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Mating system variation in hybrid
zones: facilitation, barriers and
asymmetries to gene flow

Summary

Plant mating systems play a key role in structuring genetic variation
both within and between species. In hybrid zones, the outcomes and
dynamics of hybridization are usually interpreted as the balance
between gene flow and selection against hybrids. Yet, mating
systems can introduce selective forces that alter these expectations;
with diverse outcomes for the level and direction of gene flow
depending on variation in outcrossing and whether the mating
systems of the species pair are the same or divergent. We present a
survey of hybridization in 133 species pairs from 41 plant families
and examine how patterns of hybridization vary with mating
system. We examine if hybrid zone mode, level of gene flow,
asymmetries in gene flow and the frequency of reproductive
isolating barriers vary in relation to mating system/s of the species
pair. We combine these results with a simulation model and
examples from the literature to address two general themes: (1) the
two-way interaction between introgression and the evolution of
reproductive systems, and (2) how mating system can facilitate or
restrictinterspecific gene flow. We conclude that examining mating
system with hybridization provides unique opportunities to under-
stand divergence and the processes underlying reproductive isola-
tion.

Introduction

For plant mating, the relationship between parents varies tremen-
dously: ranging from within the same individual (selfing) at one
extreme, to interspecific hybridization on the other. Studies of
hybrid zones, where reproductive isolation is incomplete, examine
one end of this continuum, offering windows into the speciation
process and the maintenance of divergence in sympatry (Barton &
Hewitt, 1985; Abbott ez al., 2013; Gompert ez al., 2017). At the
other extreme, studies of mating systems examine the frequency
and consequences of mating among relatives. This offers insight
into the evolution of genetic load, the distribution of genetic
variation within and among populations, and the extent of
intragenomic conflicts (Brandvain & Haig, 2005; Glémin ezal.,
2006; Hough ez al., 2013). The research fields of hybridization and
mating systems have developed largely independently, even though
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they address complementary questions regarding the costs and
benefits of inbreeding and outcrossing. While some studies have
considered this interaction, there is still no overall synthesis of how
different mating/sexual system combinations may influence the
occurrence and outcomes of hybridization. Moreover, studying
hybrid zones in the context of different mating systems opens new
avenues for understanding both the speciation process and the
evolution of mating systems and their consequences.

In flowering plants, hybrid zones — regions of contact between
divergent populations with individuals of mixed ancestry (Barton
& Hewitt, 1985) —have been reported across a broad range of taxa,
life-histories and biogeographic regions (Abbott, 2017). Hybrid
zones can illuminate the pre- and post-zygotic factors that limit
interspecific gene flow (Rieseberg & Carney, 1998; Abbott ez al.,
2013). In plants, pre-mating pre-zygotic barriers act before pollen
deposition and can include differences in geographic distributions,
habitat, phenology and pollinators. Once pollen is transferred
between species, pollen—pistil interactions may limit pollen tube
growth in one or both directions (post-mating pre-zygotic barriers).
Post-zygotic barriers may include hybrid inviability or sterility due
to intrinsic incompatibilities, and reduced hybrid fitness relative to
parental genotypes due to maladaptation to the extrinsic environ-
ment. When hybrids are formed, the rate of gene flow (dispersal)
relative to the strength of selection against hybrids shapes hybrid
zones (Barton & Gale, 1993). Thus, identifying the forces that
mediate the rate and direction of gene flow is central to
understanding reproductive barriers and the evolutionary fate of
diverging lineages. Here we argue that examining variation in plant
mating systems provides a valuable opportunity to understand the
forces underlying gene flow in hybridizing species-pairs.

The rich diversity of mating and sexual systems in plants is an
important source of variation influencing patterns of dispersal and
selection across genomes. The proportion of cross-fertilization may
vary considerably among individuals and populations (mixed-
maters) whereas others maintain high levels of outcrossing due to
genetic  self-incompatibility  (Goodwillie  eral,  2005;
Charlesworth, 2006). In other groups, selfing avoidance has likely
driven the evolution of separate sexes (dioecy) and related gender
strategies (gynodioecy, androdioecy) or stylar polymorphisms (e.g.
heterostyly) (Charlesworth, 2006; Barrett, 2010). Given their
diversity, and that mating systems differ in how they influence gene
transfer, each mating system type may interact uniquely with
hybridization (Fig. 1). Bringing together the literature on
hybridization and mating systems can offer important insights
into their interaction and how this may impact the evolution of
both mating systems and reproductive isolation. More generally,
the differences associated with alternative plant mating systems
provide an opportunity to test how features including genetic
conflicts (Brandvain & Haig, 2005; Sweigart ez al., 2019), rare-
advantage (Bierne ez al., 2002), and genetic load (Kim ez 4/., 2018)
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Fig. 1 The potential influence of different mating/sexual systems on hybridization patterns. The different sections follow the main text: (1) self-incompatible
(S) systemsand the SI x SCrule, (2) self-compatible systems (selfers, outcrossers and mixed-maters, SC-O in the figure is equivalent to SC-OC in the main text)
and (3) sexual systems (dioecy with or without sex chromosomes). On the left-hand side of each panel, hybridization scenarios are depicted. For each scenario,
the two coloured circles represent the mating/sexual system of each taxon, which can affect hybrid zone mode (rectangle) and the level and direction of gene
flow (arrows). Possible underlying processes are shown on the middle panel (migration) and on the right-hand side (selection and recombination). BDMls,
Bateson-Dobzhansky—Muller incompatibilities; S alleles, self-incompatibility alleles; NFDS, negative frequency dependent selection; ¢, outcrossing rate.

promote or inhibit gene flow. Studying the interaction of mating
systems and speciation can illuminate biological questions that are
actively debated in taxa whose limited variation in mating system
precludes such investigations.

Here, we examine the evolutionary consequences of hybridiza-
tion between plant species pairs with similar and contrasting
mating systems. We first consider each of the major mating system
types and combinations observed in plant hybrid zones and
highlight the potential influence of these on gene flow, selection
and recombination. We also present predictions of how different
mating systems may affect hybrid zone mode and level of gene flow
(Fig. 1; Supporting Information Table S1). Next we present a
literature survey of 133 plant hybrid zone studies to examine how
patterns of hybridization vary with mating system, and to test
predictions for specific mating system combinations. We then use a
simulation model and individual case studies to highlight how
different mating system combinations influence rates and asym-
metries in gene flow in hybrid zones. Finally, we conclude by
discussing open questions and future directions (Box 1) and how —
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by combining mating system and hybridization — we can better
understand divergence and the processes underlying reproductive
isolation between divergent mating strategies.

Predictions on the influence of mating systems on
hybridization

The evolutionary consequences of hybridization between taxa will
vary depending on whether the taxa have the same or divergent
mating systems. First, we consider self-incompatibility, where
strong balancing selection is expected to facilitate gene flow leading
to a tension between hybrid inviability and rare allele advantage
(Fig. 1, section 1). Second, we consider hybridization between self-
compatible (SC) taxa, which may vary in the degree of selfing vs
outcrossing (Fig. 1, section 2). For highly selfing taxa, low
hybridization rates are expected due to reduced pollen transfer
and stronger reproductive isolation. By contrast, strong asymme-
tries in gene flow and barrier strength are expected for hybridization
between selfing and outcrossing systems. Differences in the
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strength of linkage disequilibrium across stretches of the genome in
selfers and outcrossers may also influence how advantageous and
disadvantageous blocks of genome disperse through hybrid zones.
For mixed maters (variable outcrossing rates), rates of hybridization
and gene flow may change depending on ecological and/or
demographic context (Fig. 1, section 2). Third, we consider
hybridization between different sexual systems such as between two
D species (with separate sexes) or between D and SC
(hermaphrodite) taxa (Fig. 1, section 3). For these species pairs,
differences in reproductive strategies can influence barrier strength
and result in asymmetrical gene flow. Moreover, sex chromosomes
and cyto-nuclear interactions may generate stronger barriers,
resulting in restricted hybridization and reduced gene flow.

Comparative analysis: mating systems can affect gene
flow and asymmetries in hybridization

To investigate the interaction between hybridization and mating
system we collated data on hybridization (see Fig. 2) in 133 species
pairs, representing 72 genera and 41 plant families (for methods see
Methods S1). Mating/sexual system classifications included: self-
incompatible (SI), self-compatible (SC), dioecious (D), gynodioe-
cious (G), androdioecious (A) and trioecious (T) (for a description
of each system type see Table S1). We further classified species
capable of self-fertilization (self-compatible, SC) into predomi-
nantly selfing (SC-S) and predominantly outcrossing (including
mixed maters, SC-OC) based on outcrossing rates (#,) (where
available) and descriptions from the literature (SC-S: 4, <0.2, SC-
0OC: £,>0.2).

Both hybridizing taxa were SC in half (2= 67, 52.8%) of the
127 species pairs with data for both parental taxa, followed by pairs
where both taxa were SI (=42, 33.1%) and both D (»=9, 7.1%)
(Fig. 3a). Fewer species pairs included taxa with different mating/
sexual systems, seven (5.6%) between self-incompatible and self-
compatible taxa (SI x SC), one between a self-compatible and
gynodioecious species, and another between an androdioecious
and trioecious species (Fig. 3a). For hybridization between two SC
species (n=067), the majority (2=56, 83.5%) were between
outcrossing taxa (SC-OC x SC-OC), with four cases of hybridiza-
tion between highly selfing taxa (SC-S x SC-S) and seven between
a predominant outcrosser and selfer (SC-S x SC-OC). For six
species pairs, one or both mating systems were unknown (Fig. 3a).
There was a significant excess of hybrid zones between species pairs
with like mating systems (y>=15.09, simulation-based
P=0.0027). However, with this data it was not possible to resolve
whether this difference reflects a biological propensity for such
zones to be formed, or phylogenetic nonindependence. Our survey
is based on the best available data from published studies. Yet it is
well known that selection of plant species pairs for study is not
random, which may result in a bias for global estimates of mating
system frequency and/or hybridization rate. Nonetheless, we
found no systematic bias with mating system. For example,
although the extent of gene flow is likely overestimated (because
hybrid zones in species with little to no hybridization are rarely
studied), this bias did not differ by mating systems of the parental
species.
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Genetic characterization of hybrid zones using a wide range of
genetic markers (allozymes, RFLPs, AFLPs, SSRs, SNPs) and
numbers of loci (7= 4-1000s) precluded quantitative comparisons
on the same scale. Therefore, we used hybrid zone mode
(unimodal, bimodal and trimodal), as a qualitative measure that
reflects the genotypic composition of hybrid zones and provides
information on the strength of reproductive barriers (see Fig. 2).
Unimodal hybrid zones indicate ongoing hybridization and
admixture, with the presence of a range of hybrid admixture types;
whereas bimodal (predominantly parental genotypes and low-
frequency hybrids) and trimodal (predominantly parents and F,
hybrids) are indicative of stronger reproductive barriers.

The frequency of hybrid zone mode did not vary significantly
among the four main mating system types (;> = 9.5, permutation
based P=0.7950, Fig. 3b). Restricting to SC x SC and SI x SI
species pairs with unimodal, bimodal or trimodal hybrid zones (92
of our 111 data points), we still found no significant association
between hybrid zone type and mating system combination
(}(2:2.7, df=2, P=0.2567). Unimodal hybrid zones were the
most common in this data set, making up half of the 92
observations. Bimodal hybrid zones were also common, making up
¢. 1/3 of the hybrid zones (31 of 92). Trimodal hybrid zones where
least common, representing ¢. 1/6 of the hybrid zones (15 of 92).

Using a qualitative classification for the level of gene flow (‘high’
vs ‘low variable, low, or very low’; see Methods S1) we found that
the distribution of gene flow categories varied with mating system
type (1>=10.316, df=3, P=0.0161, with mating system com-
binations D-D, SC-SC, SI-SC, SI-SI, Fig. 3c). This difference is
primarily attributable to the excess of SI x SI hybrid zones with
high gene flow (23 of 41). High gene flow was much less common
in hybrid zones between SC species, making up 21 of the 61
characterized cases. High gene flow was even rarer in SI x SC (one
of seven), and D x D (one of nine) hybrid zones. The single A x T
species pair with known levels of gene flow was characterized as low-
variable, while the lone characterized SC—G hybrid zone had a low
level of gene flow.

Asymmetries in gene flow were present for all mating system
types (Fig. 3d), and quite common — comprising 49 of the 73 cases
for which asymmetry was evaluated. The frequency of asymmetry
varied by mating system (4*=8.12,df=2, P=0.0172) among the
67 SC-SC, SI-SC, SI-SI hybrid zones for which asymmetry was
characterized. Asymmetric gene flow was predominantin SC x SC
pairs (28 of the 37), and all four SI x SC hybrid zones for which
such data was available. In comparison, SI x SI hybrid zones had
comparable numbers of symmetric (z=14) and asymmetric
(n=12) pairs.

Given the categorical nature of hybrid zone mode and gene flow
level, we use the numbers in each category to describe general trends
and make predictions for each mating system type (see Fig. 1). We
now discuss these results in the context of the broader literature on
mating systems and hybridization for three main types: (1) self-
incompatibility (SI x SI, SI x SC), (2) self-compatibility
(SC x SC, including hybridization between predominant selfers
(SC-S x SC-S), mixed maters (SC-OC x SC-OC) and between
selfers and outcrossers (SC-S x SC-OC) and (3) sexual system
variation (including hybridization between dioecious species
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Fig.2 Hybrid zones are defined as geographic regions of genetic mixing between divergent populations. Hybrid indices and admixture coefficients tell us about
the proportion of an individual's genome inherited from one or the other parental species. In this example, the same individual ancestry proportions are
represented in (a—d) ordered by the proportion of ancestry belonging to parental species A and in (e-h) as a frequency distribution. This distribution in a hybrid
zone may reflect the strength and direction of reproductive barriers. In strongly bimodal hybrid zones (a, €) few hybrids are presentand pure parental genotypes
dominate, suggesting a strong barrier with very low levels of gene exchange. By contrast, for unimodal hybrid zones (b, f) the distribution spans a range of
admixture and backcrosses toward both parents, which suggests weaker barriers and high levels of gene exchange. In trimodal hybrid zones (c, g) high
frequencies of F4s and limited backcrosses may suggest F4 sterility and/or heterosis. Highly skewed distributions with backcrossing predominantly to one
parental type (d, h) may reflect the direction of gene flow and imply asymmetrical strength in reproductive barriers.

(D x D) and between dioecious and self-compatible species
(D x SQO)).

Self-incompatibility

For genetically based self-incompatibility systems (both self- and
nonself-recognition; for review see Fujii ezal., 2016), mating can
only occur among plants with different alleles at the self-
incompatibility locus. The high allelic diversity observed in these
systems (see Lawrence, 2000) is maintained by negative frequency-
dependent selection (a form of balancing selection) where rare
alleles have a high selective advantage (Wright, 1939). For species
with weak reproductive barriers, outcrossing mechanisms such as SI
can influence the rate of hybridization (Ellstrand ez 4/, 1996) and
its evolutionary outcomes. Self-incompatibility can facilitate gene
flow at the S locus (Castric ez al., 2008), impeding speciation and
increasing rates of introgression, while selection against hybrids
may restrict introgression. Consequently, the balance between gene
flow and selection determines the role of mating system in
promoting hybridization. High and symmetric levels of gene flow
were frequently observed in hybrid zones of two SI species (Fig. 3¢,
d). Yet, the cases of lower gene flow may reflect greater hybrid
breakdown, which may counteract the increase in migration rate
associated with S allele exchange (see simulation model below),
leading to an overall reduction in gene flow.

Self-incompatibility alleles can facilitate gene flow: a
simulation model

Understanding the potential influence of self-incompatibility on
rates of introgression requires examination of the influence of both
the S locus (locus determining self-incompatibility) and selection
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against hybrids (barrier locus) on the outcomes of hybridization.
For the S locus, negative frequency-dependent selection results in a
selective advantage for migrants with rare alleles, which may
increase the effective migration rate. Conversely, the presence of a
genetic barrier due to reduced hybrid fitness may reduce effective
migration rate via selection against foreign alleles (Barton &
Bengtsson, 1986). These two forces should act in opposing
directions, with the S locus facilitating, while hybrid breakdown
preventing, introgression. Yet, the relative strength of these two
forces will depend on parameters such as S allele diversity, degree of
population differentiation, the strength of selection against hybrids
and genetic architecture. To investigate if self-incompatibility can
counteract selection against hybrids, resulting in greater introgres-
sion, we simulated populations of two demes with both self-
incompatibility and a barrier locus (for model description see
Methods S2). Our model varied the number of S alleles, sharing of
S alleles between demes, strength of selection against hybrids, and
recombination rates between the barrier locus and the neutral
marker to ask: How does population structure (differentiation) in S
alleles influence introgression? How does introgression vary with S
allele diversity and the strength of selection against hybrids? How
does linkage affect the balance between the benefit of novel S alleles
and costs of hybrid breakdown?

Under certain conditions, self-incompatibility can overcome
even strong selection against hybrids, resulting in a higher effective
migration rate (Fig. 4). The effective migration rate was highest
when demes had unique sets of S alleles (none shared), there was
weak selection against hybrids (s=0.05) and few S alleles (7= 8)
(Fig. 4a). With eight S alleles, under maximum S allele differen-
tiation (none shared), the effective migration rate among demes was
high even with strong selection against hybrids (s= 0.4, Fig. 4a).
Yet when demes contained 16 and 24 S alleles, the elevated effective
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Fig. 3 Comparative analysis for 133 angiosperm species pairs by mating system combination (see Supporting Information Table S1 for descriptions of each
mating system type). (a) The number of species pairs in each mating system combination: both self-incompatible (SI x SI, n =42), self-incompatible x self-
compatible (SI x SC, n =7), both self-compatible (SC x SC, n =67), both dioecious (D x D, n =9), self-compatible x gynodioecious (SC x G, n=1),
androdioecious x trioecious (A x T, n = 1) and unknown (mating system of one or both taxa unknown, n = 6). (b) Proportion of species pairs classified as each
hybrid zone mode (bimodal, trimodal and unimodal). (c) Proportion of species pairs categorized by level of gene flow (very low, low, high and variable). (d)

Proportion of species pairs that recorded asymmetries in gene flow.

migration rate was only observed with weak selection against
hybrids (Fig. 4c,e). With higher numbers of S alleles (z=16 and
24) and strong selection at the barrier locus, effective migration rate
was reduced below the actual migration rate when demes shared
half or all S alleles (Fig. 4c,e). We found that linkage between the
locus that reduced hybrid fitness (barrier locus) and the neutral
locus strengthened the effects of both the S locus and the barrier
locus on effective migration rate. For example, under strong
negative frequency-dependent selection (7= 8, no shared S alleles),
effective migration rate was higher with linkage (Fig. 4a) compared
to unlinked loci (»= 0.5, Fig. 4b). Similarly, with stronger selection
against hybrids (s=0.2, 0.4), linkage (»=0.1) reduced the effective
migration rate further with both 16 (Fig. 4c,d) and 24 (Fig. 4e,f) S
alleles.

Our model illustrates that under conditions associated with
strong negative frequency-dependent selection (low diversity and
high differentiation in S alleles), self-incompatibility can facilitate
gene flow and overcome the effects of strong selection against
hybrids. The higher effective migration rate under these conditions
could facilitate introgression, even with barriers to gene flow. This
is a transient phenomenon, as populations reach equilibrium and
share S alleles, which will reduce the strength of negative frequency-
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dependent selection. However, the stochastic loss of S alleles could
re-establish the conditions that facilitate introgression.

Tension between genomic regions underlying self and
interspecific incompatibility depends on the underlying genetic
architecture of the selected loci (Barton & Hewitt, 1985). The
current model focuses on a simple two-locus model with one
locus controlling hybrid fitness (barrier locus), which would
reflect the situation where loci of major effect determine hybrid
fitness, such as flower colour (e.g. Tavares eral, 2018).
Extending this model to include more selected loci would more
likely reflect the genetic architecture of hybrid fitness for
divergent species. Linkage between selected loci can also
strengthen the effect of hitchhiking on patterns of introgression,
with two contrasting outcomes: increasing effective migration
rate under strong negative frequency-dependent selection, and
decreasing it with strong selection against hybrids. This implies
that the genomic architecture of loci involved in both self-
incompatibility and reproductive isolation will determine pat-
terns of gene exchange in hybrid zones. Self-incompatibility
system may also influence the interaction between hybrid
inviability and the rare allele advantage. Sporophytic self-
incompatibility (simulated here) is more mate-limited than
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gametophytic  self-compatibility, where the incompatibility
reaction is determined by the haploid pollen genotype (Castric
& Vekemans, 2004). Consequently, negative frequency-depen-
dent selection may be stronger in sporophytic systems, so that
the patterns illustrated here represent the clearest case for the
effect of self-incompatibility on gene flow in hybrid zones.

Unilateral incompatibility and the SI x SC rule

While self-incompatibility can facilitate gene flow between SI
populations, it can also limit gene flow between SI-SC species
pairs. Specifically, SI styles reject pollen from SC species, while
the reciprocal cross often succeeds, in a form of unilateral
incompatibility (UI) known as the SI x SC rule (Lewis &
Crowe, 1958) (Fig. 1b). In addition to the classic evidence for
this rule (e.g. Lewis & Crowe, 1958), recent studies have shown
that this pattern of cross-incompatibility holds in the wild
tomato clade (Solanaceae, Baek ez al, 2015), and in the mustards
(Brassicaceae, Li etal, 2018). However, studies in additional
taxa are needed for a more thorough characterization of the
occurrence of this ‘rule’.

We suggest that rejection of interspecific pollen is a nearly
unavoidable pleiotropic consequence of most SI mechanisms.
The mechanistic basis of the SI x SC rule is best understood in
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wild tomatoes, which reject self-pollen via the collaborative
nonself-recognition system (Kubo ez al., 2010). Here, SC pollen
in SIx SC crosses is rejected because a loss-of-function
mutation in the gene Cullin prevents pollen from fully
detoxifying stylar SRNases (Li & Chetelat, 2010). Pollen from
SC populations with loss of function Cullin variants are rejected
by SI plants, but SC pollen with a functional Cullin are not
(Markova etal., 2016). As such, the SI x SC rule does not
appear immediately, but rather requires sufficient divergence
such that the Cullin function breaks down, an observation
consistent with the fact that some SC populations/accessions
can fertilize SI plants (Hogenboom, 1975). The mechanism of
UI is less well understood in mustards (Brassicaceae), but is
likely caused by the same pollen rejection pathway responsible
for rejecting self-pollen (Li eral, 2018). Finally, in the
Polemoniaceae, the strong correlation between self-specific and
interspecific incompatibility is likely due to the pistil-controlled
strength of pollen adherence to the stigma (Roda & Hopkins,
2019). Despite differences in the underlying mechanism of Ul,
this combination of divergent mating systems (SI x SC) should
have similar consequences for hybridization.

We predict that the ST x SC rule will decrease the extent of gene
flow and will prevent the introgression of SC cytotypes into SI
populations. The seven SI x SC species pairs in our dataset are
consistent with this prediction. Only one such species pair was
classified as having a high level of gene flow (Fig. 3¢), three had low
gene flow, one had very low gene flow, and the remaining two had a
low level of gene flow that varied among populations (Fig. 3c).
While asymmetries in gene flow between SI x SC species pairs
requires more study — all four of the species-pairs for which
asymmetry was characterized demonstrated clear asymmetries in
gene flow (Fig. 3d) and the direction of this asymmetry was
variable. This variability in the direction of gene flow highlights a
key difference between asymmetry in cross direction (i.e. which
species is the pollen donor during initial hybridization) and
asymmetry of introgression (i.e. which species introgresses more
foreign ancestry).

Self-compatibility

While self-incompatible plants are incapable of self-fertilization,
the extent of cross-fertilization (quantified as outcrossing rate — #,,)
can vary dramatically in plants capable of self-fertilization.
Although 17, is continuous, we follow the tradition in the field
(e.g. Goodwillie ez al., 2005) of using #, to categorize species as
selfing (4,<0.2), outcrossing (#,>0.8) and mixed-mating
(0.2 < £,<0.8). Assessing this spectrum allows us to investigate
the effects of variation in selfing and outcrossing distinctly from
highly outcrossing species (4, close to 1) with genetically based self-
incompatibility systems.

The importance of selfing-outcrossing and genetic load in
hybrid zones

In addition to directly impacting the opportunity for gene
exchange due to pleiotropic effects of self-(in)compatibility on
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interspecific-(in)compatibility, the altered genetic load that
evolves under different systems can shape the extent and direction
of introgression and the structure of hybrid zones. Mating system
has two distinct effects on the nature of genetic load, both of
which can affect introgression. First, we expect a large number of
highly deleterious and recessive rare variants in outcrossers, and
the purging of such variation in selfers. Second, we expect
numerous mildly deleterious mutations to achieve high frequency
in selfers whose reduced effective population size cannot
efficiently remove such variation. These features generate strong
predictions about the direction and extent of introgression, as well
as the shape of hybrid zones, and enable tests of the hypothesis
that genetic load can shape hybrid zones (Bierne ez al., 2002; Kim
etal., 2018).

The presence of the recessive load in outcrossers, and the
historical ‘purging’ of such mutations in selfers (Barrett &
Charlesworth, 1991; Husband & Schemske, 1996) will shape
patterns of introgression. Specifically, the selfed progeny of Fis
between selfers and outcrossers will suffer low fitness and this will
distort transmission in favour of ancestry from the selfer (Fig. 1). By
exposing this recessive load from an outcrosser upon selfing, F;s
could limit the introgression of ancestry from the outcrosser into
the selfer. We therefore expect a deficit of unimodal hybrid zones
between selfers (£, <0.2) and outcrossers (z,>0.2) — as such
unimodal zones will only be maintained if one of the species is
ecologically displaced. The absence of unimodal hybrid zones in all
SC pairs with different mating systems (SC-OC x SC-S) is
consistent with this idea (Binomial test — zero successes of seven
trials, two-tailed P=0.0156). The fact that all seven cases also
exhibit asymmetric introgression from selfing to outcrossing
species further support the hypothesis that exposure of genetic
load in an outcrossing species can prevent its introgression into a
selfing species.

Furthermore, because selfers generally have a reduced effective
population size and less-effective purifying selection than
outcrossers (e.g. Qiu eral, 2011; Arunkumar eral, 2015), a
larger number of mildly deleterious alleles can drift to higher
frequency in selfers than in outcrossers. After introgression into
an outcrossing population, these mildly deleterious mutations
will be selectively removed, and take with them the linked
ancestry derived from the selfer. This argument is not unique to
selfer-outcrossing pairs, but rather relates to any species pairs
with different effective population sizes (Kim ezal, 2018). If
this load is severe, it (perhaps in concert with Bateson—
Dobzhansky—Muller incompatibilities (BDMIs)) will result in
low-fitness early generation hybrids, which are consistenty
created by hybridization and removed by selection, resulting in
trimodal hybrid zones. When such load (and/or BDMIs) is less
severe, we expect selfing-derived ancestry to introgress into
outcrossing populations and be slowly removed by natural
selection in these outcrossing populations, resulting in a
bimodal hybrid zone. In such cases, we predict genome-wide
selection against the mildly deleterious variants residing on
selfing-derived ancestry, a prediction consistent with the
negative  correlation  between  recombination rate and
Mimulus nasutus (selfing) ancestry in the outcrossing SC species,
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M. guttatus (Brandvain eral, 2014). Finally, the nature of the
load in selfing populations — numerous mildly deleterious
mutations at high frequency — can shape the composition of
hybrid zones between selfing populations. Secondary contact
between selfing populations allows the removal of their unique
mildly deleterious mutations (Harkness ezal, 2019), which
could result in unimodal hybrid zones, as observed in three of
the four SC-S x SC-S species pairs (Fig. 3b). However, both
ecological differences between populations and epistatic combi-
nations that readily arise in selfing populations may act as an
additional barrier to gene flow, resulting in bimodal or trimodal
hybrid zones.

Alternative and/or complementary explanations for
asymmetries in introgression

While differences in genetic load may result in an absence of
unimodal hybrid zones and asymmetric introgression from selfers
to outcrossers, connecting this pattern to process remains
challenging. Inidally, alternative mechanisms may generate
similar patterns in modality and asymmetry in hybrid zones.
For example, the higher effective recombination rates in
outcrossers could allow neutral alleles from selfers to escape their
maladaptive background, thereby avoiding removal by selection.
Similarly, the lower effective recombination rate in selfing lineages
may prevent neutral or adaptive outcrossing-derived ancestry
from escaping its maladaptive background in selfers. Additionally,
the type of selfing and pollen dispersal capacity will influence the
direction of introgression. Unidirectional introgression from
outcrossers to selfers is consistent with ‘prior-selfing’ given that
outcrossers have no opportunity to fertilize selfers. Yet, greater
pollen export in outcrossers could result in the opposite
prediction. Similarly, the dominance of mating system traits
could also modify the extent and direction of introgression. For
example, if Fis do not self, then the predictions concerning the
recessive load are irrelevant for the direction of introgression. In
summary, the observed asymmetries in gene flow are consistent
with simple predictions from the nature of the genetic load,
however, whether this explanation, or other alternative mecha-
nisms drive these patterns requires additional empirical and
theoretical investigations (see Hu (2015) for one such theoretical
treatment).

Mixed mating and variation in selfing: the costs vs benefits of
outcrossing in hybrid zones

Mixed mating describes hermaphroditic plants that reproduce
through both self- and cross-fertilization. This strategy is
widespread, and, while obtaining unbiased estimates of the
frequency of mixed-mating is difficult, one previous study
estimated that approximately one quarter of flowering plant
taxa had intermediate outcrossing rates (i.e. selfing rates
between 0.2 and 0.8; Igic & Kohn, 2006). In contrast to
predominantly selfing or obligate outcrossing taxa, mixed-
maters often display substantial variation in outcrossing rates
among populations and species (Whitehead ez al, 2018). In the
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context of hybrid zones, this variation provides considerable
scope for differences in the relative production of selfed,
outcrossed and hybrid offspring.

Knowing mating patterns in hybrid zones of mixed-maters
(0.2<£,<0.8) is crucial for understanding the importance of
pre-zygotic factors in regulating variation among populations
and species. This is often quantified using outcrossing rates
inferred through indirect genetic estimates (Ritland, 2002) or
directly through pedigrees or paternity analysis (e.g. Field ezal,
2011). Despite the widespread measurement of outcrossing rates
() in the plant mating system literature, surprisingly this has
rarely been quantified in plant hybrid zones (Rieseberg eral,
1998). The frequency of self-pollination is often implicated as an
important mediator of gene flow between populations. This is
because higher selfing limits the availability of ovules for outcross
pollination (Lloyd, 1979) from both conspecific and interspecific
sources (Fishman & Wyatt, 1999). As such, the type of selfing
(prior, competing and delayed; Lloyd, 1979) in mixed mating
systems is an important feature that likely mediates opportunities
for hybridization (Goodwillie & Weber, 2018). In a study of
several Centaurium species, Brys et al. (2016) reported that prior
selfing generates a stronger reproductive barrier to hybridization
compared with other forms of selfing. This study suggests that
delayed selfing generates a weaker barrier, and may provide the
greatest opportunities for hybridization when interspecific pollen
is readily available. In addition, strongly divergent outcrossing
rates may generate the conditions for faster pollen tube growth
rates in the predominantly outcrossing species (Mazer eral.,
2018) (Fig. 1). Whether SC-SC systems are more sensitive to
ecological and demographic factors that influence the availability
of self, outcross (intraspecific) and interspecific pollen requires
more detailed studies of mating patterns in replicate hybrid
zones.

Hybrid frequency is often quantified in hybrid zones (7= 59 of
133 studies), yet only a few studies have quantified the local factors
that may drive mating patterns. For example, across 18 hybrid
zones between Eucalyptus aggregata and both E. viminalis and
E. rubida (insect pollinated trees), the relative abundance of
parental species was a significant predictor of the frequency of
hybrid seed (Field et a/., 2008). Using paternity analysis for detailed
characterization of local mating patterns indicated that, in addition
to individual flowering synchrony, the same relations exist ata local
scale within populations (Field ezal, 2011). The relative abun-
dance of parental species has also been shown to be important for
hybridization in wind-pollinated trees (e.g. Lepais eral., 2009;
Lagache eral., 2013). This demonstrates the local demographic
context of individual plants can be important in regulating the
frequency of hybridization in mixed-maters across species with very
different pollen vectors.

The formation of hybrid zones between mixed maters is likely
to result in a diverse set of outcomes depending on the specific
set of barriers, fitness of inbred vs hybrid offspring and the
ecological and demographic context in which the population
resides. This is reflected in the observation that hybrid zones
between mixed maters exhibited similar frequencies of mode
(bimodal, trimodal, unimodal), rates of gene flow and the
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presence of bilateral and asymmetrical gene flow (Fig. 3).
Consequently, the genomic consequences of hybridization
between mixed maters are also likely to be highly idiosyncratic.
Unlike SI x SC systems, where there are drastic differences in
local recombination rates or effective population size, for mixed
maters we may expect similar dynamics of admixture and
introgression blocks along genomes. Due to variation in the type
of selfing, we may ask if mixed maters are more sensitive to local
demography and phenology, showing stronger relations between
these factors and rates of gene flow? Are mixed- mating systems
more prone to genetic or demographic swamping, or conversely,
adaptive introgression? Answering these questions would require
more detailed comparisons of genomic outcomes in relation to
demography across replicate hybrid zones with variation in
mixed mating.

Dioecy and sexual system variation

Can sexual system variation promote asymmetric gene flow?

Sexual system variation may influence hybridization through
differences in sex allocation, colonization ability or sex ratios in
species pairs with different sexual systems. Differences in sex
allocation dynamics between plant species with separate sex
(dioecious) vs co-sexual populations (Charnov, 1982) may
contribute to asymmetric gene flow following hybridization.
The trade-off in resource allocation between male and female
reproductive functions in hermaphrodites (Goldman & Willson,
1986) may result in lower pollen or seed production relative to
males and females. These differences in reproductive traits would
be even more pronounced in predominant selfers compared to
outcrossers (Lloyd, 1987), and may cause asymmetric introgres-
sion in hybrid zones from dioecious or gynodioecious popula-
tions into co-sexual ones (Fig. 1, section 3a). Consistent with this
prediction, Buggs & Pannell (2006) found highly asymmetric
hybridization by pollen swamping in wind-pollinated Mercurialis
annua from a dioecious diploid lineage into a monoecious
hexaploid lineage. The dioecious M. annua plants produce more
pollen than the monoecious facultative selfers leading to a rapid
displacement of the hybrid zone. Similar results were found by
Wallace ezal (2011) in a hybrid zone between Schiedea menziessi
(hermaphrodite SC-OC) and S. salicaria (gynodioecious SC-G),
where the numerous wind-dispersed pollen grains of S. salicaria
increased pollen transfer efficiency into its more selfing, and not
wind-dispersed, sister species.

Dioecy and the evolution of reproductive isolation

Although dioecy has evolved in few plant species (¢. 6% of
flowering plants), it is phylogenetically widespread (Renner &
Ricklefs, 1995) and hybridization has been observed between D
taxa (n=9 species pairs in our analysis). Species with separate
sexes may experience intra-genomic conflict for traits that have
different optima in females vs males, possibly leading to arms-
race evolution (Bonduriansky & Chenoweth, 2009). This
evolutionary change may promote the fixation of BDMIs
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(Johnson, 2010) between D species, increasing reproductive
barriers. Accordingly, D species may consistently evolve stronger
post-zygotic barriers compared to other sexual systems (Fig. 1,
section 3b). In our comparative analysis, the presence of intrinsic
incompatibilities was reported in 78% of the D x D species
pairs (seven of nine) compared to between 22 and 35% for the
other systems (SC x SC: 23 of 67; SI x SI: 10 of 42; SI x SC:
two of seven), representing a significant excess of incompatibil-
ities in D x D pairs compared to the rest of the data set
(x*=7.02, df=1, P=0.008). This preliminary data is consistent
with the hypothesis that D species are more likely to exhibit
intrinsic incompatibility. However, it is also difficult to exclude
ascertainment bias with only a small sample size available.
Therefore, more work is required to test the generality of this
trend and to understand the mechanisms and drivers of greater
intrinsic genetic incompatibility between species with separate
sexes.

The presence of sex chromosomes may further reinforce genetic
conflicts, as they are particularly susceptible to segregation
distortion (Frank, 1991). This is because recombination between
the sex chromosomes is limited, and therefore these two chromo-
somes are constantly involved in a conflict for segregation. Since
segregation distorters and their suppressors co-evolve indepen-
dently within separate lineages, their interaction in hybrids may be
a source of BDMIs. Accordingly, sex chromosomes are involved in
one of the strongest pattern characterizing speciation in animals
(Coyne & Orr, 2004): ‘Haldane’s rule’, whereby hybrids of the
heterogametic sex express more BDMIs than hybrids of the other
sex. Moreover, an excess density of genes causing hybrid sterility or
inviability on the sex chromosomes of animals (the ‘large X effect’,
Coyne & Orr, 2004) also highlights their importance for
reproductive isolation. However, little work has been done on
the role of sex chromosomes in plant speciation. This is mainly due
to their rarity and that plant sex chromosomes are commonly
nondegenerated (Ming ez al.,2011), making them harder to detect.
Nevertheless, variation in plant sex chromosomes — from homo-
morphic sex chromosomes (e.g. in Populus and Salix) to hetero-
morphic sex chromosomes with Y (or W) degeneration (e.g. in
Silene) (Ming ez al., 2011) — provides the unique opportunity to
examine how different types of sex chromosomes may act as a
barrier to interspecific gene flow. Overall we predict genetic
incompatibility between D species and their relatives to be highest
for heteromorphic, degenerated sex chromosomes, lower for
homomorphic sex chromosomes, and lowest for autosomal sex
determination (Fig. 1).

Although plants have the potential to shed light on these poorly
understood topics, Silene and Rumex are currently the only two
genera where these questions have been investigated. Brothers &
Delph (2010) found evidence of Haldane’s rule in crosses between
three closely-related Silene species with young sex chromosomes
(8. latifolia, S. dioicaand S. diclinis). Contrary to its close relatives,
the Y chromosome of S. latifoliahas undergone degeneracy leading
to the upregulation of X-linked gene expression in males. This
species-specific dosage compensation mechanism has been pro-
posed to promote the evolution of sex-linked BDMIs between
S. latifolia and  S. divica (Filatov, 2018). For R. hastatulus,
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hybridization between two chromosome races provided evidence
of Haldane’s rule for both male fertility and rarity (Kasjaniuk ez L.
2019). Taken together, these results demonstrate that the sex
chromosomes in Silene and Rumex likely act as a major barrier to
gene flow between hybridizing species, and emphasizes the need for
similar investigations in other dioecious plants.

Conclusions and future directions

Hybrid zones have long fascinated evolutionary biologists by
providing a window into the speciation process (Harrison, 1990).
Although much of this work has progressed in isolation from the
study of plant mating systems, we demonstrate how bridging these
fields can reveal new insights into both barriers to gene flow and the
evolution of mating systems. The influence of mating system on
hybridization can also be viewed as a ‘two-way street’” where
hybridization may influence the evolution of mating and sexual
systems themselves, with unique outcomes for each mating system
type. For example, for self-incompatibility, theory provides insight
into the conditions associated with evolution of novel SI types (e.g.
Gervais etal., 2011; Bod’ ova etal, 2018) yet observed S allele
diversity (Lawrence, 2000) often exceeds theoretical estimates.
Hybridization among species may enhance diversification, with
novel S haplotypes evolving in separate species and subsequently
being exchanged among species via introgression (Castric ez al.,
2008). For mixed maters, hybridization may affect mating system
evolution by reinforcing selfing to avoid wasting gametes and
resources on hybrid progeny (Fishman & Wyatt, 1999; Goodwillie
& Ness, 2013). This may involve increased selfing (e.g. Briscoe
Runquist & Moeller, 2014) and/or the evolution of floral traits
associated with increased selfing including lower pollen produc-
tion, herkogamy and smaller floral displays (e.g. Smith & Rausher,
2007; Wright ez al., 2013; Brys ez al., 2016). Finally, hybridization
of divergent SC and D populations can promote the evolution of
rare ‘mixed’ sexual systems such as androdioecy (males and
hermaphrodites; Mercurialis annua, Obbard etal., 2006) and
trioecy (males, females and hermaphrodites; Sagittaria latifolia
Yakimowski & Barrett, 2016). Going forward, more estimates of
hybridization for mixed reproductive systems are required to
determine how frequently they represent a phenotypic signature of
hybridization.

Our comparative study suggests that the type of mating
systems that interact can alter the strength of barriers and
asymmetries in gene flow. At one end, in SI x SI systems, rare
allele advantage may facilitate introgression and hinder popula-
tion divergence. By contrast, transitions to selfing and secondary
contact between SI x SC systems can generate strong and
asymmetrical barriers. Consequently, mating system diversity
has the potential to directly influence the rate of gene flow
between evolutionary lineages and regulate the tempo of
speciation. Yet, this study also highlights that currently available
data is insufficient to specifically test these hypotheses. We
therefore conclude by identifying several open questions (and the
data required to answer these) (Box 1) that could strengthen our
understanding of the interaction between hybridization and
mating systems. In addressing these questions, novel insights will
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Box 1 How does mating system interact with hybridization: open questions and future directions

A unifying feature of all mating system combinations in hybridizing species pairs is the variety of mechanisms that can influence the key drivers of hybrid
zone dynamics: gene flow, selection and recombination (see Fig. 1). Yet it is this complexity that both generates novel questions and highlights the current
lack of data to test specific hypotheses. We outline a number of open questions and the data required to test these in hybridizing taxa. Overall, we emphasize
the need for data that enables the effects of mating system to be considered while controlling for divergence time between species.

Molecular genetics, phylogenetics and ecology
Are mating system combinations represented across all hybridizing species groups?

Our comparative data revealed that most plant hybrid zones involve the interaction between the same mating system type (SC x SC or Sl x SI; self-
compatible (SC), self-incompatible (SI)). Thisis unlikely a random sample of hybridizing taxa because studies of hybrid zones and mating systems are often
motivated by different questions. More information on the distributional range of each taxa will help to distinguish whether lack of hybrid zones between
some divergent mating system classes is due to very strong barriers (i.e. no hybrids form), a lack of geographic overlap or limited variation in mating systems
within some genera.

How do outcrossing rates and mating patterns vary among different mating system combinations? How does this interact with ecology and demography?

Given the potential for selfing rates to mediate opportunities for hybridization, data on outcrossing rates and mating patterns across replicate hybrid zones
would allow connection of local ecology/demography, phenology and morphological traits (e.g. degree of herkogamy, cleistogamy/chasmogamy). This
would allow for a greater understanding of the role of the environment vs genetic variation in mediating mating patterns and hybridization. Likewise, in
strictly dioecious (D) species, sex ratio bias can vary dramatically (Field et al., 2013), and stronger sex ratio bias in one species may generate asymmetrical
gene flow across nuclear and cytoplasmic genomes (Currat et al., 2008). To address this gap, sex ratio data is required for D hybrid zones to assess its
potential influence on gene flow.

Do reproductive isolating barriers vary among taxa with different mating system combinations?

Given the cumulative nature of reproductive isolating barriers (Lowry et al., 2008), the importance of mating system for hybridization will depend on when
the barrier to gene exchange acts. The effect of mating system on pre-zygotic barriers is likely to be more important for reproductive isolation (and overall
barrier strength) than post-zygotic ones (hybrid viability and sterility). To address these questions, studies that quantify components of reproductive
isolation for different mating system combinations are required.

Genomic data
How does mating system influence the effect of linked selection on the genomic landscape of introgression?

By driving the probability that neutral and incompatible alleles are uncoupled, recombination rate can influence the degree of introgression over long
timescales. This leads to the expectation of a positive correlation between introgression and recombination rate (e.g. Schumer et al., 2018; Martin et al.,
2019) whichisarelation that may be mediated by mating system. Methods from molecular evolution can provide furtherinsight into the evolutionary forces
that shape species barriers. The McDonald-Kreitman framework can be used to estimate what fraction of mutations were fixed between species due to
adaptive divergent selection (e.g. Christe et al., 2017; Rifkin et al., 2019), and test whether this varies across mating systems.

Theory and simulations
Methodological challenges of nonrandom mating

Identifying interspecific barriers to hybridization is a challenging task, as factors such as complex demography and selection at linked sites can mimic
signatures of divergent selection. Methods must therefore account for these confounding factors in null models to accurately uncover signatures of
divergent selection. Mating systems—such as selfing—add a layer of complexity as most tools are not designed to model nonrandom mating. Consequently,
new methods are required that estimate the relevant genetic parameters applicable to different mating systems. For example, future research could follow
Rifkin et al. (2019), who developed a method to infer admixture contributions (and asymmetries) in the presence of selfing.

What is the effect of mating system on hybridization rates and outcomes for different mating system combinations?

Our comparative analysis generates many predictions on how mating system may affect gene flow patternsin hybrid zones. Yet few of these verbal models
have been formally evaluated by theory (but see Epinat & Lenormand, 2009; Hu, 2015; Rausher, 2016). Consequently, the biological conditions and
timescales under which they apply remain largely unclear. To begin filling this gap, our simulation study uncovered the interplay between Sl and selection
against hybrids, and demonstrated that Sl can facilitate introgression under strong negative frequency-dependent selection. Further work could address
both the short- and long-term dynamics of hybridization between different mating system combinations.

likely come from integrating theory with in-depth genetic
analyses of hybrid zones. By using this integrated approach we
can compare how mating system contributes to patterns of gene
flow and the interaction of divergent genomes over short and
long evolutionary timescales.
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