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measurements underestimate ice thickness so the mean shows the lowest 
bias with the buoy ice thickness. Considering that these two buoys are 
deployed over the sites with the relatively large initial ice thickness close 
to the ridge (Fig. 6b), these sites might have different snow or ice density 
conditions with the other buoys. In addition, according to Kwok and 
Cunningham (2008), climatological snow density continuously increase 
from ~250 kg/m3 in November to ~350 kg/m3 in March over the Arctic. 
Considering the increase of snow density during the ice-growing season, 
there is a possibility that IS2 overestimates ice thickness in early winter 
and underestimates in late winter; therefore, IS2 could underestimate 
overall ice growth. This can explain the negative bias of IS2-derived ice 
growth in Table 2 and Table 3. 

Another possible source of uncertainty is the spatiotemporal 
discrepancy between IS2 tracks and buoy deployment site. In this study, 
we assume that the modal IS2 thickness represents level ice thickness 
within the 20 km buffer area from the buoy deployment site. Although 
we collect the IS2 data within 12 h of time gaps from the buoys, the 
buoys drifted with ~10.35 km/day on average. Since the buoy and IS2 
measurements are not exactly co-located in space and simultaneous in 
time, therefore, the level ice thickness measured by IS2 could be 
different from the buoy ice thickness. In addition, given that the IS2 data 
is track data, they only represent a certain part of the 20 km circle, not 
the entire circle area. Thus, the sampled area where the IS2 tracks pass 
through is different whenever the overlapped IS2 data are sampled. For 
example, as shown in Fig. 4, the IS2 tracks in the 20 km buffer have 
different coverage area on November 13 and March 30. 

Indeed, the thickness of level ice can vary over a few km scales. 
Fig. 13a shows one 85-km IS2 track. We calculate the modal thickness 
every 5 km, and this 5-km modal ice thickness changes even within a 
single IS2 track (standard deviation of the 5-km modal ice thickness ~ 
0.22 m for this 85-km track). As shown in Fig. 13b, the standard devi
ation of the level ice thickness generally increases with a longer track 
distance. For a track distance longer than 50 km, however, the standard 
deviations stays consistent value of ~0.25 m. Thus, if the sampled IS2 
track and the buoy site are not exactly coincident, IS2 and buoy mea
surements are likely to be different. This issue of different sampling 
principle between IS2 and buoy can be mitigated by combining and 
averaging multiple data. In Section 4.2, both individual buoy compari
son (~20 km scale) and regional average of the 10 buoys (~50 km scale) 
are checked. As shown in Table 1, Table 2, and Table 3, the regionally- 
averaged comparison has a lower RMSD and MBD than the individual 
comparison. This also implies that the deployment scale of the MOSAiC 
SIMBA buoys is suitable for comparison with the IS2 measurements. 

5.3. Outlooks for the application of IS2 

This study demonstrates the ability of IS2 to capture thermodynamic 
and dynamic ice thickening based on its high resolution. However, for a 
clearer explanation of the thermodynamic and dynamic sea ice thick
ening processes in our study area (central Arctic Ocean across the 
Transpolar Drift Stream), various data sources are required: e.g., 
divergence, convergence, or shear stress of sea ice, ocean temperature, 
air temperature, ocean current, wind direction, etc. A series of various 
satellite data or other field observations from the MOSAiC expedition (e. 
g. drilling data, airborne observations, and underwater robot observa
tions) would provide detailed information about these factors. Once 
these data are combined to analyze, which is ongoing, they will help us 
better understand the mechanism of thermodynamic and dynamic ice 
thickening over the Arctic Ocean. Moreover, there might be a significant 
difference in sea ice conditions between our study area and other regions 
(e.g. the Beaufort Gyre) and by season. Therefore, by further examining 
the spatiotemporal changes in thermodynamic or dynamic ice thick
ening for different regions and years using IS2, we will be able to 
characterize and compare how various atmospheric and oceanographic 
factors affect the sea ice thickening processes for different regions and 
seasons. 

6. Summary and conclusions 

This study demonstrates the ability of IS2 for measuring the seasonal 
variations of ice thickness and distinguishing thermodynamic and dy
namic ice thickening through the comparison with the MOSAiC SIMBA 
buoys. While most of the previous studies focused on the validation of 
the satellite freeboard or thickness value itself based on an airborne 
measurement in a short time period (one or a few days) (e.g. OIB), we 
focus on assessing the temporal variations of ice thickness and ice 
thickening during the ice-growing season, by taking advantage of the 
long-term and continuous measurements from the IMB buoy data. Our 
results show that IS2 is able to detect the increases of sea ice thickness 
during the ice-growing season of the Arctic. 

In addition, it is noted that the three different measurements of IS2 
thickness (i.e. mode, median, and mean) show significant differences in 
estimating ice thickness and ice growth. The IS2 modal thickness shows 
the least difference (RMSD 0.341 m and MBD −0.169 m) with the buoy 
ice thickness. However, the median and mean IS2 thickness over
estimate the buoy ice thickness by around 0.190 m and 0.433 m, 
respectively. In addition, while the ice growth estimated by the IS2 
modal thickness shows a similar increasing rate with the thermody
namic ice growth estimated by the buoys (−0.054 cm/day of MBD), the 
median and mean IS2 thickness are greater than the thermodynamic ice 
growth by 0.114 cm/day and 0.198 cm/day, respectively. Consequently, 
this result implies that the IS2 modal thickness represents the thermo
dynamic ice growth. On the other hand, the median and mean IS2 
measurements explain the dynamic contributions from sea ice defor
mation, accounting for averagely 26% and 34% of the total increasing 
rate, respectively. 

Indeed, the IS2 measurements around ~50 km area from the 
MOSAiC CO show that ridge fraction increased from <2% in November 
to ~4% in late March, with about +0.029%/day of increasing rate. 
Along with the increase of ridge fraction, ridge height also shows a 
significant increase trend with +0.047 cm/day of increasing rate. 
However, lead fraction does not show any significant trend during the 
same period. This is because sea ice leads appear only 2–3 days and they 
are refrozen quickly during the ice-growing season, whereas ridges are 
generally accumulated. The weathering of ice ridges is obviously weaker 
than the cumulative strengthening of dynamics. Both the temporary 
formation of leads and long-term existence of ridges are observed in a 
series of the Sentinel-1 SAR HH band images. 

Despite the good correlation between IS2 and buoy data in esti
mating sea ice thickness and its growth rate, we need to consider various 
sources of uncertainties. First, buoy measurements have ~2 cm of im
plicit uncertainty. Second, there can be significant uncertainties in 
converting IS2 total freeboard into ice thickness, which is associated 
with the retrieval of snow depth, snow density and ice density. Finally, 
there is a spatiotemporal discrepancy between IS2 and buoy data: the 
sampling time and location of the IS2 data and buoys are not exactly the 
same due to the drift of sea ice. Since the thickness of level ice can vary 
within a few km scale, the comparison between IS2 and buoy has 
inevitable uncertainties. Based on the findings of this study, IS2 will be 
able to provide important clues for the thermodynamic and dynamic ice 
thickening processes over the Arctic Ocean. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2021.112730. 
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Proksch, M., Löwe, H., Schneebeli, M., 2015. Density, specific surface area, and 
correlation length of snow measured by high-resolution penetrometry. J. Geophys. 
Res. Earth Surf. 120, 346–362. https://doi.org/10.1002/2014JF003266. 
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