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ABSTRACT
Multi-stream degradation signals have been widely used to predict the residual useful lifetime of
partially degraded systems. To achieve this goal, most of the existing prognostics models assume
that degradation signals are complete, i.e., they are observed continuously and frequently at regu-
lar time grids. In reality, however, degradation signals are often (highly) incomplete, i.e., containing
missing and corrupt observations. Such signal incompleteness poses a significant challenge for the
parameter estimation of prognostics models. To address this challenge, this article proposes a
prognostics methodology that is capable of using highly incomplete multi-stream degradation sig-
nals to predict the residual useful lifetime of partially degraded systems. The method first employs
multivariate functional principal components analysis to fuse multi-stream signals. Next, the fused
features are regressed against time-to-failure using (log)-location-scale regression. To estimate the
fused features using incomplete multi-stream degradation signals, we develop two computation-
ally efficient algorithms: subspace detection and signal recovery. The performance of the proposed
prognostics methodology is evaluated using simulated datasets and a degradation dataset of air-
craft turbofan engines from the NASA repository.
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1. Introduction

Inexpensive sensor technology has allowed many original
equipment manufacturers to install numerous sensors on
their products, especially capital-intensive assets. These sen-
sors are used to detect faults and determine the severity of
an asset’s degradation state through condition monitoring.
Prognostics is the process of transforming raw condition
monitoring data into high-fidelity degradation signals to
predict the Residual Useful Lifetime (RUL) of an asset.
Several types of multi-stream prognostics models have been
proposed in the literature. Examples include neural network
models (Xu et al., 2014), neuro-fuzzy methods (Gouriveau
and Zerhouni, 2012), parametric models that utilize data
aggregation and fusion methods (Liu et al., 2013; Liu and
Huang, 2014; Liu et al., 2015; Yan et al., 2016; Chehade
et al., 2017; Song et al., 2017; Chehade et al., 2018; Song
and Liu, 2018), and functional principal component analysis
(Liao and Sun, 2011; Fang et al., 2017a, 2017b). Most of
these models were developed on the premise that degrad-
ation signals are observed with high fidelity at frequent time
steps, which we refer to as complete signals (see Figure 1(a)
for an example). In reality, however, many of these complex
assets operate in harsh environments that often have a sig-
nificant impact on the quality of the raw data, due to errors
in data acquisition, communication, read/write operations,
etc. In addition, different systems may have different data

acquisition/sampling frequencies. Consequently, the resulting
degradation signals often contain significant levels of miss-
ing and corrupt observations (a.k.a. incomplete signals) as
illustrated in Figure 1(b). Such signal incompleteness results
in inaccurate or even intractable parameter estimation for
most of the existing prognostics models, and thus compro-
mises their predictability. To address this challenge, this
article focuses on developing a multi-sensor prognostics
methodology for capital-intensive assets with highly incom-
plete degradation signals.

The prognostics model in this article is developed by
integrating Multivariate Functional Principal Component
Analysis (MFPCA) and (Log)-Location-Scale (LLS) regres-
sion. MFPCA has been used in prognostics (Fang et al.,
2017a, 2017b). It is a nonparametric functional data analysis
technique that captures the joint variation of multi-stream
functional data (i.e., degradation signals in our article). It
reduces the dimensionality of multi-stream degradation sig-
nals and provides low-dimensional fused features known as
FPC-scores. The FPC-scores are then regressed against
Time-To-Failure (TTF) using LLS regression. LLS regression
has been widely used in reliability engineering and survival
analysis since their response variables are general and
include a variety of TTF distributions, such as (log)-normal,
(log)-logistics, Smallest Extreme Value (SEV), and Weibull
(Doray, 1994). The regression coefficients of the LLS
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regression-based prognostics model can be estimated using
Maximum Likelihood Estimation (MLE) given the FPC-
scores (Doray, 1994). FPC-scores can be calculated by pro-
jecting degradation signals onto the centered degradation
signal matrix’s (left) singular vectors, which can be estimated
using Singular Value Decomposition (SVD) or Eigen
Decomposition (ED). However, SVD and ED are not suit-
able for incomplete degradation signals. To address this
challenge, this article proposes two new algorithms to esti-
mate FPC-scores in applications involving (highly) incom-
plete degradation signals.

The first algorithm, which we designate as subspace detec-
tion, is inspired by the fact that the singular vectors of the
centered degradation signal matrix can be computed in differ-
ent coordinate systems. In other words, in different coordin-
ate systems, the singular vectors of the centered degradation
signal matrix remain unchanged, except that they have differ-
ent coordinate values. Therefore, we will first build a new
coordinate system (relative to the default coordinate system
that degradation signals are in). Next, the incomplete degrad-
ation signals are projected into the new coordinate system to
get complete projected signals. Third, SVD is applied to the
projected signals (in the new coordinate system) to get singu-
lar vectors, which are then transformed back to the default
coordinate system. In detail, the proposed subspace detection
method comprises the following steps:

1. Use the incomplete signals to extract a set of orthogonal
basis vectors that span the column space of degradation
signals (these orthogonal basis vectors define the new
coordinate system).

2. Expand the incomplete degradation signals as a linearly
weighted combination of the basis vectors. By doing so,
the degradation signal from each system is represented

by a weight vector, which contains new coordinate val-
ues of the signal in the new coordinate system.

3. Construct a weight matrix using the weight vectors and
center the matrix.

4. Apply SVD on the centered matrix to compute singu-
lar vectors.

5. Carry out an inverse transformation to transform the
singular vectors back to the default coordinate system.

The second algorithm, which we refer to as signal recov-
ery, starts with recovering complete degradation signals
using their incomplete observations. Next, the recovered sig-
nals from all the sensors are concatenated to construct a sig-
nal matrix. Finally, the signal matrix is centered and the
centered matrix is used to compute singular vectors and
FPC-scores via a newly developed incremental SVD algo-
rithm, which is computationally efficient and mem-
ory economic.

The remainder of this article is organized as follows. In
Section 2, we review some of the relevant papers that also
focus on developing prognostics models for missing data
applications. In Section 3 we present the prognostics meth-
odology. We then discuss the subspace detection algorithm
in Section 4.1 and the signal recovery algorithm in Section
4.2. The performance of our model is evaluated using simu-
lated datasets in Section 5 and an aircraft turbofan engine
degradation dataset in Section 6. Finally, Section
7 concludes.

2. Literature review

Many prognostics models have been developed in the litera-
ture (Gouriveau and Zerhouni, 2012; Liu et al., 2013; Liu
and Huang, 2014; Xu et al., 2014; Liu et al., 2015; Yan et al.,

Figure 1. An illustration of complete and incomplete multi-stream degradation signals.
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2016; Chehade et al., 2017; Song et al., 2017; Chehade et al.,
2018; Song and Liu, 2018). However, most of them assume
that degradation signals are complete. Several key papers
have investigated degradation modeling in the context of
missing observations (Liao and Sun, 2011; Zhou et al., 2011,
2012; Sun et al., 2014; Fang et al., 2015; Song et al., 2019).
Song et al. (2019) developed a supervised classification-based
prognostics model, which can be used for applications with
incomplete multi-sensor degradation signals. Specifically, the
authors first used random-effect models to estimate the
underlying signal paths. The estimated underlying signal
paths were then utilized to estimate a multi-dimensional
failure surface via supervised classification. The method pro-
posed by Song et al. (2019) is an interesting and novel
attempt to predict the residual lifetime of systems with
multi-stream degradation signals and the numerical studies
indicated that the proposed method is promising. However,
the method in Song et al. (2019) is based on random-effect
models, which are challenging to use for many applications
since it is often difficult to determine the parametric form
of underlying degradation paths (Zhou et al., 2011). This
challenge is significantly augmented if degradation signals
are highly incomplete, which is the case considered by this
article. For example, it is usually difficult to determine an
appropriate parametric form of a signal when only 5% of its
observations are available. Unlike Song et al. (2019), our
proposed method is semi-parametric and does not need a
parametric model to characterize the underlying degrad-
ation process.

Zhou et al. (2011), Zhou et al. (2012), and Fang et al.
(2015) focused on prognostics models for applications with
fragmented and sparsely observed degradation signals. Liao
and Sun (2011) and Sun et al. (2014) proposed methodolo-
gies to recover missed observations of incomplete signals.
All the methodologies in Zhou et al. (2011), Zhou et al.
(2012), Fang et al. (2015), and Liao and Sun (2011), Sun
et al. (2014) were based on Functional Principal Component
Analysis (FPCA) and a kernel smoother. FPCA was
employed to reduce the dimensionality of degradation sig-
nals and provide low-dimensional fused features (i.e., FPC-
scores), which were estimated from incomplete degradation
signals using kernel smoother algorithms (Yao et al., 2005).
A kernel smoother is a statistical technique to estimate a
real-valued function as the weighted average of neighboring
observed data. The weight is defined by a kernel function,
such that closer points are given higher weights. Since all
the prognostics models in Zhou et al. (2011), Zhou et al.
(2012), Fang et al. (2015), and Liao and Sun (2011), Sun
et al. (2014) used FPCA and a kernel smoother, they share
some common limitations. The first limitation is the
assumption that degradation signals share the same time
domain, that is, signals have the same length. In reality,
however, signals have different lengths due to truncation. To
be specific, a system is usually stopped for repair or replace-
ment when its degradation signal crosses a predefined
“failure threshold,” and, thus, no further observations can be
acquired beyond that point. In such scenarios, using FPCA
results in a significantly biased estimate of the mean and

covariance functions (Zhou et al., 2012). To address this
challenge, Zhou et al. (2012) proposed a procedure that
relied on axis transformation. However, the approach was
limited to strictly monotonic signals with very low noise lev-
els. An alternative approach, time-varying regression, was
proposed by Fang et al. (2015) to address the time-domain
challenge. The framework iteratively selects the training sys-
tems and truncates their signals so that the truncated train-
ing signals and the test signal have the same length. One
limitation of the time-varying structure in Fang et al. (2015)
is that it is computationally expensive, as it chooses new
training datasets at different time points, which requires re-
estimating the model each time a new observation is
observed from a fielded system. In addition, it does not
make full use of the available dataset. To address this chal-
lenge, this article proposes a signal transformation method-
ology based on polar-domain transformation. The
transformation of degradation signals from the time domain
to the polar domain allows them to have the same lengths.
The details of the polar transformation method are discussed
in Section 3.1. The second common limitation for the prog-
nostics models in Zhou et al. (2011), Zhou et al. (2012),
Fang et al. (2015), and Liao and Sun (2011), Sun et al.
(2014) is that they are computationally expensive. The com-
putational burden mainly results from the kernel smoothers,
which are used to estimate the signal features (i.e., FPC-
scores). Specifically, a one-dimensional kernel smoother is
used to estimate the mean function, and a two-dimensional
kernel smoother is utilized to smooth the covariance func-
tion. It is well-known that kernel smoothers are computa-
tionally intensive (Yao et al., 2005), especially for large-scale
signal matrices/covariance matrices. To reduce the computa-
tional burden, this article presents computational efficient
estimation algorithms, which will be discussed in detail in
Section 4.

3. Degradationmodeling and prognostics framework

This article focuses on developing a prognostics model for
systems that are monitored by multiple sensors. We assume
that data from each sensor is synthesized into one type of
degradation signal. The prognostics model is established by
using functional LLS regression, in which the covariate is
the multi-stream degradation signals and the response is
TTF. We denote the degradation signal for the pth sensor of
system i as xi, pðtÞ, for i ¼ 1, :::,N and p ¼ 1, :::, P: Here, N
is the number of systems (we use a system to refer an asset,
piece of equipment, or machine), P is the number of sensors
monitoring each system, and t 2 ½0,T� is degradation time.
Denote the TTF of system i as ~yi, we build the following
functional LLS regression to model the relationship between
the TTF and degradation signals:

yi ¼ c0 þ
ðT
0
cðtÞ>xiðtÞdt þ r�i (1)

where yi ¼ ~yi for a location-scale model and yi ¼ ln ð~yiÞ for
a log-location-scale model. c0 is the intercept, cðtÞ ¼
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ðc1ðtÞ, :::, cPðtÞÞ> is the regression coefficient function and
xiðtÞ ¼ ðxi, 1ðtÞ, :::, xi, PðtÞÞ> is the concatenated degradation
signal from all P sensors. r is the scale parameter and �i is
the random noise term with a standard location-scale dens-
ity f ð�Þ: For example, f ð�Þ ¼ exp ð�� exp ð�ÞÞ for SEV dis-
tribution and f ð�Þ ¼ 1=

ffiffiffiffiffi
2p

p
exp ð��2=2Þ for normal

distribution. Consequently, yi has a density in the form of

1
r
f

yi � c0 �
Ð T
0 cðtÞ>xiðtÞdti
r

 !
:

3.1. Polar-domain transformation of
degradation signals

Functional LLS regression in Equation (1) requires that the
degradation signals from all the systems share the same time
domain. In reality, however, degradation signals are
observed in different time domains, as they are usually trun-
cated by a predefined failure threshold. Specifically, a system
is considered to be failed if its degradation signal crosses the
failure threshold. Once failed, the system is stopped for
repair or replacement, and thus no further observation can
be acquired beyond that point. As an illustration, Figure
2(a) shows degradation signals from five systems measured
by one sensor. In the figure, only the solid portions can be
observed. To address this challenge, we propose a polar
coordinate transformation method. It can be seen from
Figure 2(a) that the observable portions of all the degrad-
ation signals share the same polar domain, ½0, p=2�: This
inspires us to re-express degradation signals using their
polar coordinates. To be specific, we apply the following
transformation on observation ðt, xi, pðtÞÞ :

h ¼ arctan
t

mp � xi, pðtÞ
� �

ri, pðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ðmp � xi, pðtÞÞ2

q
,

8>><
>>: (2)

where mp is the failure threshold for sensor p. By applying the
transformation in Equation (2), all the transformed signals

from sensor p, i.e., fri, pðhÞgNi¼1, share the same domain ½0, p
2�

(see Figure 2(b)). As a result, the functional LLS regression
model in Equation (1) can be expressed as follows:

yi ¼ a0 þ
ðp

2

0
aðhÞ>riðhÞdhþ r�i, (3)

where a0 is the intercept, aðhÞ ¼ ða1ðhÞ, :::, aPðhÞÞ> is the
regression coefficient and riðhÞ ¼ ðri, 1ðhÞ, :::, ri, PðhÞÞ> is the
transformed degradation signals for system i. Note that
although the polar coordinate transformation method
requires the existence of a failure threshold for sensor p, the
value of the threshold (i.e., mp) is not required to be known.
In reality, the maximum value of degradation observations
from sensor p is used as the threshold for the coordinate
transformation.

3.2. Multi-stream degradation signal fusion

The estimation of the functional LLS regression model in
Equation (3) is nontrivial, due to the existence of an inte-
gral. To address this challenge, we follow the method pro-
posed in Fang et al. (2017a). Specifically, we employ
MFPCA to transform functional LLS regression into classic
LLS regression. MFPCA is an extension of FPCA. It works
by concatenating different types of degradation signals into
a single vector, and FPCA is then applied to the concaten-
ated vector in a conventional manner. One benefit of
MFPCA is that it is capable of capturing the auto- and
cross-correlation within/among signal streams and providing
low-dimensional fused features known as FPC-scores.

Let the mean function of the degradation signals (i.e.,
friðhÞgNi¼1) be lðhÞ ¼ ðl1ðhÞ, :::, lPðhÞÞ> and its covariance
function be Cðh, h0Þ: Then Cðh, h0Þ is a P � P block matrix,
where the (g, h)th block is the covariance function between
sensors g and h, for g ¼ 1, :::, P and h ¼ 1, :::,P, with h, h0 2
½0, p2�: Using Mercer’s theorem, Cðh, h0Þ can be decomposed

as Cðh, h0Þ ¼P1
k¼1 gkwkðhÞwkðh0Þ>, where g1 � g2 � :::, are

eigenvalues, and wkðhÞ ¼ ðwk, 1ðhÞ, :::,wk,PðhÞÞ> for k ¼

Figure 2. (a) The truncation of degradation signals and (b) polar coordinate transformation.
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1, 2, ::: are the corresponding eigenfunctions. Thus, we can
rewrite riðhÞ as follows:

riðhÞ ¼ lðhÞ þ
X1
k¼1

fi, kwkðhÞ, (4)

where fi, k ¼
Ð p

2
0 ðriðhÞ � lðhÞÞ>wkðhÞdh are the FPC-scores.

It is often sufficient to use a few eigenfunctions correspond-
ing to the largest eigenvalues to approximate signals with a
reasonable accuracy. Using only K eigenfunctions, Equation

(4) can now be rewritten as riðhÞ ¼ lðhÞ þPK
k¼1 fi, kwkðhÞ:

K can be determined using Fraction-of-Variance Explained
(FVE) or cross-validation (Yao et al., 2005). Since the set of
eigenfunctions fwkðhÞg1k¼1 forms a complete set of orthonor-
mal basis functions vectors, aðhÞ can be expanded to aðhÞ ¼P1

k¼1 bkwkðhÞ (Yao et al., 2011). Therefore, the functional
LLS model in Equation (3) can be expressed as follows
(details of the derivation can be found in Fang et al.
(2017a)):

yi ¼ b0 þ b>fi þ r�i, (5)

where b0 is the intercept, b ¼ ðb1, :::, bKÞ> 2 R
K is the coef-

ficient and fi ¼ ðfi, 1, :::, fi,KÞ> 2 R
K is the FPC-score vector

for system i, which can be estimated from degradation sig-
nals. Given fi, the parameters ðb0,b,rÞ in Equation (5) can
be estimated using MLE (Doray, 1994).

3.3. Fused feature estimation with complete signals

In this subsection, we discuss how to estimate the FPC-
scores (fi in Equation (5)) when the degradation signals are
complete. Denote the discrete observation time point in the
polar domain for sensor p as fHp, 1,Hp, 2, :::,Hp, Jpg, where Jp
is the number of observations for sensor p. Then, the dis-
crete observations for sensor p of system i are li, p ¼
ðri, pðHp, 1Þ, ri, pðHp, 2Þ, :::, ri, pðHp, JpÞÞ> 2 R

Jp : Thus, the con-
catenated signals from all the P sensors of system i is si ¼
ðli, 1, li, 2, :::, li, PÞ> 2 R

M, where M ¼PP
p¼1 Jp: Then, the

observed degradation signal matrix from all the P sensors
and N systems is represented by S ¼ ðs1, s2, :::, sNÞ 2 R

M�N :
Without loss of generality, we assume N < M.

The FPC-scores in Equation (5) can be estimated
as follows:

(i) Estimating signal mean. The signal mean is computed
by taking the average over all the systems, i.e., l̂ ¼
1
N

PN
i¼1 si, where si is the ith column of S.

(ii) Centralizing signal matrix. This is achieved by sub-
tracting the signal of each system to the mean signal
estimated in (i): ~si ¼ si � l̂, for i ¼ 1, :::,N: As a
result, ~S ¼ ð~s1,~s2, :::,~sNÞ is the centered signal matrix.

(iii) Estimating eigenvectors. Eigenvectors are estimated by
solving the eigen equation ~Sw ¼ gw, which can be
achieved by applying SVD on matrix ~S: The resulting
eigenvalues associated with the eigenvectors are
denoted as fĝk, ŵkg for k ¼ 1, :::,N: FVE is used to
select the first K eigenvectors as follows: K ¼

infkfFk � Dg, where Fk ¼
Pk

j¼1 g
2
j =
PN

j¼1 g
2
j and D 2

ð0, 1� is the FVE threshold (Fang et al., 2017a).
(iv) Computing the FPC-scores. The kth FPC-score of sys-

tem i is fi, k ¼ ~s>i ŵk, for k ¼ 1, :::,K and fi ¼
ðfi, 1, fi, 2, :::, fi,KÞ>:

Steps (i)-(iv) estimate the FPC-scores of multi-stream
degradation signals only if the signals are complete. If the
signals are incomplete, steps (i)-(iv) cannot be used. In the
following section, we develop two algorithms, namely sub-
space detection and signal recovery, to estimate FPC-scores
from incomplete multi-stream degradation signals.

4. Fused feature estimation using incomplete
degradation signals

In this section, we develop two new algorithms to estimate
FPC-scores from incomplete multi-stream degradation sig-
nals. Both algorithms are inspired by the Maximum Margin
Matrix Factorization (MMMF) method proposed in Srebro
et al. (2005). MMMF is a widely used collaborative filtering
(also known as matrix completion) method that focuses on
recovering the unobserved entries of a partially observed
matrix (i.e., the incomplete degradation signal matrix in this
article). It is formulated as a semi-definite program that
finds two low-norm latent factor matrices to simultaneously
approximate the observed entries under some loss measure
and predict the unobserved entries. From the statistical
learning point of view, MMMF can be seen as a signal
expansion method, and the two factor matrices can be
treated as a weight matrix and a basis matrix respectively.
This is because each column of the recovered matrix can be
expressed as a linearly weighted combination of a set of
basis vectors, where the rows of the second factor matrix are
the basis vectors and the corresponding column of the first
factor matrix are the weights. The set of basis vectors in the
second factor matrix spans the low-dimensional subspace in
which the recovered matrix lies. Note that the low-dimen-
sional subspace is the same subspace spanned by the left sin-
gular vectors of the signal matrix. This inspires us to
propose our first algorithm, i.e., subspace detection, which
computes the singular vectors of the signal matrix using a
set of its general basis vectors from MMMF and computes
FPC-scores by projecting incomplete signals to the singular
vectors. Our second algorithm, i.e., signal recovery, directly
computes the singular vectors and FPC-scores using the
recovered signal matrix from MMMF. To accomplish this,
instead of using regular SVD, which is computationally
intensive and memory expensive, we propose a novel incre-
mental SVD that computes the singular vectors by adding
one column (or row) of the signal matrix at a time.

Suppose that a historical dataset is available for model
training and parameter estimation. The dataset contains
incomplete multiple degradation signals from N systems.
Denote the discrete observation time point (in the polar
domain) for sensor p as fhp, 1, hp, 2, :::, hp, Jpg, where Jp is the
number of unique observation time points for sensor p. We
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construct the degradation signal matrix S by concatenating
multi-stream signals from all sensors (illustrated in Table 1).

The dimensionality of the signal matrix is M � N, where
M ¼PP

p¼1 Jp is the total number of unique observation
timestamps from all sensors. The cross markers in S repre-
sent the entries whose values were observed and blank
entries are the missing observations. We let Xi �
f1, 2, :::,Mg be the index of the entries observed in the ith
row of S and X ¼ fði, jÞ : j 2 Xi, i ¼ 1, :::,Ng be the index
of observed entries of S. Following the notations defined
above, we denote the incomplete signal matrix as SX and
the concatenated incomplete degradation signals from sys-
tem i as sXi

i :
To recover the missing entries of signal matrix S using its

incomplete observations SX, MMMF considers the following
matrix factorization: S ¼ XY, where X 2 R

M�K and Y 2
R

K�N are two factor matrices. K is the rank of signal matrix
S. Given the incomplete observed signal matrix SX, MMMF
focuses on finding two factor matrices such that their prod-
uct has the smallest rank and best matches the observed
entries of SX: Mathematically, it can be formulated as the
following optimization problem (Srebro et al., 2005;
Mazumder et al., 2011):

min
X,Y

jjSX � ðXYÞXjj2F þ kðjjXjj2F þ jjYjj2FÞ, (6)

where jj � jj2F is the Frobenius norm and k is the tuning par-
ameter. The rank K and tuning parameter k can be selected
using cross-validation. The first term in optimization criter-
ion (6) guarantees that the recovered matrix (i.e., XY) best
matches the observed incomplete signal matrix SX and the
second term guarantees the recovered matrix has the small-
est rank. Many algorithms have been developed in the litera-
ture to solve optimization criterion (6), such as the ones in
Srebro et al. (2005), Balzano et al. (2010), and Toh and Yun
(2010). Solving optimization problem (6) gives factor matri-
ces X and Y, from which we can recover the signal matrix
S. In the following subsections, we introduce two algorithms
to compute the FPC-scores in Equation (5) using the factor
matrices X and Y.

4.1. The subspace detection algorithm

As mentioned earlier, the solution of MMMF can be seen as
a signal expansion technique that decomposes each degrad-
ation signal as a weighted linear combination of a set of
basis vectors, where both the weights and basis vectors are
estimated from the degradation signals’ incomplete observa-
tions. For example, the signal from system i (i.e., si, the ith
column of signal matrix S) is expanded as a weighted linear
combination of the columns of X, i.e., si ¼ Xyi, where the

weights yi 2 R
K form the ith column of Y. Therefore, X is

the basis matrix and Y is the weight matrix. Since the col-
umns of X constitute a set of basis vectors for the signal
matrix S, they span the column space of S. In addition, since
the signal matrix S and the centered signal matrix ~S have
the same column space, the columns of X also span the col-
umn space of ~S:

Recall that MFPCA first computes the (left) singular vec-
tors of the centered signal matrix ~S and then projects each
column of ~S onto the singular vectors to compute FPC-
scores. Therefore, computing the singular vectors of ~S is a
crucial step for FPC-scores estimation. The unknown singu-
lar vectors also span the column space of ~S: In other words,
both the unknown singular vectors and the columns of X
span the same linear space. This inspires us to develop the
following new algorithm to compute the singular vectors of
~S using X:

Algorithm 1: Computing the SVD of ~S using S and X.

Input: An uncentered matrix S 2 R
M�N and one set of

its basis vectors X 2 R
M�K

(1) Orthonormalize X to get a set of orthonormal
basis Q 2 R

M�K :
This can be achieved by applying Gram–Schmidt
orthonormalization, QR decomposition, or SVD on X.

(2) Compute the projected weight matrix:
W ¼ ðw1,w2, :::,wNÞ 2 R

K�N , where wi ¼ Q>si 2 R
K

for i ¼ 1, :::,N:
(3) Centralize the weight matrix:

~W ¼ W � �W , where �W ¼ ð�w, �w, :::, �wÞ
and �w ¼ 1

N

PN
i¼1 wi:

(4) Apply SVD on the centered weight matrix:
~W ¼ URV>, where U 2 R

K�K ,R 2 R
K�N

and V 2 R
N�N

(5) Set ~U ¼ QU , ~R ¼ R, ~V ¼ V:
Output: SVD of the centered matrix ~S 2 R

M�N , which
is ~S ¼ ~U ~R ~V

>
:

Proposition 1. Given an uncentered matrix S and one set of
its basis vectors X, Algorithm 1 computes the SVD of the cen-
tered matrix ~S:

Proposition 1 suggests that Algorithm 1 indeed computes
the singular vectors of ~S using S and X (the proof can be
found in the Appendix). From a geometrical point of view,
these singular vectors are in a coordinate system (denoted
by coordinate system I, which is also the coordinate system
that the degradation signals lie in) in the column space of ~S:
To compute the singular vectors, Step (1) of Algorithm 1
constructs another coordinate system (denoted by coordin-
ate system II) in the same column space. Step (2) calculates
the coordinates of each system’s degradation signal (i.e.,

Table 1. An illustration of signal matrix S>:

Sensor 1 Sensor 2 � � � Sensor P

h1, 1 h1, 2 � � � h1, J1 h2, 1 h2, 2 � � � h2, J2 hP, 1 hP, 2 � � � hP, JP
System Index 1 � � � � � � � � � � � � � � �

2 � � � � � � � � � � � � � � � � �
..
. � � � � � � � � � � � � � � � �
N � � � � � � � � � � � � � � �
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each column of S) in coordinate system II. Step (3) centers
the coordinated signals and Step (4) applies SVD on the
centered coordinated signals. In other words, Steps (2)–(4)
implement SVD on the centered signals and compute the
singular vectors in coordinate system II. Finally, Step (5)
applies a coordinate system transformation, which trans-
forms the singular vectors from coordinate system II to
coordinate system I.

Algorithm 1 computes the singular vectors of the cen-
tered signal matrix ~S using the uncentered signal matrix S
and a set of its basis vectors X. However, Algorithm 1 is
designated for complete signals only. This is because Step
(2) computes the projection weights by using wi ¼ Q>si,
which requires si to be completely observed. In this article,
the observed degradation signal matrix SX is incomplete,
and thus cannot directly be used to compute the projection
weights. We notice that si is a weighted linear combination
of the columns of Q. Therefore, to address the missing data
challenge, we compute the projected weights using
minwi jjQXiwi � sXi

i jj2, where matrix QXi 2 R
jXij�K consists

the jXij rows of matrix Q indexed by the set Xi. This results
in the solution wi ¼ ðQXi>QXiÞ�1QXi>sXi

i : Therefore, we
revise the weight computation method in Step (2) such that
Algorithm 1 works with an incomplete signal matrix.

Using matrix X from MMMF and the incomplete signal
matrix SX, we compute the SVD of the centered matrix ~S ¼
~U ~R ~V

>
via Algorithm 1. Then, the FPC-scores can be com-

puted by using Z ¼ ~U
>~S ¼ ~R ~V

>
, where Z ¼

ðf1, f2, :::, fNÞ 2 R
K�N and fi is the FPC-score vector for sys-

tem i (see Equation (5) for details).
The proposed subspace detection algorithm is computa-

tionally efficient and memory economic. To be specific, the
main computational burden of the subspace detection algo-
rithm comes from the computation of the SVD of matrix ~W
with a dimensionality of R

K�N : However, the classic algo-
rithm in Section 3.3 computes the SVD of matrix ~S with a
dimensionality of R

M�N , which is computationally more
intensive than the subspace detection algorithms
since K � minðM,NÞ:

4.2. The signal recovery algorithm

MMMF recovers the missing entries of the signal matrix S.
To compute the FPC-scores, a straightforward way is to cen-
ter the recovered matrix and then apply SVD on the cen-
tered matrix directly. However, SVD is computationally
expensive and memory intensive. To address this challenge,
we develop an incremental SVD algorithm that computes
the SVD of the centered signal matrix by adding one col-
umn at a time.

Many incremental SVD algorithms have been developed in
the literature (Bunch and Nielsen, 1978; Brand, 2002; Balzano
and Wright, 2013). However, these algorithms are designed
for either full-rank or low-rank matrices. A matrix is full-rank
if its rank equals the number of its rows or columns, which-
ever is smaller. That is, a matrix with m rows and n columns
is full-rank if its rank K ¼ minfm, ng, or equivalently,P

k:rk 6¼0 1 ¼ minfm, ng, where rk is the singular value of the

matrix and
P

k:rk 6¼0 1 represents the number of nonzero sin-
gular values. For a full rank matrix, Bunch and Nielsen(1978)
developed an incremental SVD algorithm, which computes
the SVD of the matrix by adding one column at a time. The
singular vector matrices and singular value matrix are updated
and their size grows as columns are added. Balzano and
Wright (2013) pointed out that the algorithm in Bunch and
Nielsen (1978) can be modified such that it works for low-
rank matrices (i.e., matrices whose rank K < minfm, ng, or
equivalently,

P
k:rk 6¼0 1 < minfm, ng). This can be achieved

by avoiding adding extra dimensions to the singular vector
matrices and singular value matrix if the newly added column
already lies in the space spanned by the singular vectors.

Unfortunately, the degradation signal matrix considered
in this article is neither low-rank nor full-rank but approxi-
mately low-rank. Approximately low-rank means that some
of the singular values are very small and approximately, but
not exactly, equal zeros. A degradation signal matrix is usu-
ally approximately low-rank because degradation signals are
contaminated with noise. The small singular values that are
approximately zeros represent the variation resulting from
the signal noise. For matrices with approximately low-rank,
the existing incremental SVD algorithms do not work. To
address this challenge, we propose an incremental SVD algo-
rithm, which is summarized in Algorithm 2.

Algorithm 2: Incremental SVD for matrices with
approximately low-rank

Input: Matrix ~S½M�N�, e ¼ 1� e�6

Output: SVD of ~S, i.e., ~S½M�N� ¼ U ½M�M�R½M�N�V>
½N�N�

(1) Initialization: d ¼ 1,U½M�d� :¼ ~s1
jj~s1 jj ,R½d�d� :¼ jj~s1jj,V½d�d� :¼ 1

(2) for i ¼ 2 to N do
(3) w½d�1� :¼ U>

½M�d�~si½M�1�% weight vector
(4) p M�1½ � :¼ U M�d½ �w d�1½ �
(5) e½M�1� :¼ ~si½M�1� � p½M�1�% residual vector

(6)
R d�d½ � w d�1½ �
0 1�d½ � jjejj 1�1½ �

� �
¼ Û ðdþ1Þ�ðdþ1Þ½ �R̂ ðdþ1Þ�ðdþ1Þ½ �V̂

>
ðdþ1Þ�ðdþ1Þ½ �

(7) U M�ðdþ1Þ½ � :¼ U M�d½ �
e M�1½ �
jjejj 1�1½ �

h i
Û ðdþ1Þ�ðdþ1Þ½ �

(8) R ðdþ1Þ�ðdþ1Þ½ � :¼ R̂ ðdþ1Þ�ðdþ1Þ½ �

(9) V ðdþ1Þ�ðdþ1Þ½ � :¼ V d�d½ � 0 d�1½ �
0 1�d½ � 1 1�1½ �

� �
V̂ ðdþ1Þ�ðdþ1Þ½ �

(10) if jjejj < e then
(11) U ½M�d� :¼ U ½M�ðdþ1Þ�ð1 : M, 1 : dÞ% delete the

last column
(12) R½d�d� :¼ R½ðdþ1Þ�ðdþ1Þ�ð1 : d, 1 : dÞ%delete both

the last row and last column
(13) V ½ðdþ1Þ�d� :¼ V ½ðdþ1Þ�ðdþ1Þ�ð1 : d þ 1, 1 : dÞ%delete

the last column
(14) else
(15) d :¼ d þ 1
(16) end
(17) end

Algorithm 2 starts with the first column of the centered
signal matrix ~S½M�N�, where the subscript in [] is the dimen-
sionality of the matrix. When a new column ~si½M�1� is added,
we first expand it using the current singular vectors in

IISE TRANSACTIONS 603



matrix U ½M�d�, and compute the weight vector. w½d�1� and
the residual vector e½M�1�: Here, the residual vector e½M�1�
represents the information that cannot be explained using
the current singular vectors in U ½M�d�: In other words,
e½M�1� is a vector that is perpendicular to the subspace
spanned by the vectors in U ½M�d�: The newly added column
~si½M�1� and the current SVD results (i.e.,
U ½M�d�R½d�d�V>

½ðdþ1Þ�d�) have the following relationship:

U M�d½ �R d�d½ �V>
ðdþ1Þ�d½ �~si M�1½ �

h i

¼ U M�d½ �
e M�1½ �
jjejj 1�1½ �

� � R d�d½ � w d�1½ �
0 1�d½ � jjejj 1�1½ �

" #
V d�d½ � 0 d�1½ �
0 1�d½ � 1 1�1½ �

" #
:

(7)

Here, jj � jj is the ‘2 norm. Therefore, we may apply SVD on
the matrix

R d�d½ � w d�1½ �
0 1�d½ � jjejj 1�1½ �

� �

and use the decomposed results to update matrices
U ½M�d�,R½d�d� and V>

½ðdþ1Þ�d� (rows (6)–(9) in Algorithm 2).
Comparing with the algorithms in Bunch and Nielsen
(1978) as well as Balzano and Wright (2013), the novelty of
our algorithm is that we use the norm of the residuals to
determine whether an extra dimension should be added to
the subspace or not. To be specific, we check the norm of
the residuals e½M�1�: If the norm is small enough (i.e.,
jjejj < e), the newly added vector lies almost in the space
spanned by the vectors in U ½M�d�, and thus there is no need
to add an extra dimension to the dimension of the space
(Steps (11)–(13)). Algorithm 2 is computationally efficient
and memory economic because it involves applying SVD on
matrices with a dimensionality of ðdþ 1Þ � ðd þ 1Þ, where
ðd þ 1Þ < N is usually a small number. Therefore,
Algorithm 2 can be used to compute the FPC-scores of a
large-size signal matrix.

5. Numerical study

In this section, we validate the effectiveness of the proposed
prognostics methodology using simulated datasets. We com-
pare the performance of our method to some benchmarks
in terms of computational time and the accuracy of predict-
ing the RULs at various levels of Signal-to-Noise Ratio
(SNR), data incompleteness, and sampling schemes.

5.1. Data generation

In this simulation study, we consider 500 identical systems,
each of which is monitored by 100 sensors. We begin by
simulating the underlying degradation signal of system i
using the following functional form: siðtÞ ¼ �ci= ln ðtÞ, for
i ¼ 1, :::, 500; where ci 	 Nð1, 0:252Þ and 0 
 t < 1: We
compute the TTF as the first time that siðtÞ crosses the soft
failure threshold D, where D¼ 2. In addition, we add an
i.i.d. noise to the logarithmic TTF of each system, that is,
the logarithmic TTF of system i is ln ð~yiÞ ¼ �ci=D þ ei,

where ei 	 Nð0, 0:0252Þ: Since the logarithmic TTF (i.e.,
ln ð~yiÞ) is a linear function of ci with a normally distributed
noise term, LLS regression with a lognormal distribution is
the most suitable model to capture the relationship between
TTFs and the fused features. Next, we generate the degrad-
ation signals from the 100 sensors. The degradation signal
from the pth sensor of system i is generated using the fol-
lowing functional form: si, pðTiÞ ¼ �ci= ln ðTiÞ þ �i, pðTiÞ,
where p ¼ 1, :::, 100, �i, pðTiÞ 	 Nð0, r2pÞ and the discrete
observation time points Ti are evenly spaced between zero
and ~yi (i.e., the TTF of system i) with an incremental 0.001.

Here, rp ¼
P

i

P
Ti
si, pðTiÞ

500�d and d is the SNR.

5.2. Benchmarks and validation settings

We compare the performance of our prognostics method-
ology with two feature extraction approaches, Subspace
detection and Signal recovery, with three benchmarks. The
first baseline model, which we refer to as Signal recovery
(SVD), is similar to our proposed Signal recovery method
except that regular SVD is applied to the recovered signals
to extract FPC-scores. For our methods and the first bench-
mark, we first apply the polar transformation to the gener-
ated degradation signals. Next, we use the GROUSE
algorithm in Balzano et al. (2010) to solve the optimization
problem (6). Finally, the three methods are respectively used
to extract FPC-scores for prognostics. Note that when deg-
radation signals are highly incomplete in the time domain,
the polar transformation method may result in a signal
matrix S with a large number of columns and also a high
level of incompleteness. This may negatively affect the per-
formance of the GROUSE algorithm (Balzano et al., 2010)
and thus our prognostics methods. To address this chal-
lenge, we round the angular values from polar transform-
ation (h in Equation (5)) to control the size of the signal
matrix and also the level of incompleteness. To be specific,
we divide the angular domain ½0, p=2� into Qþ 1 equal
parts, which gives us the following set of tick values
f0, p

2Q ,
2p
2Q ,

3p
2Q , :::,

p
2g: Then we round each angular value to

its nearest tick value. By doing so, the column size of the
signal matrix after polar coordinate transformation is set to
Qþ 1. In this section and Section 6, Q is set to 500.

The second baseline model, which we designate as Kernel
smoother, is an extension of the prognostics model proposed
by Fang et al. (2017a). In Fang et al. (2017a), the authors
use Hierarchical FPCA to fuse multi-stream degradation sig-
nals, and the fused features are then regressed against TTFs
via LLS regression in a similar manner to the regression
framework used in this article. Hierarchical FPCA works by
first applying FPCA to the degradation signals from each
sensor (i.e., degradation signals are grouped by each sensor)
individually to extract their FPC-scores. Next, the FPC-
scores from different sensors are concatenated, and regular
PCA is applied to the concatenated FPC-scores to extract
fused features. The numerical studies in Fang et al. (2017a)
indicate that Hierarchical FPCA performs almost the same
as MFPCA (which is used in this article) on fusing multi-
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stream signals. The prognostics model proposed in Fang
et al. (2017a) works only for complete data. Here, we revise
it by employing a kernel smoother (Yao et al., 2005) so that
it works for incomplete data. To be specific, we first apply a
kernel smoother to the pooled data from the same sensor of
all systems to estimate its signal mean and covariance
matrix. The covariance matrix is then decomposed using ED
and eigen vectors are provided. Using the eigen vectors and
the incomplete observations, the FPC-scores can be com-
puted via an algorithm called principal analysis by condi-
tional expectation (Yao et al., 2005) (please refer to Yao
et al. (2005) more details about the algorithm). Next, the
FPC-scores from all the sensors are concatenated and regu-
lar PCA is applied on the concatenated vector to extract the
fused features (i.e., fi in Equation (5)). Finally, the prognos-
tics model is built by regressing the fused features against
TTFs using lognormal regression.

The third benchmark, designated B Spline, uses a B spline
to impute the missing observations. Specifically, we apply a
B spline to the incomplete observations from each sensor of
each individual system to fit a degradation trajectory. The
order of spline basis and the number of the knots are
selected using generalized cross-validation. The imputed
degradation signals are then concatenated and MFPCA is
used to extract fused features, which are then regressed
against TTFs using lognormal regression.

We evaluate the performance of our proposed methods
and the benchmarking models using data generated under
two SNRs: d¼ 1 (high noise) and d¼ 2 (low noise). For
each SNR, we consider the following four scenarios: (i) com-
plete data, (ii) random sampling, (iii) nonuniform sampling,
and (iv) imbalanced sampling. In the first scenario, all the
observations are used for model training and RUL predic-
tion. In the second scenario, we randomly sample the obser-
vations from each degradation signal at four levels of data
incompleteness: 20%, 40%, 60%, and 80%. For example, 20%
means that we randomly select 20% of the observations
from each signal and use the selected observations to con-
struct a dataset for model training and RUL prediction. The
third scenario also samples data at four levels of incomplete-
ness (i.e., 20%, 40%, 60%, and 80%). However, it randomly
samples a sequence of continuous observations from each
degradation signal. Taking the 20% level as an example, a
fragmented signal piece, the length of which is 20% of the
total length of the degradation signal is randomly selected.
In the last scenario, we consider four imbalanced sampling
combinations: “10% þ 90%,” “20% þ 80%,” “30% þ 70%”
and “40% þ 60%.” Here, “10% þ 90%” means that we ran-
domly select 50 sensors and randomly choose 10% degrad-
ation observations of these sensors, and randomly choose
90% observations of the remaining 50 sensors to construct
a dataset.

For each scenario above, we randomly choose 400 sys-
tems for model training and the remaining 100 systems are

used for model testing. The number of FPC-scores is chosen
by setting FVE at 0.95 (see Section 3.3 for details). We
repeat the whole simulation process for 10 times and com-
pute the prediction errors using the following equation:

Prediction Error ¼ jEstimated TTF � True TTFj
True TTF

: (8)

The simulation scenarios were performed using MATLAB
2016b in a 64-bit Unix system with the Xeon X5560 CPU
@2.80GHz processor and 32.0GB RAM.

5.3. Results and analysis

5.3.1. Computational time
We first report the computational time of our algorithms
and the baseline models when 80% of the observations from
each sensor are available for model training in Table 2.
Table 2 indicates that Kernel smoother is the computation-
ally most intensive method, the computational time of which
is more than 2 hours. This is reasonable since Kernel
smoothing smooths/imputes each observation individually
using a local regression, which implies that a large number
of regression models need to be estimated. The second time
consuming model is Signal recovery (SVD), which is
480 seconds. The computational time for our model Signal
recovery (ISVD) is 39 seconds, which is much smaller than
Signal recovery (SVD). This suggests that the incremental
SVD algorithm developed in this article is computationally
efficient. We also observe that the computational time of the
proposed method Subspace detection is 38 seconds, which is
also computationally efficient. In addition, the computa-
tional time of the benchmark B Spline is 68 seconds, which
is comparable to our methods and much faster than Kernel
smoother and Signal recovery (SVD).

5.3.2. High noise data
For the generated high noise data, we report the prediction
errors of our methods and the benchmarks for complete sig-
nals in Figure 3. Please notice that even if the degradation
signals are complete in the time domain, they are incom-
plete after we transform them to the polar domain. This is
because although degradation signals from different systems
have been observed at the same time points in the time
domain, they have different angular coordinates in the polar
domain after transformation.

Figure 3 illustrates that our methods Signal recovery
(ISVD) and Subspace detection achieve smaller prediction
errors than the benchmarking models Kernel smoother and
B Spline. We believe this is because our methods use all
available observations, that is, observations from all sensors
and all systems, for missing data recovery. Unlike our meth-
ods, the two benchmarks utilize only partial amounts of the
available data to impute the missing observations. For

Table 2. Computational time when 80% observations are available (unit: second).

Kernel smoother B Spline Signal recovery (SVD) Signal recovery (ISVD) Subspace detection

> 7200 68 480 39 38
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example, Kernel smoother imputes a missing observation by
using its neighboring data; B spline uses a system’s available
data to recovery that system’s missing observations. In add-
ition, Figure 3 indicates that our proposed method Signal
recovery (ISVD) has similar prediction accuracies to Signal
recovery (SVD). This implies that the incremental SVD algo-
rithm proposed in this article has similar performance to
regular SVD.

Figure 4 shows the prediction errors for incomplete sig-
nals that are randomly selected at four levels of data incom-
pleteness. Figure 5 presents the prediction errors for
imbalanced incomplete signals. Both Figures 4 and 5 indi-
cate that the prediction accuracy of our proposed methodol-
ogies consistently outperform the two benchmarks Kernel
smoother and B Spline at all levels of data incompleteness
and all imbalanced sampling combinations. For example, in
Figure 4, when 80% of the observations are available, the
median absolute prediction errors (and the Inter Quartile
Range, i.e., IQR) for Kernel smoother, B Spline, Signal recov-
ery (ISVD), and Subspace detection, are
0:08ð0:12Þ, 0:58ð0:08Þ, 0:05ð0:06Þ, and 0.05(0.06), respect-
ively. When 20% observations available, they respectively are

0:18ð0:3Þ, 0:15ð0:3Þ, 0:1ð0:1Þ, and 0.1(0.1). We again believe
this is because our methods use all available observations for
missing data imputation, whereas the two benchmarks util-
ize only partial of them. From Figures 4 and 5, we also
observe that Signal recovery (ISVD) and Signal recovery
(SVD) perform similarly in terms of prediction accuracy and
precision. This again suggests our proposed incremental
SVD algorithm performs similarly to classic SVD.

Figure 6 illustrates the prediction errors at four levels of
data incompleteness using a nonuniform sampling scheme.
Similar to Figures 3, 4, and 5, we observe that our methods
consistently perform better than the benchmarking models
Kernel smoother and B Spline, which again indicates the
superiority of our models. Moreover, we again observe that
Signal recovery (ISVD) and Signal recovery (SVD) have simi-
lar prediction performances, which again validates the effect-
iveness of our proposed incremental SVD algorithm. In
addition to the above observations, Figure 6 shows that B
spline works worse than Kernel smoother when the data
incompleteness level is 20%, 40%, and 60%. We believe this
is because when data is highly incomplete and non-uni-
formly sampled, B spline is not able to accurately capture

Figure 3. Prediction errors for complete signals (High noise).

Figure 4. Prediction errors for incomplete signals (High noiseþ Random sampling).
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the trend of the degradation trajectory. Consequently, it can-
not accurately impute the missing observations, and thus its
predictability is compromised.

5.3.3. Low noise data
We report the prediction errors of our methods and the
baseline models using the low noise data in Figures 7, 8, 9,
and 10.

Figure 7 summarizes the prediction errors using complete
signals. From Figure 7, we observe that the median absolute
prediction error (and IQR) of Kernel smoother, B Spline,
Signal recovery (ISVD), and Subspace detection are
0:031ð0:041Þ, 0:029ð0:038Þ, 0:024ð0:037Þ, and 0.024(0.037),

respectively. This suggests that the prediction accuracy and
precision of our proposed methods are a little bit higher
than the two benchmarks. Figure 8 illustrates the prediction
errors for data with four levels of data incompleteness. It
illustrates that our methods perform similarly to the two
baseline models when 80%, 60%, and 40% observations are
available. However, when the level of data incompleteness is
20%, our methods achieve higher prediction accuracy and
precision than the benchmarking models (please refer to
Figure 8(d) for details). Similar results can also be observed
in Figures 9 and 10. Therefore, we conclude that if degrad-
ation signals are with the low level of noise, the performance
of the proposed methods is at least comparable to the base-
line models when the percentage of available observations is

Figure 5. Prediction errors for incomplete signals (High noiseþ Imbalanced sampling).

Figure 6. Prediction errors for incomplete signals (High noiseþNonuniform sampling).
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high enough. When degradation signals are highly incom-
plete (for example, only 20% observations are available), our
methods work better than the benchmarks. Moreover,
Figure 10 indicates that B spline works worse than Kernel
smoother when the data incompleteness levels are 20%, 40%,
and 60%. Again, we believe this is because B spline cannot
accurately capture the trend of a degradation trajectory if
data is highly incomplete and non-uniformly sampled. As a
result, it cannot accurately impute the missing observations,
which compromises its prediction performance.

From Figures 7, 8, 9 and 10, we also observe that the pre-
diction errors of Signal Recovery (ISVD) and Signal Recovery
(SVD) are similar, which again implies that the incremental
SVD developed in this paper performs similarly to regu-
lar SVD.

6. Case study

In this section, we use multi-sensor degradation data from
aircraft turbofan engines provided by NASA (Saxena et al.,

2008) to evaluate the performance of our model. The dataset
is comprised of the following; (i) degradation signals from
100 training engines that were run to failure, (ii) degrad-
ation signals from an additional 100 test engines whose
operation was prematurely terminated at random time
points prior to their failure time, and (iii) the real TTFs of
the 100 test engines. We refer the readers to Saxena et al.
(2008), Fang et al. (2017a, 2017b) for a more detailed intro-
duction of the dataset.

In the dataset, each engine is monitored using 21 sensors,
some of which are non-informative. Following the sugges-
tion of Fang et al. (2017b), we choose four sensors (i.e.,
Total temperature at LPT outlet, Bypass Ratio, Bleed
Enthalpy, and HPT coolant bleed) to build a prognostics
model under lognormal distribution. Specifically, both the
training and test datasets are first transformed into the polar
coordinate system (discussed in Section 3). The transformed
training dataset is then used for training and the trans-
formed test dataset is used to evaluate the TTF prediction
performance. For each system in the test dataset, we predict

Figure 7. Prediction errors for complete signals (Low noise).

Figure 8. Prediction errors for incomplete signals (Low noiseþ Random sampling).
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its failure times at the time points pooled from its incom-
plete observations of the four sensors. For example, if the
observation time points for a test system are {1, 2, 5}, {1, 2,
6}, {2, 5, 6}, and {1, 3, 5} for sensors 1, 2, 3 and 4, respect-
ively, the pooled time points are {1, 2, 3, 4, 5, 6}. Therefore,
the failure times of this system will be predicted at time
points 1, 2, 3, 5 and 6. The prediction errors are computed
using Equation (8). Similar to the simulation study in
Section 5, we compare the performance of our method with
three baseline models (Kernel smoother, B Spline, and Signal
recovery (SVD)) under four scenarios: (i) complete data, (ii)
random sampling, (iii) nonuniform sampling, and (iv)
imbalanced sampling.

6.1. Computational time

We first compare the computational time of our methods and
the benchmarking models. The computational time when 80%
observations are available is shown in Table 3. Similar to the
simulation study, we observe that Kernel smoother is the com-
putationally most expensive method. The computational time
of our proposed methods Signal recovery (ISVD) and Subspace
detection are similar and comparable to B spline. In addition,
Signal recovery (ISVD) is computationally efficient than Signal
recovery (SVD), which implies the incremental SVD developed
in this paper can significantly speed up the computation pro-
cess of regular SVD.

Figure 9. Prediction errors for incomplete signals (Low noiseþ Imbalanced sampling).

Figure 10. Prediction errors for incomplete signals (Low noiseþNonuniform sampling).
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6.2. Prediction results and analysis

We report the prediction errors of our methods and the
benchmarks using complete signals in Figure 11. We
observe that the median of the absolute prediction errors (and
IQR) for kernel smoother, B Spline, Signal recovery
(ISVD), and Subspace detection are respectively 0:85ð0:7Þ,
0:3ð0:35Þ, 0:15ð0:2Þ, and 0.15(0.2). This implies that the meth-
odologies developed in this article outperform the baseline
models in terms of both prediction accuracy and precision.
We believe this is because our proposed methods use the
available observations from all the systems and all the sensors
for data imputation, whereas the benchmarks only use partial
of the available observations. Moreover, Figure 11 indicates
that Signal recovery (ISVD) and Signal recovery (SVD) have
similar prediction errors, which suggests that the incremental
SVD algorithm developed in this article performs similarly to
regular SVD.

Figure 12 summarizes the prediction errors for data ran-
domly sampled at four incompleteness levels, and Figure 13
reports the prediction errors for data randomly sampled with
four imbalance combinations. Both Figures 12 and 13 indicate
that our proposed methods work better than the baseline
models in terms of prediction accuracy and precision at all
data incompleteness scenarios. Again, we believe this is
because our methods use more observations than the bench-
marking models for missing observation imputation.
Furthermore, Figures 12 and 13 again confirm that our pro-
posed incremental SVD works similarly to regular SVD since
there is no significant difference between the prediction errors
of Signal recovery (ISVD) and Signal recovery (SVD).

The prediction errors for nonuniformly sampled data are
reported in Figure 14, from which we observe similar results as
Figures 11, 12, and 13. That is, our methods perform consistently
better than Kernel smoother and B Spline, and Signal recovery

Table 3. Computational time when 80% observations are available (unit: second).

Kernel smoother B Spline Signal recovery (SVD) Signal recovery (ISVD) Subspace detection

38 500 8 12 6 4

Figure 11. Prediction errors for complete signals.

Figure 12. Prediction errors for incomplete signals (Random sampling).
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(ISVD) works similar to Signal recovery (SVD). This again con-
firms the superiority of our methods. One more thing we observe
from Figure 14 is that B Spline achieves lower prediction accuracy
and worse prediction precision than Kernel smoother. We believe
this is reasonable since B Spline fits each degradation signal indi-
vidually by using its available observations. Therefore, it cannot
accurately capture the trend of the signal and thus cannot impute
the missing observations well if the available observations are not
uniformly sampled from the signal trajectory.

7. Conclusions

This article developed a prognostics model that can fuse incom-
plete degradation signals from multiple sensors to predict a sys-
tem’s failure time in real-time. The prognostics model is based

on functional LLS regression and MFPCA. MFPCA focuses on
fusing the incomplete multi-stream degradation signals and
providing fused features known as FPC-scores, which are then
regressed against TTF using LLS regression. To address the
challenge of estimating FPC-scores using incomplete signals,
we proposed two feature extraction algorithms based on
MMMF. The first algorithm, Subspace detection, uses a set of
general basis vectors provided by MMMF to compute the sin-
gular vectors of the incomplete degradation signal matrix and
then the FPC-scores of each system’s incomplete degradation
signals. The second algorithm, Signal recovery, proposes an
incremental SVD algorithm to compute the singular vectors of
the signal matrix recovered from MMMF and then the FPC-
scores. The incremental SVD algorithm, which computes the
SVD of an approximately low-rank matrix by adding one row/

Figure 13. Prediction errors for incomplete signals (Imbalanced sampling).

Figure 14. Prediction errors for incomplete signals (Nonuniform sampling).
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column at a time, is computationally efficient and mem-
ory economic.

A simulation study and a multi-sensor degradation data
from aircraft turbofan engines were used to evaluate the per-
formance of our proposed method and several baseline
models. The results indicated that the methods developed in
this article worked consistently better than the benchmarks
in terms of computational time, prediction accuracy and
prediction precision, especially when data was highly incom-
plete. In addition, the results also suggested that the pro-
posed incremental SVD algorithm performed similarly to
regular SVD but possessed much higher computational effi-
ciency. The model developed in this article only focuses on
time series-based incomplete degradation signals. The devel-
opment of a prognostics methodology for high-order incom-
plete degradation signals (such as profiles and images) is an
important topic for future research.
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Appendix A: Proof for Proposition 1

Since the columns of Q constitute a set of orthonormal basis vectors of
S, Q>Q ¼ I: We have the following:

S ¼ QQ>S,
~S ¼ QQ>~S:

Recall that the weight matrix is defined as W ¼ Q>S: Since the cen-
tered weight matrix ~W ¼ W � �W and �W ¼ Q>�S, we have the
following:

S ¼ QQ>S
¼ QW

¼ Qð ~W þ �WÞ
¼ Q ~W þ Q �W

¼ Q ~W þ QQ>�S:

As a result, we have

QQ>S ¼ Q ~W þ QQ>�S

)QQ>S� QQ>�S ¼ Q ~W

)QQ>ðS� �SÞ ¼ Q ~W

)QQ>~S ¼ Q ~W

)~S ¼ Q ~W :

Since the SVD for the centered weight matrix is ~W ¼ URV>, we
can conclude that ~S ¼ QURV> ¼ Û R̂V̂

>
, where Û ¼ QU,

R̂ ¼ R, V̂ ¼ V:
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