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Abstract

Directed graphical models aim to represent the probabilistic relationships between variables

in a system. Learning a directed graphical model from data includes parameter learning and

structure learning. Several methods have been developed for directed graphical models with

scalar variables. However, the case in which the variables are infinite-dimensional has not been

studied thoroughly. Nowadays, in many applications, the variables are infinite-dimensional

signals that need to be treated as functional random variables. This paper proposes a novel

method to learn directed graphical models in the functional setting. When the structure of the

graph is known, function-to-function linear regression is used to estimate the parameters of

the graph. When the goal is to learn the structure, a penalized least square loss function with

a group LASSO penalty, for variable selection, and an L2 penalty, to handle group selection

of nodes, is defined. Cyclic coordinate accelerated proximal gradient descent algorithm is

employed to minimize the loss function and learn the structure of the directed graph. Through

simulations and a case study, the advantage of the proposed method is proven.

Keywords: directed graphical models, functional random variables, parameter learning, structure

learning, function-to-function regression, penalized loss function

1 Introduction

Complex biological, physical, and social systems are often comprised of various entities and vari-

ables that exhibit intricate relationships and interactions. Directed graphical models (DGMs) have

been widely used to provide a probabilistic representation of these complex systems. For example,

in reliability modeling, DGMs are used to compute the overall reliability of a system, given the

reliability of the individual components and how they interact, Langseth and Portinale (2007). In

manufacturing processes, they are used to learn the causal relationship among process variables

and quality measures, and to facilitate process control, Li and Shi (2007). Additional applications
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to medical diagnosis, clinical decision support, crime factor analysis, sensor validation, information

retrieval, credit-rating, risk management, and robotics are found in Pourret et al. (2008).

In the graphical representation of a system, the nodes represent random variables, and the di-

rected arcs express the probabilistic relationships between the variables. The graph captures the

way in which the joint distribution over all the random variables can be decomposed into a product

of factors, each depending only on a subset of the variables, Bishop (2006). Therefore, the problem

of estimating a joint distribution is simplified by the problem of estimating a few low-dimensional

conditional distributions.

Most of the existing DGMs assume that the random variables associated with the nodes are

scalars. However, in practice, it is common to encounter systems where the variables have a func-

tional form, over time or space. In such cases, it makes sense to think of the variables as functional

variables. For example, the exhaust after-treatment process of an internal combustion engine can be

monitored by several sensors, measuring, for example, the vehicle velocity, the engine rotational

speed, and the intercooler pressure, which provide a large number of waveform signals or func-

tional data, as shown in Figure 1. Faults in the exhaust after-treatment process translate into higher

fuel consumption and uncontrolled emissions of pollutants, such as nitrogen oxides (NOx), into the

environment (Pacella, 2018). Faults are easily detected by an air-to-fuel ratio (λ-upstream) falling

bellow an acceptability threshold. However, the root-causes behind this behavior may change and

are not clearly defined. By modeling the exhaust after-treatment process as a functional DGM, the

root-causes behind fault events can be identified, and control actions can be taken. Understanding

the causal relationships of this complex system can significantly improve the overall performance

of the engine and the vehicle’s environmental impact.

The main challenge to learn functional DGMs is preserving the functional information in each

node. Existing probabilistic graphical models, developed for scalars, cannot be used or easily ex-

tended to deal with functional data. If each point in the functional data is considered as a scalar,

the functional structure is lost. Recently, some methodologies have been developed to learn the

structure of functional undirected graphical models. Zhu, Strawn and, Dunson (2016) proposed
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Figure 1: Exhaust after-treatment process of an internal combustion engine

decomposable graphical models for multivariate functional data from a Bayesian perspective. Qiao

et al. (2018) extended the graphical LASSO of Yuan and Lin (2007) to the functional setting. Li

and Solea (2018), extended the previous work, to a non-parametrical setting. On the other hand,

methodologies aiming to learn functional DGM have been developed in a very specific context:

brain connectivity. Lindquist (2012) proposed an algorithm to learn the parameters of a graph with

one functional node, two scalar nodes, and a known structure. The goal of the study was to find

brain regions whose activity acted as a potential mediator of the relationship between a treatment

variable and an outcome variable. Cao et al. (2019) proposed a causal dynamic network to es-

timate the parameters of differential equations’ models, representing latent neuronal states, from

fMRI data. Under their methodology, the parameters linking two functional nodes are fixed scalars

and represent brain activations and connections. The authors do not learn the parameters of the con-

ditional distributions of the graphical model. General methodologies aiming to learn the functional

parameters and the structure of a DGM with functional variables are scarce. To the best of our

knowledge, there is only one paper on this topic. Sun, Huang, and Jin (2017) proposed a modeling

strategy for functional DGMs in manufacturing processes. However, they assumed that time t of
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a functional node is only affected by time t of its functional parents. Their approach ignores the

temporal cross-correlation between the variables.

The main goal of this paper is to develop a methodology for learning functional DGMs while

preserving the existing cross-correlation between the variables in the system. For example, we

would like to learn how the variables in the internal combustion engine interact to identify the

root-causes behind a system fault event.

Throughout the article, we have two main assumptions. (A1) The functional variables jointly

follow from a multivariate Gaussian process (MGP). This is a common assumption in learning

graphical models that has been shown to hold in practice (Qiao et al. (2019); Sun et al. (2017); Zhu

et al. (2016)). (A2) The functional variables can be represented as a directed acyclic graph (DAG).

Therefore, there exists an ordering of the variables, called topological ordering, where only the

variables with lower orders can be parents (variable i is a parent of variable j if there is an arc from

i to j) for the variables with higher orders. A practical example of a system where the variables

have such an ordering is a sequential manufacturing process where upstream process variables can

affect the downstream process variables, but the reverse cannot happen. For the internal combustion

engine example, thanks to domain knowledge, it is possible to establish a topological ordering. For

example, we know that the vehicle velocity depends on the accelerator pedal position and on the

gear ratio. Therefore, in the model, these two variables have a lower order than the vehicle velocity.

First, we assume that the structure of the graph is known, and use function-to-function regres-

sion, Reisi Gahrooei et al. (2020), to perform parameter learning of the graph. Then, inspired by

Meinshausen and Buhlmann’s (2006) neighborhood selection method, we present a new approach

to learn the structure of functional DGMs. In order to learn the structure of a system, we define

a penalized least square loss function with two penalties: a group LASSO penalty, for variable

selection, and an L2 penalty, to handle grouped selection of nodes. We recursively employ cyclic

coordinate accelerated proximal gradient descent as an algorithm to minimize the loss function and

learn the structure of the directed graph. Finally, we adapt the modified cross-validation for penal-

ized high-dimensional linear regression models, Yu and Feng (2014), to the functional setting, to
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tune the parameters of the penalty terms. The main contributions of the paper are: (1) we establish

a methodology to estimate the parameters of functional DGMs, given the structure of the graph,

that outperforms existing methods, and (2) we develop a novel structure learning algorithm that

identifies the parents of the functional variables in a graph in a neighborhood selection fashion.

The proposed methodology can be used for diagnosis and root-cause analysis, as well as system

control when the variables involved have a functional form.

The rest of the paper is organized as follows. In section 2, we provide a methodology overview.

In section 3, we first present the parameter learningmethod for functional DGMswhen the structure

is known. Then, we present the methodology to learn the structure of functional DGMs. Simulation

studies and real data analysis are conducted in sections 4 and 5, respectively. Finally, we conclude

the paper in section 6.

2 Methodology Overview

A general framework of the proposed methodology is shown in Figure 2. If the structure of the

functional DGM is known, we use the measured functional observations to fit function-to-function

linear regressions and learn the parameters of the conditional distributions governing the DGM. The

first step is to transform the infinite-dimensional regression problem into a finite-dimensional one

by using a functional basis expansion. We propose to use either a data-driven basis or a domain

knowledge basis to reduce the dimensionality of the problem. The use of a basis set transforms

the function-to-function linear regression into a multilinear regression problem with a closed-form

solution. The solution to this problem allows for the estimation of the parameters of the functional

DGM. On the other hand, if the structure of the graph is unknown, we propose to add a penalty

term to the loss function of the function-to-function linear regressions. In this scenario, we use

a domain knowledge basis to reduce the dimensionality of the problem. A closed-form solution

no longer exists because of the penalty term. We employ cyclic coordinate accelerated proximal

gradient descent to solve the regression problems and estimate the structure and the parameters of

the functional DGM. The detailed analysis of each step will be elaborated in subsequent sections.
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Figure 2: Flow diagram of the proposed methodology

3 Proposed Functional Directed Graphical Models

As ourmotivating example, we use a dataset collected during fault events of the exhaust after-treatment

process of an internal combustion engine (Pacella, 2018). Variables, such as vehicle velocity,

intercooler pressure, and air-to-fuel ratio (λ-upstream), are measured byD sensors mounted on the

engine (Figure 1). There is information onM fault events. Letxki(t), k = 1, · · · , D, i = 1, · · · ,M ,

be the ith observationmeasured by the kth sensor at time t. Then, we haveM samples of independent

and identically distributed multivariate functional random variables {xi(t) : t ∈ Γ, i = 1, · · · ,M}

where xi(t) = (x1i(t), x2i(t), · · · , xDi(t))
′ and Γ is a compact set. Without loss of generality, we

assume Γ = [0, 1]. The detailed information about this case will be given in Section 5. The main

goal of this article is to develop a methodology to learn the relationship between the variables

measured by the different sensors. Understanding the root-causes behind a fault event is critical to

improve the performance of the engine and to control the vehicle’s environmental impact. Learning
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Figure 3: Illustrative example. Left: the data, xki(t) for k = 1, · · · , 7 nodes and i = 1, · · · ,M
observations. Right: The true underlying graph structure.

the relationship between the variables is equivalent to learning the underlying DGM. We begin by

assuming that the structure of the graph is known, and explain how to estimate the parameters of a

functional DGM. Then, we present a learning structure algorithm.

3.1 Known Graph Structure

Throughout the article, we assume that (A1) the functional variables x1i(t), x2i(t), · · · , xDi(t)

jointly follow from aD-dimensionalmultivariateGaussian process, G(t), independently and identically,

and that (A2) they can be represented as a DAG, G = (N,A), with node set N = {1, · · · , D} and

arc setA. If (j, k) ∈ A, we have that there is an arc going from node j to node k, which is equivalent

to say that node j belongs to the parents’ set of node k (j ∈ pak). In this section, we assume that

A is known. Therefore, we can write the joint distribution G(t) as the product of the conditional

distributions of each node, given the variables corresponding to its parents. That is

G(t) = p(x1(t), · · · , xD(t)) =
D∏

k=1

p(xk(t)|pak). (1)

This equation expresses the factorization properties of the joint distribution for a DGM, Bishop
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(2006). The estimation of the joint distribution, G(t), can be simplified by estimating the parameters

of the low-dimensional conditional distributions, p(xk(t)|pak) for k = 1, · · · , D.

Figure 3 provides an illustrative example withD = 7. The left panel presents the data, functions

xki(t), where k = 1, · · · , 7 and i = 1, · · · ,M . The right panel illustrates the conditional dependence

structure of these functions, that is, the DGM. By exploring the graph structure, we see that, for

example, nodes 1 and 3 are parents of nodes 4 and 5. Additionally, we have that

p (x1(t), · · · , x7(t)) =p (x1(t))× p (x2(t))× p (x3(t))

× p (x4(t)|x1, x2, x3))× p (x5(t)|x1, x3)

× p (x6(t)|x4)× p (x7(t)|x4, x5)

(2)

We can conclude that the variables 4 and 5 are conditionally independent, given the states of the

variables 1 and 3. Our goal, in this section, is to take the observed functions in the left panel and

estimate the parameters of the DGM in the right panel.

Beyond our motivating example, learning a functional DGM can be of interest in many other

contexts. Consider a sequential manufacturing system where M samples of D process variables

are measured over time. xki(t) represents the performance of process variable k when producing

part i at time t. This example can be modeled as a DAG since the upstream process variables can

be potential parents for the downstream process variables, but the reverse cannot happen. Another

example, arises in reliability systems, with D components, where xki(t) represents the reliability

of component k for system i at time t. The distribution of the components in the system determines

the structure of the DAG.

Since the functional variables x1i(t), x2i(t), · · · , xDi(t) jointly follow from a D-dimensional

multivariate Gaussian process (MGP), G(t), independently and identically, and since G(t) can be

decomposed as a product of conditional distributions following the known graph structure, we have
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that the conditional distribution of xki(t) can be written as

xki(t) ∼ N

∑
j∈pak

∫ 1

0

βkj(t, s)xji(s)ds, σ
2
k

 (3)

where βkj(t, s), for k = 1, · · · , D and j ∈ pak, are functional parameters governing the mean and

σ2
k is the variance of the conditional distribution for xki(t). Given the conditional distribution of

xki(t), we can write xki(t) as a function of its parents using function-to-function linear regression,

xki(t) =
∑
j∈pak

∫ 1

0

βkj(t, s)xji(s)ds+ σkεki(t) (4)

were εki(t) is a standard Gaussian random variable.

Learning the parameters of the functional DGM is equivalent to estimating the parameters

βkj(t, s), t, s ∈ [0, 1], by using theM samples of theD-functional randomvariables, xki(t), k = 1, · · · , D

and i = 1, · · · ,M . In practice, the function xki(t) is observed over a grid of size nk. Thus, we

estimate βkj(t, s) with {xki(t1), xki(t2), ..., xki(tnk
)}D,M

k=1,i=1. The main challenge is that the func-

tional parameters are continuous functions with infinite-dimension. To address this issue, following

Horváth and Kokoszka (2012), we assume that the parameters have a functional expansion, defined

by

βkj(t, s) =

Pk∑
p=1

Pj∑
q=1

bkjpqθkp(t)θjq(s) (5)

where {θkp(t) : p = 1, 2, · · · , Pk � nk} and {θjq(s) : q = 1, 2, · · · , Pj � nj} are small sets of

basis functions suitable for expanding xki(t) and xji(s), respectively. Given the basis functions,

this expansion transforms the functional parameters, with infinite dimension, to a set of finite pa-

rameters bkjpq that can be estimated using the training data. There are two approaches for choosing

appropriate basis functions. The first one is to use data-driven basis functions, such as eigenbasis

obtained by functional principal components analysis (FPCA), and the second one is to use a set

of pre-specified basis functions such as splines, Fourier, or wavelets, based on the domain knowl-

edge about the system. One of the advantages of using a functional expansion is that the functional
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variables do not need to be observed with the same frequency (i.e., we can have different values

for nk, for k = 1, · · · , D). We discuss both of the functional expansion approaches next.

3.1.1 FPCA Basis Functions

FPCA has been widely used for reducing the dimensionality of functional data to a small set of

finite features preserving the majority of the data variability, Horváth and Kokoszka (2012). Using

the eigen-decomposition of the covariance function of xk, cov(xk(t), xk(t
′)), xki(t) can be written

as:

xki(t) =
∞∑
p=1

ξkipθkp(t) (6)

where {θkp(t)} are the eigen-functions, {ξkip = 〈xki(t), θkp(t)〉} are the FPC scores, k = 1, · · · , D,

and i = 1, · · · ,M .

If both xki(t) and xji(s) are expanded as in (6), by plugging (5) into (4), we have

∞∑
p=1

ξkipθkp(t) =
∑
j∈pak

∫ 1

0

∞∑
p=1

∞∑
q=1

bkjpqθkp(t)θjq(s)
∞∑
q=1

ξjiqθjq(s)ds+ σkεki(t). (7)

Using the orthonormality of the θjq’s, equation (7) can be reduced to

∞∑
p=1

ξkipθkp(t) =
∑
j∈pak

∞∑
p=1

∞∑
q=1

bkjpqξjqθkp(t) + σkεki(t). (8)

Multiplying this equation by θkp(t) and integrating over t, would result in

ξkip =
∑
j∈pak

∞∑
q=1

bkjpqξjiq + σkεki (9)

where εki =
∫ 1

0
θkp(t)εki(t)dt.

The goal is to estimate the parameters bkjpq. Since the FPC scores are descendingly ordered,

the first few FPC scores can capture the most important information of the data and provide good
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approximates. Therefore, we set Pk � nk and Pj � nj and approximate xki(t) and xji(s) by

x̂ki(t) =

Pk∑
p=1

ξ̂kipθ̂kp(t) (10)

x̂ji(s) =

Pj∑
q=1

ξ̂jiqθ̂jiq(s). (11)

Let ξk = [ξ̂kip] ∈ RM×Pk , ξj = [ξ̂jiq] ∈ RM×Pj , bkj = [bkjpq] ∈ RPj×Pk , and εk = [εkip] ∈ RM×Pk ,

i = 1, · · · ,M , p = 1, · · · , Pk, q = 1, · · · , Pj , equation (9) can be approximated by the following

multilinear regression problem,

ξk =
∑
j∈pak

ξjbkj + σkεk (12)

Let Ξk = [ξj], j ∈ pak, be the M by Qk =
∑

j∈pak
Pj design matrix, and Bk = [bkj]

>, j ∈ pak,

be the Qk by Pk matrix of coefficients that should be estimated. Consequently, the matrix form of

equation (12) is

ξk = ΞkBk + σkεk (13)

To estimateBk, we minimize the least square loss function,

L(Bk) =
1

2
||ξk −ΞkBk||22 (14)

which results in a closed-form solution in the form of

B̂k = (Ξ>
k Ξk)

−1Ξ>
k ξk. (15)

When the truncation parameters Pk and Pj go to infinity with the sample sizeM , our proposed

estimates β̂kj(t, s) are consistent, that is

lim
M→∞

∫ 1

0

∫ 1

0

[βkj(t, s)− β̂kj(t, s)]
2dsdt = 0 in probabiliy, (16)

under some assumptions on the unknown functional parameters, βkj(t, s). This property implies
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that, when the sample size is large, the parameters estimated using FPCA basis functions are close

to the true parameters governing the functional DGM. The consistency of the estimators follows

the proof in Yao et al. (2005).

Learning the parameters of the functional DGM, using FPCA basis functions, involves two key

steps. First, for each variable k, k = 1, · · · , D, we estimate the FPC scores, the computational cost

associated with this step is O(Mn2
k + n3

k). The second step is estimating the parameters B̂k, for

k = 1, · · · , D, with the closed-form solution presented in (15). The computational cost for this

step is O(MQ2
k +Q3

k +MPkQk).

3.1.2 Pre-specified Basis Functions

In practice, sometimes, basis functions can be chosen based on the domain knowledge about the sys-

tem and on the type and shape of the functional data. Examples of such basis functions include poly-

nomials, splines, wavelets, and Fourier. Define {θkp(t) : p = 1, 2, · · · , Pk} and {θjq(s) : q = 1, 2, · · · , Pj}

as the pre-specified basis for the functional variables xk(t) and xj(s). Let Bkj = [bkjpq], 1 ≤ p ≤

Pk, 1 ≤ q ≤ Pj represent the Pj by Pk matrix of coefficients. The regression problem defining the

functional DGM in (4) becomes

xk(t) =
∑
j∈pak

∫ 1

0

xj(s)θ
>
j (s)Bkjθk(t)ds+ σkεk(t) (17)

where xk(t) = [xk1(t), · · · , xkM(t)]> and xj(s) = [xj1(s), · · · , xjM(s)]>. In order to further sim-

plify the notation, we define Zj :=
∫ 1

0
xj(s)θ

>
j (s)ds ∈ RM×Pj , Xk := [xk(t1), · · · ,xk(tnk

)] ∈

RM×nk , where {xk(t1), · · · ,xk(tnk
)} correspond to the grid of observed values for the function

xk(t), Θk := [θk(t1), · · · ,θk(tnk
)] ∈ RPk×nk , and Ek := [εk(t1), · · · , εk(tnk

)] ∈ RM×nk , which

simplifies the above equation to

Xk =
∑
j∈pak

ZjBkjΘk + σkEk. (18)
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This can be further simplified to

xk =
∑
j∈pak

Ξkjbkj + σkek, (19)

where xk = vec(X>
k ), Ξkj = Zj ⊗ Θ>

k , bkj = vec(B>
kj), and ek = vec(E>

k ). Our goal is to

estimate bkj , for all j in pak. To this end, we minimize the least square loss function given by

L(bkj|j ∈ pak) =
1

2
||xk −

∑
j∈pak

Ξkjbkj||22. (20)

The problem has the closed-form solution,

B̂k = (Ξk
>Ξk)

−1Ξk
>xk (21)

where Ξk = [Ξkj] and Bk = [bkj]
>, j ∈ pak. Consistency properties of this approach are not

fully understood, Horváth and Kokoszka (2012), however, it gives useful estimates, which can be

computed analogous to the univariate case.

Learning the parameters of the functional DGM, using pre-specified basis, involves three main

steps. For each variable k, k = 1, · · · , D, first, we compute the matrix Zk , the associated cost

is O(MnkPk). Second, we build the matrix Ξk, the computational cost is O(MnkPkQk), where

Qk =
∑

j∈pak
Pj . Finally, we estimate the parameters B̂k with the closed-form solution presented

in (21), the associated cost is O(MnkP
2
kQ

2
k + P 3

kQ
3
k +MnkPkQk). The number of operations

required can be reduced by using a functional expansion for xk(t).

In section 4.1, we learn the parameters of a functional DGM using the functional expansion

with FPCA bases and the functional expansion with pre-specified bases. We compare the two

approaches by considering prediction accuracy and computational time.

3.2 Structure Learning
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Figure 4: Illustrative example of a sequential manufacturing process.

In this section, we assume that the structure of the functional DGM is unknown. Our goal is to

take the observed functions in the left panel of Figure 3 and learn the structure depicted in the right

panel. The first step is to define the set of candidate parents cpak for each variable k, k = 1, · · · , D.

This step is critical as we need to guarantee that the learned DGM is, in fact, a DAG.

To avoid cycles in the DGM it is necessary to order the variables in such a way that only the

variables with lower orders can be candidate parents for the variables with higher orders (i.e., for

variable k, cpak ⊆ {1, · · · , k − 1}, k = 1, · · · , D). If the system satisfies assumption (A2), this

ordering exists and its definition is possible thanks to domain knowledge on the system.

We illustrate the definition of cpak, for k = 1, · · · , D, with an example of a sequentialmanufacturing

process. Suppose the process has three stages and three process variables per stage, as seen in Figure

4. The arcs represent the set of potential relationships between the variables in the system. Since

variables 1, 2, and 3 are on the same stage and do not have any predecessor, we can conclude that

they are independent. Therefore, the set of candidate parents for these variables is empty (cpak = ∅,

for k = 1, 2, 3). We see that variables in stage 2 are conditionally independent from each other

given the state of the variables in stage 1, thus cpak = {1, 2, 3} for k = 4, 5, 6. Finally, we have

that the variables in stage 3 are conditionally independent from each other and from the variables

in stage 1, given the state of the variables in stage 2. Therefore, cpak = {4, 5, 6} for k = 7, 8, 9.

This example shows how previous domain knowledge on the system is crucial to define the set of

candidate parents for each variable to guarantee that the learned DGM is a DAG.
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Once the set of candidate parents for each variable in the system is defined, inspired by the

neighborhood selection method, introduced byMeinshausen and Buhlmann (2006), we specify our

model as a penalized function-to-function linear regression. Using the notation of Section 3.1.2,

for every variable k, k = 1, · · · , D, we minimize the loss function:

L(bkj|j ∈ cpak) =
1

2
||xk −

∑
j∈cpak

Ξkjbkj||22 + γ
∑
j∈cpak

√
qkj||bkj||2 +

λ

2

∑
j∈cpak

||bkj||22. (22)

The first term corresponds to the least square loss function presented in Section 3.1.2. The second

term is a group LASSO penalty that encourages sparsity in the model by performing variable

selection (Hastie et al. (2015)), where qkj is a weight representing the size of vector bkj . The third

term is anL2 norm penalty as used in the elastic net regularization problem (Zou and Hastie (2005)).

If there is a group of highly correlated variables, the group LASSO penalty tends to select one

variable and ignore the others, adding the L2 norm penalty overcomes this limitation. For example,

consider a graph with three nodes, assume that node 1 is a parent of nodes 2 and 3, and that node 2

is a parent of node 3. It is clear that nodes 1 and 2 are highly correlated. When minimizing the loss

function for node 3, if theL2 norm penalty is not considered, the group LASSO penalty will enforce

sparsity and select only one of the two nodes as a parent. Finally, γ and λ are tuning parameters.

The goal of learning the structure of the functional DGM reduces to estimating bkj , for every

node k, and j ∈ cpak, k = 1, · · · , D. If all elements of bkj are shrunk to zero, for some j ∈

cpak, we conclude that node j is not a parent of node k. Thanks to the assumption (A2) and to

the corresponding definition of the set of candidate parents for each variable, we conclude that if

variable j belongs to the estimated set of parents of variable k, then variable j causes variable k.

To learn the structure of the graphical model, we minimize the loss function, L(bkj|j ∈ cpak),

for every node k in the system. We adopt a cyclic coordinate accelerated proximal gradient descent

algorithm, Hastie et al. (2015). First, we notice that the loss function is block coordinate separable.

That is, given the group of parameters bkl, for all l in cpak, l 6= j, the loss function in (22) can be
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reduced to

L(bkj) =
1

2
||rkj −Ξkjbkj||22 + γ

√
qkj||bkj||2 +

λ

2
||bkj||22 + C (23)

where rkj = xk−
∑

l 6=j Ξklbkl is the l
th partial residual, and C =

∑
l 6=j

√
qkj||bkl||2+

∑
l 6=j ||bkl||22

is a constant independent of bkj . To minimize the loss function, L(bkj|j ∈ cpak), we repeatedly

cycle through the candidate parents of node k. At the j th step, we update the coefficients bkj by

minimizing L(bkj), while holding bkl, l 6= j, fixed at their current values.

The next step is to find an optimization algorithm to minimize the loss function for each co-

ordinate. The proximal gradient descent (PGD) method is an optimization algorithm, focusing on

minimizing the summation of a group of convex functions, some of which are not differentiable.

As L(bkj) is the sum of f(bkj) =
1
2
||rkj − Ξkjbkj||22 + λ

2
||bkj||22 + C, which is convex and differ-

entiable, and g(bkj) = γ
√
qj||bkj||2, which is convex and non-differentiable, PGD can be used to

find the optimal solution through an iterative algorithm given by

b
(t+1)
kj = argmin

bkj

{
f(b

(t)
kj ) +

〈
∇f(b(t)kj ), bkj − b

(t)
kj

〉
+

1

2s(t)
||bkj − b

(t)
kj ||

2
2 + g(bkj)

}
(24)

where the super-indices (t) and (t+ 1) denote iteration numbers, and s(t) > 0 is a step-size param-

eter. At iteration t, PGD has a closed form solution as stated in the following proposition.

Proposition 1. The proximal gradient descent algorithm, with step-size s(t), at iteration t, has a

closed form solution in the form of a soft-tresholding function, given by (Proof in Appendix A):

z(t+1) ← b
(t)
kj + s(t)

(
Ξ>

kj(rkj −Ξkjb
(t)
kj )− λb

(t)
kj

)
b
(t+1)
kj ←

(
1−

s(t)γ
√
qkj

||z(t+1)||2

)
+

z(t+1)
(25)

To increase the convergence speed of the optimization algorithm, we use Nesterov’s accelerated

PGD method, which uses weighted combinations of the current and previous gradient directions.

The accelerated gradient method involves a pair of sequences {b(t)kj }∞t=0 and {η
(t)
kj }∞t=0, and some

initialization b
(0)
kj = η

(0)
kj . For iterations t = 1, 2, . . . the solution is then updated according to the
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following recursive equations:

z(t+1) ← η
(t)
kj + s(t)

(
Ξ>

kj(rkj −Ξkjη
(t)
kj )− λη

(t)
kj

)
b
(t+1)
kj ←

(
1−

s(t)γ
√
qkj

||zt+1||2

)
+

z(t+1)

η
(t+1)
kj ← b

(t+1)
kj +

t

t+ 3
(b

(t+1)
kj − b

(t)
kj )

(26)

Algorithm 1 summarizes the estimation procedure. This algorithm has a convergence guarantee,

if the component f is continuously differentiable with a Lipschitz gradient. It is clear that f(bkj)

is continuously differentiable, and by Proposition 2 we have that f(bkj) has a Lipschitz gradi-

ent, Therefore, we can conclude that the algorithm converges. Furthermore, the computational

complexity for each step of the PGD method is O(MnkPkQk).

Proposition 2. f(bkj) =
1
2
||rkj − Ξkjbkj||22 + λ

2
||bkj||22 + C has a Lipschitz gradient (i.e. there

exist a constantL such that for every α, β, ||∇f(α)−∇f(β)||2 ≤ L||α−β||2). (Proof in Appendix

B)

Algorithm 1: Structure learning algorithm for functional DGM

Set a convergence threshold ε > 0
for k = 1 to D do

Initialize bkj and ηkj for all j in cpak; set i = 1; let L1 − L0 = inf and L0 = inf

while |Li − Li−1| > ε do
for j ∈ cpak do

rkj = xk −
∑

l∈cpak,l 6=j Ξklbkl

||b1kj − b0kj ||22 = inf

t = 1
while ||b(t)kj − b

(t−1)
kj ||22 > ε do

z(t) = η
(t)
kj + s(t)(Ξ>

kj(rkj −Ξkjη
(t)
kj )− λη

(t)
kj )

b
(t)
kj =

(
1−

s(t)γ
√
qkj

||z(t)||2

)
+

z(t)

η
(t)
kj = b

(t)
kj +

t

t+ 3

(
b
(t)
kj − b

(t−1)
kj

)
t = t+ 1

Li = L(bikj |j ∈ cpak)
i = i+ 1
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The performance of the proposed method depends on the choice and number of basis functions

considered. In the simulations and case study, we use B-splines as the basis functions. The selec-

tion of the basis functions depends on the functional forms of the nodes and should be done based

on domain knowledge, or initial analysis. In order to learn the structure of the graph, we used a

pre-specified basis, since the parameter estimation is done in an analogous way to the univariate

case. However, the methodology can be extended to use a data-driven basis, as presented in section

3.1.1.

The choice of tuning parameters γ and λ can be made based on information-type criteria meth-

ods (e.g. AIC, BIC, GCV, Cp), or using cross-validation, which is a data-driven approach. In

this paper, we will follow the methods proposed in Yu and Feng (2014), as they have a good

performance for penalized high-dimensional linear regression models. In addition, their proposed

criterion to select the optimal tuning parameters can be easily adapted to the functional setting.

Specifically, we randomly split the dataset into training dataset designated by c, with sizemc, and

validation dataset designated by v, with size mv (mc + mv = M ), b times. For every node k

in the graph, we minimize the loss function L(bkj|j ∈ cpak), for each training dataset and each

combination of penalty parameters γ and λ, and obtain a model denoted byM
(γ,λ)
c,k with β̃

(γ,λ)
kj (t, s)

as the least square estimates. For each split, we use the corresponding validation data set to cal-

culate the values of the criterion function and average them across the b replicates. The modified

cross-validation criterion function, adapted to the functional setting, is given by

Lk(γ, λ) =
1

mv

∑
i∈mv

1

nk

nk∑
t=1

(x
(v)
ki (t)− x̃

(c)
ki (t))

2 (27)

where x̃
(c)
ki (t) =

∫ 1

0
β̃kj(t, s)xji(s)ds. This criterion is designed to remove the systematic bias

introduced by the shrinkage. We find the optimal γ̂k and λ̂k as the penalty parameters that result in

the smallest average criterion value. Finally, we fit a function-to-function regression for the model

M
(γ̂k,λ̂k)
k . After cycling through all the nodes in the graph, we obtain the structure for the functional

directed graphical model.
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Factors Description Levels

Number of nodes Number of nodes in the graph 10, 20

Density of arcs
Proportion of arcs included in the graph

compared with a fully connected graph

For 10 nodes: 0.2, 0.4

For 20 nodes: 0.1, 0.2

Signal-to-noise ratio

(SNR)

Ratio of variance of the response and noise

term
20, 200

Table 1: Simulation factor settings

With simulations (Section 4.2) and a case study (Section 5), we test the performance of the

proposed methodology to learn the structure of functional DGM.

4 Performance Evaluation via Simulations

In this section, we conduct two simulation studies to evaluate the performance of the proposed

methods. In the first study, we assume that the causal graph structure is known. We compare the

graph parameters obtained using FPCA basis and pre-specified basis with the existing benchmark.

In the second study, we evaluate the performance of our learning structure methodology when the

graph structure is unknown.

4.1 Known Graph Structure

To evaluate the performance of the proposed methodology, we simulate eight different scenarios,

in which we vary three different factors, as shown in Table 1. To build the different simulation

scenarios, the first step is to randomly create the DAGs. The four structures used in this section are

presented in Figure 5. The second step is to generate the functional random variables. The curves

are produced by following the simulation study in Luo and Qi (2017). The root nodes are sampled

from a Gaussian process with covariance function Σ1(t, t
′) = e−10(t−t′)2 . Noises are added in two

different ways. First, as a Gaussian process with covariance function Σ2(t, t
′) = e−0.1(t−t′)2 , and

then as white noise, using a Gaussian process with covariance function Σ3(t, t
′) = σ2I , where σ2

is defined using the SNR established for each scenario. For each node k, that is not a root node, and

for all j ∈ pak, we randomly generate βkj(s, t) =
∑3

l=1 γlkj(t)φlkj(s) where γlkj(t) and φlkj(s),
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(a) 10 nodes, density 0.2 (b) 10 nodes, density 0.4

(c) 20 nodes, density 0.1 (d) 20 nodes, density 0.2

Figure 5: DAGs generated for each scenario

l = 1, 2, 3, are Gaussian processes with covariance function Σ1. Finally, we generate the response

curves as

xk(t) =
∑
j∈pak

∫
βkj(s, t)xj(s)ds+ σkεk(t) (28)

where εk(t) is generated from a standard normal distribution, and σ2
k is defined by the SNR. We

generate all the curves with Ck = [0, 1], k = 1, · · · , D, and take samples over an equidistant grid

of size nk = 50.

To evaluate the performance of each parameter estimation method, we generate a set of M =
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100 samples and randomly divide the data into a training set of size 80 and a test set of size 20. We

calculate the mean square prediction error (MSPE), for each node, using the testing data as follows:

MSPEk =
1

Mtest

Mtest∑
i=1

1

50

50∑
t=1

(xki(t)− x̂ki(t))
2. (29)

To have an overall performance metric, we compute the average across all nodes,

MSPE =
1

D

D∑
k=1

MSPEk. (30)

We compare the results obtained using FPCA basis (labeled as FPCR) and pre-specified basis

(labeled as FDGM) with the existing benchmark proposed in Sun et al. (2017) (labeled as FGM).

The loss function in Sun et al. (2017) is given by ,

L(bkj(t)|j ∈ pak, t ∈ Ck) =
∑M

i=1

∑
t∈Ck

(
xki(t)−

∑
j∈pak

xji(t)bkj(t)
)2

+λ
∑

t∈Ck
||bkj(t)−

1

nk

∑
t∈Ck

bkj(t)||22
(31)

Each simulation scenario is replicated a thousand times, the average MSPE values and the

standard errors for the proposed methods as well, as for the benchmark, are reported in Table 2. As

can be seen from the table, both FPCR and FDGM outperform the benchmark FGM, consistently.

The MSPE is much higher for FGM. This occurs because the benchmark method does not consider

the correlation structure between different points in time of the functional nodes. Additionally, it

is important to notice that FGM method requires all the functional nodes to be observed on the

same grid, as xki(t) depends only on xji(t), for all j ∈ pak. This is a disadvantage when compared

to our proposed methods. Another disadvantage is that FGM has a tuning parameter, and, given

the nature of the penalty term, no closed-form solution exists. Therefore, the computational time

of this method is considerably larger than ours, as reported in Table 3. Both FPCR and FDGM

have a closed-form solution, with no tuning parameter. Furthermore, Table 3 shows that the fastest

method is FDGM.

In Table 4, the three methods are compared, using the MSPE for every node, for the scenario

with 10 nodes, density 0.4 (refer to Figure 5(b)), and a SNR of 200. It can be seen that, for the
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Nodes Density SNR FGM FPCR FDGM

10

0.2
200 2.1941 (0.0162) 0.0821 (0.0009) 0.0206 (0.0001)

20 2.4270 (0.0181) 0.2527 (0.0017) 0.2031 (0.0001)

0.4
200 4.5831 (0.0263) 0.0602 (0.0006) 0.0275 (0.0003)

20 4.9397 (0.0295) 0.2991 (0.0029) 0.2717 (0.0027)

20

0.1
200 0.5883 (0.0034) 0.0554 (0.0004) 0.0067 (0.0000)

20 0.6598 (0.0037) 0.1132 (0.0007) 0.0669 (0.0005)

0.2
200 9.4871 (0.0527) 0.3361 (0.0033) 0.0700 (0.0005)

20 9.3164 (0.0525) 0.8314 (0.0061) 0.7077 (0.0049)

Table 2: Comparison between methods using MSPE, 1000 simulations. Results are reported in

the form of mean (standard error).

Nodes Density FGM FPCR FDGM

10
0.2 5.8875 (0.0036) 0.4214 (0.0012) 0.1408 (0.0004)

0.4 28.9699 (0.0331) 0.4198 (0.0007) 0.2543 (0.0003)

20
0.1 13.8311 (0.0121) 0.8421 (0.0012) 0.1438 (0.0003)

0.2 17.7029 (0.0162) 0.8381 (0.0010) 0.5594 (0.0005)

Table 3: Comparison between methods in terms of computational time in seconds, 100 simulations.

Results are reported in the form of mean (standard error).

down-stream variables (i.e. higher-numbered nodes), the corresponding MSPEk increases. This

is due to the error propagation from the up-stream predictions to the down-stream predictions. From

Tables 2, 3, and 4, it is clear that FDGM is consistently the best method.

Node 2 Node 3 Node 4 Node 5 Node 6

FGM 0.3906 (0.0015) 0.0457 (0.0002) 0.0866 (0.0005) 0.1352 (0.0007) 1.7813 (0.0094)

FPCR 0.0082 (0.0001) 0.0011 (0.0000) 0.0089 (0.0001) 0.0036 (0.0000) 0.0129 (0.0001)

FDGM 0.0019 (0.0000) 0.0009 (0.0000) 0.0004 (0.0000) 0.0022 (0.0000) 0.0054 (0.0001)

Node 7 Node 8 Node 9 Node 10

FGM 0.0207 (0.0001) 0.5306 (0.0030) 8.4657 (0.0369) 29.791 (0.1840)

FPCR 0.0026 (0.0003) 0.1785 (0.0017) 0.1721 (0.0014) 0.1542 (0.0016)

FDGM 0.0002 (0.0000) 0.0035 (0.0000) 0.1269 (0.0013) 0.1059 (0.0012)

Table 4: Comparison between methods usingMSPEk, for the scenario with 10 nodes, density 0.4,

and signal-to-noise-ratio 200, 1000 simulations. Results are reported in the form of mean (standard

error).
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4.2 Structure Learning

In this simulation study, we evaluate the proposed structure learning method using a graphical

model with 10 nodes and a density of 0.2 (Figure 6 (a)). We consider two different SNR: 200 and 20.

The signals are generated as in the previous section. To learn the structure, we use cubic B-splines

with 8 knots as basis functions. We select γ from {0, 0.2, 0.4, 0.6, 0.8, 1, 3, 5, 7, 9, 11, 13, 15} and

λ from {10−10, 10−8, 10−6, 10−4, 10−2}. We use mv = M0.7 and b = 5. As mentioned earlier, we

assume that we have a directed acyclic graph with ordered nodes such that each child node has a

higher number than its parents. Therefore, we consider 1 as the root node, and learn the structure

in an orderly fashion for nodes 2 through 10. For node k, the set cpak is equal to {1, . . . , k − 1}.

The true model and the learned structure over a thousand simulation experiments are given in

Figure 6. For the two different simulation scenarios with different SNRs (i.e. 200, 20), the learned

structures coincide. This implies that the noise of the signals does not affect the structure learned.

However, the mean square prediction errors and their standard errors are different, as observed in

Table 5. As expected, when the noise increases, the SNR decreases, and, therefore, the prediction

task is harder.

To evaluate the recall and precision of the method, the confusion matrix is computed in Table 6.

We observe that the proposed method has a true positive rate of 100%. However, the learned struc-

ture has additional arcs. This is because the group LASSO penalty tends to select more variables.

As an overall performance measure, we use the Fβ-score, which is a harmonic mean of precision

and recall. We have:

Fβ = (1 + β2) · precision · recall
β2 · precision+ recall

(32)

where precision = TP/(TP + FP ), recall = TP/(TP + FN), and β is a coefficient that deter-

mines the weight assigned to precision and recall. TP, FP , and FN stand for true positive, false

positive, and false negative, respectively. If we assign the same weight to precision and recall,

the F1-score is 81%. However, in many applications, having a false negative is worse than a false

positive. In health prediction, for example, it is preferable to order further analysis for a healthy
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(a) True structure (b) Learned structure

Figure 6: True structure and structure learned for a functional DGM with 10 nodes, density 0.2,

and signal-to-noise ratio 200/20.

MSPE St. Error

SNR 200 0.13017 0.0049

SNR 20 0.25385 0.0053

Table 5: Mean square prediction error and standard error for functional DGM with 10 nodes, den-

sity 0.2, and SNR 200/20

patient that is believed to have a disease (false positive), than to send a sick patient home with no

treatment (false negative). Similarly, in a manufacturing plant, it is preferable to have a false alarm

(false positive) when predicting the quality of a product, than to mistakenly sell defective items

(false negatives). In a scenario in which recall is twice as important as precision, the F2-score is

92%.

The computational time to learn the parents of each node is presented in Table 7. We can

see that the computational time highly depends on the number of candidate parents for each node.

Furthermore, it is important to notice that the set of parents for each node can be estimated in

parallel which speeds-up the process of learning the functional DGM.
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Predicted Model

aTruea False

True True 13 0

Model False 6 26

Table 6: Confusion matrix for a DGMwith 10 nodes, density 0.2, and signal-to-noise-ratio 200/20.

Average Time (s.) Standard Error (s.)

Node 2 131.61 1.82

Node 3 545.06 6.85

Node 4 540.78 7.15

Node 5 1,219.67 15.30

Node 6 1,823.94 22.85

Node 7 2,501.29 32.43

Node 8 2,878.99 38.19

Node 9 4,810.76 71.78

Node 10 3,798.18 50.04

Table 7: Computational time to establish the parents of each node in the graph for a functional

DGM with 10 nodes and density 0.2.

5 Case Study

In this section, we illustrate how our method for learning a functional graphical model can be ap-

plied to real data. We focus on root-cause analysis for the internal combustion engine case study

described earlier. An internal combustion engine produces gas with polluting substances such as

nitrogen oxides (NOx). Gas emission control regulations have been set up to protect the environ-

ment and are becoming increasingly restrictive. To fulfill legislation requirements, a higher number

of on-board sensors is needed to monitor the performance of the combustion and the exhaust gas

after-treatment process. The compliance of combustion engines with emission regulations demands

more efficient and reliable emission control systems.

TheNOx Storage Catalyst (NSC) is an exhaust after-treatment system by which the exhaust gas

is treated after the combustion process in two alternating phases: adsorption (molecules of NOx

in the exhaust gas are captured by an adsorber), and regeneration (the stored NOx is reduced in

a catalytic process). The regeneration phase starts when the NOx adsorber is saturated. During

the regeneration phase, of duration ranging between 30 and 90 seconds, the engine control unit is
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programmed to maintain the combustion process in a rich air-to-fuel status. This status is related

to the amount of oxygen present during the combustion process. The relative air-to-fuel ratio nor-

malized by stoichiometry (λ-upstream), which is measured upstream of the NSC, is the indicator of

a correct regeneration phase. During regeneration, λ-upstream should assume values in the inter-

val [0.92,0.95]. However, faults occur, they are detected by a λ-upstream value falling bellow an

acceptability threshold of 0.9. This kind of fault, which is called λ-undershoot, worsens the NSC

performance during the regeneration phase. Although a λ-undershoot fault can be easily detected

by monitoring the λ-upstream sensor, the root-causes behind this behavior may change and are not

clearly defined.

Pacella (2018) developed a methodology of unsupervised classification for the profile data ob-

tained, under real driving conditions, by on-board sensors (channels) during λ-undershoot fault

events. Based on the clusters found, field experts analyze cluster patterns to further understand the

root-cause behind a fault event.

In this section, we learn the structure of the network of on-board sensors, for different clusters,

to identify the cause of λ-undershoot. The signals of 12 on-board sensors (Table 8) are available for

two clusters, cluster A has 20 fault events, and cluster B has 5 fault events. All signals are measured

over a two-second interval with a sample rate of 100Hz. The signals for each channel in clusters A

and B can be seen in Figure 7. From the signals in cluster A, the experts noted that the velocity is

constant (Ch12) and that there is no change in the accelerator pedal position (Ch02) or in the gear

index (Ch11). Furthermore, throttle valve (Ch10) is constantly opened for air intake, and Exhausted

Gas Recirculated (EGR) valve (Ch03) is actuated to bring a portion of the exhausted gas back to

the cylinders to reduce the temperature. For experts, this clearly represents a driving condition in

which no additional power and torque are required to the engine during the regeneration phase. On

the other hand, for cluster B, experts concluded that the fault occurred during an acceleration phase

of the vehicle, recognized by sudden changes in the throttle valve (Ch10). As a consequence of

the acceleration phase, the fluctuations of the intake air mass (Ch01) during the NSC regeneration

phase are higher and the EGR valve (Ch03) is not active. Additionally, the λ-upstream value
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(Ch07) presents an increasing trend in the final part of the window. This indicates the end of

the NSC regeneration phase, which is due to changes in the engine operation conditions, such as

a reduction of the amount of injected fuel charge in the second pre-injection (Ch05) and higher

engine rotational speed (Ch04) and downstream intercooler pressure (Ch08), Pacella (2018).

Using our proposed method, we learned the structure for the two available clusters. The struc-

tures obtained, after 100 replications of the learning process, can be observed in Figure 8. For the

case study, the set of candidate parents for each node was proposed by a group of field experts.

We used cubic B-splines with 8 knots as basis functions, and selected λ from {10−12, 10−8, 10−4}

and γ from {10−4, 10−3, 10−2, 10−1, 1}. We used mv = M0.7 and b = 5. We can observe that the

structures obtained support the observations of the experts. For cluster A, the conclusion is that the

λ-upstream sensor (Ch07) has no parents. This follows from the fact that most of the channels in

this cluster have a constant behavior, as cluster A refers to a stationary mode of the Diesel engine

without acceleration. In cluster B, the λ-upstream sensor (Ch07) has four parents: air aspirated

per cylinder (Ch01), engine rotational speed (Ch04), amount of injected fuel charge in the second

pre-injection (Ch05), and downstream intercooler pressure (Ch08). The structure learned agrees

with the observations made by the experts, the fault is generated by changes produced in the parent

nodes of the sensor due to an acceleration during the ending of the NSC regeneration phase. In ad-

dition, most of the arcs are the same for both clusters. This makes sense as both structures represent

the relationship of different sensors in a car. However, the difference in λ-undershoot root-cause

is detected as the parents for the λ-sensor (Ch07) change. The structures learned detect that, for

cluster A, the fault is due to a poor performance of the NSC controller or sensor, while, in the case

of cluster B, it is due to the dynamics of the engine operation, rather than to the NSC efficiency.

To further study the performance of the proposed method, for each one of the 100 replications,

we randomly divided the data into a training set, with 80% of the signals, and a test set, with 20%

of the signals. We compute theMSPEk for each variable k, k = 1, · · · , 12, for each cluster. The

results are reported in Table 9. We observe that the prediction is fairly accurate in both cases.

However, we obtain better results for Cluster A as we have more observations in this cluster, and,
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# Description Label Unit

1 air aspirated per cylinder Ch01 [mg/s]

2 accelerator pedal position Ch02 -

3 low pressure EGR valve Ch03 -

4 engine rotational speed Ch04 [rpm]

5 fuel in the 2nd pre-injection Ch05 [mg/s]

6 total quantity of fuel injected Ch06 [mg/s]

7 lambda upstream NSC Ch07 -

8 down-stream intercooler pressure Ch08 [mbar]

9 inner torque Ch09 [Nm]

10 aperture ratio of inlet valve Ch10 -

11 gear index Ch11 -

12 vehicle velocity Ch12 [km/h]

Table 8: List of on-board sensors (channels)

(a) Cluster A (b) Cluster B

Figure 7: 12 channels for clusters A and B. Each panel depicts the signals (black), and the mean

signal (red)

therefore, more information.

6 Conclusion

This paper proposed a novel method to learn functional DGM, while taking into account the cor-

relation structure between functional variables over time. First, we presented two methods to learn

the parameters of a functional DGM when the structure is known. Both are based on function-

to-function linear regression. In order to evaluate their performances, we conducted a simulation

study with eight different scenarios. We compared the performance of the proposed methods with a
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(a) Cluster A (b) Cluster B

Figure 8: Structure learned for clusters A and B

Label Description Cluster A Cluster B

Ch01 air aspirated per cylinder 0.0014 (0.0002) 0.0067 (0.0008)

Ch03 low pressure EGR valve 0.0014 (0.0002) 0.0387 (0.0026)

Ch04 engine rotational speed 0.0019 (0.0003) 0.0046 (0.0003)

Ch05 fuel in the 2nd pre-injection 0.0057 (0.0003) 0.0263 (0.0013)

Ch06 total quantity of fuel injected 0.0004 (0.0000) 0.0057 (0.0002)

Ch07 lambda upstream NSC 0.0005 (0.0000) 0.0025 (0.0002)

Ch08 downstream intercooler pressure 0.0018 (0.0001) 0.0164 (0.0008)

Ch09 inner torque 0.0005 (0.0000) 0.0006 (0.0000)

Ch10 aperture ratio of inlet valve 0.0004 (0.0000) 0.0131 (0.0014)

Ch11 gear index 0.0056 (0.0003) 0.0033 (0.0003)

Ch12 vehicle velocity 0.0083 (0.0005) 0.0015 (0.0000)

Table 9: MSPEk, k = 1, · · · , 12, for clusters A and B, over 100 replicates. Results are reported

in the form of mean (standard error).
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method presented in Sun et al. (2017). The mean square prediction errors for the proposed methods

were consistently smaller. Another advantage of the proposed methods is that they have a closed-

form solution, therefore, they are computationally more efficient than the benchmark. In a second

stage, we extended the methodology to the case when the structure of the graph is unknown. A

learning structure algorithm was presented. The parents of every node in the graph are selected

from a set of candidate parents, by iteratively fitting penalized function-to-function linear regres-

sions. The loss function used includes a group LASSO penalty, for variable selection, and an L2

penalty to handle group selection of correlated nodes. The cyclic coordinate accelerated proximal

gradient descent algorithm was employed to find the optimal model, and to learn the parameters.

In the simulation study, we saw that our method is able to learn a structure with a recall of 100%.

We obtained an F1-score of 81%. If we consider that in many real-life situations, a false negative is

worse than a false positive, the method performance improves, as the F2-score is 92%. In the case

study, we proved that the proposed method is able to detect different root-causes of λ-undershoot.

In this paper, we assumed that (A2) the functional variables can be represented as a DAG. This

assumption limits the size of the system of study. To learn the structure of the graph, it is necessary

to order the variables in the system in such a way that the lower ordered variables can be candidate

parents for the higher-ordered variables, but the reverse cannot happen. This ordering is based on

domain knowledge of the system and could be difficult to achieve when the number of variables is

large. If previous domain knowledge on the system is unavailable to create a topological ordering

of the variables, the task of learning a DGM becomes a challenging problem. It is possible to

define cpak = N \ {k}, for k = 1, · · · , D, where N is the set of nodes. However, this strategy is

computationally expensive and allows for undirected edges and cycles in the model. Therefore, the

learned structure is not guaranteed to be a DAG, and the causality relationship between variables

could be lost. Solutions to deal with undirected edges remain to be investigated.
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Appendix A Proof of Proposition 2: Proximal Gradient Descent Closed Form Solution

Proposition 2. The proximal gradient descent, with step-size s(t), at iteration t, presented in section

3.2, consists of the following two steps:

z(t+1) ← b
(t)
kj + s(t)

(
Ξ>

kj(rkj −Ξkjb
(t)
kj )− λb

(t)
kj

)
b
(t+1)
kj ←

(
1−

s(t)γ
√
qkj

||z(t+1)||2

)
+

z(t+1)

Proof. We want to solve:

b
(t+1)
kj = argmin

bkj

{
f(b

(t)
kj ) +

〈
∇f(b(t)kj ), bkj − b

(t)
kj

〉
+

1

2s(t)
||bkj − b

(t)
kj ||

2
2 + g(bkj)

}

We define the proximal map of a convex function g, as:

proxg(z) := argmin
θ

{
1

2
||z − θ||22 + g(θ)

}

We will show that the update has the equivalent representation:

b
(t+1)
kj = proxs(t)g

(
b
(t)
kj − s(t)∇f(b(t)kj )

)

We have:

b
(t+1)
kj = proxs(t)g

(
b
(t)
kj − s(t)∇f(b(t)kj )

)
= argminbkj

{
1
2
||b(t)kj − s(t)∇f(b(t)kj )− bkj||22 + s(t)g(bkj)

}
= argminbkj

{
1
2st
||b(t)kj − s(t)∇f(b(t)kj )− bkj||22 + g(bkj)

}
= argminbkj

{
∇f(b(t)kj )

>∇f(b(t)kj ) +
〈
∇f(b(t)kj ), bkj − b

(t)
kj

〉
+ 1

2s(t)
||bkj − b

(t)
kj ||22 + g(bkj)

}
⇔ argminbkj

{
f(b

(t)
kj ) +

〈
∇f(b(t)kj ), bkj − b

(t)
kj

〉
+ 1

2s(t)
||bkj − b

(t)
kj ||22 + g(bkj)

}
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Using the proximal gradient descent method, first, we take a gradient step:

z(t) = b
(t)
kj − s(t)∇f(b(t)kj ) = b

(t)
kj − s(t)

(
−ΞT

kj(rkj − Ξkjb
(t)
kj ) + λb

(t)
kj

)

Second, we update the parameters:

b
(t+1)
kj = proxs(t)g(z

(t+1))

= argminbkj
1

2s(t)
||z(t+1) − bkj||22 + g(bkj)

= argminbkj
1

2s(t)
||z(t+1) − bkj||22 + γ

√
qkj||bkj||2

We need to solve the previous optimization problem. Let:

h(bkj) =
1

2s(t)
||z(t+1) − bkj||22 + γ

√
qkj||bkj||2

Since, h is not differentiable at bkj = 0, we need to use sub-gradients. We have that:

∂h(bkj) =
1

s(t)
(bkj − z(t)+1) + γ

√
qkj∂||bkj||2

To minimize h, we need to solve:

0 ∈ ∂h(bkj)⇔
z(t+1) − bkj
s(t)γ
√
qkj

∈ ∂||bkj||2

We know that ∂||bkj||2 = bkj/||bkj||2 if bkj 6= 0 and ||bkj||2 ≤ 1 if bkj = 0. From this, we need to

consider two cases:

• bkj 6= 0⇒ ∂||bkj||2 = bkj/||bkj||2

We need to solve:

z(t+1) − bkj
s(t)γ
√
qkj

=
bkj
||bkj||2

⇔ bkj =
||bkj||2

||bkj||2 + s(t)γ
√
qkj

z(t+1)
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Since ||bkj||2 > 0 and s(t)γ
√
qkj ≥ 0, we have that bkj = az(t+1), where a is a positive

constant. We have that:

a =
a||z(t+1)||2

a||z(t+1)||2 + s(t)γ
√
qkj
⇒ a = 1−

s(t)γ
√
qkj

||z(t+1)||2

Since a > 0, we must have ||z(t+1)||2 > s(t)γ
√
qkj .

• bkj = 0

If bkj = 0 then z(t+1)/(s(t)γ
√
qkj) ∈ ∂||bkj||2. Therefore, ||z(t+1)/(s(t)γ

√
qkj)||2 ≤ 1. This

implies that ||z(t+1)||2 ≤ s(t)γ
√
qkj .

We can conclude that the optimal solution to the problem is:

b
(t+1)
kj =

(
1−

s(t)γ
√
qkj

||z(t+1)||2

)
+

z(t+1)

Therefore, the updates for the proximal gradient descent are:

z(t+1) ← b
(t)
kj + s(t)

(
Ξ>

kj(rkj −Ξkjb
(t)
kj )− λb

(t)
kj

)
b
(t+1)
kj ←

(
1−

s(t)γ
√
qkj

||z(t+1)||2

)
+

z(t+1)

Appendix B Proof of Proposition 3: Convergence of Proximal Gradient Descent Algorithm

Proposition 3. f(bkj) =
1
2
||rkj −Ξkjbkj||22 + λ

2
||bkj||22 + C has a Lipschitz gradient.
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Proof. Let α, β ∈ Rqkj ,

||∇f(α)−∇f(β)||2 = || −Ξ>
kj(rkj −Ξkjα) + λα +Ξ>

kj(rkj −Ξkjβ)− λβ)||2

= ||(Ξ>
kjΞkj + λI)(α− β)||2

≤ θmax(Ξ
>
kjΞkj + λI)||α− β||2

≤ L||α− β||2

where I is the identity matrix with same dimensions as Ξ>
kjΞkj , and θmax(Ξ

>
kjΞkj + λI) is the

maximum eigenvalue of Ξ>
kjΞkj + λI . Therefore, f has a Lipschitz gradient with L the maximum

eigenvalue of Ξ>
kjΞkj + λI .
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