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ABSTRACT: We present a version of the coarse-grained Cooke
lipid model, modified to simulate asymmetric lipid membranes. It is
inspired by a method employed by Wang et al. [Commun. Comput.
Phys. 2013, 13, 1093−1106] for artificially penalizing lipid flip-flop
but copes more robustly with differential stress, at the cost of one
additional bead per lipid and the concomitant increase in
computational overhead. Bilayer asymmetry ultimately breaks
down beyond a system size dependent critical differential stress,
which can be predicted from a simple analytical model. We
remeasure many important material parameters for the new model
and find it to be consistent with typical fluid lipid membranes.
Maintaining a stable stress asymmetry has many applications, and
we give two examples: (i) connecting monolayer stress to lipid
number asymmetry in order to directly measure the monolayer area modulus and (ii) finding its strain-dependent higher-order
correction by monitoring the equilibrium bilayer area.

1. INTRODUCTION

1.1. Motivation. In many situations of biological interest,
the lipid bilayers that form the structural basis of biomembranes
feature an asymmetric distribution of lipids across their
leaflets.1−4 For instance, much of the phosphatidylcholine and
most of the sphingomyelin content of the plasma membrane of
nucleated cells can be found in the outer leaflet, while the
majority of phosphatidylethanolamine and especially phospha-
tidylserine resides in the inner one.3 This situation is remarkable,
because such an asymmetric distribution is not in thermal
equilibrium:5 upon being prepared in some asymmetric state, a
lipid bilayer will generally decay toward a symmetric one, in
which the lipid species are mixed across both leaflets, because
this maximizes entropy and equilibrates the lipids’ chemical
potential between leaflets. The dynamical process for achieving
this compositional relaxation happens via many individual
events, whimsically termed lipid “flip-flop”: the transbilayer
motion by which individual lipids move through the center of
the bilayer to transition to the opposite leaflet. As this process
perturbs local lipid order and temporarily forces the
transitioning lipid’s hydrophilic headgroup deep into the
membrane’s hydrophobic core, lipid flip-flop is associated with
a sizable free energy barrier that strongly depends on lipid type.6

Indeed, the time scale over which this process takes place tends
to be fairly long compared to many other membrane-related
processes (such as remodeling, fission, or fusion). The precise
rate constants again vary by lipid species and context but are
often on the order of hours in biologically relevant systems.7

Of course, cells live longer than hours. Maintaining their
asymmetric membrane composition therefore requires active
processes that work against the thermal driving forces toward a
symmetric equilibrium. Conversely, cells may also require a local
relaxation of lipid asymmetry on time scales much shorter than
what thermodynamics has to offer, for instance because
phospholipid synthesis mostly occurs in the cytoplasmic leaflet
of the endoplasmic reticulum,8 which hence requires a
translocation of almost half of all lipids toward the other leaflet.
Indeed, cells have evolved a dedicated machinery for exercising
control over the trans-leaflet lipid distribution: ATP-dependent
(i.e., energy consuming) flippases and floppases, which are
transmembrane proteins that transport lipids (even against a
gradient of chemical potential), and passive lipid scramblases,
which are transmembrane proteins that catalyze lipid trans-
location but do not bias its directionality.5,8

This quick overview shall suffice to argue that cells make a
significant effort to create and maintain their membranes in a
precisely calibrated asymmetric state. While clearly linked to a
variety of biochemical needs, this also affects more basic
questions, such as the phase behavior or elasticity of such
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asymmetric bilayers. However, probing these issues by perform-
ing experiments on actual biomembranes in cells, or patches
excised out of cells, proves to be a coin with two sides: while
clearly being as realistic as it gets, the intricacy of the real
situation (complex lipid mixtures, embedded and adsorbed
proteins, connections to the cytoskeleton, etc.) makes it almost
impossible to analyze and explain the data using quantitative
predictive models, thus rendering measurements less clear-cut
than one would otherwise hope. Thankfully, recent break-
throughs9−16 in the preparation of asymmetric model
membranes with controllable leaflet composition have opened
up a middle road: systems that reflect some of the key aspects
also present in biology, while sidestepping numerous confound-
ing factors that haunt the analysis of real biomembranes. The
availability of such model systems is a major reason for the
renewed interest in the question of asymmetry.
Experiments provide the only direct access to nature, but they

are also constrained by physical or technical circumstances, such
as diffraction limits, control of state- and boundary conditions,
or purity of sample preparation. As a partial way around such
nuisances, molecular dynamics simulations provide a comple-
mentary method of insight into many questions of interest.
Provided one accepts the underlying model (not at all a trivial
matter, but let us sidestep this discussion here), simulations
afford a look at a system’s precise state that is unencumbered by
many experimental restrictions. Their biggest impediment is the
accessible length- and time scales, which may frequently be too
small or too short (or both). This has been one of the major
driving forces for the development of coarse-grained mod-
els17−22 that strive to capture the essence of a given physical
situation simpler and more efficiently, which in turn makes the
study of larger systems over longer time scales feasible.
The challenge of balancing accessible system size against

required molecular resolution can be nicely illustrated by the
case of asymmetric membranes. On the one hand, a model needs
to feature enough resolution for the notion of different
membrane components to be meaningful; on the other hand,
many aspects of asymmetry (say, large scale shape deformations
driven by an asymmetric membrane’s spontaneous curvature)
do not depend on fine chemical detail but only on fairly coarse
features: density differences, overall lipid shape, order
parameter, etc. Hence, asymmetric membranes are a good
example where much insight could be gained by relatively low-
resolution modeling. However, as one progresses along the axis
of ever simpler and more efficient lipid models, an entirely new
problem arises that is quite unrelated to the usual question of
systematic coarse graining (i.e., how well can we represent the
equilibrium phase space distribution of an atomistic system with
a smaller number of degrees of freedom21). The problem is that
coarse grained lipid models tend to have much higher flip-flop
rates compared to real systems. What this statement precisely
means is actually not entirely trivial in the context of a coarse-
grained model, since it requires a discussion of how coarse-
grained units map to SI units. We will discuss the essence of this
problem in Section 2.5 below.
If we are only interested in equilibrium properties, a strongly

increased flip-flop rate need not be a problem; it might at times
even be advantageous in order to achieve equilibrium (e.g., when
creating vesicles and not having to worry exactly howmanymore
lipids one needs to place in the outer leaflet relative to the inner
one, as the correct difference will adjust automatically by flip-
flop). However, if we are interested in asymmetric bilayers, and
hence wish to study a metastable but fairly long-lived state, it is a

distinct problem if its lifetime is significantly cut shortpossibly
bymany orders of magnitude, and thus conceivably so short that
it cannot be investigated at all.
The problem just described tends to increase in severity as the

membrane model decreases in resolution. This is awkward if one
is interested in the large-scale implications of asymmetry: the
more large-scale the question, the more coarse-grained the
model one may wish to use, but the subsequent inability of such
models to maintain lipid asymmetry then defeats the original
point of the study. Hence, one must either find a way to proceed
with a more refined model (i.e., make do with smaller systems or
figure out how to run big ones more efficiently) or find a way to
suppress flip-flop in highly coarse-grained models. In this paper,
we will look at the second strategy. Specifically, we focus on the
highly coarse-grained implicit solvent model due to Cooke et
al.,23,24 in which a lipid is represented by three effective beads:
one acting as the headgroup and two beads comprising the tail
region. This model has been used fruitfully to investigate a wide
range of bilayer elastic phenomena and membrane interactions
with proteins and nanoparticles in a generic setting, and hence it
would be desirable to have a “version” of it that is much better at
maintaining an imposed lipid asymmetry, maybe even in cases
where a differential stress creates an active driving force for flip-
flop.

1.2. How to Suppress Lipid Flip-Flop. Lipid flip-flop is a
typical example of an event that requires crossing a free energy
barrier.6 Since for such a process the transition rate depends
exponentially on the barrier height,25,26 the obvious way to
strongly increase the lifetime of asymmetric states is to increase
this free energy barrierfor instance by including additional
interaction potentials that energetically penalize configurations
that occur at the transition state but do not contribute
significantly to equilibrium states. This is the “kinetic solution”
illustrated in the upper right panel of Figure 1. One could, for
example, make the interaction between a coarse-grained
hydrophilic head-bead and the hydrophobic tail-beads of the
bilayer interior even more unfavorable.
This approach to reducing the flip-flop rate, while

conceptually straightforward, proves rather difficult in practice
for highly coarse-grained models like the Cooke model. With
only three beads per lipid to work with, it is very difficult to

Figure 1. Schematic illustration for the two different ways to stabilize
bilayer asymmetry. The curves show a lipid’s free energy F as a function
of its center of mass coordinate z across the bilayer, with the two
minima corresponding to the two leaflets. If the free energy barrier
separating them is too low, one can either attempt a kinetic fix that
artificially increases it or an equilibrium fix that artificially increases the
free energy of a lipid in the “wrong” leaflet, thus explicitly breaking the
symmetry of the situation. For highly coarse-grained systems, the latter
approach is more practical.
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introduce a force to keep lipids out of the center of the bilayer
without detrimentally impacting the equilibrium properties of
the original model that made it useful. Stated differently: in such
a highly coarse-grained model, transition states are difficult to
separate from equilibrium states due to the strongly reduced
dimensionality of phase space. Any changes in interaction
potentials designed to affect the region in phase space that
contains transition states will invariably “spill over” into regions
of phase space that describe equilibrium states.
Bearing this in mind, we instead follow a strategy that works

by tweaking equilibrium states, as indicated in the lower right
panel of Figure 1. The key idea, originally proposed and
successfully implemented by Wang, Hu, and Zhang (or “WHZ”
in the following), is to label lipids by which leaflet they originally
belong to and introduce a penalty for opposite “type” lipids
being adjacent in the same leaflet.27 Observe that this would
create a distinction even between chemically identical lipids,
since the purpose of the label is to preserve the memory of an
initial condition. The goal is to ensure that same-type-lipids
residing in the same leaflet interact in a manner identical to the
original model, while a lipid flipping into the “wrong” leaflet
(meaning, not the one it originally started in) encounters
unfavorable interactions with its “wrong” neighbors that drive it
back into the “right” leaflet.
The original WHZ-fix for the Cooke model consisted of

turning off the attraction between middle beads for lipids
belonging to different leaflets. This indeed works; but we will
show that once we introduce even a modest differential stress
between the two leafletsa situation that might easily arise in
asymmetric membranes28the equilibrium stress asymmetry
falls behind the imposed one, and beyond a critical point one
even finds domains of the “wrong” lipids residing in their
nonhost leaflet, dramatically reducing the imposed asymmetry.
We discuss ways for how to quantify and predict this breakdown
and propose as a simple solution the introduction of a second
“middle” bead, which pushes the breakdown to much higher
stress asymmetries. We then measure several key material
properties of the modified 4-bead flip-fixed Cooke model and
employ it to investigate some examples of asymmetry dependent
elastic physics.

2. METHODS

2.1. The Standard Cooke Model. The Cooke model is a
highly versatile implicit solvent generic lipid model for
simulating bilayer membranes.23,24,29 Careful measurements of
its mechanical properties exist, including the bending
rigidity,24,30,31 Gaussian curvature modulus,32 pivotal plane
position,33 tilt modulus,34 and curvature softening;35 and it has
been used to shed light onto a variety of biophysical and
biomedical situations, such as curvature36 and composition37

mediated interactions, antimicrobial peptide insertion,38 lipid
curvature sorting,39 dynamin-driven membrane fission,40 nano-
particle coating,41 receptor-mediated endocytosis,42 and soft
nanoparticle wrapping.43

For ease of reference, let us briefly recount the basics of the
model, focusing on the aspects that will be important in
understanding the modifications to be made later. A more
detailed description of the Cooke model and the rationale
behind its design can be found in the original references.23,24

Individual lipids are generically represented by a string of
three coarse-grained beads: one representing the hydrophilic
headgroup and two comprising the tail region. The beads are

held together by finite extensible nonlinear elastic (FENE)
bonds with interaction potential given by
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where the maximum bond range r∞ = 1.5σ, with σ being the unit
of length in our coarse-grained system, and kbond = 30ε/σ

2, with ε
being the unit of energy. To keep lipids relatively straight, a
harmonic spring with rest length 4σ and spring constant kbend =
10ε/σ2 is used between the head bead and terminal tail bead
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The head beads interact through a purely repulsive Weeks-
Chandler-Anderson (WCA) potential, given by
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with rc = 21/6b. The original model uses bhead,head = bhead,tail =
0.95σ, and btail,tail = σ (see Figure 2).

In the absence of explicit solvent molecules, the hydrophobic
effect is mimicked by an extended-range cohesive interaction
between the tail beads of the lipid molecules. Especially the
tunability of the range is crucial, since a mere Lennard-Jones
attraction proved to be too short-ranged to stabilize a fluid
phase.24 As an alternative functional form, Cooke et al.23 chose a
half-period of a cosine, which also allows the potential to go
smoothly to zero at a finite range:
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The sum Vrep(r) + Vcos(r) yields a smooth (once differentiable)
attractive potential similar to the standard LJ interaction but
with a range that can be tuned via wc.

Figure 2.Head-bead interaction potential Vrep(r) (dashed) and tail-tail
interactionVrep(r) +Vcos(r) (solid), plotted for b = 1.0σ,wc = 1.6σ. Inset
image: in the WHZ-modified Cooke model, the potential between
middle beads that initially belong to opposite leaflets is changed from
Vrep + Vcos to Vrep.
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2.2. WHZ Modification. As explained above, the WHZ
modification to the Cooke model consists of artificially
introducing two different classes of lipids in the two leaflets
and eliminating the Vcos interaction between the middle beads of
opposite-leaflet classes.27 WHZ needed this modification,
because they wanted to measure the spontaneous curvature of
a bilayer consisting of different lipids in the two leaflets. To
create different regions along the membrane with different
spontaneous bilayer curvatures, this also required them to add
additional interactions that drove phase separation, which also
helped to keep not just the phases but also the “sidedness” intact.
Let us begin by testing the effectiveness of the WHZ

modification but under circumstances that add an additional
energetic incentive for lipids to flip (beyond the usual entropic
one). Specifically, we create a membrane consisting of a single
lipid type, divided into two leaflet classes, but we impose slightly
different lipid area densities by choosing different numbers N+
andN− of lipids for the two leaflet. For the sake of being specific,
let us assume N+ > N−, which means that the ⊕-leaflet is
“overfilled” and the ⊖-leaflet is “underfilled”. If the whole
membrane is under zero net mechanical tension, this implies
that the ⊕-leaflet is under compression, while the ⊖-leaflet is
under tension; and this creates an incentive for lipids in the
⊕-leaflet to relax this tension by flipping into the ⊖-leaflet.
We performed a set of simulations of WHZ flip-fixed Cooke

lipidmembranes (at the common state point kBT = 1.1ε andwc =
1.6σ), always choosingN+ +N− = 800, but with increasing values
for the number difference. We find it convenient to characterize
the latter with the asymmetry parameter

n
N N
N N

δ ≔
−
+

+ −

+ − (5)

Figure 3 shows the outcome: the red triangles mark the
average observed asymmetry ⟨δn⟩ as a function of the imposed
one, δn0. Initially they are identical, but already at δn0 = 3% the
distribution of observed asymmetries has an average that
deviates more than one standard deviation from the imposed
one. Beyond 5% imposed asymmetry the average observed
asymmetry decreases with increasing imposed asymmetry,
showing that it is impossible to realize an actual asymmetry of
more than about 3%nomatter howmuch one initially overfills
the ⊕-leaflet.
This result might look puzzling, and one might even wonder

whether the system is in thermal equilibrium. Once asymmetry
breaks down, say beyond 5%, could it be that we simply have to
wait long enough until enough lipids have flipped out of the
overcrowded leaflet and the asymmetry has decayed to zero?
The answer is no; the observed asymmetries are indeed
equilibrium measurements. To understand this, it is useful to
explore in a simple theoretical model what we would expect in
such a situation.
If the bilayer were symmetric, each of its two leaflets would

host N N N( )0
1
2

= ++ − lipids and have an area A0 = alN0, where

al is the equilibrium area per lipid. (We will ignore higher order
corrections due to shape undulations.) Due to the asymmetry
δn, the two leaflets individually prefer the unequal areas A0,± =
A0(1 ± δn), but they have to compromise to the same area A,
which costs the elastic energy
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whereKA,m is the area expansionmodulus of a single leaflet. If the
net tension Σ = ∂Estretch/∂A vanishes, the membrane settles at an
area equal to the harmonic mean of A0,+ and A0,− and has elastic
energy KA,mA0δn

2.
A breakdown of imposed asymmetry means that some

number ΔN of lipids move from the overcrowded upper leaflet
into the underfilled lower one. This will relax the elastic energy,
but in our model, ⊕-side lipids incur an energetic penalty for
being a neighbor to ⊖-side lipids. Ignoring entropy of mixing
(which is justified at sufficiently high contact penalty), the ΔN
lipids then form a single domain of circumference
C a N4 lπ= Δ (assuming it is circular), which has an associated
line energy

E C A n n4 ( )line 0 0γ γ π δ δ= = − (7)

where γ is the line tension that a domain of⊕-lipids residing in
the ⊖-leaflet experiences with its ⊖-neighbors, and δn0 is the
initially imposed asymmetry before breakdown. It is important
to bear in mind that this line tension γ is an artificial one: it only
arises once asymmetry has broken down and a “wrong” domain
has formed in the opposing leaflet. It is not to be confused with
physical line tensions arising in simulation due to contact
between chemically distinct lipid species. As it stands thus far,
the two “different” lipid types are merely artificial labels used to
maintain asymmetry; they represent chemically identical lipids
in the two leaflets.

Figure 3.Observed lipid asymmetry ⟨δn⟩ as a function of imposed one,
δn0. Red triangles: simulation using the WHZ-modified Cooke model
(at kBT = 1.1ε andwc = 1.6σ); the range on each data point indicates the
standard deviation of the observed asymmetry, not the error of its mean.
Magenta curve: fit of eq 11 in the regime of breakdown to the WHZ
data; the shaded region indicates one standard deviation in the fitting
parameter. Green curve: again eq 11 but plotted instead of using
measured values of γ and KA,m from separate simulations. Black circles:
average asymmetry measured in simulation using our new 4-bead flip-
fixed Cooke model (at kBT = 1.4ε and wc = 1.6σ). Black curve and blue
curve: same as magenta and green, respectively, but for the 4-bead flip-
fixed system. All simulations were done with systems containing 800
lipids. Inset images: two simulation snapshots of 3-bead WHZ-fixed
membranes at δn0 = 0% (left) and δn0 = 10% (right), illustrating the
formation of a domain of ⊕-leaflet lipids (dark red) in the ⊖-leaflet
(light blue) upon crossing the critical asymmetry. Head beads are not
rendered to allow a clear view of the domain. The snapshots were
visualized with VMD.44
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The total energy E = Estretch + Eline is

E n n
K A
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0
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δ δ
δ πλ δ δ= + −
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where we introduced the important characteristic length

KA ,m
λ γ≔

(9)

To find the equilibrium domain sizeΔNor equivalently, the
optimal asymmetry δn that remains after transitioning ΔN
lipidswe must minimize E with respect to δn. It is easy to see
that δn = 0 is always at least locally stable, even though ∂E/∂ δn
does not vanish there (it is a boundary minimum). Requiring the
derivative to vanish then leads to a cubic equation, the solution
of which can be written succinctly using trigonometric functions.
Defining the two characteristic asymmetries
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of which δn+ is a local maximum and δn− is a local minimum.
The latter becomes a global minimum beyond the breakdown
asymmetry δnb, at which point the observed asymmetry
discontinuously drops by exactly a factor of 3. The domain
size at breakdown is then
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Curiously, both the critical and the breakdown asymmetry
depend on the overall membrane area A0, in such a way that it is
more difficult to maintain asymmetry for larger membranes,
even though the dependence is relatively weak. Observe that γ
and KA,m only enter in the combined ratio λ = γ/KA,m, which is
the single control parameter of this theory.
The magenta curve in Figure 3 shows a fit of δn−(δn0) from eq

11 to the red triangle in the breakdown regime, using λ as the
single fitting parameter. The equilibrium membrane area for the
symmetric system of 800 lipids is A0≈ 466σ2. We find λ = (0.1±
0.01)σ and δnb ≈ 6%. The decline of observed asymmetry with
increasing imposed asymmetry (for large asymmetry propor-
tional to n1/ 0δ ) is captured very well. However, the observed
transition is smeared out compared to the sharp transition, likely
because the critical domain is fairly small (ΔNb ≈ 17 in
simulation, which agrees with eq 12), and we hence must expect
corrections to the line energy and fairly sizable fluctuations.
Instead of fitting λ, we can independently measure line tension

γ and area modulus KA,m in fairly straightforward simulations.
For the WHZ-modified 3-bead Cooke model, we find γ = (2.3±
0.1)ε/σ and KA,m = (16 ± 1)ε/σ2, which leads to λ = (0.14 ±
0.01)σ. From this we can predict the breakdown behavior,
shown as the green curve in Figure 3. The resulting critical

asymmetry is about 30% bigger than the one inferred from the
fit, which could again indicate difficulties with the small domain
size, but overall this gives a remarkably close prediction for when
we must expect an imposed asymmetry to catastrophically fail.
This knowledge is useful in order to determine ahead of time
whether a desired asymmetry δn will be sustainable in a
membrane of size A0. Eq 10a implies the following upper bound
for membrane size:

A
n(2 /3)0

2

0
3

πλ
δ

<
(13)

As a side note, the lipid domain breakthrough we have
investigated here is closely related to the physics of pore-opening
in a stressed membrane under constant strain. Indeed, the theory
we have presented here is essentially identical to the one that has
previously been developed for the pore-opening scenario.24,45,46

2.3. Improving the Flip Suppression. The data in Figure
3 show that the WHZ modification of the standard Cooke
model, while in principle working, is not strong enough to
maintain even a moderate differential stressone important
way in which a bilayer could be asymmetric, and hence a reason
why one might wish to suppress lipid flip-flop in the first place.
However, our theoretical model from the previous section
indicates how to remedy this shortfall: since both the critical and
the breakdown asymmetry are proportional to λ2/3 = (γ/
KA,m)

2/3, we can try to either increase the line tension γ or
decrease the area expansion modulus KA,m. Of those two, the
expansion modulus is a physical material parameter we might
wish to independently tune, while the line tension is only related
to the artificial distinction between the two leaflet classes.
Attempts to increase γ will not (to lowest order) affect other
desirable membrane properties, and so this is the path we follow.

2.3.1. Additional Repulsive Interactions Do Not Help. The
line tension γ increases if we make the interaction between top
and bottom leaflet class lipids even more unfavorable.
Considering that the midbead attraction has already been
completely turned off, and we cannot turn off the interaction
between tail-end beads (because then the two leaflets unbind),
one might try to further amplify the incompatibility by adding an
explicit repulsion. This, however, does not work, and it is
instructive to see why not.
The key point is that attractions and repulsions affect lipid

configurations very differently. Increasing the attraction
between two neighboring Lennard-Jones particles lowers the
energy as much as one likes, but increasing their repulsion need
not increase the energy. Instead, it may merely push the particles
further apart, and under conditions of zero applied pressure this
costs no energy (to lowest order). In the membrane case, the
situation is slightly more complicated, because even if the entire
bilayer is under zero tension, a flip-event of a lipid into the wrong
leaflet still creates a differential strain between the two leaflets
that costs energy. However, the fact that a local repulsion
becomes “collectivized” as a global strain implies that the net
energy change shows a strong finite size dependence. Using the
elastic model of two coupled leaflets as given in eq 6, with A0,+ =
(N0− 1)al andA0,− =N0al + al′, where al′ > al is the area a⊕-lipid
requires when it flips into the⊖-leaflet, we find that the overall
energy change of such a flip is proportional to 1/A0; and while
the WHZ fix itself also has a finite size effect, as seen in eq 10a
and eq 12, the resulting exponent is much weaker (−1/3 as
opposed to −1). Even worse, this repulsion-induced energy
change of a⊕-lipid flipping into the⊖-leaflet is entirely undone
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if additionally a ⊖-lipid flips into the ⊕-leaflet. Instead of
penalizing two incorrectly placed lipids, this pair exchange
cancels the cost due to repulsive interactions. Working with
repulsions is not the way to go.
2.3.2. Adding One More Bead to the Cooke Model. We

instead provide ourselves some extra material to work with by
augmenting our coarse-grained lipids with an additional tail
bead. With four beads per lipid, we now have two middle beads
whose cross-type interactions can be modified, allowing us to
more than double the energy penalty for neighboring opposite-
type lipids by removing their cohesive interaction energy as in
the WHZ modification. Figure 4 diagrams the interactions
defined between the different bead types of our 4-bead lipids.

The original Cookemodel used a harmonic potential between
head and tail beads in place of a bond angle potential in order to
maintain an approximately linear configuration of the beads.
When extending the model to include a fourth lipid bead, this
potential is still present between the first (head) bead and the
third bead, as well as duplicated between the second bead and
the fourth (final tail) bead.
Adding an additional bead to each lipid increases the

attractive cohesion between neighboring lipids of the same
type. As such, if one simulates this 4-bead model at the same
temperature kBT = 1.1ε that has become standard for fluid
Cooke membrane simulations with wc = 1.6σ, one discovers that
the membrane is thoroughly in the gel phase. Addition of a
fourth bead hence requires a move to a new state point
representative of the fluid phase.We find that kBT = 1.4ε (atwc =
1.6σ) is at a high enough temperature to bring us above the gel
transition, while simultaneously permitting large values of the
asymmetry parameter δn.
The black circles in Figure 3 show the measured values of

asymmetry for this state point plotted against the imposed
asymmetry. The membrane maintains nearly perfect asymmetry

at the imposed value of δn0 all the way up to 11%, while beyond
that point the flip-suppression breaks down, as seen for the δn0 =
12% and 13% state points. Asymmetries this high are already
well beyond what is believed to be of biological relevance.
However, it is reassuring that the model can be pushed beyond
what is necessary, knowing that a simulation is not on the verge
of model failure and asymmetry breakdown. To this end, we also
measured the line tension γ = (6.7 ± 0.2)ε/σ and area modulus
KA,m = (19.9 ± 0.7)ε/σ2 in order to use eq 10a to predict an
approximate breakdown threshold for our new setup. Based on
these measurements, we find δnc ≈ 11% and δnb ≈ 14% for the
800 lipids system shown in Figure 3. More generally, we can use
eq 13 to predict that the area for which an imposed symmetry
δn0 remains stable is limited toA/σ2≲ δn0

−3. Notice, though, that
the breakdown threshold predicted in this way appears to be
slightly larger than the true value observed for both systems
investigated here, as made clear in Figure 3.

2.4.MDSimulations.Molecular dynamics simulations were
performed using the ESPResSo package.47 Constant temper-
ature simulations were carried out using a Langevin thermostat
with a friction constant ofΓ = 1.0 τ−1 and a time step δt = 0.005τ.
Constant tension simulations were performed using a modified
Andersen barostat48 allowing isotropic box size changes only in
the x- and y-directions. For constant-tension simulations in the
vicinity of the gel transition temperature, a rectangular box with
length equal to twice its width was used, with box size changes
allowed only along the long direction of the box.

2.5. Mapping of Coarse-Grained Scales to Real Units.
When simulating a coarse-grained representation of a physical
system, the exact meaning of length- and especially time-scales
requires a mapping onto the physical unit scale by way of
comparing suitable observables of the coarse-grained represen-
tation to the real system. This is usually not a problem for
“length” or “mass”, since the size or mass of a coarse-grained unit
can be directly matched to the real-world structure it is supposed
to represent. Not so for “time”. Formally, we have a coarse-
grained time unit τ in a simulation that can be translated into SI
units via the equation L M E/τ = , where {L, M, E} are the
length-, mass-, and energy-units in a simulation (all of which are
straightforward to map); and while this unit is appropriate for
“instantaneous” observables that still require the notion of time
(such as the kinetic energy), it does not correctly describe the
long-time dynamics of the coarse-grained system.
The deeper issue with dynamical observables is that statistical

partition functions, and hence free energies, are agnostic about
time, and even if the coarse-grained system has been constructed
so as to reproduce thermal equilibrium, this does not guarantee
that it inherits any meaningful notion of time in the process.
Indeed, it cannot, because specifying an energy functional does
not also specify the equations of motion one wishes to solve.
Hence, time-mapping tends to be done explicitly afterward, by
observing a particular dynamical process of interest, quantifying
it via the “naıv̈e” time unit τ, and then matching this to the SI
scale by comparing it to the actual situation.
Let us make a concrete example. The standard Cooke model

(at kBT = 1.1ε and wc = 1.6σ; see Section 2.1 for the definition of
those parameters) has an area per lipid of al = 1.2σ2.24 Equating
this to a typical experimental value of al = 0.65 nm2 gives the
length mapping σ = 0.74 nm. The model also has a diffusion
constant of D ≈ 0.02σ2/τ (under Langevin dynamics with a
friction constant of Γ = τ−1).24 If we naıv̈ely take τ from the bare
mapping M/τ σ ε= (using 3M = 800 Da, the mass of a typical

Figure 4. Interaction matrix between all beads of the two classes of a 4-
bead flip-fixed Cooke model. Beads 1, 2, and 3 belong to the ⊕-lipid
class (i.e., upper leaflet), and beads 4, 5, and 6 belong to the ⊖-lipid
class (i.e., lower leaflet). Bead types 1 and 4 are lipid heads. In the table,
the upper row indicates the bead-bead interaction size parameter b
(from eq 3) in units of σ, and the lower row indicates whether an
attractive interaction is turned on. Turning off the attractions between
bead types 2 and 5 constitutes the WHZ flip-fix.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00862
J. Chem. Theory Comput. 2020, 16, 7195−7206

7200

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00862?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00862?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00862?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00862?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00862?ref=pdf


lipid), we find τ ≈ 8 ps and hence D ≈ 1400 μm2/swhich is
much larger than what is found experimentally for ordinary fluid-
phase lipids: D ∼ 5 μm2/s.49 This is what is meant by “CG
dynamics is sped up”. A better approach is to map τ by insisting
that a CG dynamic variable, such as the diffusion constant,
agrees with its experimental counterpart. In the present case, this
yields the much longer time unit τ ≃2 ns. The problem with this
strategy is that the dynamical process to be used for mapping is
not unique. For instance, the Cooke model also exhibits lipid
flip-flop, with a rate determined to be rf ≈ 1.32 × 10−4 τ−1.24

Together with the diffusion-based time mapping, this implies a
rate in SI units of rf ≃ 6.6 × 104 s−1 or a characteristic time for
flip-flop of 15 μs. Since the actual time is at least several hours,
the flip-flop rate is too large by at least 9 orders of magnitude.
This is what is meant by “different dynamical processes are sped
up differently”.
As a side note, there is a way to claim flip-flop is sped up

without having to actually map time to SI units, and that is to
divide out the two time scales of flip-flop and diffusion. One way
to do this is to answer the question, “how far does a lipid on
average diffuse before it flips?”. The answer is x D r4 /f fΔ = , an
expression in which the time units in D and rf cancel. Using the
experimental values D = 5 μm2/s and taking rf

−1= 1d, we getΔxf
= 1.3 mm. With the simulation parameters D = 0.02σ2/τ and rf

−1

= 104τ, we instead findΔxf≈ 28σ≈ 21 nm.We hence see that in
experimental systems the flip-diffusion length is about 60000
times larger than for the 3-bead Cooke model.

3. RESULTS
3.1. Measured Observables. As this model is to be used to

carry out simulations similar to those performed by the original
Cooke model, with the added ability to support differentially
stressed membranes, we collect in Table 1 a brief comparison of

common observables of interest for the original Cooke model
and the 4-bead flip-fixed modification at the chosen state for
fluid simulation. Brief explanations of the methods used to
calculate these values are given in the Supporting Information.
This table does not contain every single observable ever
measured for the Cooke model, and so we wish to emphasize
that if an observable is not listed, this is not meant to imply that
its value is identical between the two models. Keep in mind that
the observables in Table 1 all come from simulations of
symmetric membranes, such that a meaningful comparison
between the two models can be made. Upon the introduction of
asymmetry in the new model, some of these values will change
and indeed be different between the two leaflets of the bilayer.
Given that the most obvious structural change of our new

model is its increased thickness, it is instructive to see howmuch
of the changed elastic behavior can be attributed to this. Simple
continuum thin-plate theory states that the area modulus KA,m
can be expressed in terms of the Young’s modulus E, the
monolayer thickness d/2, and the Poisson ratio ν as KA,m = Ed/
4(1− ν).51 Assuming that E and ν are approximately the same in
the two models, the ratio between the two area moduli is simply
determined by the ratio of the two leaflet thicknesses. More
precisely, we find a factor of (d4/d3) × (kBT3/kBT4) = (6.328/
4.372) × (1.1/1.4) ≈ 1.14, yielding a prediction of KA,m ≈ 13.8
kBT/σ

2 for the area modulus of our new model. The factor of
1.1/1.4 enters from the conversion of kBT units due to the
models being simulated at different temperatures. This is fairly
close to the true measured value shown in the table. A similar
line of reasoning, this time exploiting the continuum relation κ =
Ed3/(48(1 − ν2)), shows that (at fixed E and ν) the bilayer
bending modulus is proportional to the cube of the bilayer
thickness, leading to the prediction that our new model’s
bending modulus should be approximately 2.4 times larger than
that of the original Cooke model. Taking a rough value of 13kBT
for the original Cooke modulus, this gives κ≈ 31kBT for the new
oneremarkably close to the actual measurement. While these
simple arguments ignore many details, they do suggest that the
changes in KA,m and κ are mostly associated with the change in
thickness that resulted from adding one more bead.
Let us take the time and briefly map some of the 4-bead

coarse-grained observables in that table into SI units. We begin
with length, which wemap to the area per lipid. Its value depends
on lipid type, but a reasonable average value is 0.65 nm2. Setting
1.16σ2 = al = 0.65 nm2, we get σ ≃ 0.75 nm. This would imply a
bilayer thickness of d = 6.328·(0.75 nm/σ) = 4.75 nm. Since this
thickness is measured from head bead to head bead, it is
appropriate to compare it to experimental phosphate-phosphate
bilayer thicknesses. Our membrane then appears to be thicker
than most common lipid bilayers, although it is thinner than
DNPC bilayers.52 Using the thermal energy as the point of
reference for energy mapping, we get ε ≃ kBT/1.4. If we, for
instance, pick the temperature in kBT to correspond to body
temperature, Tb = 310 K, this implies that the gel transition
happens at Tgel = (1.32/1.4)Tb = 0.943Tb = 292 K = 20 °C.
Having mapped length and energy, we can now translate the

monolayer expansion modulus: KA,m = 19.9ε/σ2 = 14.2 kBTb/σ
2

= 108 mN/m. This gives KA = 216 mN/m for the bilayer
expansion modulus, which is only about 10% smaller than the
value found for a wide range of phospholipids.53 For the effective
tilt modulus, we get κt,eff = 11.6kBTr/σ

2 = 88 mN/m, but we
cannot easily compare this to the actually measured tilt modulus
due to corrections related to its “effective” nature (see refs 54
and 55 for details); but to see that the order of magnitude is

Table 1. Comparison of Observables in the Original 3-Bead
Cooke Model and the 4-Bead Flip-Fixed Cooke Modeld

observable units original Cooke modified Cooke

kBTgel ε 0.95 ± 0.0324 1.32 ± 0.01
d σ 4.372 ± 0.002 6.328 ± 0.001
al σ2 1.206 ± 0.001 1.163 ± 0.001
KA,m kBT/σ

2 12.1 ± 0.4 14.2 ± 0.1
κa kBT 12.5 ± 130 30.9 ± 0.2
κb kBT 13.8 ± 0.450 31.5 ± 1.9
l σ 4.7 ± 0.850 10.7 ± 1.8
κt,eff kBT/σ

2 n.d. 11.9 ± 0.4
P2 1 0.73 ± 0.01 0.82 ± 0.01
γ ε/σ 2.3 ± 0.1c 6.7 ± 0.2
ηK 1 n.d. 1.96 ± 0.03
D 10−2σ2/τ 1.85 ± 0.05 1.69 ± 0.05
rf 10−4/τ 1.32 ± 0.02 N/A

aDetermined from fluctuation spectra. bDetermined from buckling.
cThis includes the WHZ modification. dMaterial properties for
original Cooke are given at kBT = 1.1ε, and properties for the 4-bead
model are given at kBT = 1.4ε; both use wc = 1.6σ. The observables
are as follows: Tgel: gel transition temperature; d: head-to-head bilayer
thickness; al: area per lipid; KA,m: area expansion modulus for a single
leaflet; κ: curvature modulus; l: curvature softening length (see eq (SI
1)); κt,eff: effective tilt modulus (see eq (SI 4)); P2: lipid order
parameter (see eq (SI 7)); γ: line energy for a domain of lipids
belonging to the wrong leaflet (see eq 7); ηK: strain dependence of
area modulus (see eq 19b); D: lipid (self) diffusion constant; rf: flip-
flop rate.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00862
J. Chem. Theory Comput. 2020, 16, 7195−7206

7201

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00862/suppl_file/ct0c00862_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00862/suppl_file/ct0c00862_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00862/suppl_file/ct0c00862_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00862/suppl_file/ct0c00862_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00862/suppl_file/ct0c00862_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00862?ref=pdf


meaningful, we note the tilt modulus of DOPC (dioleoylphos-
phatidylcholine) at 30 °C was recently determined to be κt = 95
± 7 mN/m,56 and probing a wider set of lipids indicates that the
modulus varies between about 40 mN/m and 100 mN/m.57

Finally, we can map time via lipid self-diffusion, using a
common value for the diffusion constant of 5 μm2/s.49 From
1.69 × 10−2σ2/τ = D = 5 μm2/s and our previous length scale
mapping, we get τ ≃1.9 ns. Given the difficulties of time-
mapping and the range of real diffusion constants, this should
best be taken as merely an order-of-magnitude estimate.
3.2. Applications. Having described our method for

suppressing flip-flop and demonstrating its effectiveness, we
now provide two example applications which illustrate
simulations that were inaccessible to the original Cooke model.
3.2.1. Determining KA,m from the Lateral Stress Profile. An

important physical object from which many useful observables
can be calculated is a membrane’s lateral stress profile.58

Consider a flat, laterally homogeneous membrane spanning the
xy-plane with its normal along the z-direction. The stress tensor
σij is evidently diagonal in these coordinates and due to
translational symmetry can only depend on z. The lateral stress
profile is then defined as

z z z z( )
1
2

( ) ( ) ( )xx yy zzσ σ σ σ= [ + ] −
(14)

Mechanical stability requires ⟨σzz(z)⟩ to be constant and hence
equal to the bulk pressure59 (which is zero in our solvent-free
coarse-grained model). This provides a good check for the stress
calculation.
We measure σ(z) in simulations using the Irving-Kirkwood

formalism, as presented in great detail by Hardy,60,61 with the
exception that the kinetic contribution to the stress tensor is
replaced by its equilibrium average value. In order to ensure that
z = 0 corresponds to the bilayer midplane, care must be taken
when defining the coordinate system. Simply using the bilayer
center of mass as the origin of z would result in z = 0 being
located within the tail region of the overfilled leaflet, rather than
at the interface between the two monolayers. In our analysis, the
midplane is determined by averaging the z-positions of the final
tail beads of the lipids in each leaflet separately and then taking
the midpoint between the two resulting values. The lateral stress
is evaluated at 61 evenly spaced points in the z-interval from−5σ
to 5σ, and the error on these values is calculated via blocking.62

Figure 5 shows a sequence of lateral stress profiles, determined
from simulations of a flip-fixed 4-bead Cooke model membrane
with 256 lipids in total and an increasing asymmetry δn, under
conditions of overall vanishing bilayer tensionmeaning, a
vanishing integral of σ(z). As was true for the standard Cooke
model, this stress profile again looks “flipped” compared tomore
realistic lipid models, since bilayer cohesion is driven by tail
attraction, while the head groups repel. This yields a positive
(i.e., attractive) stress in the tail regions and two negative (i.e.,
repulsive) peaks near the positions of the heads. The most
obvious asymmetry-induced changes to the stress profile occur
in that head region: the overfilled leaflet (positive z) experiences
increasingly stronger head repulsions, while these correspond-
ingly decrease in the underfilled leaflet (negative z), as illustrated
by the arrows in Figure 5.Weaker trends along the same lines are
seen in the tails. A closer look also reveals that the compressed
leaflet slightly increases in thickness, while the expanded leaflet
thins. This is expected based on volume conservation, which
holds almost perfectly for real bilayers.63

Moments of this stress profile can be related to a variety of
curvature elastic moduli and quantities of interest.54,55,64−66

Here we will merely examine the zeroth moment (i.e., the
integral of the stress profile), but restricted to individual leaflets,
in order to measure the monolayer area modulus KA,m in a way
that was not possible in the original Cooke model and which
does not require stretching the entire membrane.
From eq 6, we see that the elastic energy E± of an individual

⊕- or ⊖-leaflet is given by

E A K
A A

A
( )

1
2

( )
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2

0,
=

−
±

±
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and therefore the lateral mechanical tension is
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As mentioned before, the condition of zero overall bilayer
tension combined with the coupled bilayer energy in eq 6 tells us
that themembrane areaAwill relax to the harmonic mean ofA0,+
and A0,−. If we substitute this into eq 16 and write the area in
terms of δn, we arrive at a very compact expression for the
tension in an individual monolayer of an asymmetric membrane
under conditions of zero bilayer tension:

i
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jjjj
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zzzzn
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K n( , 0) A
0

,mδ δΣ Σ = =
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∂

= ∓±
±

Σ= (17)

By integrating the measured stress profile in simulations of
membranes under zero tension and varying asymmetry, we can
therefore extract the monolayer area modulus through a simple
linear fit, as is shown in Figure 6. The error bars for each
monolayer tension value are determined by integrating
resampled stress profiles for the corresponding asymmetry
value. We find a value of KA,m = (19.8 ± 0.2)ε/σ2.
We note in passing that this procedure directly measures the

area modulus of the monolayer, instead of inferring it from the
bilayer modulus. This is potentially interesting in light of recent
work that has cast doubt on the relation KA = 2KA,m;

67 but since
we independently find K (20.8 0.7) /A

1
2

2ε σ= ± from a bilayer

stretching experiment, our two measurements are entirely

Figure 5. Lateral stress profile as a function of transverse coordinate z in
a flat asymmetric Cooke membrane. Each curve corresponds to a
different amount of asymmetry, with the symmetric (δn = 0, purple)
and largest asymmetry (δn ≈ 8%, red) cases being shown darker than
the intermediate values. The bilayer midplane is located at z = 0. As
asymmetry increases, the lipid number decreases in the lower leaflet
(negative z values) and increases in the upper leaflet (positive z values).
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compatible with the common notion that leaflet stretching
moduli simply add. (The probability that the observed
difference happens by chance is about 17%, determined by
integrating the tails of the distribution of the difference between
our two measurements, assumed to be Gaussian.)
3.2.2. Bilayer Resting Area as a Sensitive Probe of the

Strain-Dependent Area Modulus KA,m. Consider again the
simple stretching energy for a bilayer, eq 6. Minimizing it with
respect to area yields the equilibrium (or “resting”) area Aeq of
the membrane as a function of asymmetry δn, and from this we
get the relative area change with respect to the symmetric resting
area A0:

A A

A
neq 0

0

2α δ≔
−

= −
(18)

However, Figure 7 shows that this qualitatively disagrees with
our observation for the 4-bead flip-fixed Cooke model: instead
of shrinking, the area increases with asymmetry.
To understand this disagreement, notice that the predicted

effect is actually quadratic. To linear order, the asymmetry
induced compression in the overfilled leaflet precisely cancels

the tension in the underfilled one, leaving the area unchanged.
The expansion observed in Figure 7 must therefore result from
higher order corrections that are missing in our simple theory.
Indeed, our equation assumes that both the compressed and the
tense leaflet still have the same stretching modulus KA,m, but it
seems plausible that the compressed leaflet becomes stiffer, and
the tense leaflet become softer. This correction beyond a lowest-
order Hookean behavior would shift the area balance in favor of
expansion. To account for this, let us permit the area modulus to
depend on leaflet strain, u± ≡ (A± − A0,±)/A0,±

μ

K u K K u

K u

( ) (19a)

1 (19b)

A A A

A K
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,m,0 η
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= [ − + ]

± ± ±

±

where we have defined the coefficient ηK = − KA,m,1/KA,m,0,
which quantifies the strength of the first nonlinear correction to
the leading order Hookean behavior. The sign is chosen such
that overcrowding (which corresponds to a negative strain) leads
to stiffening if ηK is positive.
If we replace KA,m in eq 6 with KA,m± from eq 19b, we find the

leading order relative area expansion
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For ηK = 0, this, of course, reduces to eq 18. Furthermore, as long
as ηK < 2/3, the bilayer area still shrinks when an asymmetry is
introduced, even though less strongly. This means that reversing
the “naıv̈e” trend requires a minimum amount of nonlinearity.
Fitting the expansion observed in Figure 7 to the prediction from
eq 20, we find ηK = 1.96 ± 0.03 for the flip-fixed 4-bead Cooke
model (at kBT = 1.4ε and wc = 1.6σ).
Observe that the fit works remarkably well, and it permits us to

determine a subtle nonlinear correction at a percent-level
accuracy, using very simple measurements. One might worry
that this really proves the correction to be quite large, which, in
turn, might cast doubt on our modeling of the monolayer
tension in eq 16, which ignored the nonlinearity.
However, eq 17 shows that the lowest order in the monolayer

tension Σ± is linear in the asymmetry, while for α it is quadratic.
Whatever nonlinear correction forΣ± exists, it needs to compete
with a potentially much larger linear term. Indeed, our refined
nonlinear theory predicts
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At the largest asymmetry we studied, δn = 8%, the subleading
correction term in eq 21 (technically: cubic in δn) is
approximately 10% of the leading linear term. Curiously, the
quadratic area change term in eq 20 is even smaller,
approximately 1%, and hence about ten times smaller than the
relative correction to the stress. However, it need not compete
with a lower order; it is the lowest order. Combining this with
the common experience that it is easy to measure lipid areas very
precisely, while membrane stress is a much more noisy
observable, we conclude that quantifying the asymmetry-
induced bilayer area change is a highly sensitive measurement
of the small nonlinear correction in a membrane’s area
expansion behavior.

4. DISCUSSION AND CONCLUSION
We have presented an extension of the classical Cooke
model23,24 for coarse-grained simulations of lipids, which

Figure 6. Monolayer surface tension Σ± as a function of bilayer
asymmetry δn. Each data point is obtained by integrating half of the
corresponding stress profile shown in Figure 5. Underfilled and
overfilled monolayers are plotted with negative and positive δn values,
respectively.

Figure 7. (filled circles) Measurements of relative area change α for the
asymmetric Cooke model at kBT = 1.4ε. (solid line) Fit to eq 20.
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combines the ease and efficiency of the original model with the
ability to maintain lipid asymmetry, even under conditions of a
substantial differential stress. Since the conceptually straightfor-
ward attempt to raise the free energy barrier for flip-flop is not
viable for highly coarse-grained models, we instead follow the
original proposal by Wang et al.:27 preassign a leaflet-identity to
every lipid and then penalize the energy of lipids venturing into
the wrong leaflet.
The WHZ fix is successful but only up to a fairly moderate

differential stress. We explained why rendering interactions in
the wrong leaflet even more unfavorable by adding extra
repulsive forces does not work and hence instead added a fourth
bead to the lipid, which allows bigger energy differences between
lipids in the right and in the wrong leaflet. As a consequence,
lipid density asymmetries of up to 10% can be reliably
maintained, which is likely large enough for any practical
applications.
The additional CG bead, of course, changes the model

strongly enough such that all parameters previously determined
for the 3-bead Cooke model change upon transitioning to the 4-
bead flip-fixed version. For this reason, it made little sense to
tune the state point (in terms of kBT/ε andwc/σ) such that some
parameters (say, area per lipid or bending rigidity) are preserved,
since not all parameters could be similarly matched. Instead, we
have remeasured the set of most frequently needed physical
observables (see Table 1), so that future users have them readily
available (or could check their code implementations against our
numbers).
The model remains easy to implement and work with, as it

relies exclusively on pair forces. This, in particular, simplifies the
calculation of stresses, since the standard virial suffices, andmore
subtle questions for how to parse out multibody interactions
(such as bending potentials or dihedrals) can be avoided.
The additional bead slightly increases the computational cost,

and there are two ways how to quantify this. In units of coarse-
grained time, we observe that it takes about 68% longer to
simulate a given number of τ. Alternatively, if we wish to roughly
map this to SI units by matching lipid self-diffusion, the slightly
smaller diffusion constant of the 4-bead model (D4b = 1.69 ×
10−2σ2/τ vs D3b = 1.85× 10−2σ2/τ) gives another factor of 1.095
during time mapping, meaning that one needs to simulate 74%
longer to simulate a given number of seconds. If maintaining
asymmetry is crucial for the problem at hand, then this moderate
increase is worth paying, and it is still much less than the
alternative of using more highly resolved lipid models (such as
MARTINI68) which, by virtue of their higher resolution,
automatically have a lower flip-flop rate.
We illustrated the possibilities opened by such a model with

two simple applications. First, we showed how to directly
determine the monolayer area expansion modulus KA,m (i.e.,
without just assuming it is half the bilayer expansion modulus
KA), which hence allowed us to independently verify that KA =
2KA,m; and second, we showed that measuring the change of
bilayer area with lipid number asymmetry δn affords a highly
sensitive means to assessing the strain dependence of the
expansion modulus, i.e., the non-Hookean corrections to area
strain elasticity.
Many other applications are conceivable. For instance,

creating different lipid types by introducing differences in
cohesion energy or -range permits the study of phase
separation,37 and in an asymmetric system, this allows one to
study the conditions under which nonideal mixing in one leaflet
imprints onto the other. This is a highly relevant question for

cellular plasma membranes, which are known to have phase
separation potential in their outer leaflet, but the consequences
of this (say, protein sorting and colocalization) are mostly
believed to play out on the inner leaflet. Changing the relative
sizes of head versus tail beads permits the introduction of bilayer
curvature (the original application of the WHZmodification27),
and this also opens a window into the subtle interplay between
curvature, differential stress, and residual tension, as recently
discussed in ref 28.Membranes can also stiffen in the presence of
differential stress,28 a phenomenon that appears to be related to,
but not identical with, the gel transition, and the ability to collect
more statistics in highly coarse-grained models (together with
the opportunity to verify the generality of such a claim in an even
simpler model) might teach us more about the way in which
elasticity and phase behavior are coupled in asymmetric
membranes. We hope that the model we have introduced here
will be a useful computational tool for answering these andmany
other questions that rely on a sufficiently slow flip-flop rate.
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