IEICE TRANS. INE. & SYST., VOL.E103-D, NO.10 OCTOBER 2020

2083

[PAPER

Job-Aware File-Storage Optimization for Improved Hadoop 1/O

Performance

Makoto NAKAGAMI'?, Jose A.B. FORTES'", Nonmembers, and Saneyasu YAMAGUCHI', Member

SUMMARY Hadoop is a popular data-analytics platform based on
Google’s MapReduce programming model. Hard-disk drives (HDDs) are
generally used in big-data analysis, and the effectiveness of the Hadoop
platform can be optimized by enhancing its 1/O performance. HDD perfor-
mance varies depending on whether the data are stored in the inner or outer
disk zones. This paper proposes a method that utilizes the knowledge of
job characteristics to realize efficient data storage in HDDs, which in turn,
helps improve Hadoop performance. Per the proposed method, job files
that need to be frequently accessed are stored in outer disk tracks which are
capable of facilitating sequential-access speeds that are higher than those
provided by inner tracks. Thus, the proposed method stores temporary
and permanent files in the outer and inner zones, respectively, thereby fa-
cilitating fast access to frequently required data. Results of performance
evaluation demonstrate that the proposed method improves Hadoop per-
formance by 15.4% when compared to normal cases when file placement
is not used. Additionally, the proposed method outperforms a previously
proposed placement approach by 11.1%.

key words: Hadoop, MapReduce, SWIM, file system

1. Introduction

Hadoop is a popular MapReduce-based big-data process-
ing platform[1] extensively used in data-analytics appli-
cations. Intuitively, performance of the Hadoop platform
can be enhanced by considering the nature of applications
that require storage resources, and accelerating storage in-
put/output (I/O) access.

In several of its applications, Hadoop is employed to
analyze large-scale datasets stored in massive storage de-
vices, such as hard-disk drives (HDDs) [2]. These datasets
are accessed sequentially. Therefore, use of sequential
storage-access methods may improve Hadoop performance
by storing files at quickly accessible locations of an HDD
to facilitate faster I/O operation [2], [3]. Such methods can
be employed to improve the performance of I/O-intensive
Hadoop jobs. This paper presents such an approach and
evaluates it by using an experimental system operating on
a realistic workload generated by a statistical workload in-
jector for MapReduce (SWIM). SWIM, which has been re-
cently proposed [4], [5], facilitates meaningful experimental
performance evaluations of the Hadoop platform, whilst em-
ulating several workload types [1].

Manuscript received December 30, 2019.
Manuscript revised May 17, 2020.
Manuscript publicized June 30, 2020.
"The authors are affiliated with the Kogakuin University,
Tokyo, 163—-8677 Japan.
"'The author is affiliated with the University of Florida, Florida
32611, United States of America.
a) E-mail: cm19036 @ns.kogakuin.ac.jp
DOI: 10.1587/transinf.2019EDP7337

Of primary focus in this study is a Hadoop use case,
wherein a sequence of several Hadoop jobs must be exe-
cuted. In our study, SWIM jobs are categorized as being
map-heavy, shuffle-heavy, or reduce-heavy, and their I/O
and CPU behaviors are thoroughly investigated. Based on
the above investigation, map-heavy jobs are determined to
be CPU-intensive, whereas the shuffle- and reduce-heavy
jobs are determined to be I/O-intensive. Next, optimization
of the file-storage strategy for the said three job types is per-
formed, taking into consideration the extent to which tem-
porary files and permanent files are used. Finally, compar-
isons are made of the total times required for completion of
all three jobs using the (1) default approach (non-optimized;
hereinafter referred to as “normal”), (2) authors’ previously
proposed method (referred to as “existing”), and (3) newly
proposed file-storage strategies (referred to as “proposed”).

The remainder of this paper is organized as follows.
Section 2 reviews extant related work, whereas Sect. 3 dis-
cusses features of SWIM jobs as well as the relationship be-
tween HDD file locations and sequential read/write speeds.
Section 4 proposes the new method for improving SWIM-
job performance. Section 5 presents a comparative evalua-
tion of the three above-mentioned methods. Section 6 dis-
cusses results obtained in this study, and lastly, Sect. 7 lists
major conclusions drawn from this study.

2. Related Work
2.1 MapReduce

As depicted in Fig. 1, a MapReduce job comprises three
phases—map, shuffle, and reduce [6]. In the map phase, in-
put data are divided into multiple input splits, each of which
is received by a mapper which executes the user-defined
map process and generates key-value pairs, which are stored
in intermediate files. The said key-value pairs are sorted in
the shuffle phase, grouped based on the key, and transmit-
ted to reducers. In the reduce phase, each reducer executes
a user-defined reduce task based on received key-values and
generates outputs that serve as results for the current Hadoop
job, and the same are stored as output data.

22 SWIM
SWIM is a workload emulator capable of generating re-

alistic MapReduce jobs based on actual workloads of
production Hadoop clusters, such as those processed by

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers

2084

Ky, Vy K1,y Lna
Map function
Map phase
I K.V, | | Ky, V, | | Ky, V, | Intermediate files
Shuffle phase
Ky, {V2} Ky, {V2} Intermediate files
Reduce function
K3, V3 Output data

Fig.1 Overview of MapReduce

‘ 0 : Data Block is Free
| LMY 1 : Data Block is Used
Super Group Block | Inode | Inode Data
Block | Descriptor | Bitmap | Bitmap | Table | Blocks

Blocks = x——>

Boot Block Block Block
Sector Group 0 Group1 | 7T Group N

Fig.2 Overview of ext2/3/4 file system

Facebook. Additionally, SWIM jobs can be configured by
changing parameter values. Specifically, each SWIM job
has several configurable parameters, such as job ID, input
size (bytes) per map operation, shuffle size, output size per
reduce operation, and number of reducers. Moreover, each
job-submission interval can be controlled [4], [5]. This pa-
per evaluates Hadoop performance for different usage sce-
narios by varying parameters from Facebook traces.

2.3 Extant File-Storage Methods

Methods proposed in [2] and [3] serve to improve sequential
I/O performance by optimizing file-storage strategies, and
are based on the principle that HDDs employing zone-bit
recording (ZBR) provide faster sequential access to outer
disk zones compared to inner zones. The mechanism un-
derlying these methods uses block-usage information of a
file system to determine zones, wherein data can be stored,
thereby avoiding their storage in inner disk zones to expe-
dite file access. As depicted in Fig.2, several file systems,
such as ext2/3/4 [7], divide the drive space into blocks of 4-
KB each (methods described in [2], [3] were implemented
with ext2/3 file systems). These file systems construct block
groups containing a fixed number of blocks. The default size
of each block group is 128 MB, and a single block group
comprises a block bitmap, inode bitmap, inode table, and
data blocks. The block bitmap indicates block usage and
availability using states of 0 and 1, which indicate whether
a block is available or occupied, respectively. The inode
bitmap controls inode usage, whereas the inode table man-
ages file information as well as its storage location. Lastly,
data blocks store file data. The two previously proposed

IEICE TRANS. INF. & SYST., VOL.E103-D, NO.10 OCTOBER 2020

methods [2], [3] modify block bitmap information of inner
zone blocks to avoid their usage, thereby facilitating exclu-
sive utilization of outer zones that permit high sequential-
access speeds.

The method described in [3] is static, since it sets inner-
zones block-bitmap states to 1 prior to job execution. In
contrast, the method reported in [2] is dynamic because
it continuously observes the size of usable disk area, the
block-bitmap state of which is not set to 1. The said area
is expanded or shrunk depending on threshold values of the
usable-area size. Whereas the above dynamic method stores
all files in outer disk zones, the proposed method aims to
optimize file storage based on job features.

The goals of the following previous studies are the im-
provement of sequential I/O performance. Ozawa et al. pro-
posed a method for improving the sequential I/O perfor-
mance on Hadoop [8]. They focused on the single-Reduced
WordCount job and proposed a method for improving job
performance. The job was 1/O bounded and sequentially
accessed the data files. The method decreased the size of
sequentially accessed data by compressing the data. Like
our work, they aimed to improve the performance of se-
quential file accesses. However, their approach was quite
different from our method. Their work did not take job fea-
tures into account. Their method can be applied together
with our method. Wang et al. proposed a log-structured
filesystem (LFS) called PROFS [9]. The method places data
considering the characteristics of the ZBR hard disk drive.
The filesystem puts active and inactive data in the faster and
slower zones, respectively. The method is specialized for
LFS and reorganizes data on the disk during LFS garbage
collection. The method utilizes the performance character-
istics of ZBR hard disk drives like our work. However, this
does not take job features into account, unlike our work.

The following past studies focus on I/O scheduling. I/O
scheduling on HDD and flash memory are discussed in [10]
and [11], respectively. The AS I/O scheduler [12] is special-
ized for improving sequential storage access. An I/O request
is first issued by an application and subsequently processed
by the operating system. Past work on schedulers addresses
the second phase while our work is for the first phase. Past
work does not modify sequential access after I/O requests by
applications, and does not consider file placement optimiza-
tion. Naturally, optimizations in both phases are important
and both optimizations can be utilized together. Schindler
et al. proposed to utilize disk-specific knowledge to match
access patterns to the strengths of disks[13]. Most rota-
tional latency and seeking overheads could be avoided by
allocating and accessing related data on disk track bound-
aries. They mainly focused on rotation delay and seek over-
head. They did not discuss placing large files in the faster
zones in the HDD or considering job features.

Schlosser et al. discussed methods for improving the
performance to access multidimensional datasets by placing
the data in the disk according to the spatial locality of the
data[14]. They discussed also the relationship between the
logical address and the physical place. However, they did

NAKAGAMI et al.: JOB-AWARE FILE-STORAGE OPTIMIZATION FOR IMPROVED HADOOP 1/O PERFORMANCE

not present a method for improving sequential 1/O through-
put while considering job features.

Next, we refer to studies on filesystems. Modern
filesystems have sophisticated block placement algorithms.
In the case of Ext2/3/4[15], [16], an allocator reserves a
range of blocks for a new file using the reservation feature.
Blocks are reserved in the memory using reservation imme-
diately and an allocation to disk is delayed until writeback
time while blocks are allocated in the disk immediately by
using the filesystem preallocation mechanism. This method
improves the “sequentiality” of accesses to the disk by re-
ducing the fragmentation of a file on the disk [15]. However,
this method does neither consider the performance charac-
teristics of ZBR HDDs nor utilize the outer zones for im-
proving sequential access speed. Additionally, it does not
take job features into account. The Ext4 filesystem also
has the following five advanced placement policies. First
is the multi-block allocator, which speculatively allocates
multi blocks on disk to a file at file creation. The second
is delayed allocation. The third tries to place the inode and
the data block of a file in the same block group. The fourth
tries to place all the inodes of files in a directory into the
same block group. The fifth creates any new directory in the
root directory in the least heavily loaded block group. These
policies decrease the fragmentation of a file and increase the
sequentiality of storage accesses. However, these do not im-
prove sequential access performance by making use of the
outer zones.

3. Basic Evaluation

This section investigates resource-consumption behaviors of
map-, shuffle-, and reduce-heavy Hadoop jobs.

3.1 Basic Behavior of Hadoop Jobs

I/O and CPU utilizations as well as disk-location usage of
map-, shuffle-, and reduce-heavy SWIM jobs are investi-
gated in this study, since the proposed method stores indi-
vidual files based on these features. SWIM jobs were exe-
cuted using an experimental Hadoop system, and their pa-
rameter values were set as follows.

Values of the submit-time and inter-job submit gap
were set to unity for all jobs. The input-file size equaled
20 GB. For map-heavy jobs, the number of map-input bytes
was set to 10'2, whereas those of shuffle and reduce-output
bytes were set to unity. Likewise, for shuffle-heavy jobs,
the number of shuffle bytes was set to 10'2, whereas it
was set to unity for other byte types, and, for reduce-heavy
jobs, 10'> was used for reduce-output bytes and unity for
other byte types. The Hadoop system was set to run in
the pseudo-distributed mode. Specifications of the computer
and HDD used in this study are described in Tables 1 and 2,
respectively.

Average usages of I/O and CPU observed during exe-
cution of the map-, shuffle-, and reduce-heavy jobs are de-
picted in Fig. 3, whereas maximum usages of disk during

Table1 Specifications of computer used in this study
CpPU AMD Phenom 2 X4 965
Processor
0OS CentOS 6.10 x86 64 minimal
Kernel Linux 2.6.32.57
Main Memory 4GB
HDD 500GB(ext3)
Hadoop Ver. 2.0.0-cdh4.2.1
Table 2 Specifications of HDD used in this study
Model Number DT01ACA050
(manufacturer) (TOSHIBA)
Interface SATA 3.0
Interface Speed 6.0Gbps
Device Size 500GB
Buffer Size 32MB
Rotation Rate 7200rpm

m]/0 mCPU

100.0
90.0

- 80.0
o 40.0
30.0
20.0
10.0
0.0

Shuffle-heavy

[CER-]
S S S
[SERSERSY

Average 1/0 and CPU usage
during execution [%)]

Map-heavy Reduce-heavy

Fig.3 Average I/O and CPU usage by SWIM Jobs

@ The maximum disk usage during execution @ The disk usage after execution

6

. N

Shuffle-heavy

IS

Disk usage [GB]
[

Map-heavy Reduce-heavy

Fig.4 Maximum disk usage during execution and disk usage after exe-
cution of SWIM jobs

and after execution of said jobs are depicted in Fig. 4.

Figure 5 depicts time histories of the percentage I/O us-
age and CPU utilization by a map-heavy job, whereas cor-
responding trends of the shuffle- and reduce-heavy jobs are
depicted in Figs. 6 and 7, respectively. Temporal changes in
the size of the used disk space when executing the said jobs
are depicted in Figs. 8, 9, and 10, respectively.

Results of the above investigation lead to several con-
clusions, as listed below.

e Map-heavy jobs are CPU-intensive and temporarily
store intermediate data, most of which are deleted

2086
—1/0 —CPU
100
90
80
70
= 60
g 50
g 40
30
20
10
0
0 20 40 60 80 100 120
Elapsed time [sec]
Fig.5 1/O and CPU utilization by map-heavy jobs
—1/0 ——CPU
100 N
90
80
70
¥ 60
© 50
H 40
=}
30 -
20
10
0 M
0 50 100 150 200 250

Elapsed time [sec]

Fig.6 1/O and CPU utilization by shuffle-heavy jobs

—1/0 —CPU

90
80
70
60
40
30
20
10

0

0 10 20 30 40 50 60 70 80

Elapsed time [sec]

Usage [%]
wn
(=3

Fig.7 1/O and CPU utilization by reduce-heavy jobs

23.852
23.85
o 23.848
923846
3
g 23.844
% 23.842
=)
= 23.84
S
5 23.838
23.836
23.834
0 20 40 60 80 100 120

Elapsed time [sec]

Fig.8 Used disk space by map-heavy job

during execution.

o Shuffle-heavy jobs are I/O-intensive and temporarily
store intermediate data, most of which are deleted.

e Reduce-heavy jobs are also I/O-intensive and perma-
nently store output data, i.e. they are not deleted.

The first step of our proposed method is job classification in

IEICE TRANS. INF. & SYST., VOL.E103-D, NO.10 OCTOBER 2020

w
S

]
=)

Bog
ey
g 27
o
% 26
o=
g 25
24
23
0 50 100 150 200 250
Elapsed time [sec]
Fig.9 Used disk space by shuffle-heavy job
27
26.5
o
g 26
©
2255
&
% 25
=
B 245
=
24
235
0 10 20 30 40 50 60 70
Elapsed time [sec]
Fig.10 Used disk space by reduce-heavy job
® write ® read
0.8
0.7
0.6
= 0.5 e
2
5 04
03
B 02
g
£ 01
E
Z 0

o

100 200 300 400 500
Disk Address [GB]

Fig.11 Read/write times at HDD locations with different addresses

terms of CPU vs. I/O intensity and of usage of temporary
vs. permanent files, in order to decide how the job’s data
should be placed on disks. This classification step can be
automated for applications that are known in advance and
executed repeatedly (see further discussion in Sect. 4. and
Sect. 6.).

3.2 Sequential Storage Access

This subsection describes our investigation of the relation-
ship between HDD data location and sequential read/write
speeds. In this study, 64-MB read and write commands were
repeatedly issued between the disk’s first and last addresses,
which correspond to the outmost and innermost disk zones,
respectively. Figure 11 depicts the time required to complete
the said 64-MB read and write operations at each given ad-
dress. Results indicate a reduction in read/write speeds as
data addresses correspond to successively inner disk zones.
The access latency in the innermost disk zone was observed

NAKAGAMI et al.: JOB-AWARE FILE-STORAGE OPTIMIZATION FOR IMPROVED HADOOP 1/O PERFORMANCE

i Read requests W Write requests ==#=Total read size === Total write size
16,000 8
14,000

2 12,000
10,000
8,000

6,000

4,000

2,000

0

Number of requests
— (IS RV R Y = N |
Total I/O size [GB]

4K 16K 64K 256K IM 4M 16M 64M
Merged 1/0 size [B]

Fig.12 Merged I/O request size for shuffle-heavy job

i Read requests mmmm Write requests == Total read size == Total write size

2,500 25
. 2,000 2
2 m
g 9
1,500 15°g
2 N
bl 3
& 1,000 S
ko3 —
o 5 —_
<
2 g
Z 500 0.5
0 0

4K 16K 64K 256K IM 4M 16M 64M
Merged 1/0 size [B]

Fig.13 Merged I/O request size for reduce-heavy job

to be nearly twice fhat in the outermost zone.
3.3 Merged I/O Sizes

Size frequencies of merged 1/O requests[17]-[19] in the
shuffle- and reduce-heavy jobs were also investigated in this
study. These requests were obtained by merging temporally
and spatially contiguous I/O requests into a single request.

The 1/O throughput was expected to improve by plac-
ing files in outer zones, given that the jobs were I/O-
intensive and sizes of their merged I/O requests were large.
As already stated, map-heavy jobs are CPU-intensive and
their performance was not expected to improve by optimiz-
ing file-storage location. These jobs were, therefore, ex-
cluded from this analysis. Figures 12 and 13 depict re-
sults obtained for the shuffle- and reduce-heavy jobs, re-
spectively. These results demonstrate that multiple large
I/O requests, whose sizes are equal to or larger than 4 MB,
were made, and that the storage device was accessed in a
sequential manner. Furthermore, a long time was consumed
to process sequential I/O requests, implying that a decrease
of this time is effective for improving the job performance.
In summary, the rationale behind the proposed method is
to enhance sequential I/O speeds by actively utilizing outer
zones of an HDD to improve the performance of shuffle- and
reduce-heavy jobs.

4. Proposed Method

This section proposes a method for improving Hadoop-
job performance. This method is composed of two steps:

2087

application classification, described in Sect.4.1, and opti-
mization of file placement, described in Sects. 4.2 and 4.3.

4.1 Application Classification

The first step of proposed method classifies jobs into two
groups, which are jobs with temporary files and those with
permanent files.

It is useful to classify any job as a temp-file job (when
temporary files use a significant fraction of the maximum
storage needed by the job) or a perm-file job (when perma-
nent files use most of the job-needed storage). To do this
classification, each job is executed with repeating df com-
mands, which measure the total size of the unused area. As
aresult, a profile is obtained of the total size of the used disk
areas, as illustrated by Fig. 4. From this profile, it is possi-
ble to obtain the maximum usage during execution and the
usage after execution. This method then classifies each job
according to the following condition: if the usage after ex-
ecution is less than the product of 8 by the maximum usage
size then the job is a temp-file job, otherwise it is a perm-file
job. B is also a tuning parameter which in our experiments
was set to 0.1 (in general, it should be a small value).

This classification supports the file storage strategy, as
described below.

4.2 File-Storage Strategy

The proposed technique for improving the I/O performance
of Hadoop job sequences via job-feature-based file-storage
optimization [20], [21] is described in this section. All jobs
are assumed to be submitted and executed sequentially (see
Sect. 6 for comments regarding cases wherein jobs are exe-
cuted concurrently).

In the proposed method, a target HDD is divided into
two areas—outer and inner. Files or data can be stored in the
outer area per the following order of priority if they qualify
as
(1) temporary files/data, or

(2) permanent files/data

In case (1), this method places files in the outer zones. In
case (2), it places them in the inner zones. Reflecting the
above priority criteria, the files of the following types of jobs
can be stored in the outer area:

(1) temp-jobs, or

(2) perm-jobs.

The class of every application is initially investigated in the
application classification step. The class of each application
at runtime is determined according to this initial investiga-
tion. The file placing location is controlled based on this
class of application at runtime.

For example, Map-heavy, Shuffle-heavy, and Reduce-
heavy jobs are classified as types (1), (1), and (2), respec-
tively. If permanent files are stored in the fastest zone,
other applications cannot utilize the fastest zone after the

2088

occupation. To facilitate frequent utilization of outer HDD
areas, the proposed method avoids populating the same with
permanent files. Thus, only temporary files are actively
stored in this area.

The size of the outer area is the maximum size required
for storing all the temporary files of jobs selected by our
method to store their data in the outer zone. This is because
the outer area must be able to store the temporary data of
every job that uses the outer area.

4.3 Proposed Method Implementation

In this study, the proposed method was implemented using
the ext2/3 file system. As already mentioned in Sect. 3.1, the
said file systems create block groups, and each block group
possesses its own block bitmap.

The proposed method modifies bits corresponding to
inner-area blocks to a value equal to 1, thereby indicating
that these blocks are in use, and hence, forcing map- and
shuffle-heavy jobs to utilize outer HDD regions. Similarly,
the above approach prevents reduce-heavy jobs from using
outer areas by altering their bit values to 1. Consequently,
output files generated by reduce-heavy jobs are not stored in
outer HDD regions.

In addition, this method limits the zones in the areas
that are usable. As a result, every file is forced to be placed
at the outmost zone in each area by dynamically control-
ling the usable zones. Three functions—monitoring, ex-
pansion and shrinking—were used to implement the above-
described technique. The monitoring function periodically
checks the number of free blocks within a file system. When
the monitoring function detects that the usable space is
smaller than a set threshold, the expanding function is in-
voked to expand the usable space until its size exceeds the
threshold. In contrast, the shrinking function is activated
when the monitoring function detects the usable space to be
larger than the threshold.

To accomplish the above-described control of disk us-
age, this method directly opens the device special file, such
as /dev/sda, seeks the block bitmap and changes the flags in
the bitmap with the administrator (root) authority.

Our implementation identifies the place of the block
bitmap in the filesystem as follows. Ext2/3/4 filesys-
tems separate the entire storage space into many block
groups [16]. With the default setup, the sizes of each group
and each block are 128 MB and 4KB, respectively. Each
block group includes 32,768 blocks. The information on
each block group is described in its Group Descriptor. A
Group Descriptor includes information such as the address
of its block bitmap, the address of the inode bitmap, the ad-
dress of the inode table, the number of free blocks and the
number of free inode numbers. The Group Descriptors of all
the block groups are stored in the Group Descriptors table in
the filesystem. The table exists at the beginning of the block
1 in the Block group 0. The table is at byte address 4096.
The size of a Group Descriptor is 32 bytes. Thus, the Group
Descriptor of Group X is at byte address 4096 +32 x X. The

IEICE TRANS. INF. & SYST., VOL.E103-D, NO.10 OCTOBER 2020

address of the block bitmap is described at the beginning
of each Group descriptor and its size is four bytes. There-
fore, the address of the block bitmap of Block Group X is
located at the byte addresses ranging from 4096 + 32 x X to
4096 + 32 x X + 3 in the filesystem partition.

The method disables the usage of all the blocks in a
block group as follows. In the case this system disables the
flags of all the blocks in the Block Group X, this opens the
device special file of the filesystem partition, seeks to the
address 4096 + 32 x X, and reads 4 bytes from the address.
These four bytes indicate the address of the block bitmap
of the Block Group X. This is a block address and its unit
block, i.e. 4 KB. Thus, this system seeks to the address of
4096 x (the block address) and reads 4KB to backup the
original state of the bitmap. Because the number of blocks in
the block group is 32,768 with the default setup, the number
of bits in a table is 32768 (i.e. 4KB). The system then writes
Oxff to all the 4KB to indicate that all the flags are used.
In the case this method makes the blocks in a block group
usable, this restores the backup bitmap data into its block
bitmap.

5. Performance Evaluation
5.1 Basic Evaluation

To evaluate the performance of the proposed method, a se-
ries of Hadoop jobs generated by SWIM, which were the
same as the jobs in Sect. 3, were executed in several exper-
iments. One such job set, illustrated in Fig. 14, comprised
27 job groups, wherein a sequence of map-, shuffle-, and
reduce-heavy groups was repeated 9 times. Thus, each set
contained nine instances each of map-, shuffle-, and reduce-
heavy groups. Additionally, each job group comprised 20

Submit time Inter job submit
seconds gap seconds | | Map input bytes | [Shuffle bytes | [Reduce output bytes |

T
Parameters of SWIM jobs

Map-heavy job

= = 1 10 x 1012
Shuffle-heavy job
7/ AR
Reduce-heavy job
N Sl
................. Job set R
(Total number of Groups = 27, Total number of jobs = 540) H
Map-heavy Group Shuffle-heavy Group Reduce-heavy Group
20jobs 20jobs
(AL AS 7 NNANNANIN
AL J SNARNANISN
AP/ A [N RNNNNN
A ENNENIANIN
AP A7 PNNANYANTN

Fig.14 Job set

NAKAGAMI et al.: JOB-AWARE FILE-STORAGE OPTIMIZATION FOR IMPROVED HADOOP 1/O PERFORMANCE

Existing method

Outer zones

Proposed method

Inner zones Outer zones Inner zones

Usable area Forbidden area

,//// / o S /A
mee K A T
4;4;;7///////// M/

Praso | e /////////// L ////,7//////
mr | N0 T
Sl - S v S
phuses T vz
v /N0

Phasel m—"*‘“‘* //////// aoee | ///?//////////

M /W// %

s Bl = =~ T
NN 77 V),
== 7, m»l

T
Outer area

reduce Map
heavy heavy

Phasel0

T
Inner area

Fig.15 File-storage strategies of existing and proposed methods

jobs. Execution of each job set was initiated with an empty
HDD. At the end of each execution cycle, the entire HDD
storage space was occupied by output files generated by
reduce-heavy jobs. The specification of the used computer
is the same as that in Sect. 3. The parameters « and 8 are 0.3
and 0.1, respectively. The existing method is implemented
and evaluated with Ext3 filesystem. Thus, we compare the
performances of the existing and proposed methods in this
subsection.

According to the file-storage strategy described in
Sect. 4, the files were stored in accordance with the prior-
ities described in Sect. 4.1.

Figure 15 illustrates file-storage patterns of the exist-
ing and proposed methods. Right arrows indicate expansion
of usable area, and left arrows indicate shrinkage of usable
area. In this case, files qualified as (1)-(2) and (3)-(4) in
Sect. 4.2 are stored in the outer and inner areas, respectively.
Phase 1:

(Existing) It prevents the use of areas other than the first
5GB of the disk. Thus the first 5GB is the usable area.
(Proposed) Same as for the existing method.

Phase 2:

(Existing) The files of a Map-heavy job are stored in the

2089

usable area. The size of the usable area may become less
than the threshold for expansion and thus cause the expan-
sion of the usable area.

(Proposed) Same as the existing method. Files are stored in
the outer area because the job is classified as type (2).
Phase 3 and 4:

(Existing) The files are deleted after the Map-heavy job ex-
ecution. The size of the usable area becomes larger than
the threshold for shrinking and it is shrunk to the threshold,
which is 8 GB.

(Proposed) Same as the existing method.

Phase 5:

(Existing) The files of the Shuffle-heavy job are stored in
the usable area. The size of the area becomes less than the
threshold and the area is expanded.

(Proposed) Same as the existing method. The job is classi-
fied as type (1).

Phases 6 and 7:

(Existing) The files are deleted and the size of usable area is
shrunk to 8 GB.

(Proposed) Same as the existing method.

Phases 8 and 9:

(Existing) The files of the Reduce-heavy job are stored in the
fastest zone in the usable area. The usable area is expanded.
(Proposed) The files of the Reduce-heavy job are stored in
the fastest zone in the inner area because the job is classified
as type (3). The usable area is expanded. The usable area
for the next Map-heavy job is changed from the inner to the
outer areas.

Phase 10:

(Existing) The files of the Map-heavy job are stored in the
usable area. The place is inner than that in Phase 2. The
usable area is expanded.

(Proposed) The files of the Map-heavy job are stored in the
usable area. They are placed in the fastest zones like in
Phase 2. The usable area is expanded.

Phases 11 and 12:

(Existing) Same as Phase 3 and 4.

(Proposed) Same as Phase 3 and 4.

Phase 13:

(Existing) The files of the Shuffle-heavy job are stored in
the usable area. The place is inner than that in Phase 2. The
usable area is expanded.

(Proposed) The files of the Shuffle-heavy job are stored in
the usable area. They are placed in the fastest zones like in
Phase 2. The usable area is expanded.

Phase 14 and 15:

(Existing) Same as Phase 6 and 7.

(Proposed) Same as Phase 6 and 7.

Phase 16:

(Existing) The files of the Reduce-heavy job are stored in
the usable area. The usable area is expanded.

(Proposed) Same as for the existing method.

The existing method stores the map- and shuffle-heavy
job files in disk regions located inwards compared to those
occupied by reduce-heavy job files. With increase in the
number of reduce-heavy job executions, files corresponding

2090

80,000
'3'70,000

5 60,000

8 50,000

=

5 40,000

= 30,000

=}

S

£ 20000

10,000
0

Normal method Existing method Proposed method

Fig.16 Total execution time of job set

mmm Normal method [Existing method 5°5%) Proposed method

= == Normal method avg. =*e==* Existing method avg. == < =Proposed method avg.
2,500
2,000

1,500

Execution time [sec]
9)
(=3 =3
3 3

o

1 2 3 4 5 6 7 8 9
The sequence No. of the nine execution

Fig.17 Execution time of each map-heavy group

s Normal method — Existing method %) Proposed method
== = = Normal method avg. *sse** Existing method avg. == «

8,000

= Proposed method avg.

7,000
"3’ 6,000

I EEXXY IXXIXY EXTITTITTTITRRRNCTRRRRRS PRRRIT X RRRRYT N PRRR -

ime [se

= 4,000

=

K=}

£ 3000

2 2,000
1,000

1 2 3 4 5 6 7 8 9
The sequence No. of the nine execution

Fig.18 Execution time of each shuffle-heavy group

to subsequent jobs are stored in increasingly inner disk
zones. Consequently, the performance of jobs—especially
I/O-intensive shuffle-heavy jobs—deteriorates. In contrast,
the proposed method does not store output files of reduce-
heavy jobs in the fast (outer) disk zones (Fig. 15), which are
ideal for storing temporary files. In the proposed method,
files corresponding to the map- and shuffle-heavy jobs are
always temporarily stored in the fastest HDD zones to facil-
itate optimum disk and system performance.

Figure 16 shows the average time required to execute 5
job sets, whereas Figs. 17—19 depict times required to com-
plete the map-, shuffie-, and reduce-heavy jobs from the first
set, respectively.

Figure 16 indicates that, when using the proposed
method, the overall job-execution time is reduced by 15.4%
and 11.1% compared to that observed when employing the
normal and existing methods, respectively.

IEICE TRANS. INF. & SYST., VOL.E103-D, NO.10 OCTOBER 2020

s Normal method [/ Existing method =) Proposed method
== = = Normal method avg. <e**e* Existing method avg. == «

800

= Proposed method avg.

=
=]
3

E 600 T 0% T s TP Ca % o o
= 500
‘é 400
£ 300
2 20
100
0
1 2 3 4 s 6 7 8 9
The sequence No. of the nine execution
Fig.19 Execution time of each reduce-heavy group
Table 3 Specifications of computer used in this study
CPU AMD Ryzen Threadripper
1900X 8-Core Processor
0OS CentOS 6.10 x86 64 minimal
Kernel Linux 2.6.32.57
Main Memory 4GB
HDD 500GB(ext3)
Hadoop Ver. 2.0.0-cdh4.2.1

Figure 17 shows that both the existing and proposed
methods do not significantly reduce the execution time for
CPU-intensive map-heavy jobs. Figure 18 clearly indicates
that both the existing and proposed methods yield improved
Hadoop performance over the normal method. The observed
improvement when employing the proposed method is sig-
nificant, when compared to that observed when using the
existing method, wherein the time required to complete a
job increases with increase in the number of jobs to be exe-
cuted. The primary reason for this is that outer HDD zones
are increasingly used for data/file storage as more reduce-
heavy jobs are executed.

Figure 19 indicates that, when compared to the existing
method, the proposed method does not effectively reduce the
completion time of reduce-heavy jobs. The observed differ-
ence between completion times of reduce-heavy jobs when
employing the existing and proposed methods is not consid-
erable. The time required to complete a job increases with
the number of completed jobs when employing the existing
and proposed methods. The impact of this increase is sig-
nificant, potentially overcoming the difference between ex-
ecution times that result from the two methods. On the con-
trary, the difference of Shuffle-heavy jobs was large because
the times to complete the jobs with the proposed method was
the shortest at every execution. As aresult, the time taken by
the proposed method to complete all the groups was shorter
than that of the existing method. After the Hadoop space
becomes full, the output files are moved from the Hadoop
space to a user’s space. This frees fast-access storage space
which eliminates the above-mentioned execution time in-
creases for the next reduce-heavy jobs to be executed.

NAKAGAMI et al.: JOB-AWARE FILE-STORAGE OPTIMIZATION FOR IMPROVED HADOOP 1/O PERFORMANCE

Table4 Specifications of HDD used in this study
Model Number DT01ACA050
(manufacturer) (TOSHIBA)

Interface SATA 3.0
Interface Speed 6.0Gbps
Device Size 500GB
Buffer Size 32MB
Rotation Rate 7200rpm
80,000

oy

iZh

3 60,000

v

2 50,000

3

$ 40,000

E

= 30,000

i=l

S

2 20,000

Q

£ 10,000
0

Normal method Existing method Proposed method

Fig.20 Total execution time of job set (ext3)

. Normal method =1 Existing method (=% Proposed method

= == Normal method avg. Existing method avg. == =+ =Proposed method avg.
1,600

1,400

1200 o o m om o om gcnengn PRes
1,000
800
600
400
200
1 2

0
3 4 5 6 7 8 9
The sequence No. of the nine execution

Execution time [sec]

Fig.21 Execution time of each map-heavy group (ext3)

mm Normal method [Existing method S5%) Proposed method
== = = Normal method avg.

8,000

Existing method avg. == <+ e Proposed method avg.

7,000

o
=3
S
3

1 2 3 4 5 6 7 8 9
The sequence No. of the nine execution

Fig.22 Execution time of each shuffle-heavy group (ext3)

5.2 Dependency on Machine

Here, we present an evaluation of our proposed method with

another computer. The specifications of the used computer

and HDD are described in Tables 3 and 4, respectively.
Figure 20 shows the average time required to execute 5

2091

s Normal method [Existing method 5°5%0 Proposed method

= = = Normal method avg. Existing method avg. ==« «Proposed method avg.

800

=
=3
S

2
g
I
I
|
|
I

Execution time [sec]

- D W & w o
s 2 &8 8 3
- 8 8 8 8 &8

1 2 3 4 5 6 7 8 9
The sequence No. of the nine execution

Fig.23 Execution time of each reduce-heavy group (ext3)

job sets, whereas Figs. 21-23 depict times required to com-
plete the map-, shuffle-, and reduce-heavy jobs from the
first set, respectively. Figure 20 indicates that, when using
the proposed method, the overall job-execution time is re-
duced by 16.1% and 11.5% compared to that observed when
employing the normal and existing methods, respectively.
These results indicate that the proposed method is similarly
effective also with this different computer.

6. Discussion

The proposed method relies on the knowledge of Hadoop
job characteristics; i.e., whether the jobs are map-, shuffle-
or reduce-heavy. This knowledge is often available in cases
where jobs are repeatedly executed on different data. For
instance, a search engine updates its index based on data
concerning freshly crawled web pages every day. This is a
typical example of a shuffle-heavy job. Similarly, on an elec-
tronic shopping site, online transaction processing (OLTP)
jobs are executed every day. This is also true of online an-
alytical processing (OLAP) applications, wherein repeated
jobs possess similar features. Additionally, the knowledge
of job characteristics required by the proposed method can
be easily obtained. CPU and I/O usages can be calculated
by executing simple commands—‘‘vmstat” and “iostat,” re-
spectively. Likewise, temporal changes in disk usage can
be obtained by repeating the “df” command. Therefore, the
proposed method is applicable in several situations.

An alternate approach for actively using outer HDD
zones involves splitting the storage device into multiple par-
titions. Storing temporary files in fast partitions is one pos-
sible means of implementing the proposed method. How-
ever, this is only effective in cases where the total size of
temporary files is known and strictly limited. The proposed
method can be applied in more situations by adopting dy-
namic file-size changes via bitmap modifications.

In this study, evaluation of the proposed method was
performed by sequentially executing a set of jobs. Al-
though several practical instances of such a use case exist,
an equally important case is the one wherein jobs are exe-
cuted concurrently. Such a case is, presently, a subject of
intensive research because it requires certain modifications
to be made to the proposed method along with extensive ex-
perimental evaluation.

2092

Hadoop applications can access files on Hadoop dis-
tributed file system (HDFS) and local file systems of nodes
on which they are run. HDFS files are mainly accessed by
Hadoop for reading and writing input and output data, re-
spectively, whereas files on a local system are used for inter-
mediate data processing. The proposed method can be im-
plemented by accessing local file-system information. Since
HDES is constructed over a local file system, the proposed
method is effective for both HDFS and local system files.

Next, we discuss the performance improvement of the
proposed method in a distributed environment. We expect
that similar performance improvement is obtained in a dis-
tributed environment because the method can be applied to
each data node individually. Namely, the method improves
the I/O performance of each data node and the performance
of the entire system is improved by this method. The effect
of the optimization of file placing location in each node was
studied in [17].

Lastly, we discuss implementation using Ext4, which
is a newer filesystem. Ext4 supports some additional func-
tions, such as the metadata checksum. Thus, the proposed
method has to modify not only block bitmaps but also its
checksum or to disable the checksum. Ext4 also supports
block management with extent. The proposed method has
to modify both its block bitmap and extent information in
order to control file placing location.

7. Conclusions

This study investigates CPU- and I/O-resource consump-
tions as well as disk-space utilization by map-, shuffle-, and
reduce-heavy SWIM jobs. A method has been proposed for
improving I/O performance of Hadoop applications via con-
sideration of target-job features. Results obtained via perfor-
mance evaluation of the proposed method demonstrate that
the proposed method enhances the performance of Hadoop
jobs by 15.4% versus 4.8% by a method previously pro-
posed by the authors. The new method outperformed the
existing method by 11.1%.

As a future endeavor, the authors intend to develop and
evaluate similar methods for concurrent jobs, once the ex-
perimental capability to run Hadoop jobs in the fully dis-
tributed mode has been established. For evaluation, we plan
to consider Ext4 implementation and complex workloads
that use Hadoop as a component, such as search engines and
OLTP systems.

Acknowledgments

This work was supported in part by JST CREST, Japan—
grant number JPMJCR1503—and JSPS KAKENHI—grant
numbers 26730040, 15H02696, and 17K00109. This work
was also funded in part by a grant (NSF ACI 1550126 and
supplement DCL NSF 17-077) received from the National
Science Foundation, USA.

IEICE TRANS. INF. & SYST., VOL.E103-D, NO.10 OCTOBER 2020

References

[1] G.J.Dean and S. Ghemawat, “MapReduce: simplified data process-
ing on large clusters,” Commun. ACM, vol.51, no.l, pp.107-113,
Jan. 2008. DOI: https://doi.org/10.1145/1327452.1327492

[2] E. Fujishima and S. Yamaguchi, “Dynamic File Placing Con-
trol for Improving the I/O Performance in the Reduce Phase
of Hadoop,” Proc. 10th International Conference on Ubiqui-
tous Information Management and Communication (IMCOM ’16),
ACM, New York, NY, USA, Article 48, 7 pages, 2016. DOI:
http://dx.doi.org/10.1145/2857546.2857595

[3] E. Fujishima and S. Yamaguchi, “Improving the I/O Performance in
the Reduce Phase of Hadoop,” 2015 Third International Symposium
on Computing and Networking (CANDAR), Sapporo, pp.82-88,
2015. doi: 10.1109/CANDAR.2015.24

[4] GitHub - SWIMProjectUCB/SWIM: Statistical Workload Injector
for MapReduce-Project at UC Berkeley AMP Lab, https://github.
com/SWIMProjectUCB/SWIM

[S] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The Case for
Evaluating MapReduce Performance Using Workload Suites,” 2011
IEEE 19th Annual International Symposium on Modelling, Analy-
sis, and Simulation of Computer and Telecommunication Systems,
10 pages, July 2011. DOI: 10.1109/MASCOTS.2011.12

[6] F. Ahmad, S. Lee, M. Thottethodi, and T.N. Vijaykumar,
“MapReduce with Communication Overlap (MaRCO),” Journal of
Parallel and Distributed Computing, vol.73, no.5, pp.608—620, May
2013. DOI: https://doi.org/10.1016/j.jpdc.2012.12.012

[7] R.Card, T. Ts’o, and S.Tweedle, “Design and Implementation of the
Second Extended Filesystem,” First Dutch International Symposium
on Linux, 1994.

[8] T. Ozawa, M. Onizuka, Y. Fukumoto, and S. Moriai, “MapReduce
optimization using mapper-side aggregation,” IPSJ Transaction on
Advanced Computer Systems, vol.6, no.3, pp.71-81, Oct. 2013. (in
Japanese)

[9] J. Wang and Y. Hu, “PROFS-performance-oriented data reorganiza-
tion for log-structured file system on multi-zone disks,” MASCOTS
2001, Proc. Ninth International Symposium on Modeling, Analy-
sis and Simulation of Computer and Telecommunication Systems,
Cincinnati, OH, pp.285-292, 2001.

[10] J. Axboe, “Linux block io - present and future,” Proc. Ottawa Linux
Symposium, pp.51-61, Ottawa Linux Symposium, 2004.

[11] Y. Nakamura, S. Nomura, K. Nagata, and S. Yamaguchi, “I/O
Scheduling in Android Devices with Flash Storage,” 8th Inter-
national Conference on Ubiquitous Information Management and
Communication ACM IMCOM (ICUIMC), Article 83, 7 pages,
2014.

[12] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk schedul-
ing framework to overcome deceptive idleness in synchronous 1/0,”
SIGOPS Oper. Syst. Rev., vol.35, no.5, pp.117-130, Oct. 2001.

[13] J. Schindler, J.L. Griffin, C.R. Lumb, and G.R. Ganger, “Track-
aligned Extents: Matching Access Patterns to Disk Drive Character-
istics,” Conference on File and Storage Technologies 2002 (FAST
2002), pp.259-274, 2002.

[14] S.W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao, A.
Ailamaki, C. Faloutsos, and G.R. Ganger, “On multidimensional
data and modern disks,” Conference on File and Storage Technolo-
gies 2005 (FAST 2005), pp.225-238, 2005.

[15] M. Cao, T.Y. Ts’o, B. Pulavarty, S. Bhattacharya, A. Dilger, and A.
Tomas, “State of the Art: Where we are with the Ext3 filesystem,”
Ottawa Linux Symposium 2005 (OLS 2005), pp.69-95, 2005.

[16] djwong, “Block and Inode Allocation Policy,” https://ext4.wiki.
kernel.org/index.php/Ext4_Disk_Layout#Block and Inode Allocati
on Policy, accessed Nov. 18, 2019.

[17] E. Fujishima, K. Nakashima, and S. Yamaguchi, “Hadoop 1/O
Performance Improvement by File Layout Optimization,” IEICE
Trans. Inf. & Syst., vol.LE101-D, no.2, pp.415-427, 2018. doi:

https://doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/2857546.2857595
http://dx.doi.org/10.1109/candar.2015.24
http://dx.doi.org/10.1109/mascots.2011.12
https://doi.org/10.1016/j.jpdc.2012.12.012
http://dx.doi.org/10.1109/mascot.2001.948879
http://dx.doi.org/10.1145/2557977.2558025
http://dx.doi.org/10.1145/502059.502046
http://dx.doi.org/10.1587/transinf.2017edp7114

NAKAGAMI et al.: JOB-AWARE FILE-STORAGE OPTIMIZATION FOR IMPROVED HADOOP 1/O PERFORMANCE
2093

10.1587/transinf.2017EDP7114

[18] S. Yamaguchi, M. Oguchi, and M. Kitsuregawa, “Trace system of
iSCSI storage access,” The 2005 Symposium on Applications and
the Internet, Trento, Italy, pp.392-398, 2005. doi: 10.1109/SAINT.
2005.65

[19] S. Yamaguchi, M. Oguchi, and M. Kitsuregawa, “iSCSI analy-
sis system and performance improvement of sequential access in
a long-latency environment,” Electronics and Communications in
Japan (Part III: Fundamental Electronic Science), vol.89, no.4,
pp.55-69, Wiley Subscription Services, Inc., A Wiley Company,
April 2006. DOI: 10.1002/ecjc.20238

[20] M. Nakagami, J.A.B. Fortes, and S. Yamaguchi, “Job-aware Op-
timization of File Placement in Hadoop,” BDCAA 2019 The 1st
IEEE International Workshop on Big Data Computation, analysis,
and Applications, Conference (COMPSAC), Milwaukee, WI, USA,
pp.664—669, 2019. doi: 10.1109/COMPSAC.2019.10284

[21] M. Nakagami, J.A.B. Fortes, and S. Yamaguchi, “Usable Space
Control Based on Hadoop Job Features,” 2019 Seventh Inter-
national Symposium on Computing and Networking Workshops
(CANDARW), Takayama, 2019.

Makoto Nakagami received his degree
(B.E.) in Engineering from the Kogakuin Uni-
versity in 2019. He is presently pursuing Mas-
ters in electrical engineering and electronics at
the Kogakuin University.

Jose A.B. Fortes is the AT&T Eminent
Scholar and Professor of Electrical and Com-
puter Engineering at the University of Florida
where he founded and is the Director of the
Advanced Computing and Information Systems
Laboratory. His research interests are in the ar-
eas of distributed computing, autonomic com-
puting, cyberinfrastructure and human-machine
intelligent systems. José Fortes is a Fellow of
the Institute of Electrical and Electronics Engi-
neers (IEEE) professional society and a Fellow
of the American Association for the Advancement of Science (AAAS).

Saneyasu Yamaguchi received his Ph.D.
degree in Engineering from The University of
Tokyo in 2002. From 2002 to 2006, he stud-
ied I/O processing at the Institute of Industrial
Science, The University of Tokyo. He is now
with Kogakuin University. His current research
interests include operating systems, virtualized
systems, and storage systems.

http://dx.doi.org/10.1587/transinf.2017edp7114
http://dx.doi.org/10.1109/saint.2005.65
http://dx.doi.org/10.1002/ecjc.20238
http://dx.doi.org/10.1109/compsac.2019.10284

