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1 | INTRODUCTION

Affordable cameras, data storage, and computational
resources have drastically simplified the process of imaging
plants in greenhouse or field settings (Chitwood & Topp,
2015; Fahlgren, Gehan, et al., 2015; Gehan & Kellogg,
2017; Granier et al., 2006; Horgan, 2001; Ke et al., 2013; Li
et al., 2014; Manacorda & Asurmendi, 2018; Merieux et al.,
2021; Omori & Iwata, 1998; Rymaszewski et al., 2018; van
der Heijden et al., 2012; Vasseur et al., 2018; V&fély et al.,
2019; York & Lobet, 2017). Although image acquisition is
relatively straightforward, methods for processing image data
lag in usability and generalizability. When a research group
develops an image-based phenotyping tool to study particular
traits within a specific organism, adoption of that tool by other

Abbreviation: CNNs, convolutional neural networks; IP, intellectual
property; PCA, principal component analysis; PLSR, partial least squares
regression; RGB, red, green, blue
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Understanding the genetic basis of plant traits requires comprehensive and quantita-
tive descriptions of the phenotypic variation that exists within populations. Cameras
and other sensors have made high-throughput phenotyping possible, but image-based
phenotyping procedures involve a step where a researcher selects the traits to be mea-
sured. This feature selection step is inherently prone to human biases. Recently, a set
of phenotyping approaches, which are referred to collectively as latent phenotyp-
ing techniques, have arisen in the literature. Latent phenotyping techniques isolate a
latent source of variance in the data, such as stress or genotype, and then quantify
the effect of this latent source of variance using latent variables without defining any
conventional traits. In this review, we discuss the differences between, and challenges
of, both traditional and latent phenotyping.

groups can be hindered by differences in image acquisition,
population type, parameter settings (e.g. thresholds), tissue
specificity, and curated metadata (Granier et al., 2006; Lobet,
2017; van der Heijden et al., 2012; Zhou et al., 2018). As a
result, publicly available image-based phenotyping tools can
prove to be ad-hoc solutions with limited utility beyond the
group that developed them (Lobet, 2017). A recent study, in
which different groups were given the same image dataset
and asked to test the same set of hypotheses, observed sizable
variation in the statistical results obtained by each group
(Botvinik-Nezer et al., 2020; Pieruschka & Schurr, 2019;
Zhou et al., 2018). In this review, we discuss the potential
benefits and shortcomings of latent phenotyping, a family
of machine learning techniques that presents opportunities
to overcome issues related to selection bias, consistency,
and broader applicability often encountered with image
or sensor-based phenotyping. Further, we discuss how
current dogmatic thought about complex traits may obscure
the ability to capture a holistic view of true variability,
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emphasizing the need for continued development of quantita-
tive and mathematical approaches which will help to decipher
genetic mechanisms underlying trait variation and to support
crop improvement efforts. The ideas presented in this review
share parallels with the allegory of Plato’s cave: Prisoners
trapped in a cave perceive shadows projected by flames
onto the cave wall as reality, despite the truth that these
shadows do not provide an accurate representation of the
outside world. In the case of plant phenotyping, researchers
view limited representations of the true plant phenotype via
conventional metrics and/or latent space representations.

2 | THE CAVE, THE FIRE, AND THE
SHADOWS IN PLANT PHENOTYPING

Quantitative plant phenotyping has historically been domi-
nated by conventional traits that are intuitive to define, mea-
sure, and interpret: yield, time to flowering, plant height,
dimensions of various organs, and many others (Atwell et al.,
2010; Buckler et al., 2009; Dong et al., 2018; Fernandes
et al.,, 2018; Liang et al., 2020; Li et al., 2014; Murray
et al., 2009; Peiffer et al., 2013, 2014; Poland & Nelson,
2011; Rice et al., 2020; Valluru et al., 2019). These conven-
tional traits capture only a limited slice of true variability
yet represent the traits of primary interest to plant breeders
because of their commercial and economic value. However,
other traits that are also key selection targets, such as qual-
ity (e.g., taste, smell, texture), root and shoot system architec-
tures (e.g., leaf and root angle, branching complexity, com-
pactness), and organ form (e.g., size and shape), are more
challenging to define with a single variable (Fan et al., 2021;
Farneti et al., 2017; Klee & Tieman, 2013; Larsen et al.,
2019; Li et al., 2020; Migicovsky et al., 2016; Migicovsky,
Sawler, et al., 2017; Ohetal., 2021; Schwieterman et al., 2014;
Tieman et al., 2017; Verma et al., 2017; Yano et al., 2019;
Zhao et al., 2019). These traits, unlike yield, plant height, or
time to flowering, are inherently multidimensional, resulting
in a proliferation of potentially oversimplified definitions and
interpretations.

For those whose life work involves looking at plants, imme-
diate identification of unique and useful variation needs only
a quick glance; indeed, the ‘breeder’s eye’ is often spoken
of as an undefinable instinct for selecting superior varieties
(Bernardo, 2001, 2016, 2020; Dillmann & Guérin, 1998; Van
Ginkel et al., 2008; Zhou et al., 2018). Though the plant phe-
notype is infinite (Chitwood & Topp, 2015) and can never be
quantified in its entirety, images and sensor data that describe
plants at high resolution provide an avenue to integrate mul-
tiple subtle signals and perspectives into a more comprehen-
sive description of plant form and function (Das et al., 2015;
Fahlgren, Feldman, et al., 2015; Fahlgren, Gehan, et al., 2015;
Gehan et al., 2019; Gehan et al., 2017; Gehan & Kellogg,
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Core Ideas

* Latent phenotyping is an emerging field that cap-
tures fine scale variation in plants.

e Latent phenotypes can minimize the effect of
human bias when describing plant form from high
dimensional data.

* Latent phenotyping is useful for crop improvement
and basic biology.

2017; Herritt et al., 2020; Liu et al., 2020; Seethepalli et al.,
2020; Tovar et al., 2018; Willis et al., 2017; York & Lobet,
2017).

Over the last 20 years, researchers have applied methods for
comprehensively describing plant form with varying strate-
gies and input requirements. These strategies include super-
vised morphometric methods and more abstract concepts that
rely upon unsupervised methods, e.g., latent space phenotyp-
ing, persistent homology (Table 1). Many of the strategies
that the community has drawn upon originated in disparate
fields of study, from psychology, e.g., generalized procrustes
analysis and structural equation modeling (Bookstein, 1997,
Chitwood, 2020; Gower, 1975; Klingenberg, 2015; Klingen-
berg & Mclntyre, 1998; Rohlf, 1999; Slice & Stitzel, 2004) to
computer vision and machine learning, e.g., eigenshapes, con-
volutional neural networks (CNNs) (Horgan, 2001; Horgan
et al., 2001; Sirovich & Kirby, 1987; Turk & Pentland, 1991;
Wang et al., 2020). In fact, early work in latent phenotyping
closely mirrored approaches used for human face recognition,
but instead to capture internal color pattern variation of carrot
roots (Horgan, 2001; Horgan et al., 2001).

More recently, Chitwood & Topp, 2015 discussed the idea
of a plant ‘cryptotype’: a function of discrete trait values that
can be used to discriminate between a priori defined groups
of individuals. Practically, developing a cryptotype function
depends on training a supervised model with pre-existing fea-
tures and labels. Ubbens et al. (2020) developed the super-
vised method Latent Space Phenotyping, which uses CNNs to
differentiate between treatments based on longitudinal image
data. Images are first embedded in a low-dimensional latent
space, and their paths through that space over time are used
to assess temporal change in plant responses to treatment. In
a similar but unsupervised fashion, Gage et al. (2019) used
both CNNs and principal component analysis (PCA) on flat-
tened lidar point clouds to produce unsupervised latent phe-
notypes from a single time point evaluation of field-grown
maize hybrids. Further, several studies have demonstrated
that PCA is a powerful, unsupervised tool for quantifying
plant organ shape, as demonstrated in carrot (Horgan et al.,
2001; Turner et al., 2018), radish (Iwata et al., 2000, 2004),
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TABLE 1

existing literature

Abstract concept

Root/shoot
architecture and

form

Abiotic stress

Biotic stress

Chemotypic profiles

Conventional traits

Taproot length, overall root length, number of
branches, root angles, biomass distribution,
branching angle, leaf angle, compactness,
width, height, area, aspect ratio, circularity,
roundness, solidity

Biomass, height, greenness, NDVI, or other
reflectance characteristics, leaf angle, flowering
time

Number of lesions, % area of chlorosis or necrotic
tissue

Concentration of specific compounds in the plant
ionome, metabolome, herbivory defense
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Abstract concepts in plant phenotyping and some examples of the conventional and latent traits often used to quantify them in

Latent traits

Principal component (PC) scores and autoencoder
latent representation, biomass profile PC scores;
persistent homology barcodes, elliptical Fourier
descriptors, etc.

Latent space phenotyping

NA

PC scores

compounds

Note. NA, nonapplicable; NDVI, normalized difference vegetation index. This is not an exhaustive list of concepts or measurable traits that may be described by conventional

or latent approaches.

strawberry (Feldmann et al., 2020; Li et al., 2020; Zingaretti
et al., 2021), apple (Lv et al., 2019; Migicovsky, Li, et al.,
2017), grape (Chitwood et al., 2014; Yuan et al., 2016), maize
(Miller et al., 2017; Warman et al., 2021), and rice (Iwata
et al., 2015; Suzuki & Hirata, 2011). Other unsupervised
methods include persistent homology (Li, An, et al., 2018;
Li et al., 2017; Li, Frank, et al., 2018; Schlautman et al.,
2020) and morphometric approaches (Chitwood & Otoni,
2017; Falk et al., 2020; Gupta et al., 2020; Iwata, 2011; Iwata
et al., 2002, 2015; Klein et al., 2017; Manacorda & Asur-
mendi, 2018; Migicovsky, Li, et al., 2017; Sainin et al., 2016).
Undoubtedly, the most common latent phenotype in plants is
“shape”, which is due, in part, to the access to inexpensive
cameras and computers (Fahlgren, Gehan, et al., 2015; Tovar
et al., 2018), the availability of user-friendly software (Bon-
homme et al., 2014; Gehan et al., 2017; Iwata & Ukai, 2002),
and the ability to visually interpret results (Chitwood et al.,
2012; Horgan et al., 2001; Iwata et al., 2002; Langlade et al.,
2005; Manacorda & Asurmendi, 2018; Turner et al., 2018;
V6tély et al., 2019; Xu & Bassel, 2020). Though methods
such as the ones mentioned above are common in plant phe-
notyping, latent phenotyping approaches are only beginning
to gain traction for the description of other traits in plants.
The following sections provide more detail on conventional
image- and sensor-based phenotyping methods, latent pheno-
typing techniques, and the technical considerations, benefits,
and drawbacks of latent phenotyping methods compared to
their conventional alternatives.

2.1 | Conventional phenotyping from images
and sensors

Historically, conventional image based phenotyping provided
an efficient strategy to measure key traits that are easy to

define and interpret (Anderson et al., 2020; Demir et al.,
2018; Li et al., 2014; Poland & Nelson, 2011; Tao et al.,
2020; Wang et al., 2018, 2019; Zhou et al., 2020). These
traits do not reflect the plant’s full complexity, or even the
complexity captured in an image. Like the shadows seen by
prisoners in Plato’s Cave, conventional phenotyping methods
provide a limited representation of a plant’s status. Method-
ologically, conventional image-based plant phenotyping aims
to condense high-dimensional image data into tabular trait
values which quantify some relevant characteristics of the
individual (Das et al., 2015; Li et al., 2014; Seethepalli et al.,
2020; Tabb & Medeiros, 2017; Walter et al., 2015; Zingaretti
etal., 2021). For example, it is common to reduce an image of
a plant into a single value specifying the number of vegetation
pixels to estimate biomass, or to measure plant height as the
number of contiguous pixels in the vertical axis. Often, a col-
lection of these component traits is used to summarize some
higher-level abstract concept about the individual and the pop-
ulation, such as the plant’s level of stress, its general architec-
ture, or other physiologically and agronomically relevant char-
acteristics (York & Lobet, 2017; York, 2019). Table 1 presents
some abstract physiological concepts and the corresponding
image-based traits measured to proxy them.

The extraction of conventional trait values from images
is a highly designed procedure, whether it is specified pro-
grammatically in the steps of an image processing pipeline
(Das et al., 2015; Gehan et al., 2017; Seethepalli et al.,
2020; Zingaretti et al., 2021), or by human annotation of
training data for machine learning techniques (Ishikawa et al.,
2018; Stewart et al., 2019; Visa et al., 2014; Zhou et al.,
2018). In fact, these human-designed traits are based on
the observations of researchers as to how different abstract
concepts manifest in the visual appearance of the plants. This
human-designed nature means that these measurements are
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interpretable and concretely related to one, or more, of these
observations.

User-defined traits are typically easy to interpret and have
meaningful units associated with them (e.g., cm, g, mL, etc.),
which is an understated advantage. Being able to interpret and
communicate results is a major benefit of conventional phe-
notyping methodologies. Along these lines, standard units of
measure are used across all fields of study and thus can be
more effectively and clearly delivered to a diverse and non-
expert audience. While the importance or value of a plant
height difference of 10 cm may be field specific, the mean-
ing of the measurement will be clear to anyone familiar with
a centimeter. Thanks to their interpretability, the use of con-
ventional image-based traits has seen a boom in publication
and application over recent years.

However, conventional phenotyping methods are poten-
tially non-unique, not comprehensive, and compromised by
human biases. It takes multiple, and potentially many, descrip-
tors to accurately describe canonical shapes (i.e., unit cir-
cle and square), let alone more complex structures (e.g., root
and shoot systems). For instance, a circle and a square can
have identical aspect ratios (aspect ratio = ;Z Ill(;t:;l) so other
descriptors that capture information about the curvature of
the shape, the number of corners, or the variation in inte-
rior angles are needed to discriminate between these two
shapes. In general, as the complexity of a biological phe-
nomenon increases, a greater number of conventional traits
are needed to convey its meaning accurately and precisely.
Users therefore need to make educated decisions regarding
which conventional traits are required to capture the most
salient and biologically relevant information. Finally, many
conventional traits are scale invariant ratios (e.g., aspect ratio
and circularity = 41 (—22)%) and can result in multiple

perimeter

shapes returning the same value despite having visible differ-
ences in scale (Schindelin et al., 2012; Schneider et al., 2012).
The user-driven decision of which traits to measure can intro-
duce biases that, along with challenges in data collection, can
lead to substantial ascertainment bias towards populations,
germplasm, and variability. For example, in one strawberry
population, fruit shape may be adequately described by the
aspectratio. However, aspect ratio may not be a discriminating
descriptor in a second population. This could bias downstream
analyses to think that the second population has no variation
in shape, although this may be an artifact of the chosen per-
spective.

When many of these characteristics are collected, it can
be tempting to apply data reduction techniques to summa-
rize plant phenotypes based on the variability in that col-
lection of traits. However, the use of PCA or other common
dimensionality reduction techniques on a matrix of individu-
ally selected, univariate attributes require caution. One con-
cern is that a dimension reduction technique may uninten-
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tionally amplify biases in the data, leading to a more biased
analysis. For example, length, width, aspect ratio, area, circu-
larity, roundness = 4 (——=—=——), solidity = area

ny/max[W, L] convex area’

etc. are extracted individually and are ratios of other variables.
If PCA is conducted on these traits, the analysis is exposed
to area, length, and width multiple times (Schindelin et al.,
2012). Whereas a change in length or width necessarily causes
a change in aspect ratio, and vice versa, traits resulting from
multivariate analyses do not share this limitation. As opposed
to ratios like circularity and solidity, the harmonics of ellipti-
cal Fourier analyses, which are used to describe the outlines of
2D shapes, are not functions of each other and each harmonic
can be modified independently without changing any others
(Bonhomme et al., 2014; Chitwood & Otoni, 2017; Iwata &
Ukai, 2002; Migicovsky, Li, et al., 2017; Visa et al., 2014).
There are also more intricate scenarios involving arrays of cor-
related traits, such as leaf angle and inflorescence branching
angle (Rice et al., 2020). In these examples, dimension reduc-
tion enhances the biological signal of “branching angle of lat-
eral organs” while not explicitly double- or triple-counting the
same trait. Similarly, researchers have implicitly posited that
latent traits also include the plant ionome (the profile of ions
in the plant, Fikas et al., 2019) the defense metabolome (the
profile of specialized metabolites that participate in herbivory
and pathogen responses, Katz et al., 2021), and the composi-
tion of seed fatty acids (Carlson et al., 2019).

In general, conventional image and sensor-based phenotyp-
ing strategies are highly interpretable, can reduce time and
cost relative to their hand-measured counterparts, and enable
opportunities for greater reproducibility. Conventional image
analyses tends to follow the common theme of measuring
many single compounds and then using PCA to capture global
patterns of correlated effects in genome wide association stud-
ies or quantitative trait locus mapping. However, given the
quantity of conventional traits produced from images and sen-
sors, there is a greater potential for implicit biases during
data acquisition or dimensionality reduction. Due to chal-
lenges with multicollinearity, using many conventional traits
to describe a plant’s phenotype provides diminishing returns
and greater likelihood of bias or reduced generalizability. The
following section elaborates on how latent phenotyping meth-
ods address some of these issues.

22 |
sensors

Latent phenotyping from images and

Latent variable models explain patterns in observed data by
modeling unobserved latent variables (Blei, 2014). The con-
cept of latent variables (also called latent features or latent fac-
tors) is widespread in statistics, and statistical models incor-
porating latent variables have a rich set of applications in
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FIGURE 1

A schematic of the latent phenotyping procedure. (a) The first step is to collect sensor data on a population of interest. (b) The

second step is to process that data into a format that will be usable in downstream analyses and to make the target phenomenon more salient by

reducing noise or highlighting specific features. (c) The third step is optional and depends on that study at hand. For traditional approaches, this step

is skipped and for latent approaches this step further accentuates the phenomenon of interest within the data. (d) The fourth step is to quantify the

traits, or latent traits, of interest from the cleaned data. (e) The final step is to try to either make biological sense of the quantified latent traits or to

use them for a specific application, e.g., phenomic prediction. The preprocessing methodologies listed here are by no means exhaustive and represent

disparate fields of research with many individual contributions that present their own assumptions and biases

the biological sciences (Grotzinger et al., 2019; Runcie &
Mukherjee, 2013; Tardieu et al., 2017; V&fély et al., 2019). As
an example, partial least squares regression (PLSR) is com-
monly applied to high-dimensional biological datasets that
contain a high degree of multicollinearity, such as -omics data
(Edlich-Muth et al., 2016; Kleinbaum et al., 2013; Lane et al.,
2020; Rincent et al., 2018; Runcie & Crawford, 2019; Runcie
& Mukherjee, 2013). The PLSR approach and related mod-
els, such as partial least squares discriminant analysis, accom-
plish dimensionality reduction by projecting the raw data onto
lower-dimensional latent variables, which retains the ability to
predict the response variables. This property of reducing the
input data to a set of lower-dimensional features is shared by
many familiar and commonly applied models, which include
PLSR, partial least squares discriminant analysis, PCA, inde-
pendent component analysis, latent Dirichlet allocation, lin-
ear discriminant analysis, factor analysis, and others. A non-
exhaustive list of methodological options is provided for these
types of analyses in Figure 1. The choices of which method to
employ will vary substantially depending on the data acqui-

sition strategy (e.g., red, gree, blue [RGB] or lidar images),
data cleaning and curation choices (e.g., background or out-
lier removal), pre-processing to highlight the phenomena of
interest (e.g., elliptical Fourier analysis or wavelet transform),
quantification of the latent space (e.g., PCA), and targeted
interpretation of the latent space (e.g., correlation or genetic
analyses). Such representations also appear in machine learn-
ing models, such as autoencoders (Figure 2), where a latent
space is derived from the lower-dimensional activations of a
layer in the center of a neural network. In Figure 2, image
data of Brassica napus plants were analyzed with a convo-
lutional autoencoder neural network with two latent dimen-
sions. The goal of an autoencoder, broadly, is to learn a lower-
dimensional representation, two variables in this case, that can
be used to approximately reconstruct the original input data.
In machine learning, discovering this transformation from
the input space to another, typically lower-dimensional form
which is more appropriate for a learning task is known broadly
as ‘representation learning’ (Bengio et al., 2013). In each case,
the set of latent variables, or learned representation, is learned
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FIGURE 2

A convolutional autoencoder trained on a dataset of mature Brassica napus plants. In this example, a high-dimensional image is

encoded as a point in a two-dimensional latent space, and the decoder attempts to recreate the original image using only this information. The

encoder needs to pack as much pertinent information as possible into these two dimensions to help the decoder produce accurate outputs

from the raw data, as opposed to being defined beforehand.
Thus, each of these features do not directly represent any one
input feature, but rather encode some linear or nonlinear com-
bination of the many input features into a single dimension.
Just as the latent variables in these models correspond to some
learned abstract representation of the processes generating the
input data, latent phenotypes are defined by some learned
abstract representation of the latent source of variance present
in the dataset. This variability is typically measured across
the full input. For example, in the case of images, the input
data will correspond to the values of each individual pixel of
each image, producing an extremely high-dimensional dataset
where each color channel, e.g., RGB for most standard dig-
ital cameras, in each pixel adds an additional input dimen-
sion. Compared to conventional traits, which are based on
measurements made by researchers, latent traits are inferred.
Consequently, this means that latent phenotypes are reflec-
tive of patterns present in the data, not measurements made
by a human observer, and are, ideally, less susceptible to user-
imposed biases and assumptions. While conventional pheno-
typing seeks to quantify a particular concept by summarizing
it as a collection of one or more measurable traits, latent phe-
notyping instead seeks to indirectly quantify the latent source
of variance in the high-dimensional raw data, whether that
source is stress, genotype, or otherwise.

For the purposes of defining latent phenotyping, statisti-
cal methods which assume the presence of underlying latent
factors that explain correlations in the observations, such as
factor analysis, as well as factor models such as PCA, inde-
pendent component analysis, etc., are included. For exam-

ple, because environment (E) and management (M) can
be controlled or, at least, accounted for using appropriate
experimental designs and sampling strategies, genotype (G),
interactions with genotype (i.e., GXE, GxM, GxExM), and
irreducible error can be isolated as the sole sources of variance
(Lane & Murray, 2021; Piepho et al., 2012; Schulz-Streeck
et al., 2013). Thus, methods such as PCA which seek to sum-
marize the major axes of variance are likely to find herita-
ble components, which implies a latent effect from genotype.
In cases where there are many sources of variance, a more
computationally sophisticated latent phenotyping technique,
e.g., latent space phenotyping (Ubbens et al., 2020), may be
required to disentangle the sources of variance and uncover
the genetic signal in more complex latent traits, e.g., whole
plant response to abiotic stress.

As with conventional phenotyping approaches, the specific
path a user takes to acquire latent phenotypes will depend on
the structure and type of raw data, e.g., RGB, hyperspectral
sensors, lidar, etc., and the underlying biology of the target
phenomenon the user wishes to capture. Both the beauty and
the danger of this framework is that there are nearly limitless
approaches that a researcher could take (Backhaus et al., 2010;
Barbier de Reuille et al., 2015; Biot et al., 2016; Botvinik-
Nezeretal., 2020; Buckner et al., 2021; Chitwood et al., 2012;
Clarketal.,2011; Dasetal., 2015; de Reuille et al., 2014; Falk
etal., 2020; Galkovskyi et al., 2012; Granier et al., 2006; Hart-
mann et al., 2011; Horgan et al., 2001; Iyer-Pascuzzi et al.,
2010; Klingenberg, 2011; Li et al., 2020; Li, An, et al., 2018;
Liu et al., 2020; Nowak et al., 2021; Ristova et al., 2013; Slice,
2007; Slice & Stitzel, 2004; van der Heijden et al., 2012; Wu
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et al., 2016; Xu & Bassel, 2020; Zingaretti et al., 2021). The
most common approaches to date are PCA and autoencoders,
which both aim to compress data into a smaller number of axes
based on a specific set of rules. For example, the use of PCA to
describe internal carrot color variation (Horgan, 2001), straw-
berry fruit shape (Feldmann et al., 2020), and variation in car-
rot shape and biomass distributions (Turner et al., 2018); the
use of PCA and autoencoders to describe plant architecture
from heatmaps of maize plots (Gage et al., 2019); and the use
of a latent embedding emitted by deep neural networks (a dis-
tinct multi-stage technique called ‘latent space phenotyping’)
to capture the genetic variation attributable to drought stress in
the genus Setaria and the visual drought response in Brassica
napus (Ubbens et al., 2020). Importantly, these approaches
can be deployed for both classification and prediction of tar-
get traits, as well as to capture biologically interesting aspects
of plant growth and development.

Notable advantages of latent phenotyping include the abil-
ity to describe complex, multi-dimensional phenotypes or bio-
logical processes at the whole plant level and the reduction of
direct human input in the measurement process. Most strik-
ingly, latent traits are likely to be more independent of explicit
human biases in the choice of what aspect of the data to mea-
sure, potentially allowing them to learn complex, nonlinear
visual concepts instead of tying the measurement to a rigid,
human-defined concept or pre-existing hypotheses (Baxter,
2020). This does not mean that latent phenotyping approaches
are free from other types of user-imposed biases during model
selection, implicit biases accrued during data collection, and
over-generalized interpretations. Furthermore, compared to
conventional phenotyping strategies, latent phenotyping tech-
niques typically require less pre-processing, such as noise
removal or segmentation, and can be applied to most types
of input data. Although the adoption and active development
of these techniques in plant phenotyping is relatively new,
it seems likely that latent phenotyping will become increas-
ingly important and widespread in the future due to these key
advantages.

2.3 | Technical considerations of latent
phenotyping

As with all attempts to model data, many techniques can be
used to model latent phenotypes, and awareness of differences
among these techniques is critical to understand how specific
methodologies will influence results and the interpretation of
those results. For example, PCA is only capable of model-
ing linear aspects of the input variables. As a result, nonlin-
ear patterns in the data will be represented differently when
using PCA versus other techniques that are capable of mod-
eling nonlinear patterns, such as autoencoders. A hazard with
nonlinear models is that the embeddings they provide exist
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on a nonlinear manifold. This means that they cannot be inter-
preted in subsequent steps, such as linear regression, as if they
were on a linear scale, e.g. a point which embeds on a particu-
lar axis in latent space at the value 4 is not, in any meaningful
sense, “twice as dissimilar” to an embedding at 8 as it is to a
different embedding at 6. In fact, any comparison of Euclidean
distance between points in these encoded variables as a mea-
sure of similarity is not reasonable because of the non-linear
nature of the analysis. In contrast to other nonlinear models,
variational autoencoders explicitly learn an approximation to
a normal distribution, and therefore impose this distribution
over the latent variables (Kingma & Welling, 2013). Forc-
ing the latent variables to be normally distributed allows for
tractable sampling from the posterior distribution, which is
the original intent behind the variational autoencoder, but the
utility of this arbitrarily distributed latent variable for a down-
stream phenotyping task is questionable. For these reasons
and others, care must be taken when selecting a model, and
the researcher should be informed about the model’s assump-
tions and its capabilities prior to implementation.

Using learned latent traits instead of conventional traits
comes with the substantial drawback of losing the inherent
interpretability that comes with conventional measurements.
For example, consider a conventional phenotyping result that
height was taller by an average of 36 mm for a breeding line.
This makes intuitive sense, as plant height is something expe-
rienced by an observer. In contrast, a study which makes use
of latent phenotyping requires extra steps towards interpreta-
tion. The raw trait values, such as component scores on prin-
cipal components, are unitless scalar values which only have
meaning if mapped back through a particular function, such
as a trained decoder network. Various studies have attempted
to visualize these features using eigenshapes, the visualization
of eigenvectors, and saliency mapping (Feldmann et al., 2020;
Gage et al., 2019; Li, An, et al., 2018; Migicovsky, Li, et al.,
2017; Turner et al., 2018; Ubbens et al., 2020; V&fély et al.,
2019). This begs the user to define their questions more rigor-
ously before using latent phenotyping approaches, which may
distort an otherwise simple question regarding plant height,
yield, or any other easily defined, conventional trait.

Data dependency is a critical issue that is not only affected
by the amount of observed data, but the saliency of the
biological phenomenon and the reliability of data acquisition
strategy. Latent phenotyping approaches such as PCA and
autoencoders will map noise when only noise is present. A
possible consequence of this is that the resultant principal
component scores and encodings will have low repeatabil-
ity or heritability, which may have more to do with data
acquisition or model misuse than any biologically relevant
phenomenon (Feldmann et al., 2020; Turner et al., 2018).
Latent phenotyping approaches may be able to reveal whether
data is of poor quality, but they are not able to “fix” overly
noisy, unreliable data. However, if data is collected in a
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careful, considered manner, these approaches can deliver
powerful insights for both prediction and inference. Thus,
the data acquisition and model selection strategies are just
as relevant to latent phenotyping as they are to conventional
phenotyping from images and sensors.

Standard operating procedures and common best practices
for latent phenotyping approaches might be obscure to biolog-
ical researchers, leading to naive applications of such tools.
As an example, linear regression has a set of assumptions that
make its use appropriate and interpretable given the assump-
tions are met. Similarly, PCA, PLSR, CNNs, and autoen-
coders have unique sets of assumptions that may render them
useless if these underlying assumptions are violated. Latent
phenotyping will not tell the user when a core assumption has
been irreparably violated unless the user knows how to probe
the data and the model with consideration of those assump-
tions. It is unlikely that every biological researcher with an
interest in latent phenotyping will have the time or capac-
ity to learn all the various assumptions and best practices
themselves, thereby emphasizing the necessity to partner with
experts in the application of these methods who can help to
safeguard against nonsensical or biased results.

2.4 | Practical considerations for latent
phenotyping

When embarking on a study, researchers consider the purpose
of the study, the context of that purpose, and whether there are
meaningful takeaways for general crop improvement (predic-
tion) and/or basic biology (inference). This dichotomy in the
philosophy of science, while often conflated, can be useful for
discussing how latent phenotyping approaches may be valu-
able in practice.

If the aim is prediction, it is sufficient to identify latent
traits that are correlated with and can be used to predict
a trait or whole-plant phenotype of interest, such as yield,
biomass, or fruit quality, without the necessity of an underly-
ing causal relationship between predictors and response using
PLSR, or a similar approach, and may rely on tens, hundreds,
or even thousands of predictor traits. This process, termed
“phenomic prediction,” uses phenotypic and/or latent traits
as independent variables—analogous to markers in genomic
prediction—to predict the value of some dependent variable
(Edlich-Muth et al., 2016; Fernandes et al., 2018; Krause
et al., 2018; Lane et al., 2020; Momen et al., 2019; Rincent
et al., 2018; Sandhu et al., 2021). Phenomic prediction has
both the potential to improve genomic prediction by incorpo-
rating more reliable, correlated traits and to potentially reduce
the need for or extent of genotyping (Fernandes et al., 2018;
Lane & Murray, 2021; Lane et al., 2020; Rincent et al., 2018).
These approaches, like other high-dimensional regression
approaches, are subject to overfitting and multicollinearity.
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However, these can be addressed by using training-validation-
test set optimization approaches (Berro et al., 2019), proper
application of cross-validation (Runcie & Cheng, 2019), or
model reduction, variable selection, and regularization strate-
gies, e.g., Lasso, Ridge regression, and elastic nets. Further, as
with genomic prediction, phenomic prediction runs the risk of
conflating statistical significance with biological importance
without appropriate contextual consideration and indepen-
dent validation (Bernardo, 2001, 2016, 2020; Sanders, 2019;
Shmueli, 2010).

On the other hand, when the goal is to understand an under-
lying mechanism or sources of variability for a target trait,
methods that rely on statistical associations have limited util-
ity unless paired with the necessary biological context and
knowledge of the underlying assumptions for a chosen spe-
cific analysis (Bernardo, 2001, 2016, 2020). This makes the
application of latent phenotyping more challenging for basic
biological questions than for prediction. Despite these chal-
lenges, latent phenotyping approaches have been used to suc-
cessfully identify genetic loci linked with tomato fruit and
leaves (Chitwood et al., 2012; Li, Frank, et al., 2018; Wang
et al., 2019), rice grains (Iwata et al., 2015), the maize, rice,
and soybean ionomes (Chu et al., 2016; Fikas et al., 2019;
Liu et al., 2021), the Brassica defensive metabolome (D’Oria
et al., 2021; Katz et al., 2021), oat seed fatty acid concen-
trations (Carlson et al., 2019), inflorescence development
in maize and sorghum (Leiboff & Hake, 2019; Rice et al.,
2020), carrot shoot and roots (Turner et al., 2018), response
to drought in Setaria (Ubbens et al., 2020), and strawberry
fruit shape (Nagamatsu et al., 2021). Some of these success-
ful examples have relied on prior information from preceding
univariate analyses to validate the loci discovered using latent
phenotyping and to aid their interpretation of those newly dis-
covered loci (Fikas et al., 2019; Katz et al., 2021; Ubbens
et al., 2020). Notably, latent phenotyping approaches have yet
to be applied to biotic stress resistance in plants (Table 1). It
could be that reasonably powered studies require unreason-
able sample sizes because of inconsistent symptom develop-
ment (e.g., chlorosis, wilting, spotting), or that subtle changes
in plant status during disease onset and development are of
lesser interest than the binary difference between being alive
or dead, which is simpler to assess.

Regardless of the experimental goals, providing intuitive
presentation and interpretation of results is critical to max-
imize the impact of empirical findings. This is especially
true when measurements are acquired using methods that
rely on abstract concepts, as is the case for latent pheno-
types. Strategies to relate latent phenotypes to observable
quantities are often as straightforward as a statistical compar-
ison between latent phenotypes and human-understandable
features, e.g., classification based on a categorical scale or
regression against a numerical scale (Casanova et al., 2017;
Chitwood, 2020; Clark et al., 2015; Ishikawa et al., 2018;
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Kadir, 2015; Lane et al., 2020; Li, An, et al., 2018; Nasci-
mento et al., 2021; Neto et al., 2006; Stewart et al., 2019; Zin-
garetti etal., 2021). However, it is also possible that latent phe-
notypes capture aspects governing a trait that are otherwise
difficult to quantify, and therefore have complex, non-linear
relationships with or cannot be directly related back to a famil-
iar concept (Li et al., 2017; Migicovsky, Li, et al., 2017; Rice
et al., 2020). When there is no clear observable counterpart
for latent phenotypes, visual aids can fill the gap by provid-
ing human-interpretable representations of the data. Effective
examples of this approach in practice include the presentation
of PCA results alongside a morphospace of theoretical shapes
based on eigenvectors (Bonhomme et al., 2014; Iwata, 2011;
Iwata et al., 2002, 2015; Iwata & Ukai, 2002; Migicovsky,
Li, et al., 2017; Miller et al., 2017) and the direct comparison
of raw input images with reconstructions produced from an
embedding (Figure 2).

Irrespective of whether measurements are easily observable
or more abstract, perhaps the most critical set of questions a
researcher can ask revolves around whether results meet cer-
tain standards of replicability and variability (Bernardo, 2020;
Moehring et al., 2014). Similarly, as indicated, thought should
also be given to the scope of diversity included in the study
(e.g. diversity panels versus elite breeding populations) and
the relevance to addressing the question(s) of interest, i.e. if
there are useful or general takeaways when entries are more
or less phenotypically diverse (Berro et al., 2019; Brandariz
& Bernardo, 2019; Campbell et al., 2017).

A final consideration is if there are any large-scale uses
for latent phenotyping results. From a logistical perspective,
applied use will depend on whether a given method is scal-
able, cost-effective, and broadly applicable to diverse study
systems or at least within a target system. By defining plant
phenotypes through a more comprehensive set of traits, latent
phenotyping approaches have the potential to change the way
researchers practice breeding and deploy marketing strategies.
For instance, these comprehensive traits could conceptually
be used for variety identification and facilitating intellectual
property (IP) applications and protections (e.g., plant patents,
plant variety protections, and plant breeders rights) by includ-
ing more quantitative descriptors, which have been shown to
be predictive of both variety and species in multiple studies
(Chitwood, 2020; Chitwood & Otoni, 2017; Ishikawa et al.,
2018; Li, An, et al., 2018; Pereira et al., 2019). It is unlikely
that latent or conventional traits will replace DNA forensics
for the enforcement of IP laws, but they may aid plant specific
IP applications by providing detailed and nuanced descrip-
tions of plant properties. Regardless of downstream goals,
latent phenotyping and other machine learning methods are
undoubtedly an exciting area of research, but not a panacea in
the pursuit of understanding phenotypic variation (Bernardo,
2016).
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3 | CONCLUSIONS

In recent years, the growth of plant phenomics, the availabil-
ity of powerful open-source software, and the competency to
acquire complex datasets has elicited the need for a thorough
discussion of the state of the art. As with all statistical tech-
niques and applications, careful consideration of the hypoth-
esis, experimental procedure, and data structure is required
to deploy latent phenotyping approaches. All the challenges
inherent to traditional methods still exist; the data must be
collected systematically and in such a way to capture rele-
vant information for the questions and hypotheses related to
the specific study. While sensors are much less subject to
explicit biases than are humans, implicit and explicit biases
may still be reflected in the quantification of sensor data and
exacerbated by the naive application of sophisticated tools.
To support reproducibility and the adoption of best practices
across labs with varying levels of experience, there is a need
to report latent phenotyping analyses and protocols precisely
and accurately in the literature, alongside relevant code repos-
itories(Fanelli, 2018; Harris, 2018; Hutson, 2018; Miyakawa,
2020; Peng, 2015; Stoddart, 2016). Furthermore, it is impor-
tant to note that not all research questions require a latent phe-
notyping approach, such as conventional disease traits, yield,
and time-to-flowering, and that the naive application of these
methods can lead to nonsensical results and biased interpre-
tations. These methods rely on mathematical and statistical
models that all have unique and diverse assumptions about the
input, which may render certain methods irrelevant or inap-
propriate for a given data set. Successful application of latent
phenotyping in practice will require communication among
developers, end users, and stakeholders, to address important
questions in crop improvement and basic biology True vali-
dation of these approaches in independent populations man-
aged by independent groups with similar objectives is the final
frontier for both conventional and latent phenotyping. While
the promise of latent phenotyping is great, it is still critical
to plan sampling procedures that match experimental goals
to pay close attention to methodological assumptions, and
to enable the repeatability of analyses and reproducibility of
results.
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