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Abstract— We study self-supervised adaptation of a robot’s
policy for social interaction, i.e., a policy for active communica-
tion with surrounding pedestrians through audio or visual sig-
nals. Inspired by the observation that humans continually adapt
their behavior when interacting under varying social context,
we propose Adaptive EXP4 (A-EXP4), a novel online learning
algorithm for adapting the robot-pedestrian interaction policy.
To address limitations of bandit algorithms in adaptation to
unseen and highly dynamic scenarios, we employ a mixture
model over the policy parameter space. Specifically, a Dirichlet
Process Gaussian Mixture Model (DPMM) is used to cluster
the parameters of sampled policies and maintain a mixture
model over the clusters, hence effectively discovering policies
that are suitable to the current environmental context in an
unsupervised manner. Our simulated and real-world experi-
ments demonstrate the feasibility of A-EXP4 in accommodating
interaction with different types of pedestrians while jointly
minimizing social disruption through the adaptation process.
While the A-EXP4 formulation is kept general for application
in a variety of domains requiring continual adaptation of a
robot’s policy, we specifically evaluate the performance of our
algorithm using a suitcase-inspired assistive robotic platform.
In this concrete assistive scenario, the algorithm observes how
audio signals produced by the navigational system affect the
behavior of pedestrians and adapts accordingly. Consequently,
we find A-EXP4 to effectively adapt the interaction policy for
gently clearing a navigation path in crowded settings, resulting
in significant reduction in empirical regret compared to the
EXP4 baseline.

I. INTRODUCTION

Humans are able to actively change the behavior of other
pedestrians in order to achieve a variety of everyday tasks.
For instance, consider the task of safe social navigation,
e.g., city driving or maneuvering in a crowded airport
environment. In such scenarios it may not be possible to
maneuver a desired path due to a variety of reasons, including
the complexity of the state space, the physical constraints
imposed by the environment, or the presence of an unaware
pedestrians ahead. Communicating with verbal or non-verbal
cues to surrounding pedestrians, who may be inattentive,
becomes a crucial ability for effective and pleasant naviga-
tion. As robotic agents are making their way from labs and
controlled environments into the real-world and becoming
more pervasive, they are more likely to encounter such sce-
narios in a variety of domains. Inspired by this observation,
we explore the possibility of endowing the robotic system
with the ability to interact with its surroundings in order to
communicate with surrounding pedestrians and clear a path.

1Authors are affiliated with the Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, PA 15213, USA {pengjuj, eohnbar,
kkitani, chiekoa}@andrew.cmu.edu. Eshed Ohn-Bar is
currently at the Max Planck Institute for Intelligent Systems.
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Fig. 1: We develop Adaptive EXP4 (A-EXP4), an online
learning algorithm that enables assistive navigation systems
to actively communicate with surrounding pedestrians, e.g.,
through an audio signal, in a more socially acceptable
manner. The system learns to automatically identify and
adapt to previously unseen contexts, e.g., a novel observed
pedestrian type shown under context C in the figure. By
continuously adapting to the current situational context in a
self-supervised manner, the proposed algorithm enables more
effective communication with surrounding pedestrians as
well as navigation in very challenging social environments,
such as indoor navigation in crowded environments.

However, learning a robot policy for communicating with
surrounding pedestrians in real-world environments can be
challenging. First, the interaction policy should be socially
appropriate and minimally disruptive to avoid uncomfortable
behavior. Second, modeling the effect of the interactions is a
difficult task, as it is not always clear when and what signal
should be broadcast to cause pedestrian behavior to change.
One of the key reasons for why the task is challenging is that
the reaction of nearby pedestrians is not consistent and can
change over time based on the situational context. That is,
given the same signal, the behavior of nearby pedestrians can
change due to changes in the environment, changes in the
configuration of pedestrians, or changes in the unobserved
internal state of the pedestrian. This means that the effective
state space of the problem is indeed very large and that the
distribution over the state space can change over time.

To address these challenges in learning an effective robot-
pedestrian interaction policy, we propose a novel online
learning algorithm for modulation of the interaction policy,
i.e., as observed in human behavior in varying situational
and social context [1], [2]. Our proposed reinforcement
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learning framework continually updates its interaction policy
to adapt to the changing nature of the environment and the
dynamic state distribution. Based on the well-known EXP4
algorithm [3], [4], our work enables the algorithm to search
and generate new and diverse expert policies by utilizing a
Dirichlet Process Gaussian Mixture Model (DPMM) over the
space of policies. Hence, our approach allows for continuous
exploration and learning of new interaction policies under
changing and novel situational context.

We study the performance of our algorithm in the con-
text of pedestrian-robot interaction for path clearing during
robot navigation. To evaluate the algorithm, we employ two
environments, one simulated and one real. The simulated
environment allows us to extensively evaluate the algorithm
while directly varying pedestrian types and behavior (i.e.,
social context) over time. Based on insights from the ex-
perimental analysis in simulation with diverse pedestrians,
we also implement and test the A-EXP4 algorithm in the
real-world with real pedestrians. We evaluate the real-world
performance of our algorithm using a suitcase-shaped robot
as an assistive navigation system, e.g., for a blind person
navigating in dynamic and crowded areas (Figure 1). The
robot assumes the form of a suitcase because we envision that
such a system will be used in airports and travel scenarios.
In this assistive scenario, the A-EXP4 algorithm observes
how audio signals produced by the navigational system
affect the behavior of surrounding pedestrians and adapts
accordingly. Consequently, we find A-EXP4 to effectively
adapt the interaction policy for gently clearing a navigation
path in crowded settings.

II. RELATED WORK

Our work leverages previous research in contextual ban-
dits, online learning, and human-robot interaction to develop
an adaptive algorithm for robot-pedestrian interaction, i.e.,
appropriately modulating the interaction policy under varying
pedestrian behavior and context during robot navigation.

Reinforcement and policy learning. In this work, the
goal is to learn a control policy from a set of input ob-
servations about surrounding pedestrians. We formulate the
task of policy learning for pedestrian-robot interaction in
a Reinforcement Learning framework. The performance of
the policy is based on a reward function that measures
collision avoidance and social disturbance. There are many
possible methods to optimize for such a policy, including
value-based, policy-based [5]–[7], model-based [8], [9], and
model-free [10]. We pursue a policy-based approach as it
was previously shown to have several benefits, including
faster learning and scalability to the dimensions of the
observations [10], [11]. A related study to ours employed a
multi-armed bandit model for grasp planning [12]. However,
a fundamental assumption in standard reinforcement learning
approach is that the underlying Markov Decision Process
(MDP) remains constant over time, yet this is rarely the
case in assistant robots where the system needs to be used in
varying scenes. Inspired by model-free policy search learning
techniques that utilize sampling-based inference [13]–[15],

we propose to a similar mechanism with a DPMM [16], [17]
in the context of robot-pedestrian interaction. Our optimiza-
tion is done in a model-free manner, as it is often difficult to
capture an accurate model of different types of pedestrians
under different contexts [18]–[25]. Nonetheless, the recent
study of Krishnan et.al. [26] in unsupervised transition state
clustering suggests that Bayesian non-parametrics can be
incorporated into model-based approaches for policy learning
as well.

Contextual bandits and online learning. We envision
a system that continuously learns appropriate policies as
part of life-long learning process. To deal with the dynamic
state distribution, we leverage ideas from contextual bandits
problems under adversarial settings. The primary bandit
algorithm for this case is EXP4, a no-regret algorithm proven
to perform well under adversarial circumstances [3]. Due
to its performance, various follow-up algorithms have been
proposed to modify EXP4 and improve its regret bounds
[4], [27]–[29]. In contrast to classical bandit problems, we
do not assume that the set of ‘arms’ (policies) is static
but instead attempt to learn many policies over time. Our
main insight is to maintain a (potentially infinite) number of
bandit arms (policies) by utilizing a DPMM over the space of
policies. Hence, the resulting algorithm is a novel variation
of the EXP4 algorithm that can better adapt to changing
environments. We empirically validate that we are able to
minimize the regret of the proposed A-EXP4 online learning
algorithm even with the DPMM for clustering existing expert
policies and finding new expert policies.

Robot-pedestrian interaction. One particular problem
tackled in our work is effective pedestrian interaction and
avoidance. This problem is relevant to a variety of domains
requiring robot-pedestrian interaction [19], [30]. There has
been significant interest in the research community for
building accurate models to predict the trajectories of pedes-
trians [18], [20]–[22]. In such settings, prediction models
can be applied within the planning loop in order to yield to
pedestrians. However, depending on the operation space and
the behavior of surrounding pedestrians, this is not always
appropriate. Some examples include scenarios where the
physical constraints imposed by the environment restrict the
path of the robot or the presence of an inattentive pedestrian
along the path. Specifically to our application of navigation
in crowded areas, humans often interact with surrounding
pedestrians verbally through “excuse me” and other forms
of communication. Once the robotic system is endowed with
the ability to interact and communicate to its surroundings,
the problem of social context immediately arises. Hence,
we wish to learn a set of appropriate actions that allow the
pedestrian to move away from the robot instead of yielding
in order to (gently) clear a path when needed.

III. APPROACH

The goal of this work is to develop an algorithmic
framework that allows a navigational robot to naturally
signal intent to pass, to a wide range of pedestrians along
a navigational path, in order to avoid possible collisions.
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We model the interaction of the navigational robot (agent)
with nearby pedestrians (environment) as a Markov Decision
Process (MDP) and learn the best policy for signaling intent.
Formally, we would like to learn a policy π(a|s) which
maps a state s, i.e., observation from on-board sensors of
a nearby pedestrian, to a distribution over a set of actions
a ∈ A = {a1, a2}, i.e., whether or not to initiate a sound,
such that total reward obtained by following the policy is
maximized. To deal with changes in pedestrian behavior over
time, we take an online learning approach that dynamically
adjusts the weights over a large set of policies such that
the most successful policies have the greatest weight. In the
following section we describe our MDP formulation and the
proposed online learning algorithm.

A. Robot-Pedestrian Interaction Model

In our MDP, the state space S consists of a set of
observations of visible pedestrians and obstacles in the field
of view of the navigation system, where each state is defined
as

s = [p1, v1, γ1, . . . , pL, vL, γL] (1)

For each pedestrian l, pl is a triplet encoding of the 3D
position, vl is a triplet encoding of the 3D velocity, and γl
is a double encoding the 2D bearing. In our implementation,
we set L = 4 using the four closest pedestrians to the system.

The reward function r(s, a) is composed of two compo-
nents

r(s, a) = rca(s, a) + rsd(s, a) (2)

The first component rca is the collision avoidance term,
which is zero when no pedestrians are within some collision
radius (e.g., 1.5 meters) and a very large negative value
otherwise. The second component is the social disruption
term rsd which is zero when the sound is turned off and
a small negative value when the sound is turned on. The
collision avoidance reward term encourages the robot to
alarm pedestrians who are too close to the system and the
second social disruption reward term penalizes the robot for
being overly disruptive.

B. Adaptive EXP4

Since the reactive behavior of nearby pedestrians can vary
greatly over time, the robot-pedestrian interaction policy
needs to able to quickly adapt to such changes. To address
the dynamic nature of pedestrian behavior, we incrementally
learn a large set of robot-pedestrian interaction policies to
cover a wide range of pedestrian behavior. To this end,
we develop an online algorithm which is able to select the
most appropriate policy by maintaining and adapting weights
over all polices. In particular, we formulate the temporal
adaptation problem as a contextual bandit algorithm.

In contrast to classical bandit problems, we do not assume
that the set of ‘arms’ (policies) is static but instead attempt to
learn many new policies over time. In the classical case, each
bandit produces some reward from an underlying reward
distribution. In the adversarial case, the reward distribution

Algorithm 1 Adaptive EXP4 (A-EXP4)

1: Π = {π1, . . . πN} is the set of all expert policies
2: Initalize w = {wi = 1} for i = 1 . . . N
3: for t = 1, ..., T do
4: st ← ObserveState()
5: W ←

∑N
i=1 wi

6: P ← {pj(t) = wj/W}
7: πti ∼ Multinomial(Π;P )
8: explore ∼ Bernoulli(ε)
9: if explore then

10: πi
′t ∼ PolicySampler(Π,w)

11: end if
12: lt ← GetLoss()
13: if explore then
14: Π,w← PolicyUpdate(πi

′t, lt,Π,w)
15: else
16: wt+1

i ← wtie−η
tlt

17: end if
18: end for

changes over time. EXP4 is a standard algorithm for solv-
ing the contextual adversarial bandit problem through the
usage of expert advice. The algorithm uses a set of pre-
trained experts to map the contextual information to an arm
selection. At each time step, the agent receives a set of
contextual information about all arms and it is allowed to
choose one arm and claim a reward. The goal is to maximize
the reward over a time horizon T . With each interaction, a
set of weights is maintained for the experts and constantly
adjusted depending on the result of the trial. The algorithm
has been shown to be no-regret with respect to the best
pre-trained expert when the number of arms is known. In
our scenario, the number of arms grows over time and we
develop an algorithm to select the best arm, as outlined in
Algorithm 1.

Similarly to EXP4, A-EXP4 maintains a set of expert
policies Π and a vector of weights w over each policy. In
our experiments, the policies are represented using a linear
policy approximator

π(s, a; θ) = eθ
>φ(s,a) (3)

where θ is a vector of learned policy parameters and φ(s, a)
is a vector of state features. At each iteration, a policy
π is sampled from a multinomial distribution according to
the normalized weights. Instead of exclusively applying the
policy π as in the classical contextual bandit algorithm,
another policy, an exploration policy π′, is sampled as well
(described in the next section). The agent then applies the re-
sulting policy and observes its loss. The loss function we use
in our experiments is simply the one step reward described
in Equation 2. Specifically, after taking an action based on
the current policy π, we observe the reward by measuring the
distance of the closest pedestrians to compute a normalized
loss, l = −r / |Min Reward| where |Min Reward|
is the magnitude of the smallest possible reward (highest
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Fig. 2: Demonstration of a sampled expert policy encoded
in the GMM. Each component of the GMM represents a
single expert policy. In the top figure, there are two discov-
ered expert policies. This representation naturally encodes a
policy exploration strategy. As the environment changes over
time, we will sample policies according to the GMM and the
expert policy weights. With enough samples, a new locally
optimal policy π3 is added to the model as shown in the
bottom figure.

penalty). If the selected policy is an exploration policy, it
is passed to an online policy update algorithm described in
Algorithm 3. Otherwise, the weights are updated according
to the received loss using the traditional exponential gradient
update. The policy sampling and learning process will be
described in detail next.

C. Policy Sampler: Sampling Exploration Policies

To continually learn new policies, we sample new explo-
ration policies by calling PolicySampler in Algorithm 2.
The role of PolicySampler is to first estimate the distri-
bution over the space of policy parameters Θ induced by the
current set of policies Π using a Gaussian Mixture Model
(GMM), and then the GMM is used to sample a new policy.
The number of Gaussians in the mixture model is equivalent
to |Π|. Example Gaussian mixture distribution induced by a
set of two and three policies can be seen in Figure 2. The
variance of each Gaussian mixture is set using the weight
vector w. For each mixture component i, σi = Lwi where L

Algorithm 2 Sample New Exploration Policies

1: function PolicySampler(Π,w)
2: G ← GenerateGMM(Π,w)
3: πi

′t ← RandomSampling(G)
4: Return πi′

t

5: end function

Algorithm 3 Incrementally Update a Policy

1: function PolicyUpdate(π(θ), l,Π,w)
2: r ← exp(−l)
3: Add policy-reward pair: D = D ∪ (θ, r)
4: Compute updated policy parameters θ∗ with Eqn. 4
5: if |D| > BufferSize then
6: Add policy: Π = Π ∪ π(θ∗)
7: Π,w← DirichletProcessMixture(Π,w)
8: D = {∅}
9: end if

10: Return Π,w
11: end function

is a tunable scalar kept as a hyper-parameter for the amount
of exploration (a high L value encourages more exploration).
In our experiments, the value is set to 1.5. In this way, we
are able to sample new exploration policies which are close
to the highest reward yielding policies.

D. Policy Update: Incremental Learning from Exploration
Policies

In order to continually learn new policies, we implement
an incremental version of the PoWER algorithm [15] which
can be used to search for new locally optimal policies using
kernel density estimate over a set of sampled parameter-
reward pairs S. As shown by Kober et al. in [15], the original
PoWER algorithm relies on the idea that a way to safely learn
new policies is to look at the convex combination of the
sampled policies using importance sampling. In its simplest
form, a new policy can be estimated using the following
update:

θ∗ = θ∗ +

∑|D|
d=1 rd[θd − θ∗]∑|D|

d=1 r(θd)
(4)

where θd and rd represent the parameters and reward of a
sampled policy πd, D is the set of sampled policy-reward
pairs and θ∗ is the parameters of a mean policy.

As described in our online implementation of PoWER
PolicyUpdate (Algorithm 3), each newly sampled explo-
ration policy π′ and its resulting reward is added to a buffer
of recent policies D. The current buffered policy π(θ∗) is
updated according Equation 4. Once the buffer reaches a
specified size, we add the current buffered policy π(θ∗) into
the set of all policies Π and clear the buffer. In this way, our
incremental policy learning algorithm is able to constantly
add new policies to the master set of policies Π.

As new policies are added to Π, it is possible that Π will
contain policies which are very similar. To address this issue,
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we estimate a Dirichlet Process mixture model (DPMM)
that describes the current set of policies Π. In this way, we
are able to effectively reshuffle the policies and indirectly
bound the size of Π using the Dirichlet process concentration
parameter α0, similar to [17]. In the Bayesian DPMM, we
use a Dirichlet Process as a prior for the mixture model
distribution. Specifically, we add a probability distribution
Fθ to the model, whose parameters θ are drawn from the
DP with a base prior distribution G0:

G ∼ DP (α,G0), θi ∼ G, xi ∼ Fθi (5)

The result is an infinite model which can be generated
as the limit of a finite process. When a set of n points
{y1, y2, . . . , yn} are given and assumed to be distributed
according to a DPMM, the posterior probability of any given
point yi belongs to a cluster Xi can be computed using

P (Xi = x|X−i, yi, θ∗) =
N−i,c

N − 1 + α
F (yi, θ

∗
x) (6)

P (Xi 6= xj |X−i, yi, θ∗) =
α

N − 1 + α

∫
F (yi, θ

∗
x)dG0(θ∗)

(7)

where x is current existing clusters, X−i are the previous
cluster assignments, N−i,c is the cluster’s count, and θ∗ being
the parameter vector associated with the particular cluster.

Estimating the exact posterior of the DPMM requires com-
puting complex integrals over the infinite DP. Approximation
algorithms, such as Gibbs sampling [31] and variational
inference [32] have been proposed for efficient inference. In
our algorithm, we set F to be a Gaussian distribution so that
the resulting model is an infinite Gaussian mixture model.
The algorithm is implemented efficiently based on [33], and
the inference step can be done quickly online.

Note that the algorithm described above continuously in-
serts new expert policies to the set once they are discovered.
However, the algorithm tends to be inherently optimistic with
novel experts and this could lead to sub-optimal behavior.
Moreover, the iterative discovery process heavily depends
on the quality of the initial experts, such that if the first
few discovered policies are sub-optimal globally it becomes
difficult to sample good policy in the long run. To discourage
the algorithm from sampling low performance policies and
eliminate policies with low weights (i.e., low returns), we
modify the posterior probability in Equations 6 and 7 to be
weighted by the weights of the expert policies belonging to
that cluster. In practice, we find this to effectively limit the
number of expert components because most expert policies
will have low weights after sufficient iterations of online
evaluation.

IV. EXPERIMENTAL SETTINGS

We analyze the performance of A-EXP4 for pedestrian-
robot interaction during robot navigation. For our main
experiment, we employ a simulated environment. The envi-
ronment allows us to directly control the situational context
for generating a meaningful comparison between A-EXP4

and the standard EXP4 baseline. We use the simulation
to demonstrate that our adaptive algorithm has superior
performances and empirically low regret. Particularly, we
show that by reshuffling expert policies with DPMM, we
can significantly reduce performance variance and lower the
regret in adaptive scenarios. Moreover, we implement the
system on a real-world mobile platform. While we have
no direct control over the underlying pedestrian types and
behavior in this case, we use this experiment to illustrate
overall pedestrian behavior as a result of employing the audio
communication strategy generated by the proposed online
learner.

We first constructed a simulation based on the open
sourced PedSim package [34], a flexible, light-weight pedes-
trian simulation engine. In PedSim, the pedestrians are
simulated as particles and their movements are computed
based on social forces, e.g., the distance from obstacles, other
pedestrians. In order to make the simulation more suitable for
our problem setup, we add a robot agent that overwrites the
social force model and always follows its trajectory without
yielding. The robot agent is given the ability to engage an
audio signal which forces the pedestrian to yield to the
robot. Moreover, we extend the social force dynamic model
for pedestrian behavior with additional attributes such as
velocity, avoidance radius, awareness radius, and awareness
level. These additional attributes influence how the pedes-
trians behave around the robot while allowing us to create
varying pedestrian types and social context. For example, a
high level of awareness makes the pedestrian more likely to
move away from the robot when it is far away. In contrast,
a low level of awareness makes the pedestrian much more
likely to collide with other pedestrians and the robot.

The goal of our algorithm is to adapt to variations in
pedestrian’s reactive behavior. Ideally, our online learner can
perform as well on a new pedestrian type in the long run as
applying an optimal policy learned offline where the optimal
policy is trained with the new pedestrian type beforehand.
Therefore, the performance of our algorithm is measured
with the notion of regert as it is commonly used in online
learning literature. Formally, the regret at time t, Rt, is
defined as

Rt =

t∑
i=0

lt(at; θt)−min
θ∗

t∑
i=0

l(at; θ
∗) (8)

which is the difference of accumulated loss (computed
over the observed sequence of examples) between the per-
formance of the online algorithm, e.g. A-EXP4, and the
hindsight optimal model, i.e. a policy trained with the new
pedestrian type, over time.

During the evaluation, we stochastically generate a new
pedestrian behavior type by randomly sampling values for
each pedestrian attribute, e.g., pedestrians with medium
speed and low values for awareness. To analyze our online
algorithm, we trained an optimal policy π∗ on the new pedes-
trian type using the same offline policy gradient algorithm
to convergence. For the baseline, we will evaluate against
the standard EXP4 algorithm which maintains the expert
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Fig. 3: (a) Average accumulated reward (higher is better) and (b) average empirical regret (lower is better) on a stochastic
scene where pedestrian types are randomly generated over time. Results are shown for two A-EXP4 variants, with and
without using the Drichlet Process Mixture Model (DPMM) to cluster the experts and remove ones with low weight.

policies statically. Each experiment is repeated 50 trials
and the overall average accumulated reward and regret are
recorded. For the simulation experiments, we initially trained
two expert policies {π1, π2} with offline policy gradient for
two different sets of pedestrian attributes (slow and high
awareness, fast and medium awareness).

Real-world implementation. To better understand the
feasibility of using A-EXP4 in real-world robot-pedestrian
communication and interaction, we implemented the on-
line learning algorithm onto our suitcase-inspired, non-
conspicuous platform. The motivation for such a platform
is based on the fact that state-of-the-art assistive navigation
systems (e.g., for people with visual impairment [35]–[41])
are often introspective and only give navigational directions
to the user. In many cases, they do not consider the ability
of the system to actively change the behavior of other pedes-
trians to help lead a person successfully over a navigation
path [42], [43]. Moreover, the design of many systems often
assume or leverage the fact that other pedestrians will yield
to the navigational system without any prompting. While this
may be true for large robotic navigational platforms that are
easy to spot (albeit, pedestrians in the environment may still
be inattentive), this is does not generally hold for wearable,
hand-held, or minimal robotic systems which are much less
conspicuous. Hence, enabling assistive navigation in crowded
environments, such as airports or malls, is challenging.

The platform (visualized in Figure 1), is equipped with
a Microsoft Kinect 2, a small computer, and a speaker
for audio interaction. The Kinect is used to extract scene
information including obstacles positions, poses, and velocity
of incoming pedestrians. We utilized the skeleton tracker and
combine it with a standard Kalman filter [44] to estimate the
full pedestrian trajectory and state information.

V. EXPERIMENTAL ANALYSIS

Given the experimental setup of generating different
pedestrian types over time, we run the baseline EXP4, as well
as A-EXP4 with and without the DPMM, i.e., the clustering
and removal of policies step. The aggregated results over
running the 50 trials (each for 40,000 time steps) are shown
in Figure 3.

We can see how the full A-EXP4 algorithm significantly
outperforms the EXP4 algorithm in average accumulated
reward, by up to 40% towards the end of the experiments.
Moreover, several observations can be made about the abil-
ity of these online learning algorithms to adapt to new
context. For instance, Figure 3(a) demonstrates how A-
EXP4 performs similarly to EXP-4 during the onset of the
experiment. This is expected, as both algorithms employ the
existing expert policies and shift the weights to the expert
that performs best. However, as more exploration policies
are sampled over time, A-EXP4’s performance is shown
to significantly improve as new policies are inserted into
the expert set. In fact, comparing the three algorithms in
Figure 3(a) shows a remarkable adaptation when compared
to the hindsight optimal policy. The variance of A-EXP4 with
the DPMM depicts how even in diverse settings, the method
generally produces a policy as good or better as the A-EXP4
without the DPMM and the EXP4 baseline.

Figure 3(b) shows the average regret of the algorithms,
where the average regret of A-EXP4 is shown to decrease
steadily towards zero. In contrast, the standard EXP4 algo-
rithm maintains a large average regret because neither pre-
trained expert policies were effective against the new pedes-
trian types introduced by the simulator. When evaluation
A-EXP4 without DPMM reshuffling of the expert policies,
the performance is worse because the set of expert policies
becomes unbounded. This hurts performance because poorly
performing policies will never be removed from the set.
Therefore, as the expert policies accumulate, it becomes
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Fig. 4: Example interaction sequence in navigation with low-
awareness pedestrians context.

increasingly more difficult to sample better ones. As a result,
this variant of the A-EXP4 algorithm largely depends on the
quality of first few sampled policies. On the other hand, in
the full A-EXP4, by clustering similar policies and removing
ones with low weights we can ensure that the algorithm only
samples near policies with high expected reward.

An example simulated interaction sequence is shown in
Figure 4. In this scenario, the general context of the envi-
ronment involves pedestrians with low awareness levels and
medium speed. Hence, at times, the robot and a pedestrian
may be on a collision or near-collision course. We can see
how the A-EXP4 algorithm learns to effectively wait for
producing the audio signal (i.e., and incurring a negative
reward), until the robot is at close proximity to the pedestrian.
Then, triggering the audio signal successfully avoids a near-
collision for this context.

Real-world analysis. The simulated environment allows
us to directly measure the ability of our system to adapt to
clearly defined, varying context over long periods of time.
In real-world settings, performing a similar evaluation by
defining the current context is more challenging. However,
as the A-EXP4 algorithm adapts in a self-supervised manner,
we can simply let the algorithm interact with the environment
and observe the resulting interaction patterns on pedestrian
motion over time.

We verify the analysis in simulation with a similarly
designed real-world experiment. We tested the system on a
straight forward route through a long hallway to demonstrate
the overall effect of our approach on the incoming pedestri-

(a) (b)

Fig. 5: Top-down view visualization of the normalized spatial
distribution (x-axis and y-axis units are meters) of pedestrian
trajectories with the real-world implementation of the (a)
baseline policy learning algorithm and (b) A-EXP4 for audio
signal generation. For meaningful comparison, both policies
are tested in the same physical environment. Camera origin
is at (0,0).

ans with respect to the navigation task. In the experiment,
we generally maintain our forward path without yielding, as
in the simulated experiment. We then allowed the learner
to iterate over the observed pedestrian trajectories. Overall,
191 pedestrian trajectories were collected for studying the
behavior of A-EXP4.

To visualize overall pedestrian behavior using the two poli-
cies, we plot the top-down distribution of pedestrian locations
in Figure 5. Generally, we observe how our proposed learner
was able to generate policies based on pedestrian position
and velocity, so that pedestrians avoided the platform much
earlier and actively stayed away from its course. In contrast,
the baseline policy is shown to be less effective at path
clearing. Overall, there were only 111 instances of pedes-
trians being less than 1 meter from the system, compared
to 296 with the baseline. Hence, this experiment shows the
feasibility of using the proposed approach to interact with
pedestrians in order to clear a path for navigation in crowded
environments.

VI. CONCLUSION AND FUTURE WORK

Learning a policy for robot-pedestrian interaction in di-
verse social environments is challenging. Towards this goal,
we presented a principled approach for dealing with pedes-
trian behavior variations using a novel online learning algo-
rithm. The proposed A-EXP4 approach relies on maintaining
and adjusting weights over a set of expert policies. We
extended a commonly used bandit algorithm to dynamically
search new policies online and group them into the expert
set using a Bayesian mixture model. Our experimental results
show that A-EXP4 has better performance than using a static
set of expert policies. Due to the general formulation, A-
EXP4 can be applied to a variety of domains requiring
adaptive and lifelong learning tasks. Although the position,
velocity, and bearing attributes used in this study are essential
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to representing pedestrians’ state, in the future we would
like to study the benefit of additional attributes that can be
added in order to further explore how a social policy can
be efficiently learned. Another interesting area for improve-
ment would be exploring Thompson sampling [45] or other
statistical sampling methods to improve the policy search
efficiency in higher dimensions. Given that we developed a
real-time adaptive system, an important next step would be
further validation in real-world, large-scale robot-pedestrian
interaction studies.
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