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Abstract
Anthropogenic nitrogen (N) input is known to alter plant and microbial α-diversity, but 
how N enrichment influences β-diversity of plant and microbial communities remains 
poorly understood. Using a long-term multilevel N addition experiment in a temperate 
steppe, we show that plant, soil bacterial and fungal communities exhibited different 
responses in their β-diversity to N input. Plant β-diversity decreased linearly as N ad-
dition increased, as a result of increased directional environmental filtering, where soil 
environmental properties largely explained variation in plant β-diversity. Soil bacterial 
β-diversity first increased then decreased with increasing N input, which was best 
explained by corresponding changes in soil environmental heterogeneity. Soil fungal 
β-diversity, however, remained largely unchanged across the N gradient, with plant 
β-diversity, soil environmental properties, and heterogeneity together explaining an 
insignificant fraction of variation in fungal β-diversity, reflecting the importance of 
stochastic community assembly. Our study demonstrates the divergent effect of N 
enrichment on the assembly of plant, soil bacterial and fungal communities, emphasiz-
ing the need to examine closely associated fundamental components (i.e., plants and 
microorganisms) of ecosystems to gain a more complete understanding of ecological 
consequences of anthropogenic N enrichment.
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1  |  INTRODUC TION

Anthropogenic nitrogen (N) input is recognized as one of the major 
threats to biodiversity (Sala et al., 2000; Stevens et al., 2004; Vellend 
et al., 2017). A substantial body of literature has documented ero-
sion in local plant (Midolo et al., 2019; Stevens et al., 2004) and mi-
crobial (Dai et al., 2018; Wang et al., 2018) diversity (i.e., α-diversity 
loss) following N enrichment. By comparison, much less is known 
about how N deposition influences compositional differences be-
tween local communities (i.e., β-diversity), an essential component 
of biodiversity. The few investigations of N fertilization effect on 
plant β-diversity have produced mixed results (Chalcraft et al., 2008; 
Conradi et al., 2017; Houseman et al., 2008; Yang et al., 2019; Zhang 
et al., 2019). Moreover, little work has been done to explore the role 
of N input in regulating microbial β-diversity (Zhang et al., 2016). 
Therefore, general patterns and mechanisms of plant and microbial β-
diversity responses to N input remain elusive. Elucidating β-diversity 
changes under N enrichment, however, is essential for understand-
ing how biodiversity changes at the regional scale (Chalcraft et al., 
2008), and for advancing our knoweldge on community assembly 
mechanisms under anthropogenic influences (Mori et al., 2018).

Both deterministic (Chase & Leibold, 2003) and stochastic (Bell, 
2001; Hubbell, 2001) processes are known to operate in natural 
communities (Vellend, 2010). Deterministic processes are important 
in regulating ecological communities when environmental filtering 
and/or species interactions shape community assembly by select-
ing species with certain traits, whereas stochastic processes are im-
portant in regulating ecological communities when chance events 
associated with birth, death, and migration contribute to community 
assembly. N enrichment could potentially influence the relative im-
portance of deterministic and stochastic processes, and therefore, 
the trajectories of community assembly. For example, intensified 
N enrichment may increase the role of directional environmental 
filtering by favoring species that are better resource competitors 
(Hautier et al., 2009; Tilman, 1982) and tolerant of low pH (Duprè 
et al., 2010; Sala et al., 2000) and heavy metal toxicity (Bai et al., 
2015; Tian et al., 2016). This would strengthen the importance of 
deterministic processes in shaping community assembly, resulting in 
enhanced convergence (i.e., reduction in β-diversity) in the structure 
of the assembling communities (Chalcraft et al., 2008; Conradi et al., 
2017). Moreover, N enrichment may further reduce β-diversity if it 
decreases spatial heterogeneity in environmental conditions among 
localities (Chalcraft et al., 2008; Donohue et al., 2009; Passy & 
Blanchet, 2007). On the other hand, N enrichment may often result 
in increased ecosystem productivity known to promote the impor-
tance of stochastic assembly processes (Chase, 2010) and, in turn, 
the greater likelihood of communities attaining alternative states 
(Houseman et al., 2008; Yang et al., 2019). The relative importance 
of the aforementioned mechanisms would determine how N enrich-
ment influences β-diversity and the assembly trajectories of the af-
fected communities.

Within the context of community assembly under N enrich-
ment, one important, yet unresolved question is whether the closely 

associated soil microbial and plant communities would exhibit similar 
β-diversity responses to N enrichment. On the one hand, responses 
of soil microbial communities may be expected to be coupled with 
those of plant communities (Leff et al., 2015; Prober et al., 2015), 
as soil microbes depend largely on plants for habitat and substrate 
provision (van der Putten et al., 2013), and symbiotic and patho-
genic microbes rely on their plant hosts for survival (Chaloner et al., 
2020). On the other hand, differences in the physiology, life history, 
and metabolic strategies of plants and microbes may cause their β-
diversity responses to be decoupled from each other. For example, 
microbes are generally less constrained by dispersal limitation than 
plants (Finlay, 2002). Stochastic dispersal thus may have greater op-
portunities to shape microbial community assembly (Nemergut et al., 
2013). Moreover, the structural and funtional differences between 
plants and microbes may potentially translate into their different re-
sponses to environmental changes associated with N enrichment. 
For example, plants and microbes may perceive soil environmental 
heterogeneity differently, such that soil microbes, characterized by 
small body size and high metabolic diversity, may be more sensitive 
to changes in small-scale soil heterogeneity associated with N en-
richment than plants (Portell et al., 2018).

Much of what we know about anthropogenic environmental 
change effect on β-diversity came from grassland-based research 
(Chalcraft et al., 2008; Conradi et al., 2017; Houseman et al., 2008; 
Yang et al., 2019; Zhang et al., 2019). Continuing this tradition, here 
we report, for the first time to our knowledge, a grassland experi-
ment simultaneously exploring the effect of increased N input on 
plant, soil bacterial and fungal β-diversity. This experiment was 
conducted in a temperate steppe in northern China, where anthro-
pogenic N deposition is projected to continue to increase (Zhang, 
Xu, et al., 2017). Our study aimed at answering two main questions. 
First, how does N input influence β-diversity of plants, soil bacte-
ria, and fungi? Second, what mechanisms underlie the differential 
responses (if any) of plant, soil bacterial and fungal β-diversity to N 
input? Wthin this question, we aslo explored whether changes in 
plant β-diversity contribute to changes in soil bacterial and fungal 
β-diversity.

2  |  MATERIAL S AND METHODS

2.1  |  Experimental site and design

Our experimental site is located in a semiarid steppe (42.01′N, 
116.16′E and 1324  m  a.s.l) in Duolun County, Inner Mongolia, 
China. The region has a dry, monsoon-influenced continental cli-
mate, characterized by cold, dry winters and warm, humid sum-
mers. Mean annual temperature is 2.1℃, with average monthly 
temperatures ranging from −17.5℃ (January) to 18.9℃ (July); 
mean annual precipitation is 382.3 mm, with approximately 50% 
falling in July and August. The soil type is classified as Haplic 
Calcisols according to the Food and Agriculture Organization of 
the United Nations, with 69.21 ± 0.06% sand, 15.60 ± 0.02% silt, 
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and 15.19 ± 0.02% clay. Soil organic C and total N concentrations 
are 16.94 ± 2.34 and 1.65 ± 0.27 g kg−1, respectively. Soil pH is 
6.84 ± 0.02. Ambient N deposition is approximately 1.6 g N m−2 
(Liu et al., 2018). Plant communities at our experimental site are 
dominated by perennial grasses and forbs, including Stipa kry-
lovii Roshev., Agropyron cristatum (L.), Artemisia frigida Willd, and 
Cleistogenes squarrosa (Trin.).

Sixty-four 10 × 15 m experimental plots were arranged in eight 
blocks, with eight rows in each block in a Latin square design. There 
were 5-m buffer zones between adjacent plots. Starting from 2003, 
each of the eight plots per row was randomly assigned to one of the 
eight levels of N fertilization treatments (0, 1, 2, 4, 8, 16, 32, and 
64 g N m−2 year−1). The N addition levels are comparable to those 
used in several other grassland N addition experiments. This large 
N gradient facilitates the understanding of the N dose–biodiversity 
relationships, which, if nonlinear, may be difficult to detect using 
smaller ranges of N levels. N was applied in the form of urea in early 
July each year. Since 2005, four rows (one out of every two rows) 
were mowed using a rotary flail mower at the ground level in late 
August each year; all hay was removed from the plots afterward. We 
used the data from the nonmowing plots in this study.

2.2  |  Plant survey and soil chemical properties

We surveyed plant communities at the peak biomass in a permanent 
1 × 1 m quadrat of each plot in August 2016, using the point inter-
cept method. Plant species richness and coverage were estimated 
by placing a 1 × 1 m frame with 100 equally distributed 10 × 10 cm 
grids on the permanent quadrat. Plot-level richness was recorded 
as the number of plant species present in the quadrat; plant cover 
was summed across species to give plot-level coverage. We also 
measured soil moisture in each plot three times per month from May 
to September, using a portable soil moisture device (Diviner 2000; 
Sentek Pty. Ltd.).

Soil samples were collected from each plot on August 15, 2016. 
Six randomly located soil cores (15 cm deep and 5 cm in diameter) 
were taken from each plot and combined into one composite sam-
ple. After removing roots and stones by sieving through 2-mm mesh, 
soil samples were stored on ice and transferred to the laboratory. 
Subsamples were stored at 4℃ for soil physicochemical analysis and 
−80℃ for DNA extraction. Soil total carbon (C) and N were mea-
sured using elemental analysis (Elementar Analysensysteme GmbH) 
in the laboratory. Soil pH values were measured using a glass elec-
trode in the soil suspension (soil:deionized water W/V ratio 1:2.5) 
of each sample. Soil inorganic N was extracted with 2 M KCl solu-
tion; concentrations of NH

+

4
-N and NO

−

3
-N were measured using a 

flow injection analyzer (SAN-System). Soil exchangeable Mn2+ was 
extracted with 20  ml of extractant consisting of 0.005  M dieth-
ylenetriaminepentaacetic acid, 0.1 M triethanolamine, and 0.01 M 
CaCl2 at the pH of 7.3 (Lindsay & Norvell, 1978), and exchangeable 
Al3+ was extracted with 50 ml of 0.1 M BaCl2. The concentrations of 
exchangeable Mn2+ and Al3+ were then measured using inductively 

coupled plasma optical emission spectroscopy (iCAP 6300; Thermo 
Scientific).

2.3  |  DNA extraction, amplification, and 
MiSeq sequencing

DNA was extracted from 0.5 g fresh soil of each sample using the 
PowerSoil DNA Isolation Kit (MoBio Laboratories), following the 
manufacturer's instructions. To profile soil bacterial communities, 
we amplified the V3–V4 hypervariable region of 16S rRNA gene 
with the primer sets 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 
806R (5′-GGACTACHVGGGTWTCTAAT-3′; Caporaso et al., 2012). 
For fungal communities, we amplified the ITS1 region with the prim-
ers sets ITS1-F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2 
(5′-TGCGTTCTTCATCGATGC-3′; McGuire et al., 2013). To permit 
multiplexing of samples, a 10-bp barcode unique to each sample was 
attached to the 5′ end of primers. Polymerase chain reaction (PCR) 
was performed with 50 μl reaction volumes: 5 μl 10×Ex Taq Buffer 
(Mg2+ plus), 4 μl 12.5 mM dNTP Mix, 1.25 U Ex Taq DNA polymer-
ase (TaKaRa), 2 μl template DNA, and 36.75 μl ddH2O. For the 16s 
rRNA gene, the PCR thermal cycling condition was 94℃ for 2 min, 
followed by 30 cycles of 94℃ for 30 s, 57℃ for 30 s and 72℃ for 
30 s with a final extension at 72℃ for 10 min. For the ITS1 region, 
the thermal cycling condition was 95℃ for 5  min, followed by 35 
cycles of 95℃ for 45 s, 55℃ for 50 s, and 72℃ for 45 s with a final 
extension at 72℃ for 10 min. PCR for each sample was performed in 
triplicate and negative controls were included in each batch of PCR. 
PCR products were pooled in equimolar concentrations and puri-
fied with the QIAquick Gel Extraction Kit (Qiagen). The purified PCR 
products were sequenced on the Illumina MiSeq platform (Illumina).

2.4  |  Bioinformatic analysis

Raw reads were trimmed at the 3′ end to remove low-quality 
(Phred score  <  20) bases. Then, high-quality reads were assem-
bled using the FLASH software (version 1.0.0; Magoč & Salzberg, 
2011). Assembled sequences were assigned to samples according 
to their unique barcodes, and then the barcodes and primers were 
removed from these sequences using the MOTHUR software 
(Schloss et al., 2009). The sequences containing ambiguous bases, 
with lengths shorter than 200 bp, as well as all singletons, were re-
moved. The remaining sequences were clustered into operational 
taxonomic units (OTUs) at a 97% similarity level using the UPARSE 
algorithm (Edgar, 2013), and chimeras were eliminated during this 
procedure. Taxonomic annotations of OTUs were determined 
using the Ribosomal Database Project Classifier tool (Wang et al., 
2007) with a confidence threshold of 0.7 against the Silva 128 da-
tabase (Quast et al., 2012) for bacteria and UNITE 7.2 database 
(Nilsson et al., 2018; Tedersoo et al., 2018) for fungi. OTUs that 
were not classified into bacteria and fungi were removed before 
subsequent analyses. To standardize sampling effort, we rarefied 
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all samples to an even number of sequences per sample for bac-
teria (18,877) and fungi (24,945). All sequences have been de-
posited in NCBI's SRA database under project accession number 
PRJNA573484 and PRJNA573488.

2.5  |  Data analyses

We used plant species richness and microbial OTU richness as the 
metrics of plant and microbial α-diversity, respectively. We calcu-
lated the abundance-based Bray–Curtis dissimilarity and incidence-
based Jaccard dissimilarity, as the metrics of β-diversity, to quantify 
community compositional difference between replicate plots of 
the same treatment. As β-diversity often depends on community 
size (α-diversity; Chase et al., 2011; Kraft et al., 2011; Myers et al., 
2015), we also calculated the standard effective size of β-diversity 
(i.e., β-deviation) by comparing observed β-diversity values to those 
generated by null models. We generated 999 null local communities 
within each N treatment, by randomly placing individuals into each 
local community with probabilities proportional to regional relative 
cover/abundance of the species, while preserving local α-diversity 
(Ning et al., 2019, 2020). The standardized effect size (β-deviation 
for Bray–Curtis and Jaccard dissimilarity) was calculated as the dif-
ference between the observed β-diversity and mean β-diversity 
of the null communities divided by the standard deviation of 
β-diversity of the null communities (Kraft et al., 2011; Ning et al., 
2019, 2020). β-Deviation values close to 0 indicate that β-diversity 
does not deviate from stochastic expectations, whereas positive and 
negative β-deviation values indicate higher and lower β-diversity 
than expected by chance, respectively. β-Diversity and β-deviation 
were calculated for plants, bacteria, and fungi, separately, at each 
N addition level. We further directly quantified the magnitude of 
stochastic processes shaping plant, bacterial, and fungal communi-
ties using the normalized stochasticity ratio (Ning et al., 2019). This 
proposed approach assumes that the community is a combination 
of species which are driven by two ecological processes separately: 
some species are operated by completely deterministic assembly 
and the other are operated by completely stochastic assembly. The 
stochasticity levels are predetermined by assigning different ratios 
of stochastic species. Stochasticity ratio is calculated based on rela-
tive difference between observed and null dissimilarity, and normal-
ized stochasticity ratio derived from stochasticity ratio is to better 
assess the relative position of observed value between the extremes 
under pure deterministic and pure stochastic assembly. Hence, the 
normalized stochasticity ratio explicitly measures the importance of 
stochastic relative to deterministic assembly, with the contribution 
of the two processes adding up to 100%. This ratio thus ranges from 
0, indicating complete determinism, to 100%, indicating complete 
stochasticity.

We used bivariate regressions to examine the relationships be-
tween α-and β-diversity/deviation of plant, bacterial, and fungal 
communities and N input level; Exponential and polynomial regres-
sions were used over linear models if they provided significantly 

better fits to the data. Bivariate regressions were also used to de-
lineate how environmental heterogeneity changed with increasing 
N addition. Environmental heterogeneity was quantified as the total 
pairwise Euclidean distance among the four replicate plots of the 
same treatment, based on the seven soil physicochemical variables 
(soil moisture, soil pH, soil total C, total N, inorganic N concentra-
tion, and exchangeable Al3+ and Mn2+concentrations). Specifically, 
soil moisture is an indicator of soil microclimate; total C is an in-
dicator of soil fertility; total N and inorganic N concentration are 
the indicators of soil N availability; and soil pH, exchangeable Al3+ 
and Mn2+ concentrations are the indicators of soil biogeochemical 
conditions. These seven soil physicochemical variables were stan-
dardized using Z-score before calculation. Soil moisture values were 
averaged across the growing season for each plot prior to standard-
ization. We assessed the relative importance of soil physicochemical 
conditions and environmental heterogeneity for β-deviation of plant 
and soil microbial communities, using the Lindeman–Merenda–Gold 
method. Prior to the analyses, variance inflation factors were calcu-
lated to assess the multicollinearity of predictor variables. This led 
to the removal of soil total C, total N, Al3+, and Mn2+, leaving soil 
moisture, dissolved inorganic N concentration, soil pH, and environ-
mental heterogeneity as predictor variables with low collinearity. 
For soil bacterial and fungal β-deviation, we also considered plant 
β-deviation as an independent predictor.

All statistical analyses were performed in R 3.5.2 (R Core Team, 
2015). β-Diversity was calculated using the “vegdist” function in the 
package “vegan” (Oksanen et al., 2012). Environmental Euclidean dis-
tance was calculated using the function “dist” in the package “stats.” 
The null communities were generated using the function “commsim” 
in the package “vegan” (Oksanen et al., 2012). Normalized stochas-
ticity ratio and relative importance values were calculated with the 
packages “NST” (Ning et al., 2019, 2020) and “relaimpo,” respectively.

3  |  RESULTS

Plants, soil bacteria, and fungi differed substantially in their α-
diversity responses to N addition (Figure 1). While plant α-diversity 
decreased monotonically with increasing N addition, soil bacterial 
α-diversity (OTU richness) did not decline until N addition reached 
32 g N m−2. Soil fungal α-diversity (OTU richness) was unaffected by 
N addition.

Plants, soil bacteria, and fungi also exhibited divergent responses 
in their β-diversity to N addition. While plant β-diversity decreased 
monotonically with increasing N addition (Figure 2a), soil bacteria 
exhibited a significant nonlinear response, where β-diversity first in-
creased then decreased with increasing N addition (Figure 2b; Table 
S1), and soil fungal β-diversity showed little response to increasing 
N addition (Figure 2c). Similar patterns emerged when β-deviation, 
which accounted for difference in α-diversity among the compared 
communities, was examined (Figure 2d–f). These patterns remained 
unchanged when Jaccard dissimilarity (Figure S1; Table S1), rather 
than Bray–Curtis dissimilarity, was used.

info:x-wiley/peptideatlas/PRJNA573484
info:x-wiley/peptideatlas/PRJNA573488
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Nitrogen addition differentially affected the role of stochas-
ticity in governing plant, soil bacterial and fungal communities 
(Figure 3), which mirrored β-diversity patterns. Specifically, as N 
input increased, the magnitude of stochasticity declined (from 82.6% 
to 21.8%) for plant communities, showed a hump-shaped response 
(ranging from 38.3% to 64.7%) for soil bacterial communities, and 
remained relatively high with little trend (between 57.8% and 71.2%) 
for soil fungal communities. Similar results were obtained when sto-
chasticity estimation was based on Jaccard dissimilarity (Figure S2), 
rather than Bray–Curtis dissimilarity.

Soil environmental heterogeneity initially increased with N 
input, but eventually declined at high N levels (Figure 4; Table S1). 

Plant β-diversity was unaffected by environmental heterogeneity, 
whereas plant β-deviation declined as environmental heterogene-
ity increased (Figure S3). In contrast, both soil bacterial β-diversity 
and β-deviation exhibited significantly positive relationships with 
environmental heterogeneity (Figure S3). Neither β-diversity nor β-
deviation of fungal communities were related to environmental het-
erogeneity (Figure S3). Results based on Jaccard dissimilarity (Figure 
S4) were qualitatively similar.

The relative importance analysis showed that soil moisture, in-
organic N concentration, soil pH, and environmental heterogene-
ity together explained 69.06% of the variation in plant β-deviation, 
where soil N availability and pH were identified as the two most 
important predictors (Figure 5a). By contrast, all the predictor vari-
ables, including plant β-deviation, explained only 17.89% of variance 
in soil bacterial β-deviation, with soil environmental heterogeneity 
being the overwhelmingly important predictor (Figure 5b). The same 
model, however, accounted for only 2.88% of variance in soil fun-
gal β-deviation, with each of the predictor variables explaining little 
variation (Figure 5c).

4  |  DISCUSSION

Our study demonstrated the previously unrecognized, strikingly dif-
ferent response patterns of plant and soil microbial β-diversity to 
increasing N input. As N input increased, plant β-diversity declined, 
soil bacterial β-diversity exhibited a unimodal response, while fungal 
β-diversity remained unchanged in our study grassland. These diver-
gent results, combined with those of stochasticity and relative im-
portance analyses, point to the difference in the relative importance 
of deterministic and stochastic processes in regulating the assembly 
of plant, soil bacterial and fungal communities in the face of increas-
ing N enrichment (Figure 6).

Much of the research on N enrichment effects on β-diversity has 
focused on plants, which has produced mixed results (Chalcraft et al., 
2008; Conradi et al., 2017; Houseman et al., 2008; Yang et al., 2019; 
Zhang et al., 2019). In particular, it has been reported that while N 
enrichment had an overall positive effect on plant β-diversity across 
North American grasslands, N enrichment tended to increase plant 
β-diversity at low productivity sites and reduce plant β-diversity at 
high productivity sites (Chalcraft et al., 2008). The negative N enrich-
ment effect on plant β-diversity in our experiment, however, does 
not follow this pattern, as our experimental site is characterized by 
low productivity (Xu et al., 2018). In our experiment, the application 
of urea as the N fertilizer, which led to increased N availability and 
lower soil pH (Figure S5), may have imposed strong environmental 
filtering on plant communities. Consistent with this idea, we identi-
fied soil pH and inorganic N concentration as the two key predictors 
of plant β-diversity in our experiment (Figure 5a). This result, cou-
pled with the sharp decline in the role of stochasticity in regulating 
plant communities under greater N input, points to increased direc-
tional environmental filtering as the driver of lower plant β-diversity 
at higher N levels. In our experiment, such directional environmental 

F I G U R E  1  α-Diversity of plant (a), bacterial (b), and fungal (c) 
communities with increasing N input. Significant regression lines 
are shown



6  |    LIU et al.

filtering led to the increased dominance of grasses, particularly 
tall-statured ones, over forbs in all replicate plots of higher N treat-
ments (Figure S6). This homogenization of plant communities arose 
as N enrichment tends to reduce root length and biomass of forbs, 
which weakens their water absorption ability (Bai et al., 2015), and 
soil acidification tends to cause elevated soil Al3+ and Mn2+ concen-
trations (Figure S7), which are more toxic to forbs than grasses (Bai 
et al., 2015; Tian et al., 2016, 2020). Note that competition for light, 
which becomes more important with greater plant biomass under 
N enrichment (Craine & Dybzinski, 2013; Hautier et al., 2009), may 
have contributed to the dominance of tall-statured grasses (e.g., 
Leymus chinensis) over low-statured ones (e.g., Cleistogenes Chinese) 
at our site (Figure S6). Unfortunately, we did not quantify light avail-
ability in our experiment, which precludes us from directly assessing 
the role of light limitation in regulating plant community assembly.

It has been increasingly recognized that plants can strongly 
influence soil microbiota. For example, changes in the structure 
of plant communities, due either to natural variation in soil envi-
ronmental conditions (Prober et al., 2015; Ranjard et al., 2013) or 
resource amendment (Leff et al., 2015; Li et al., 2018; Zeng et al., 
2016), are known to incur changes in the structure of soil bacte-
rial communities. Soil pH is also widely recognized as an important 
predictor of soil bacterial community composition (Fierer, 2017; 
Lauber et al., 2009; Maestre et al., 2015; Wei et al., 2013; Zhang, 
Shen, et al., 2017). In particular, soil acidification has been found 
to act as a strong environmental filter, resulting in increased deter-
minism in soil bacterial community assembly (Tripathi et al., 2018). 
Consequently, we expected that N-induced convergence of plant 
communities and soil acidification would lead to reduced bacterial 

β-diversity in our experiment. Contrary to our expectation, bacte-
rial β-diversity showed a unimodal response to increasing N input, 
indicating that bacterial communities in fact became more diver-
gent in their structure after low N input. While somewhat surpris-
ing, this positive response of bacterial β-diversity to low N input is 
consistent with the idea that increasing resource availability tends 
to promote stochastic community assembly via strengthening pri-
ority effects (Chase, 2003), where stochasticity associated with the 
order and timing of species arrival influences species interactions, 
and consequently, community structure (Fukami, 2015). This idea 
has received most support from studies of macroorganisms (Chase, 
2010; Houseman et al., 2008; Yang et al., 2019). An alternative, but 
not mutually exclusive explanation for the increased divergence in 
bacterial communities following low N input is that it may have been 
driven by soil environmental heterogeneity, which also exhibited a 
unimodal response to N input (Figure 4). In fact, soil environmental 
heterogeneity, but not plant β-diversity or soil pH, accounted for a 
significant fraction of the variation in bacterial β-diversity in our ex-
periment (Figure 5; Figures S3, S4, S8, and S9). This result suggests 
that deterministic processes, as a result of soil heterogeneity that 
existed between replicate plots within the same N treatments, may 
have contributed to the observed divergence patterns in soil bacte-
rial communities. Note that although the role of environmental het-
erogeneity in structuring ecological communities is well appreciated 
(Amarasekare, 2003; Hutchings et al., 2003; Martiny et al., 2011), 
within-treatment environmental heterogeneity has received little 
attention (Gilliam, 2006). Our result thus emphasizes the need to 
quantify the magnitude of within-treatment soil heterogeneity (akin, 
conceptually, to the need to consider intraspecific trait variation) 

F I G U R E  2  β-Diversity (a–c) and 
β-deviation (d–f) of plant, bacterial, and 
fungal communities among replicate plots 
within each N input treatment. β-Diversity 
is measured by Bray–Curtis dissimilarity. 
β-Deviation is the standardized effect size 
of β-diversity, calculated by comparing 
the observed β-diversity to the null 
models. Negative β-deviation values 
indicate lower β-diversity than expected 
by chance, whereas positive β-deviation 
values indicate the opposite. Significant 
regression lines are shown
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and its role in community assembly. Finally, we note that a major 
fraction of variation in bacterial β-diversity in our experiment re-
mains unexplained, suggesting that stochasticity may have played a 
more important role in structuring bacterial, than plant communities 
(Figure 5b).

Compared with bacteria, soil fungal communities are often 
thought to be even more strongly coupled with plant communities 
due to their greater reliance on plants for habitats and substrates 
(Chen et al., 2018; Peay et al., 2013; van der Linde et al., 2018; Yang 
et al., 2017). Soil pH has also been identified as a driver of soil fungal 
composition (Glassman et al., 2017; Leff et al., 2015; Maestre et al., 

2015). Nevertheless, we found that soil fungal β-diversity was not 
affected by plant β-diversity (Figures S8 and S9). In fact, soil fungal 
β-diversity remained roughly constant (Figure 2c) and the magnitude 
of stochasticity remained uniformly high (Figure 3c) across the N 
gradient. Two fungal characteristics may have contributed to this 
pattern. First, compared to bacteria, the dispersal of fungal spores is 
typically constrained to much shorter distances (Adams et al., 2013; 
Norros et al., 2012; Peay et al., 2010), offering greater opportunities 
for dispersal limitation to shape fungal community structure (Li et al., 
2020; Peay et al., 2010; Wang et al., 2019). Our result is thus consis-
tent with recent studies reporting that stochastic assembly, driven 
by dispersal limitation, characterized the soil fungal communities 
across Scotland (Powell et al., 2015) and on a group of land bridge 
islands in subtropical China (Wang et al., 2019). Second, compared 
to bacteria, fungi tend to be more tolerant of adverse environmental 
conditions, such as soil acidification (Herold et al., 2012; Rousk et al., 
2009, 2010) and high metal concentration (Rajapaksha et al., 2004; 
Stefanowicz et al., 2008). This relative insensitivity to changes in en-
vironmental conditions may be the reason why none of the soil envi-
ronmental variables, including their heterogeneity, failed to explain 
fungal β-diversity in our experiment (Figure 5c; Figures S3 and S4).

In our study, plant and microbial β-diversity responses to N ad-
dition bear some resemblance to their corresponding α-diversity 
responses to N addition, raising the question whether changes in 
α-diversity drove the observed changes in β-diversity. However, β-
deviation, which accounts for variation in α-diversity, exhibited simi-
lar trends as β-diversity, suggesting the independence of β-diversity 
responses from α-diversity responses. Indeed, bacterial α- and β-
diversity were best predicted by soil pH (Liu et al., 2020) and soil 
environmental heterogeneity (this study), respectively, indicating 
that they were regulated by different mechanisms. On the other 

F I G U R E  3  The magnitude of stochasticity, quantified as the 
normalized stochasticity ratio, in regulating plant (a), bacterial (b), 
and fungal (c) communities with increasing N input. The values 
were calculated based on Bray–Curtis dissimilarity. Box plots show 
the median (midline), first quartile and third quartile (box edges), 
and minimum and maximum (whiskers)

F I G U R E  4  Soil environmental heterogeneity as a function of N 
input. Environmental heterogeneity is calculated as the pairwise 
Euclidean distance in the seven standardized soil physicochemical 
variables (soil moisture, soil pH, soil total C, total N, inorganic N 
concentration, and exchangeable Al3+ and Mn2+ concentrations) 
among the four replicate plots of the same treatment
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hand, our result of lower plant α- and β-diversity under greater N 
enrichment (i.e., greater directional environmental filtering) is con-
sistent with previous report that deterministic species extinction re-
duced both plant diversity components in Mediterranean grasslands 
(Segre et al., 2014). Note that the continuous decline in plant α- and 
β-diversity with increasing N input is particularly concerning, as it 
suggests the erosion of plant regional diversity in our study grass-
land if anthropogenic N input is left uncurbed. Given that N input 
tends to reduce plant α-diversity in terrestrial habitats (Midolo et al., 
2019), understanding how plant β-diversity responds to N input in 
various ecosystems would help understand how anthropogenic N 
input influences plant diversity at regional and global scales.

Our study provided, to our knowledge, the first empirical evidence 
on the divergent responses of plant, bacterial, and fungal β-diversity 
to increased N input, indicating the operation of different community 
assembly mechanisms for the three co-occurring taxonomic groups 
(Figure 6). Consistent with classic niche theory, deterministic processes 

dominated plant community assembly, lowering plant β-diversity under 
higher N input. By contrast, stochastic processes strongly shaped soil 
fungal community assembly, resulting in high fungal β-diversity across 
the N gradient. Both deterministic and stochastic processes appeared 
important for soil bacterial community assembly, where a unimodal 
response to N input emerged for bacterial β-diversity. Plant–soil inter-
actions are known to be important for ecosystem functions (van der 
Putten, 2017; Wagg et al., 2014). It remains to be seen how the de-
coupling of plant and microbial spatial diversity revealed in our study 
would translate into alterations in grassland plant–microbe interac-
tions and ecosystem functions.
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