an explicit maximal bound on α. Let us now define the
vector ξ = (ξ1, ..., ξn)T by

ξi =

{
∆iui(t, L) for i ∈ [1,m],
∆iui(t, 0) for i ∈ [m+ 1, n],

(5.10)

thus, the ξi correspond to the outgoing information of the system. Note that from (1.3) G is only a function of
ξ. Therefore, to simplify the notations in the following computations we define the function F = (Fi)i∈{1,...,n}
such that

F (ξ) = G

(
u+(L)
u−(0)

)
(5.11)

Using the boundary conditions (1.3), (5.7) and (5.10), I2 becomes

I2 =
W 1−2p

1,p

2p

[
m∑
i=1

λi(u(t, L), L)
fpi

∆2p
i

ξ2p
i e
−2pµL

+
n∑

i=m+1

|λi(u(t, 0), 0)| f
p
i

∆2p
i

ξ2p
i

−
m∑
i=1

λi(u(t, 0), 0)fpi (Fi(ξ) + di)
2p

−
n∑

i=m+1

|λi(u(t, L), L)|fpi (Fi(ξ) + di)
2p
e2pµL

]
(5.12)

where d = (di)i∈{1,..,n} is the boundary disturbance. Now, as λi are C1 functions of u, and using (1.3), we
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have

I2 ≥
W 1−2p

1,p

2p

[
m∑
i=1

(Λi(L) +O(ξ))
fpi

∆2p
i

ξ2p
i e
−2pµL

+
n∑

i=m+1

(|Λi(0)|+O(ξ))
fpi

∆2p
i

ξ2p
i

−
m∑
i=1

(
Λi(0) +O

(
n∑
i=1

(|Fi(ξ)|+ |di|)

))
fpi (Fi(ξ) + di)

2p

−
n∑

i=m+1

(
|Λi(L)|+O(

n∑
i=1

(|Fi(ξ)|+ |di|))

)
fpi e

2pµL (Fi(ξ) + di)
2p

]
(5.13)

Here the O represents a continuous function independent of p such that O(x)/|x| is bounded when |x| tends
to 0. As we have a bound on u, hence on Fi(ξ), and a bound on di, a natural idea would be to develop

(Fi(ξ) + di)
2p

and bound each of the terms that appear. However, this would pose a problem when making
p tends to +∞ as we would end up with an infinite number of small terms and their sum might not be small
anymore. Note that this problem does not occur if one want to transpose the same type of result for the Hq

norm, where the Lyapunov function candidate would have a form similar to W p with p = 1 and would be∑q+1
k=1W

2
k,1, where Wk,p is defined in the Appendix (see (D.3)) and thus the number of terms would remain

finite. In order to avoid this problem, we introduce the following estimate for any (a, d) ∈ R2,

(a+ d)2p ≤ (1 + α)
2p
a2p +

(
1 +

1

α

)2p

d2p. (5.14)

Observe that this estimate holds for any positive α because we can separate the possible situations in two
cases, depending on which term is dominant between a and d. If |a|α ≤ |d|, then

(a+ d)2p ≤
(

1 +
1

α

)2p

d2p. (5.15)

If |a|α > |d|, then

(a+ d)2p ≤ (1 + α)
2p
a2p. (5.16)

So overall (5.14) holds in any cases. For simplicity we also denote dmax(t) = sup
i
|di(t)| and we recall the

notation li defined in Theorem 2.8 by li := L if 1 ≤ i ≤ m and li := 0 if m + 1 ≤ i ≤ n. Therefore, using
(5.14) in (5.13), we get

I2 ≥
W 1−2p

1,p

2p

[
m∑
i=1

(Λi(L) +O(ξ))
fpi

∆2p
i

ξ2p
i e
−2pµL

+
n∑

i=m+1

(|Λi(0)|+O(ξ))
fpi

∆2p
i

ξ2p
i

−
n∑
i=1

(|Λi(L− li)|+O (|F (ξ)|+ dmax)) fpi e
2pµ(L−li) (1 + α)

2p
F 2p
i (ξ)

−
n∑
i=1

(|Λi(L− li)|+O (|F (ξ)|+ dmax)) fpi e
2pµ(L−li)

(
1 +

1

α

)2p

d2p
max

]
.

(5.17)

Now, we would like to deal with the negative terms. As we have separated the influence of ξ and dmax, we
want to compensate all negative terms in F 2p

i (ξ) by using the two first positive terms of (5.17) so that the
sum is nonnegative. Note that the cross terms induced by the two last sums do not bring any difficulty as
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both |ξ| (and therefore |F (ξ)|) and dmax can be made as small as desired by choosing ε small enough (see
(2.3) and (5.10)). Using (1.3), (5.11) and the fact that G is C1, we have, denoting J := G′(0),

Fi(ξ) =
n∑
j=1

J i,j
ξj
∆j

+ o (ξ) , (5.18)

For a given t ≥ 0, there exists i0 such that maxi(|ξi(t)|) = |ξi0 |, thus, using the fact that sup
i
|Fi(ξ)| = O(ξ),

n∑
i=1

(|Λi(li)|+O(ξ))
fpi

∆2p
i

ξ2p
i e
−2pµli −

n∑
i=1

(Λi(L− li) +O(|ξ|+ dmax))
(
fpi e

2pµ(L−li)
)

(1 + α)2p|Fi(ξ)|2p

≥ (min
i
|Λi(li)|+O(ξ)) min

i

(
fi
∆2
i

)p
ξ2p
i0
e−2pµL

− n
(

sup
i
|Λi(L− li)|+O(|ξ|+ dmax)

)
sup
i

(
fi
∆2
i

)p
e2pµL(1 + α)2p

 n∑
j=1

|J i,j |
∆i

∆j

2p

(1 + o(1))2p|ξi0 |2p

≥
[
(min

i
|Λi(li)|+O(ξ)) min

i

(
fi
∆2
i

)p
e−2pµL

−n
(

sup
i
|Λi(L− li)|+O(|ξ|+ dmax)

)
sup
i

(
fi
∆2
i

)p
e2pµL(1 + α)2pθ2p(1 + o(1))2p

]
ξ2p
i0
,

(5.19)

where o(1) refers to a function that tends to 0 when |ξ| goes to 0. By definition of α, given in (5.9), there
exists p2 ∈ N \ {0} and µ2 > 0 such that for any p ≥ p2 and any µ ∈ (0, µ2),

n1/2p

(
sup
i
|Λi(L− li)|+O(|ξ|+ dmax)

)1/2p

eµL(1 + α)θ

< e−4µL(min
i
|Λi(li)|+O(ξ))1/2p

(5.20)

Thus, from the definition of o(1), using (2.3) and (5.10), there exist ε4 > 0 and δ1 > 0 such that for any
ε ∈ (0, ε4) and δ ∈ (0, δ1),

n1/2p

(
sup
i
|Λi(L− li)|+O(|ξ|+ dmax)

)1/2p

eµL(1 + α)(1 + o(1))θ

< e−4µL(min
i
|Λi(li)|+O(ξ))1/2p

(5.21)

Thus, if we choose fi = ∆2
i , (5.21)implies that[

(min
i
|Λi(li)|+O(ξ)) min

i

(
fi
∆2
i

)p
e−2pµL

−n
(

sup
i
|Λi(L− li)|+O(|ξ|+ dmax)

)
sup
i

(
fi
∆2
i

)p
e2pµL(1 + α)2p(1 + o(1))2pθ2p

]
ξ2p
0 > 0,

(5.22)

and hence, using (5.19),

I2 ≥
W 1−2p

1,p

2p

[
−

(
n∑
i=1

(|Λi(L− li)|+O(|ξ|+ dmax))∆2p
i e

2pµ(L−li)

)(
1 +

1

α

)2p

d2p
max(t)

]
. (5.23)

This implies, using (5.6), that

dW1,p

dt
≤− µα0

2
W1,p + CW1,p‖u‖C1

+
W 1−2p

1,p

2p

[(
n∑
i=1

|Λi(L− li)|∆2p
i e

2pµ(L−li)

)(
1 +

1

α

)2p

d2p
max(t) (1 +O(‖u(t, ·)‖C0 + dmax))

]
.

(5.24)
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Similarly we can show the following Lemma.

Lemma 5.1. There exists p3 ∈ N \ {0}, µ3 > 0 such that for any p ≥ p3 and any µ ∈ (0, µ3)

dW2,p

dt
≤ −µα0

2
W2,p + CW2,p‖u‖C1

+
W 1−2p

2,p

2p

[(
n∑
i=1

|Λi(L− li)|∆2p
i e

2pµ(L−li)

)(
1 +

1

α

)2p

(d′max(t))2p (1 +O(‖u(t, ·)‖C1 + dmax + d′max))

]
,

(5.25)

where d′max(t) =: sup
i
|d′i(t)|.

The proof is postponed to Appendix C. Using (5.3), (5.24) and Lemma 5.1, we have then

dWp

dt
≤ −µα0

2
Wp + CWp‖u‖C1

+
W 1−2p
p

2p

[(
n∑
i=1

|Λi(L− li)|∆2pe2pµ(L−li)

)(
1 +

1

α

)2p

(d2p
max(t)

+(d′max(t))2p) (1 +O(‖u(t, ·)‖C1 + dmax + d′max))
]
.

(5.26)

Using (2.3), there exists ε4 > 0 such that for any ε ∈ (0, ε4) we have C‖u‖C1 < µα0/8 +
CC1(T )(supτ∈[0,t](dmax(τ)) + supτ∈[0,t](d

′
max(τ))). Besides, recall that ‖d‖C1 ≤ δ where δ > 0 has still to

be chosen. Thus, we can select δ > 0 such that CC1(T )‖d‖C1 ≤ µα0/8, thus CC1(T )(supτ∈[0,t](dmax(τ)) +
supτ∈[0,t](d

′
max(τ))) ≤ µα0/8 and C‖u‖C1 < µα0/4. Hence

dWp

dt
≤ −µα0

4
Wp

+
W 1−2p
p

2p

[
I4

(
1 +

1

α

)2p

(d2p
max(t) + (d′max(t))2p) (1 +O(‖u(t, ·)‖C1 + dmax + d′max))

]
,

(5.27)

where we set I4 :=

(
n∑
i=1

|Λi(L− li)|∆2p
i e

2pµ(L−li)
)

. Multiplying on both sides by 2pW 2p−1
p , we get

d(W 2p
p )

dt
≤ −2pµα0

4
W 2p
p

+

[
I4

(
1 +

1

α

)2p

(d2p
max(t) + (d′max(t))2p) (1 +O(‖u(t, ·)‖C1 + dmax + d′max))

]
.

(5.28)

Thus using now Gronwall Lemma, we get

Wp(τ) ≤
(
e−2p

µα0
4 (τ−s)Wp(s)

2p

+

∫ τ

s

e−2p
µα0
4 (τ−v)

[
I4

(
1 +

1

α

)2p

(d2p
max(v) + (d′max(v))2p) (1 +O(‖u(v, ·)‖C1 + dmax(v) + d′max(v)))

]
dv

)1/2p

,

for any 0 ≤ s ≤ τ ≤ t.
(5.29)

Now, as x→ x1/2p is a concave function, we have

Wp(t) ≤ e−
µα0
4 (t−s)Wp(s)

+

(∫ t

s

e−2p
µα0
4 (t−v)

[
I4

(
1 +

1

α

)2p

(d2p
max(v) + (d′max(v))2p) (1 +O(‖u(v, ·)‖C1 + dmax(v) + d′max(v)))

]
dv

)1/2p

.

(5.30)
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We would like now to let p go to +∞ to recover the basic C1 Lyapunov function V . To do so, using the
definition of I4 together with the concavity of 1/2p, there exists a constant C3 independent of p such that(∫ t

s

e−2p
µα0
4 (t−v)

[
I4

(
1 +

1

α

)2p

(d2p
max(v) + (d′max(v))2p) (1 +O(‖u(v, ·)‖C1 + dmax(v) + d′max(v)))

])

≤ C1/2p
3

(∫ t

s

e−2p
µα0
4 (t−v)

(
n∑
i=1

∆2p
i e

2pµ(L−li)

)(
1 +

1

α

)2p

(d2p
max(v) + (d′max(v))2p)dv

)1/2p

.

(5.31)

Recall now that for a continuous function a, we have (
∫ t
s

∑n
i=1 |ai|2p(v)dv)1/2p −−−−−→

p→+∞
maxi,x∈[s,t] |ai|,

therefore

C
1/2p
3

(∫ t

s

e−2p
µα0
4 (t−v)

(
n∑
i=1

∆2p
i e

2pµ(L−li)

)(
1 +

1

α

)2p

d2p
max(v)dv

)1/2p

−−−−−→
p→+∞

(
1 +

1

α

)
max

i∈{1,...,n}

(
∆ie

µ(L−li)
)

sup
v∈[s,t]

(
e−

µα0
4 (t−v)|dmax(v)|

)
.

(5.32)

and the same holds with d′max instead of dmax. Using now (5.30) and (5.32), we obtain by letting p go to
+∞

V (t) ≤ e−γ(t−s)V (s)

+

(
1 +

1

α

)
max

i∈{1,...,n}

(
∆ie

µ(L−li)
)(

sup
τ∈[s,t]

(e−γ(t−τ)|dmax(τ)|) + sup
τ∈[s,t]

(e−γ(t−τ)|d′max(τ)|)

)
,

(5.33)

which is exactly the desired ISS estimate, with γ = µα0/4. We conclude by saying that V is equivalent to
the C1 norm of u as, from (5.5), there exist positive constants Cmin and Cmax such that

Cmin‖u‖C1 ≤ V ≤ Cmax‖u‖C1 , (5.34)

and Cmin and Cmax can be deduced explicitly from the (fi(L− li))i∈{1,..,n} and the parameters of the system
(1.1). Therefore, we have

‖u(t, ·)‖C1 ≤ Cmax

Cmin
‖u(s, ·)‖C1e−γ(t−s)

+
1

Cmin

(
1 +

1

α

)
max

i∈{1,...,n}

(
∆ie

µ(L−li)
)(

sup
τ∈[s,t]

(e−γ(t−τ)|dmax(τ)|) + sup
τ∈[s,t]

(e−γ(t−τ)|d′max(τ)|)

)
.

(5.35)

Finally, this estimate is true for solutions u ∈ C2 with A which is a C2 function, but it can be extended by
density to solutions in C1 with A of class C1 (see [19] or [6, Lemma 4.2] where the same argument is detailed
precisely with the H2 norm).

Remark 5.1. Note that from (5.5) and the choice fi = ∆2
i , the constants Cmin and Cmax can be directly

computed from ∆. And from (5.8) and (5.9), α can be directly computed from ∆ and G′(0). Thus from
(5.35) the gains of the ISS estimate can be explicitly computed from ∆ and the system parameters.

6 Case n = 2 and comparison with existing conditions

In this section we prove Lemma 3.1 and Proposition 3.2. We first introduce a proposition which was shown
in [20, Theorem 3.2]2 and simplifies the condition of Theorem 2.8 in the case of a 2 × 2 system.

2The conditions stated in [20, Theorem 3.2] are in fact different than (2.16)–(2.17), but are shown to be equivalent in the
same paper (see [20, Section 4])
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Proposition 6.1. Let a system be of the form (3.1), (3.2), with a and b two continuous functions on [0, 1]

and denote M :=

(
0 a
b 0

)
and G(u) =

(
0 k1

k2 0

)
u. Then the two following are equivalent:

• Condition (2.16)–(2.17) hold.

• There exists a solution η on [0, 1] to  η′ =

∣∣∣∣ aΛ1

∣∣∣∣+

∣∣∣∣ b

|Λ2|

∣∣∣∣ η2,

η(0) = |k1|
(6.1)

such that
η(1)<|k2|−1. (6.2)

6.1 Proof of Lemma 3.1

When a and b are constant, η can be computed explicitly. Indeed, denoting c1 = |a|/Λ1 and c2 = |b|/|Λ2|,
we have

η(x) =

√
c1
c2

tan(atan(

√
c2
c1
|k1|) +

√
c1c2x), on [0, x1), (6.3)

where x1 is given by

x1 =

(
π/2− atan(

√
c2
c1
|k1|)

)
√
c1c2

, (6.4)

and
lim
x→x1

η(x) = +∞. (6.5)

Therefore the existence of η to (6.1) and (6.2) becomes

1 <

(
π/2− atan(

√
c2
c1
|k1|)

)
√
c1c2

(6.6)

|k2| <
(√

c1
c2

tan(atan(

√
c2
c1
|k1|) +

√
c1c2)

)−1

(6.7)

which is equivalent to (3.4). Together with Proposition 6.1, this ends the proof of Lemma 3.1.

6.2 Proof of Proposition 3.2

In this subsection we prove Proposition 3.2, by using Lemma 3.1 and comparing the two conditions.

Proof of Proposition 3.2. Assume that a and b are constant. In this case, A = |a|e2K and B = |b|. Thus,
assuming that (3.3) holds, we have(√

exp(2K)− exp(K)

K

|b|
|Λ2|

+
√
|k2|

)√exp(2K)− exp(K)

K

|a|
Λ1

+
√
|k1|

 < 1, (6.8)

which implies in particular that (√
|b|
|Λ2|

+
√
|k2|

)√ |a|
Λ1

+
√
|k1|

 < 1. (6.9)
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Denoting again c1 = |a|/Λ1 and c2 = |b|/|Λ2|, we have

0 ≤
√
|k2| <

1
√
c1 +

√
|k1|
−
√
c2, (6.10)

and

0 ≤
√
|k1| <

1
√
c2 +

√
|k2|
−
√
c1. (6.11)

From Lemma 3.1, it is enough to show that this implies that

x1 =

π
2 − atan(

√
c2
c1
|k1|)

√
c1c2

> 1, (6.12)

and that
|k2| ≤ η−1(1), (6.13)

where η(x) is defined again by

η(x) =

√
c1
c2

tan(atan(

√
c2
c1
|k1|) +

√
c1c2x), on [0, x1). (6.14)

• Proof that x1 > 1. From (6.11), √
|k1|
c1

<

(
1

√
c1c2

− 1

)
, (6.15)

which implies that

x1 =

(
π/2− atan(

√
c2
c1
|k1|)

)
√
c1c2

>

π/2− atan

((
1

(c1c2)1/4
− (c1c2)1/4

)2
)

√
c1c2

. (6.16)

Note that from (6.15)
√
c1c2 < 1. Then, if 1 >

√
c1c2 ≥ 1/2 then x1 > π/2− atan((21/2 − 1/21/2)2) >

π/3 > 1. If 1/3 ≤ √c1c2 ≤ 1/2 then x1 > 2(π/2− atan((31/2 − 1/31/2)2)) > 2π/5 > 1. It remains now
only the case

√
c1c2 ≤ 1/3. We use the two following facts for every x > 0:

π/2− atan(x) = atan(1/x),

atan(x) ≥ x− x3/3.
(6.17)

Therefore we have

x1 >
1

√
c1c2

(
1

((c1c2)−1/4 − (c1c2)1/4)2
− 1

3((c1c2)−1/4 − (c1c2)1/4)6

)
=

(
1

(1− (c1c2)1/2)2
− c1c2

3(1− (c1c2)1/2)6

) (6.18)

Now, the function y → 1/(1− y)2− y/(3(1− y)6) is strictly increasing then decreasing on [0, 1/3], thus
one has

x1 > max(1, 1/(1− 1/3)2 − 1/(9(1− 1/3)6)) = 1. (6.19)

Therefore in any cases x1 > 1.

• Proof that |k2| < η−1(1). As stated previously in (6.13) and using the definition of g given by (6.12),
we only need to prove that

(
1

(
√
c1 +

√
|k1|)

−
√
c2) <

√√√√√
√

c2
c1

tan(atan(
√

c2
c1
|k1|) +

√
c1c2)

. (6.20)
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However, this could be rather tedious, thus we will look at an equivalent problem in order to bring
ourselves in a similar setting as the proof that x1 > 1. Suppose |k2| fixed and define x2 ≥ 0 such that

η(x2) =
tan(atan(

√
c2
c1
|k1|) +

√
c1c2x2)√

c2
c1

= |k2|−1, (6.21)

which is the limiting case for condition (6.13) to hold. Such x2 exists and is positive as η(0) = |k1| <
|k2|−1 from (6.11), and limx→x1 η(x) = +∞. Then we show that under the assumption (6.9), we have
x2 > 1. As g is strictly increasing this would give directly (6.13), hence (6.2). Thus it remains to show
that x2 > 1. From (6.21) we have

x2 =
atan(

√
c1
c2
|k2|−1)− atan(

√
c2
c1
|k1|)

√
c1c2

. (6.22)

From (6.11) we have

√√
c2
c1
|k1| <

 1

(c2c1)1/4 +
(
c1
c2

)1/4√
|k2|
− (c1c2)1/4

 . (6.23)

Hence, using (6.23) in (6.22)

x2 >

atan(
√

c2
c1
|k2|−1)− atan

( 1

(c2c1)1/4+
(
c1
c2

)1/4√
|k2|
− (c1c2)1/4

)2


√
c1c2

. (6.24)

We have an expression with a priori 3 parameters, |k2|, c1 and c2. The first thing to realize is that,
as previously, we can reduce it to 2 parameters by setting X :=

√
c1/c2|k2| and Y :=

√
c1c2. Indeed,

(6.24) becomes

x2 >

atan
(

1
X

)
− atan

((
1

(Y )1/2+
√
X
− Y 1/2

)2
)

Y
, (6.25)

where Y ∈ (0, 1) and X ∈ (0, (1/
√
Y −

√
Y )2). Observe however that we can in fact simplify again

the expression with a new parametrization by setting Z =
√
X +

√
Y such that Z ∈ (

√
Y , 1/

√
Y ).

Therefore (6.25) becomes

x2 >
atan

(
1

(Z−
√
Y )2

)
− atan

((
1
Z − Y

1/2
)2)

Y

=

π
2 −

[
atan

(
(Z −

√
Y )2

)
+ atan

((
1
Z − Y

1/2
)2)]

Y
.

(6.26)

We define the function φ : x→ atan(a−x)− atan(a) +x/(1 +a2) where a ≥ x ≥ 0. We have φ(0) = 0,
and

φ′(x) = − 1

1 + (a− x)2
+

1

1 + a2
≤ 0, for x ∈ [0, a). (6.27)

Thus, φ(x) ≤ 0 on [0, a] which implies that atan(a−x) ≤ atan(a)−x/(1 +a2) for any x ∈ [0, a]. Using
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this in (6.26) gives

x2 >

π
2 −

[
atan(Z) + atan(Z−1)− (2

√
Y Z−Y )

1+Z2 − (2
√
Y Z−1−Y )
1+Z−2

]
Y

=

π
2 −

[
π
2 −

(2
√
Y Z−Y )

1+Z2 − (2
√
Y Z−Y Z2)
1+Z2

]
Y

=

[
(4
√
Y Z)

1+Z2 − Y
]

Y

=

[
4√
Y

(
Z

1 + Z2

)
− 1

]
.

(6.28)

Then if we look at the function l : x→ x/(1 + x2), one has

l′(x) =
1 + x2 − 2x2

(1 + x2)2
=

1− x2

(1 + x2)2
. (6.29)

Thus, l is increasing on [0, 1] and decreasing on [1,+∞) which implies that for any Z ∈ (
√
Y , 1/

√
Y )

x2 >
4√
Y

√
Y

1 +
√
Y

2 − 1 =
4

1 + Y
− 1. (6.30)

Thus, as Y ∈ (0, 1),

x2 > 1. (6.31)

This ends the proof of Proposition 3.2.

Conclusion

In this paper we showed that the Lyapunov approach used to deal with the exponential stability of quasilinear
hyperbolic systems can be adapted to the Input-to-State Stability in the Cq norm, for any q ≥ 1. The
consequent sufficient conditions allow to derive explicit gains and lower bounds on the length of the interval
such that ISS can be guaranteed. They also represent an improvement to the existing conditions for ISS of
such systems.
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A Proof of Theorem 2.8

When the system is inhomogeneous and B 6= 0, one can define, similarly to (5.1)–(5.2)–(5.3),

W1,p =

(∫ L

0

n∑
i=0

fpi (x)e−2pµsixu2p
i (t, x)dx

)1/2p

(A.1)

W2,p =

(∫ L

0

n∑
i=0

fpi (x)e−2pµsix(E(u, x)∂tu(t, x))2p
i dx

)1/2p

, (A.2)

Wp = W1,p +W2,p, (A.3)

where fi are now C1 functions with value in (0,+∞) such that (2.16) and (2.17) hold with strict inequalities.
The existence of such fi’s follows from the assumptions of Theorem 2.8 and the continuity of differential
equations with respect to the right hand side (note that (2.17) is a strict inequality). When differentiating
W1,p along C1 solutions, we get from [19, (5.19)-(5.30)], that there exist ε1 > 0, p1 ∈ N \ {0} and α0 > 0 a
constant independent of u and p such that for any p ≥ p1 and any positive ε ≤ ε1

dW1,p

dt
≤ −I2 − I3 −

µα0

2
W1,p + CW1,p‖u‖C1 , (A.4)

where C > 0 is a positive constant independent of p and u, I2 is still defined by (5.7) and I3 is defined by

I3 =W 1−2p
1,p

∫ L

0

n∑
i=1

fpi (x)u2p−1
i

(
n∑
k=1

Mikuk

)
e−2µsixdx

−
W 1−2p

1,p

2

∫ L

0

n∑
i=1

λi(u, x)fp−1
i (x)f ′i(x)u2p

i e
−2µsixdx.

(A.5)

From [19, (5.35)-(5.38)], as (2.16) holds with strict inequalities by assumption, there exists ε2 > 0 and µ1 > 0
such that for any positive µ ≤ µ1, and any positive ε ≤ ε2, I3 > 0. Let us now look at I2. The analysis has
now to take into account that fi(L) 6= fi(0) a priori. From (2.17), there exists α > 0 such that one has

(1 + α)θ <
inf
i

(
fi(li)
∆2
i

)
sup
i

(
fi(L−li)

∆2
i

) . (A.6)

And (5.19) becomes now

n∑
i=1

(|Λi(li)|+O(ξ))
fpi (li)

∆2p
i

ξ2p
i e
−2pµli −

n∑
i=1

(Λi(L− li) +O(|ξ|+ dmax))
(
fpi (L− li)e2pµ(L−li)

)
(1 + α)2p|Fi(ξ)|2p

≥ (min
i
|Λi(li)|+O(ξ)) min

i

(
fi(li)

∆2
i

)p
ξ2p
i0
e−2pµL

− n
(

sup
i
|Λi(L− li)|+O(|ξ|+ dmax)

)
sup
i

(
fi(L− li)

∆2
i

)p
e2pµL(1 + α)2p

 n∑
j=1

|J i,j |
∆i

∆j

2p

(1 + o(1))2p|ξi0 |2p

≥
[
(min

i
|Λi(li)|+O(ξ)) min

i

(
fi(li)

∆2
i

)p
e−2pµL

−n
(

sup
i
|Λi(L− li)|+O(|ξ|+ dmax)

)
sup
i

(
fi(L− li)

∆2
i

)p
e2pµL(1 + α)2pθ2p(1 + o(1))2p

]
ξ2p
i0
,

(A.7)
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By definition of α and o(1), there exist ε4 > 0 and δ1 > 0 such that for any ε ∈ (0, ε4) and δ ∈ (0, δ1),

n1/2p

(
sup
i
|Λi(L− li)|+O(|ξ|+ dmax)

)1/2p

eµL(1 + α)(1 + o(1))θ

< e−4µL(min
i
|Λi(li)|+O(ξ))1/2p

min
i

(
fi(li)
∆2
i

)1/2

sup
i

(
fi(L−li)

∆2
i

)1/2
.

(A.8)

This implies that

I2 ≥
W 1−2p

1,p

2p

[
−

(
n∑
i=1

(|Λi(L− li)|+O(|ξ|+ dmax))fpi (L− li)e2pµ(L−li)

)(
1 +

1

α

)2p

d2p
max(t)

]
. (A.9)

And recalling that I3 > 0, we have

dW1,p

dt
≤− µα0

2
W1,p + CW1,p‖u‖C1

+
W 1−2p

1,p

2p

[(
n∑
i=1

|Λi(L− li)|fpi (L− li)e2pµ(L−li)

)(
1 +

1

α

)2p

d2p
max(t) (1 +O(‖u(t, ·)‖C0 + dmax))

]
.

(A.10)

The rest can be done similarly as previously to obtain the desired estimate

‖u(t, ·)‖C1 ≤ Cmax

Cinf
‖u(s, ·)‖C1e−µ(t−s)

+
1

Cinf

(
1 +

1

α

)
max

i∈{1,...,n}

(√
fi(L− li)eµ(L−li)

)(
sup
τ∈[s,t]

(e−µ(t−τ)|dmax(τ)|) + sup
τ∈[s,t]

(e−µ(t−τ)|d′max(τ)|)

)
.

(A.11)

B Adapting Theorem 2.8 for the L∞ norm in the semilinear case

If the system is semilinear, we just have to keep W1,p defined as previously, and ignore W2,p such that

Wp = W1,p. (B.1)

When differentiating W1,p along C2 solutions of (1.1), (1.3), we obtain this time

dW1,p

dt
≤ −I2 − I3 −

µα0

2
W1,p + CW1,p‖u‖C0 . (B.2)

The reason is that when differentiating once with respect to time along C2 solutions, as A(x) = Λ(x) and is
diagonal, we have

dW1,p

dt
= −W 1−2p

1,p

(∫ L

0

n∑
i=1

Λif
p
i u

2p−1
i ∂xui −

n∑
i=1

Λif
p
i u

2p−1
i (M(u, x)u)i

)
, (B.3)

Thus the only nonlinear term is M(u, x)u ≤ M(0, x)u + C0‖u‖C0 , where C0 is a constant depending only
on the system, which explains that the only nonlinear corrections that appears in (B.3) involves ‖u‖C0 an
not ‖u‖C1 . Then one can deal with I2 and I3 exactly similarly as in the proof of Theorem 2.3 and Theorem
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2.8 and we obtain instead of (5.24) (resp. (A.10) in the inhomogenous case),

dW1,p

dt
≤− µα0

2
W1,p + CW1,p‖u‖C0

+
W 1−2p

1,p

2p

[(
n∑
i=1

|Λi(L− li)|f2p
i (L− di)e2pµ(L−li)

)(
1 +

1

α

)2p

d2p
max(t) (1 +O(‖u(t, ·)‖C0 + dmax))

]
.

(B.4)

Now, assuming that ‖u0‖C1 ≤ ε, ‖d‖C0 ≤ ε, and from Theorem 2.1, there exists ε1 > 0 such that for any
ε ∈ (0, ε1)

− µα0

2
W1,p + CW1,p‖u‖C0 ≤ −µα0

4
W1,p. (B.5)

The rest can be done identically as in (5.29)–(5.33).

C Proof of Lemma 5.1

In this appendix we show how to adapt the proof of estimate (5.24) to obtain Lemma 5.1. To avoid length-
ening the article we prove it directly in the general case B 6= 0. As in [19, (A.1)-(A.6) ], by differentiating
along the C2 solutions of (1.1), (1.3), we get

dW2,p

dt
≤ −I21 − I31 −

(
µα0 −

C6

2p

)
W2,p + C5W2,p‖u‖C1 , (C.1)

where C5 and C6 are constants that depend only on the system and

I21 =
W 1−2p

2,p

2p

[
n∑
i=1

λif
p
i (x)(E(u, x)ut)

2p
i e
−2pµsix

]L
0

(C.2)

and

I31 =W 1−2p
2,p

∫ L

0

n∑
i=1

fpi (x)(Eut)
2p−1
i

(
n∑
k=1

Rik(u, x)(Eut)k

)
e−2µsixdx

−
W 1−2p

2,p

2

∫ L

0

n∑
i=1

λi(u, x)fp−1
i (x)f ′i(x)(Eut)

2p
i e
−2µsixdx,

(C.3)

with R = (Rij)(i,j)∈{1,..,n} := E(u, x)(Da(u, x) + ∂B
∂u )E−1(u, x), and Da is the matrix with coefficients

n∑
k=1

∂(Ai,k/∂uj)(ux)k. As previously in the proof of Theorem 2.8 dealing with I31 can be done exactly as in

[19] (see (A.7) to (A.9)). Concerning I21, from the definition of E, and the fact that λ is C0 we have

I21 =
W 1−2p

2,p

2p

(
n∑
i=1

(Λi + o(1))fpi (L)((ut)i(t, L) + o(|(ut)(t, L)|))2pe−2pµsiL

−
n∑
i=1

(Λi + o(1))fpi (0)((ut)i(t, 0) + o(|(ut)(t, 0)|))2p

) (C.4)

where o(x) refers to a function satisfying o(x)/|x| → 0 when ‖u‖C1 tends to 0. Then, differentiating (1.3),
we get (

(ut)+(t, 0)
(ut)−(t, L)

)
= G′

(
u+(t, L)
u−(t, 0)

)(
(ut)+(t, L)
(ut)−(t, 0)

)
+ d′(t)

= (G′(0) + o(1))

(
(ut)+(t, L)
(ut)−(t, 0)

)
+ d′(t).

(C.5)
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Thus, defining ξ = (ξ1, ..., ξn)T by

ξi =

{
∆i(ut)i(t, L) for i ∈ [1,m],
∆i(ut)i(t, 0) for i ∈ [m+ 1, n],

(C.6)

and using (C.5) we have

I21 =
W 1−2p

2,p

2p

(
m∑
i=1

(Λi(L) + o(1))
fpi (L)

∆i
(ξi + o(|ξ|))2pe−2pµsiL +

n∑
i=m+1

(|Λi(0)|+ o(1))
fpi (0)

∆i
(ξi(t, L) + o(|ξ|))2p

−
n∑
i=1

(Λi(L− li) + o(1))fpi (L− li)e−2pµsi(L−li)(F2,i(ξ) + o(|ξ|+ d′max))2p

)
,

(C.7)

where d′max and li are defined as previously and F2(ξ) is defined by

F2(ξ) = G′
(

u+(t, L)
u−(t, 0)

)(
(ut)+(t, L)
(ut)−(t, 0)

)
, (C.8)

as the right hand side is only a function of ξ from (C.6). Therefore

F2,i(ξ) =

n∑
j=1

Ji,j
ξj
∆j

+ o(ξ), (C.9)

which is the analogous of (5.18) The rest can be done similarly as previously.

D Extension of the proof of Theorems 2.3 and 2.8 to the Cq norm

In order to extend the proof to the Cq norm we consider the state y = (u, ∂tu, ..., ∂
q−1
t u). One can see that

y is still solution of a quasilinear system of the form

∂ty +A1(y, x)∂xy +B1(y, x) = 0, (D.1)

where A1 is block diagonal as follows

A1 =


A(u, x) (0) ...

(0) A(u, x) (0) ...
(0) (0) A(u, x) ...
... ... ... ...

 (D.2)

and M1(x) := ∂yB(0, x) is also block diagonal with blocks that are all M(x). Thus we can define again

Wk+1,p =

(∫ L

0

n∑
i=1

fi(x)pe−2pµsix(E∂kt u)2p
j e
−2pµsixdx

)1/2p

, (D.3)

and consider Wp =
q∑

k=0

Wk+1,p. The rest can be done is a similar way as previously.

E Adding internal disturbances

In this Appendix we show how to extend the results when there are internal disturbances as well in the
system (see Remark 2.5). For simplicity, we deal with the homogeneous case when B = 0, even though the
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same could be done with the general inhomogeneous case. If additional internal disturbances are included
in the system , then, the system becomes

∂tu +A(u, x)∂xu = d2(t, x), t ∈ [0,+∞), x ∈ [0, L]. (E.1)

This implies a few changes in the Lyapunov stability analysis. For any q ∈ N \ {0} we can define Wk+1,p for
k ∈ {1, ..., q} as in (D.3). However, now, for a Cq+1 solution u to (E.1) with boundary conditions (1.3), an
important difference occurs. One has

∂tu = −A(u, x)∂xu + d2(t, x)

∂2
t u = A2(u, x)∂2

xu +A(u, x)∂x(A(u, x))∂xu +A(u, x)∂xd2(t, x) + ∂2
t d2(t, x)

∂kt u = (−1)kAk(u, x)∂kxu + ∂kt d2(t, x) +O

(k−1∑
i=0

|∂ixu|

)2

+
∑

i1+i2≤k−1

|∂i1x ∂
i2
t d2(t, x)|

 ,

(E.2)

for k ∈ {1, ..., q}, where O(x) refers to a function such that O(x)/|x| is bounded when x→ 0. Because of d2

and its derivatives, it could be that ∂kt u = 0 for any k ∈ {1, ..., q} while there exists k ∈ {1, ..., q} such that
∂kxu 6= 0. Therefore, the Lyapunov function candidate we previously used, i.e. V := limp→+∞

∑q
k=0Wk+1,p,

is not equivalent anymore to the Cq norm (recall that the Cq norm is taken with respect to the x derivatives
and Wk+1,p is given in (D.3)). To remedy this problem we define

Vp =

q∑
k=0

Wk+1,p +
∑

k1+k2≤q−1

(∫ L

0

|∂k1t ∂k2x d2(t, x)|2pdx

)1/2p

. (E.3)

In this case, our Lyapunov function candidate is now V := lim
p→+∞

Vp. Therefore, from (D.3) and (E.2), there

exist Cmin and Cmax such that

Cmin

‖u‖Cq +
∑

k1+k2≤q−1

sup
x∈[0,L]

∣∣∣∂k1t ∂k2x d2(t, x)
∣∣∣


≤ V ≤ Cmax

‖u‖Cq +
∑

k1+k2≤q−1

sup
x∈[0,L]

∣∣∣∂k1t ∂k2x d2(t, x)
∣∣∣
 .

(E.4)

It suffices now to obtain an ISS estimate on Wp =
∑q
k=0Wk+1,p. Indeed, if there exist p1 > 0 and C > 0

independent of u, p and the disturbances such that for any p ≥ p1

Wp(t) ≤Wp(0)e−γt+C

q∑
k=0

(∫ t

0

e−2pγ(t−τ)|d(k)(τ)|2pdτ
)1/2p

+C

q∑
k=0

(∫ t

0

∫ L

0

e−2pγ(t−τ)|∂kt d2(τ, x)|2pdxdt

)1/2p

,

(E.5)
then, from (E.3),

Vp(t) ≤Wp(0)e−γt + C

q∑
k=0

(∫ t

0

e−2pγ(t−τ)|d(k)(τ)|2pdτ
)1/2p

+ C

q∑
k=0

(∫ t

0

∫ L

0

e−2pγ(t−τ)|∂kt d2(τ, x)|2pdxdt

)1/2p

+
∑

k1+k2≤q−1

(∫ L

0

|∂k1t ∂k2x d2(t, x)|2pdx

)1/2p

,

(E.6)

which, letting p tend to +∞, implies that

V (t) ≤V (0)e−γt + C

q∑
k=0

sup
τ∈[0,t]

|e−γ(t−τ)d(k)(τ)|+ C

q∑
k=0

sup
(τ,x)∈[0,t]×[0,L]

|e−γ(t−τ)∂kt d2(τ, x)|

+
∑

k1+k2≤q−1

sup
x∈[0,L]

|∂k1t ∂k2x d2(t, x)|dx,
(E.7)
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which implies, from (E.4),

Cmin‖u‖Cq ≤Cmax‖u‖Cqe−γt + C

q∑
k=0

sup
τ∈[0,t]

|e−2pγ(t−τ)d(k)(τ)|

+ (C + Cmax + 1)

(
sup

(τ,x)∈[0,t]×[0,L]

|e−γ(t−τ)∂qt d2(τ, x)|

+
∑

k1+k2≤q−1

sup
(τ,x)∈[0,t]×[0,L]

|e−γ(t−τ)∂k1t ∂
k2
x d2(τ, x)|

 ,

(E.8)

which gives the desired ISS estimate (2.11). It remains now only to proceed as previously for Wp to obtain
(E.5). When differentiating W1,p the only difference comes from the following additional term that appears
in (5.6),

I5 = −W 1−2p
1,p

∫ L

0

n∑
i=0

fpi (x)u2p−1
i (t, x)d2,i(t, x)dx, (E.9)

where d2,i(t, x) are internal disturbances. From there, using Young’s inequality we get

I5 ≥W 1−2p
1,p

∫ L

0

n∑
i=0

fpi (x)

(
2p− 1

2p
u2p
i (t, x) +

1

2p
d2p

2,i(t, x)

)
dx =

µα0

8

2p− 1

2p
W1,p+

W 1−2p
1,p

2p

(
8

µα0

)2p−1

D2p
1,p,

(E.10)
where

D1,p =

(∫ L

0

n∑
i=0

fpi d
2p
2,i(t, x)dx

)1/2p

. (E.11)

and therefore (5.27) becomes

dWp

dt
≤ −µα0

8
Wp

+
W 1−2p
p

2p

[
I4

(
1 +

1

α

)2p

(d2p
max(t) + (d′max(t))2p) (1 +O(‖u(t, ·)‖C1))

+

(
8

µα0

)2p−1

D2p
1,p)

]
.

(E.12)

The rest can be done similarly to get (E.5).

F Converse of Proposition 3.2 does not hold if a 6= 0 or b 6= 0

In this section we show that Proposition 3.2 is a strict implication when a 6= 0 or b 6= 0. Let a and b be such
that ∣∣∣∣ ab

Λ1Λ2

∣∣∣∣ ≤ π

2
. (F.1)

Let k1 satisfy the first condition of (3.4) , and let ε > 0 sufficiently small to be determined later on, and
define

k2 = η−1(1)− ε, (F.2)

where η is given by (6.12). From Proposition 6.1, the conditions (2.16)–(2.17) of Theorem 2.8 are satisfied.
We will now show that for ε small enough, condition (3.3) is not satisfied. Let assume by contradiction that
(3.3) is satisfied. Then 1/(

√
c1 +

√
|k1|)−

√
c2 >

√
|k2|, and by continuity there exists k0 > |k2| such that

√
k0 <

(
1

√
c1 +

√
|k1|
−
√
c2

)
. (F.3)
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Now, we define x0 such that η(x0) = k−1
0 , which is possible as η(0) = k1 < k−1

0 . From (F.3), η is strictly
increasing and goes to +∞ in finite time. Proceeding as previously in (6.21)–(6.31) (note that k0 here
satisfies the same assumption as k2 in the proof of Proposition 3.2), we have x0 > 1. As x0 and k0 do not
depend on ε, and as η is strictly increasing, we can choose ε > 0 small enough such that

k−1
2 =

η(1)

1− εη(1)
< η(x0) = k−1

0 . (F.4)

Thus k0 < k2. But, by definition, k0 > k2 so we have a contradiction and (3.3) is not satisfied.

G Proof of Proposition 3.5

In this section k1 = k2 = 0 and we assume the existence of K > 0 such that (3.3) holds. We will show that
conditions (2.16)–(2.17) of Theorem 2.8 hold (for k1 = k2 = 0). From (3.3) we have

AB

(
eK − 1

K

)2

< |Λ1Λ2|. (G.1)

Define η as the maximal solution of (6.1) with η(0) = 0 and ηK = ηe2Kx. From Cauchy-Lipschitz Theorem
η is defined on [0, x4) and x4 = +∞ or limx→x4

η(x) = +∞. From Proposition 6.1, we only need to show
that x4 > 1. Using (6.1), we have

η′K = η′e2Kx + 2Kηe2Kx = |a(x)

Λ1
e2Kx|+ |b(x)

|Λ2|
e−2Kx|η2

K + 2KηK ,

ηK(0) = 0.

(G.2)

This was done to make |a(x)e2Kx| and |b(x)e−2Kx| appear, whose maxima on [0, L] are respectively given
by A and B. Thus if we define h as the maximal solution of

h′ = A1 +B1h
2 + 2Kh,

h(0) = 0,
(G.3)

where A1 = A/Λ1 and B1 = B/|Λ2|, and [0, x5) its maximal domain of definition, by comparison [18] one
has 0 ≤ ηK(x) ≤ h(x) on [0, x5) and in particular x4 ≥ x5. We will now show that x5 > 1. If B1 = 0, then
x5 = +∞ as the equation is linear, so we can restrict ourselves to the case B1 > 0. Equation (G.3) can be
solved and we have, if

√
A1B1 > K2, then

h(x) =

√
A1B1 −K2 tan

(
atan

(
K√

A1B1−K2

)
+ x
√
A1B1 −K2

)
−K

B1
. (G.4)

and

x5 =
1√

A1B1 −K2

[
π

2
− atan

(
K√

A1B1 −K2

)]
=

atan
(√

A1B1−K2

K

)
√
A1B1 −K2

. (G.5)

If we look at the function r : K → atan(
√
A1B1 −K2/K)−

√
A1B1 −K2, we have

r′(K) =
(
√
A1B1 −K2)′K −

√
A1B1 −K2

K2 +
(√
A1B1 −K2

)2 − (
√
A1B1 −K2)′

=
(
√
A1B1 −K2)′(K −K2)−

√
A1B1 −K2(1 + (

√
A1B1 −K2)′(

√
A1B1 −K2))

K2 +
(√
A1B1 −K2

)2
=

(
√
A1B1 −K2)′(K −K2)−

√
A1B1 −K2(1−K)

K2 +
(√
A1B1 −K2

)2 ,

(G.6)
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where (
√
A1B1 −K2)′ denotes the derivative with respect to K. As K <

√
A1B1 < 1 and (

√
A1B1 −K2)′ <

0, we have r′(K) < 0 for K ∈ (0,
√
A1B1). And as r(

√
A1B1) = 0, this implies that for any K ∈ (0,

√
A1B1),

r(K) ≥ 0 and in particular x5 > 1. Thus x4 > 1, and η exists on [0, 1]. This ends the proof of Proposition
3.5 in the case K <

√
A1B1. If K >

√
A1B1, then

h(x) =

√
K2 −A1B1A1 sinh(

√
K2 −A1B1x)

(K2 −A1B1) cosh(
√
K2 −A1B1x)−K

√
K2 −A1B1 sinh(

√
K2 −A1B1x)

, (G.7)

and

x5 =
atanh

(√
K2−A1B1

K

)
√
K2 −A1B1

. (G.8)

We define φ : X → atanh
(
X
K

)
−X, one has

φ′(X) =
K

K2 −X2
− 1 =

X2 − (K2 −K)

K2 −X2
. (G.9)

This implies that if K < 1, φ is increasing for X ∈ [0,K) and if K ≥ 1, φ is increasing for X ∈ [
√
K2 −K,K).

As φ(0) = 0, we deduce that if K < 1, as
√
K2 −A1B1 > 0, x5 > 1. If K ≥ 1, then A1B1 < 1 < K, thus√

K2 −A1B1 >
√
K2 − 1 ≥

√
K2 −K. Therefore,

x5 >
atanh

(√
1− 1

K2

)
√
K2 − 1

. (G.10)

Now, let r2 : K → atanh
(√

1− 1
K2

)
−
√
K2 − 1. As previously for r we have

r′2(K) =
−
√
K2 − 1(K2 −K)− K√

K2−1
(K2 −K)

K2 − (
√
K2 − 1)2

≥ 0, for K > 1. (G.11)

And r2(1) = 0, thus for any K ≥ 1, r2(K) ≥ 0 and from (G.10) x5 > 1. Finally if K2 = A1B1, then the
expression (G.7) does not hold anymore but A1B1 > 0 and (G.3) becomes

h′ = (
√
A1 +

√
B1h)2,

h(0) = 0
(G.12)

thus

(
√
A1 +

√
B1h(x)) =

√
A1

1−
√
A1B1x

. (G.13)

and x5 =
√
A1B1

−1
> 1. This ends the proof of Proposition 3.5.
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