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SUMMARY The success and scale of the Internet and its protocol IP has 
spurred emergent distributed technologies such as fog/edge computing and 
new application models based on distributed containerized microservices. 
The Internet of Things and Connected Communities are poised to build on 
these technologies and models and to benefit from the ability to 
communicate in a peer-to-peer (P2P) fashion. Ubiquitous sensing, actuating 
and computing implies a scale that breaks the centralized cloud computing 
model. Challenges stemming from limited IPv4 public addresses, the need 
for transport layer authentication, confidentiality and integrity become a 
burden on developing new middleware and applications designed for the 
network’s edge. One approach - not reliant on the slow adoption of IPv6 - 
is the use of virtualized overlay networks, which abstract the complexities 
of the underlying heterogeneous networks that span the components of 
distributed fog applications and middleware. 
This paper describes the evolution of the design and implementation of IP-
over-P2P (IPOP) - from its purist P2P inception, to a pragmatic hybrid 
model which is influenced by and incorporates standards. The hybrid client-
server/P2P approach allows IPOP to leverage existing robust and mature 
cloud infrastructure, while still providing the characteristics needed at the 
edge. IPOP is networking cyber infrastructure that presents an overlay 
virtual private network which self-organizes with dynamic membership of 
peer nodes into a scalable structure. IPOP is resilient to partitioning, 
supports redundant paths within its fabric, and provides software defined 
programming of switching rules to utilize these properties of its topology. 
key words: Overlay Networks, P2P, FOG, EDGE Computing, SDN. 

1. Introduction 

The Internet’s core protocol (IP) has been successful at an 
unprecedented scale. While the use of IPv4 identifiers and 
lack of security simplified the addition of devices to the 
Internet in its early days, they have turned into shortcomings 
as the network scales and security becomes a primary 
concern. In today’s Internet, IPv4 addresses are scarce 
because of near-exhaustion of the 32-bit address space, and 
many networks have to resort to the use of private addresses 
and Network Address Translation (NAT) [1] middleboxes. 
Security concerns also have led to the proliferation of 
firewall middleboxes, while the need for authentication, 
confidentiality and integrity have led to transport-layer 

protocols (e.g. TLS [2], [3]). As a result, distributed 
applications that run across the Internet often must deal with 
devices without public IPv4 addresses that are behind 
various NAT and firewall middleboxes and must create 
secure transport sessions for communication. While these 
issues are relatively easy to handle with client-server 
applications, they place a burden to applications where peer-
to-peer communication is needed. 
Emerging distributed applications in edge/fog [4], [5] 
computing are poised to benefit from the ability for IoT and 
edge nodes to communicate in a peer-to-peer fashion. 
However, the connectivity challenges outlined above 
become an increasing burden on the development of 
middleware and applications as they move from the cloud to 
the edge [6], including security and privacy [7]. While the 
subsequent IPv6 protocol offers a larger address space and 
built-in security features, it is still not widely deployed 
despite decades since its release. An approach to address 
these challenges that does not require a core change to 
Internet protocols is to create overlay networks [8], [9] that 
tunnel traffic over the existing infrastructure. Coupled with 
network virtualization, overlays offer the ability to support 
existing middleware and applications, while shielding them 
from dealing with complexities due to private addressing, 
network address translation, and firewall policies. 
This paper describes the design and implementation of IP-
over-P2P (IPOP [10]–[15]), an overlay virtual private 
network that supports tunneling of layer-2 (Ethernet) and 
above (including IPv4) traffic across peer-to-peer tunnels. 
IPOP exposes virtual network interface endpoints that 
integrate with existing operating systems, automatically 
manages NAT traversal across peers with private IP 
addresses, self-organizes scalable overlay topologies and, 
supports encryption of peer-to-peer links, and allows 
software-defined programming of switching rules. IPOP 
provides a network virtualization substrate upon which 
geographically distributed IoT, edge, and cloud computing 
resources can be logically aggregated to facilitate the design 
of fog computing applications. This paper describes the 
evolution of the design and open-source implementation 
IPOP over several iterations of the project. 
The advent of virtualization and cloud computing has 
fundamentally changed the way in which distributed 
applications and services are deployed and managed. With 
the proliferation of IoT and mobile devices, virtualized 
systems akin to those offered by cloud providers are 
increasingly needed geographically near the edge of the 
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network [4]. Applications on resources at the edge can 
perform operations on high-volume data produced by 
sensors (e.g. real-time high-definition camera feeds) near 
IoT devices for latency-sensitive, bandwidth-intensive 
applications – a model referred to as fog computing [5]. Not 
only is performance important, but also a trustworthy 
network is key to guarantee privacy and integrity at the 
network layer across all participating resources (e.g. IoT, 
cloud VMs, and containers in edge resources [16]).  
While software-defined virtual networking systems exist 
within large-scale cloud data centers [17] - at the core of the 
Internet and under a single administrative entity - these are 
not suited for future distributed applications spanning edge 
resources. Such fog applications are distributed across 
multiple providers and edge networks, raising more complex 
security and privacy issues than in cloud environments [6]. 
Unlike within a cloud, edge virtual networks require 
traversing multiple (possibly NATed [7]) administrative 
environments across different providers and enforcing data 
privacy and integrity in communication. While transport-
layer network security (e.g. TLS, DTLS) and VPN tunneling 
(e.g. IPSEC) technologies exist, they are not readily 
applicable to systems where resource membership is 
dynamic, and where most devices are constrained by 
NAT/firewall middleboxes. Furthermore, the effort 
associated with developing or porting applications to 
enforce privacy and integrity in communications comes with 
significant costs. 
To accomplish its required functionality, a fog application 
requires the ability to deploy, aggregate and process data 
from sensors on edge and cloud resources in a dynamic 
fashion. It also needs to support dynamic changes in the 
membership of participating devices over time, as devices 
may be mobile (e.g. video cameras in smartphones and 
vehicles). Fundamentally, the network connecting IoT, edge 
and cloud resources must provide trustworthy, seamless 
communication across a dynamic, heterogeneous, mobile set 
of resources. 
The current version of IPOP implements a hybrid 
overlay/software-defined network (SDN [18]) software that 
is novel in how it supports dynamic grouping/aggregation of 
edge and cloud devices into a trustworthy virtual private 
network that leverages Online Social Network (OSN) 
interfaces for self-configuration. The following sections 
outline the core concepts in the design, and the evolution of 
the implementation leading to its current form. 

2. Core Abstractions and Architecture 

The core abstraction exposed by IPOP to a computer system 
using it is of a virtual network. The 1st generation of the 
designed exposed the abstraction of a layer-3 (IP) virtual 
network [10]–[12], while the 3rd and 4th generations expose 
the abstraction at layer-2 (Ethernet) [13], [14]. In both cases, 
the abstraction is exposed through a virtual network 
interface (VNIC), such as the TAP pseudo-device available 
in the Linux and Windows kernels, from which 

frames/packets that are sent and received are intercepted. 
IPOP nodes are implemented as a user-space process that 
runs in each node connected to the overlay; this process 
reads/writes from the TAP device, using the system call 
interface, as illustrated in Fig. 1. 
IPOP nodes form virtual links among each other, where each 
virtual link is an Internet tunnel that carries encrypted and 
encapsulated virtual network frames/packets through a 
transport protocol – typically UDP, which is more amenable 
to NAT traversal than TCP. 
Each IPOP node in an overlay is uniquely identified by a 
node ID (e.g. A, B, ..., F) in Fig. 1. The set of virtual links 
among IPOP nodes forms a topology. While different 
overlay topologies have been implemented in IPOP versions 
over time, a structured P2P topology has been a feature of 
the design since its inception. In this topology, nodes form a 
logical ring, with successor links ordered by their node IDs, 
and shortcut links across the ring, following a structured P2P 
algorithm for topology construction and identifier-based 
routing such as Chord [19] or Symphony [20]. 
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Fig. 1  IPOP’s structured P2P architecture and virtualized endpoint. 
Nodes are connected in successive order based on their integer node 

identifiers (e.g. A < B < C < D) to form an outer “ring”. Additionally, the 
overlay features shortcut links (e.g. A-D) which reduce routing 

complexity. In each IPOP node (e.g. C), there is a TAP device to 
pick/inject packets from the O/S kernel, and a user-mode IPOP application 

that implements the overlay virtual network functionality. 

3. Fully Decentralized P2P Design 

The 1st generation of IPOP [10] was fully decentralized, 
following a structured P2P design using the Brunet [21] 
library and a Symphony-based protocol. Two key 
motivations for this approach were to avoid any external 
dependences, and any single point of failure. Each node 
implemented the functionality to 1) discover other nodes by 
means of a peer list file, 2) bootstrapping by contacting 
nodes in the peer list and using them to send messages to the 
joining peer’s left and right neighbors, 3) providing support 
for discovery of a node’s public IP:port endpoint, and 4) 
forwarding messages according to a greedy routing 
algorithm. 
This implementation provided a layer-3 virtual network for 
the IPv4 protocol. There was no encryption, and no 
authentication of nodes into the overlay. IP addresses were 
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assigned to nodes by leveraging a Distributed Hash Table 
(DHT [19]) key/value store which was also implemented by 
IPOP nodes. The DHT used a compound key, comprising of 
a virtual network namespace and a virtual IP address to map 
the node’s IPOP ID. This allowed multiple virtual networks 
to share a single overlay without collision of private subnets. 
IPOP nodes also included an implementation of a user-level 
DHCP server that handed out IP addresses by randomly 
assigning an address within a declared virtual network 
namespace and inserting the mapping into the DHT [22]. 
While this implementation proved to be useful in many 
scenarios, and resilient to failures and churn, it had several 
shortcomings. First, the monolithic design led to a complex 
node that implemented several modules for discovery and 
bootstrapping, DHT, overlay routing, NAT traversal, IP 
address assignment/mapping, as well as virtual network 
interface bindings. Second, the use of a monolithic design 
implemented as an application written in C# made it difficult 
to incorporate standards and functionality in libraries written 
for different languages into a single process. In particular, 
the ICE, STUN, and TURN [23], [24], [24] protocols for 
NAT traversal were not supported, as well as transport-layer 
security. Third, the design did not provide a mechanism to 
authenticate peers into the overlay. Fourth, rules for packet 
forwarding and header manipulation, such as IP mapping, 
were implemented in the monolithic node, preventing the 
ability to change them without significant code investment. 
These shortcomings were progressively addressed in 
subsequent implementations of IPOP, as described in the 
next sections. 

4. Decoupling Endpoint Discovery from Overlay 

To tackle the complexities of overlay membership, endpoint 
discovery and bootstrapping links - which stem from its 
initial design - the 2nd generation of IPOP [12] introduced a 
signaling process reliant on online social networks (OSN). 
Each host in an overlay is represented and identified by an 
OSN Identity (ONSI) which exists on an OSN server. The 
ONSI maintains the notion of a social network (i.e., its 
private roster of friends) which corresponds to the peer hosts 
that participate in its overlay.  
By using an XMPP [25] compliant instant messaging service,  
issues of overlay membership and credentialing are handled 
externally by a service that follows a widely used standard, 
and that supports the authentication of user accounts and the 
establishment of trust relationships between users. 
Additionally, a published service eliminates the need to have 
prior knowledge of online nodes in order to join the overlay. 
Instant messaging provides the facility to exchange 
bootstrapping data that is used in support of other 
established standards, e.g., ICE, STUN and TURN. 
Collectively, these changes decouple endpoint discovery 
and connection bootstrapping from the overlay. 
Whereas prior to this approach, anyone with the software 
could join the single global overlay for all participants, 
OSNs now provided the necessary mechanism to restrict the 

participants of an overlay, and subsequently define multiple 
separate overlays. An ONSI is protected by credentials 
which requires each identity to authenticate with a 
centralized OSN server (or federation) prior to using its 
services. Once authenticated, the OSNI discovers its roster 
of friends which it interprets as an indication of direct 
acquaintance and mutual trust. Friends are therefore used to 
identify the network endpoints that are eligible to participate 
in the overlay network. In this regard, the overlay network 
is the realization of an individual’s social relationships. The 
view of social relationships in this approach is taken broadly 
– on one hand it may be mapped to resources owned by 
multiple individuals connected by a social network, while on 
the other hand it may be mapped to resources managed by a 
single (or federated) administrative domain with trust 
relationships capturing the membership in an overlay. 
When an OSNI signs on, a presence message is broadcasted 
to all its available friends. This presence awareness is used 
to trigger the process of negotiating peer links. Establishing 
peer links using ICE requires each node to discover and 
share endpoint data with its peer – all of which must occur 
before a communication channel between the peers is 
established. The instant messaging facility of the OSN is 
utilized to exchange messages which indicate the intent to 
create a P2P channel as well as exchange the necessary 
bootstrapping data between peers. This data includes the 
peer UUID, certificate fingerprints, and network address 
endpoints that will ultimately be used for creating all the 
facilities of the tunnel. 

OSN
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TURN
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Fig. 2  Illustration of decoupling endpoint discovery from IPOP overlay. 
Shown is segment (B, C, D) of the overlay in Fig. 1. Provided that nodes 
B and C have a trust relationship recorded in the OSN, they use external 

services (STUN, TURN) to discover their addressable endpoints and share 
them via the OSN. Once endpoint and certificate fingerprints are 

exchanged, a successor link (in red) is established. The integrity and 
confidentiality of link communication is enforced by DTLS. 

5. Decoupling Control from Datapath 

Another enhancement introduced in 2nd generation IPOP 
was the separation of concerns between control and datapath. 
Rather than the monolithic process of its initial 
implementation, starting in [12], IPOP adopted an SDN-
inspired modular design of controller and data-path 
components. 
The IPOP datapath (Tincan) builds on WebRTC [26], [27] to 
create its communication links. WebRTC is an open standard 
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and industry effort to enable direct, real-time media 
communication between browsers. Tincan utilizes the 
WebRTC native C++ libraries for data channels which 
constitutes the virtual link between peers. These virtual links 
use either direct, reflexive, or relay connections. Direct 
connection occurs when two nodes have routable endpoints 
using their local IP address (e.g. within a LAN); reflexive 
connections occurs when nodes are behind cone-style NATs 
that are amenable to STUN-based traversal; relay 
connections occurs when an intermediary server is 
necessary to exchange messages. Tincan also handles the IO 
interaction between the VNIC and the virtual link. Ethernet 
frames read from the VNIC are encrypted using DTLS, 
encapsulated as the payload of an IP datagram and 
transmitted on the link. Conversely, incoming messages are 
stripped of the UDP headers, decrypted and written to the 
VNIC. 
The 3rd generation IPOP Controller uses a modular 
framework which separates the application framework from 
the modules which implement specific functionalities [14]. 
The controller framework loads and initializes a 
parameterized list of modules at startup, providing an 
asynchronous task-based messaging service for inter-
module communications. The Controller Brokered Task 
(CBT) abstraction is used for this purpose; it is a self-
contained structure that fully describes the task over its 
lifetime, including all the details pertaining to its request and 
response. A CBT is created by a module, submitted to the 
framework, and delivered to the recipient modules work 
queue. When the requested task is completed, the CBT is 
returned to the initiator via the framework.  
A control module is a component with an application-
specific role within the IPOP Controller. By implementing a 
framework defined interface, modules can be loaded and 
initialized, sent CBTs for processing, and invoked at 
periodic intervals. Modules can be created for any purpose 
to extend the capabilities of the IPOP Controller. A few core 
modules include signaling, link negotiation and creation, 
topology definition, and status reporting. 
The signaling module leverages XMPP to advertise presence, 
indicate intent, and exchange connection bootstrap data. At 
sign-on, and on periodic intervals, a node broadcasts a 
presence message to all peers on its friendship roster 
indicating its availability for a communication channel. This 
module services requests that require peer communication 
over the XMMP band. 
The link management module manages tunnels between 
peers, mirroring the notion of the link layer between two 
networked devices. It creates, maintains and destroys 
tunnels as a service to other modules and utilizes the signal 
module to indicate the intent to create a link as well as 
exchanging the link bootstrapping data. Additionally, it 
tracks the VNIC and link for each tunnel and instructs the 
datapath to create them – coordinating as an intermediary 
the CAS exchange handshake between the local and peer 
data planes. 
The topology module determines the placement of tunnels 

and their duration. It utilizes the link management services 
for the creation of individual tunnels and orchestrates the 
local node’s participation in the construction of the global 
structure. The 4th generation implementation is a structured 
P2P topology based on a successor ring with shortcut paths. 
Monitoring of the overlay state is accomplished by 
cooperative work among the reporting module and the other 
controller. Participating modules periodically submit their 
respective state to the reporting module which aggregates 
the data into a node wide representation. The node data is 
sent to a central collector webservice which aggregates node 
data into a global view encompassing all the reported 
overlays and their respective nodes. 
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Fig. 3  Decoupling of the IPOP node design into control and data-path 

modules. The data-path module is responsible for packet capture/injection, 
as well as for the setup and maintenance of peer-to-peer private tunnels 

through which virtual network traffic flows. The control module is 
responsible for signaling, link management, and topology management, 

among other functions. These modules are implemented as separate 
processes, written in separate languages (currently, a Python controller 

and C++ datapath) that execute in the same node and communicate via a 
localhost network API. 

6. Software-Defined Switching 

In its 4th generation, IPOP moved from a layer-3 to a layer-
2 virtual network and implemented an OpenFlow SDN 
controller. This allows IPOP to support broadcast/multicast 
protocols other than IP (e.g. ARP), relocatable IP addresses, 
and a wider variety of applications. Furthermore, supporting 
the OpenFlow API and SDN-based software switches, opens 
the virtualized overlay to a variety of possible networking 
implementations. 
IPOP virtualizes a layer 2 broadcast domain via the local 
system TAP device or an OpenFlow software bridge, and by 
tunneling Ethernet frames. The ring structure with shortcut 
links provides multiple redundant paths between network 
switches in the overlay. If utilized, these links provide 
alternate paths to avoid IO bottlenecks and resilience against 
link failures. However, typical Ethernet switching does not 
accommodate a topology with cycles, and network failure 
from broadcast storms occurs if cycles are not disabled. 
Approaches such as Spanning Tree Protocol (STP) are used 
in local-area Ethernet networks to selectively disable links 
and construct a cycle-free spanning tree. Unfortunately, this 
approach ignores functional links that could otherwise be 
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used as alternative paths between pairs of communicating 
hosts. To address the issues stemming from cyclic paths 
while still retaining the functional benefits of multiple links, 
an OpenFlow compliant switching protocol, called Bounded 
Flooding, has been designed and implemented for structured 
P2P topologies in IPOP. 
Each IPOP node instantiate two controller components: an 
IPOP controller and an OpenFlow controller module – 
producing a decentralized system. The IPOP controller 
builds and maintains the topology while the OpenFlow 
controller programs the switching rules. The OpenFlow 
controller functionality is topology dependent and relies on 
structural information queried from the IPOP controller, 
such as the node’s adjacency list. It is designed to be scalable 
from overlays with two nodes to thousands of nodes. 
The IPOP topology is a ring of successors with identifiers 
increasing clockwise and arcs of shortcut links. Each 
switching node running IPOP is assigned a UUID, and each 
node bears the responsibility of identifying its closest 
neighbor (next larger UUID) and building a successor link 
between them; a node may select more than one successor 
for resilience against interruptions from churn. This process 
continues with each node until the ring is complete. The 
number of nodes in the overlay are proportional to the 
average number of switching hops to deliver frames in the 
overlay and subsequently is used as a measure of the 
perceived latency in communication. While a complete 
network would provide constant switching cost, it is 
infeasible for overlays with more than tens of nodes. For an 
overlay with 𝑛 nodes, each new node adds (𝑛 − 1) edges 
for a total 𝑛(𝑛 −  1)/2  edges. As each tunnel incurs an 
ongoing communication cost over its lifetime this approach 
does not scale as maintenance data begins to saturate the 
network. 
Shortcut links can used to bound the average latency, and 
using 𝑙𝑜𝑔2(𝑛) links per node provides an equivalent bound 
[19]. To choose a suitable peer for the shortcut links the 
Symphony Long Distance Links [20] selection algorithm is 
used. The overlay is parameterized to tune the trade-offs 
between node degree and latency, and each node can be 
independently configured. 
Topology data provided by the IPOP controller is used to 
distinguish between directly connected peer bridges and leaf 
devices, and to associate the leaf devices with their 
respective root bridge. Knowledge of a device’s root bridge 
is necessary for building on demand tunnels which are a 
mechanism for eliminating additional switching hops 
between actively communicating leaf devices. 
The OpenFlow controller implements the novel bounded 
flooding protocol, which is fundamental to building its 
learning table (a mapping of observed source MAC address 
and the associated ingress ports) and subsequently 
programming the data plane flow rules. Whenever a 
broadcast is necessary, a Flooding Route and Bound (FRB) 
is used to greedily flood all its peer ports, i.e., egress ports 
that connect to another bridge. FRB is a custom Ethernet 

layer protocol implemented and used by IPOP SDN 
switching to perform link layer broadcasts in dynamic cyclic 
switched fabrics. The FRB prefixes the original broadcast 
with a header describing the root bridge and the message’s 
bound. The root bridge is the switch that manages the device 
that initiated the broadcast. The flooding bound is a closed-
open interval [𝑖, 𝑗) , specifying the recipient 𝑖 , and the 
furthest node 𝑗 , the message should be forward. The 
recipients are adjacent peers and each bound can potentially 
differ. On receiving an FRB, a node will deliver the payload 
on its managed leaf ports, determine if any adjacent peer 
bridges are within the message bound, recalculate and 
update the bound as necessary, and retransmit the message. 
Retransmitting an FRB is done clockwise around the ring on 
successor and shortcut edges. This approach ensures that 
broadcasts are never duplicated, are delivered to all devices 
in the overlay, and will eventually terminate. As FRBs are 
propagated throughout the overlay, they are tracked at each 
node and used to update its local learning table. This 
information collectively provides a return route across the 
overlay to the FRB initiator. Additionally, an FRB is used to 
exchange the managed leaf devices for a switch with its peer. 

Node BNode A
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Bridge

Controller

Tincan

TAP TAP TAP TAP

Openflow 

Controller

 
Fig. 4  IPOP functions as a switch by extending a software bridge such 

as Open vSwitch. Tunnels are added to the bridge as subordinate 
interfaces as they are created and removed when destroyed. 

7. Discussion 

7.1 Related Work 

Two related approaches to virtualized overlay networks are 
VIOLIN [28] and VNET/P [29]. VIOLIN uses a virtualized 
layer 2/layer 3 (Ethernet/IP) model, and all components – 
vHost, vNic, vSwitch, and vRouter – are virtualized. 
VIOLIN’s goal is to isolate the vHost within the overlay 
from the public Internet. This approach allows the complete 
network to be orchestrated by software, but it has no 
mechanism for peer identification, authenticating overlay 
membership, topology planning, or NAT traversal – all 
which are necessary for dynamic management. Also, in the 
absence of programable switching routes, standard layer 2 
switching (MAC learning) is implied; furthermore, IP routes 
must be manually configured at each vHost. By comparison 
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it is less scalable as each layer 2 domain must be a spanning 
tree which results in bottlenecks at high contention overlay 
links. The manual specification of topology, switching and 
routing rules means longer deployment and reconfiguration 
times. While the communication channels are encrypted, 
any host with the overlay peer list can join. 
VNET/P presents a layer 2 network that is geared at tightly 
coupled HPC workloads. It implements its switching core in 
the Palacios hypervisor and a tunneling bridge in the host 
kernel. The overlay topology, nodes and switching routes are 
defined in a static configuration file which are generated and 
validated by a separate centralized management tool with a 
global view of the network. The configuration must be 
regenerated to reflect any changes and reapplied to the 
applicable hosts. VNET/P also supports encrypted 
communication channels but no authentication method for 
peer membership. These properties result in less scalable 
overlays, which are open to any host with the peer list, and 
increased response times to changes in the overlay when 
compared to Bounded Flood. 

7.2 P2P Architecture 

While both unstructured and structure P2P schemes have 
their respective advantages and disadvantages [30], the 
structured P2P properties inherent to Symphony are 
particularly beneficial to IPOP. Specifically, these are with 
respect to decentralization, topology, system parameters, 
routing performance and state, and resiliency. Being 
decentralized the system is highly scalable, supporting very 
large networks. Its topology is simple to create and maintain 
in realistic deployments, even in systems with frequent 

churn where nodes have short lifespans. The system 
parameters, those that significantly influence the system 
characteristics, are primarily the number of nodes in the 
overlay and the number of links per node, 𝑘. Furthermore, 
each node within the system can be independently 
configured. Routing and state costs are bounded as a 
function of the systems parameters and at limits that are 
amenable to deployments at large scale. The routing cost is 
for symphony 1/𝑘 𝑙𝑜𝑔(𝑛), and its state varies with 𝑘. It is 
a resilient system such that node failure will not cause 
enduring network-wide failure. Additionally, the overlay can 
tolerate up to 𝑓 node failures without partitioning by using 
𝑠 = 𝑓 successor links per node. 

8. Example Use Cases 

PerSoNet [31] built upon the virtualized layer 2 
functionality provided by IPOP to create a two-layered, 
software defined VPN network for community-based 
collaboration at the edge. The Personal layer connects 
devices owned and managed by an individual exposing OSI 
Layer-2 semantics. Above it, connectivity among devices 
belonging to different peers is provided by interconnecting 
the personal networks of individuals via SDN-
programmable gateways to create a Community layer 
overlay network with OSI Layer-3 semantics. PerSoNet 
abstracts the complexities involved in managing IP layer 
addressing, device name management, access control and 
connectivity by a combination of DNS query interception 
and processing along with reactive programming of 
software defined gateways to perform address translation 
and switching. 

Table 1  Taxonomy of IPOP Generations 
Taxonomy 1st Generation 2nd Generation 3rd Generation 4th Generation 

Bootstrapping 

Decentralized - requires peer 

list Centralized OSN Centralized OSN Centralized OSN 

Endpoint Addressing IP4, fixed to node IP4, fixed to node 

MAC, user configurableIP4 or 

IP6, relocatable IP 

MAC, user configurableIP4 or 

IP6, relocatable IP 

Forwarding Structured P2P, Greedy Direct Link STP with MAC Learning Bounded Flooding 

Overlay Global with namespaces 

Independent overlay 

per process 

Multiple independent overlays in 

single process 

Multiple independent overlays 

in single process 

Scalability Complete decentralization 

Decentralized 

topology and 

forwarding 

Decentralized topology and 

forwarding 

Decentralized topology and 

forwarding 

Software Architecture Monolithic 

Single purpose 

Controller, Tincan 

Controller framework, 

Specialized modules, Tincan 

Controller framework, 

Specialized modules, Tincan, 

SDN Controller 

Support for Standards 

No ICE, No XMPP, No 

OpenFlow 

ICE, XMPP, No 

OpenFlow ICE, XMPP, No OpenFlow ICE, XMPP, OpenFlow 

Topology Structured P2P/Symphony Social and All-to-All All-to-All Structured P2P/Symphony 

Virtualization Layer Layer 3/IP Layer 3/IP Layer 2/Ethernet Layer 2/Ethernet 
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GRAPLE is an inter-disciplinary collaboration between 
computer scientists and lake modelers associated with two 
international networks, GLEON (Global Lake Ecological 
Observatory Network) and PRAGMA (Pacific Rim 
Applications and Grid Middleware Assembly). The 
GRAPLE collaboration’s main software product is 
GRAPLEr [32]. While it is relatively easy to run one lake 
model simulation on a personal computer, it is more 
challenging to execute multiple simulations, which requires 
additional computing and human resources. To overcome 
this constraint, GRAPLEr, as a distributed computing 
system, integrates and applies the IPOP overlay virtual 
network to support high-throughput computing, and Web 
service technologies. By using IPOP as a virtual network 
substrate, GRAPLEr is able to reuse existing, unmodified 
software, including the HTCondor job scheduler, and to 
enable simple addition of resources across the Internet to the 
HTCondor pool. GRAPLEr allows submission of hundreds 
or thousands of General Lake Model (GLM) simulations, 
runs these lake model simulations efficiently, and retrieves 
the model output. 
PRAGMA Experimental Networking Testbed 
(PRAGMA-ENT) is an international SDN testbed that is 
designed to offer complete freedom for researchers to access 
network resources to develop, experiment, and evaluate new 
ideas without interfering with a production network. 
PRAGMA-ENT connects OpenFlow-enabled switches in 
different institutions over high-speed networks and builds a 
large scale OpenFlow-based network testbed. In this use 
case scenario, IPOP has been used to extend the testbed with 
a software-defined overlay, in order to enable sites that do 
not have OpenFlow-enabled switches nor a direct 
connection to the backbone of PRAGMA-ENT. Using IPOP, 
each end-user can deploy an access network between their 
resources and the nearest PRAGMA-ENT endpoint. This 
approach works effectively for those end-users who just 
need to connect their resources to PRAGMA-ENT 
temporarily for their experiments. 

Conclusion 

We have traced the evolution of IPOP from its P2P origins 
in Brunet to its current hybrid implementation, showing how 
specific needs of a real-world system have driven pragmatic 
design changes at each stage. These changes allow IPOP to 
fill a gap in emergent technologies and seamlessly integrate 
existing applications. We have also illustrated real world 
systems that utilize IPOP’s capabilities, demonstrating its 
practical applications. 
Generation 1 virtualized a layer 3 network through VNIC 
host integration and tunneling IP packets within UDP/IP. It 
was a fully decentralized overlay, utilizing the Brunet library. 
The architecture reflected a monolithic process that 
incorporated all services for bootstrapping and packet 
forwarding which made interoperability with open standards 
difficult. The global overlay used namespace identifiers and 
DHT store to provide scope for IP subnetting. Joining the 

overlay required a peer list and used overlay links to carry 
bootstrap messages, and there was no support for 
authentication or encryption. 
Generation 2 introduced OSNs to decouple endpoint 
discovery from the overlay and introduced a client-server 
model for bootstrapping. While no longer a pure P2P model, 
using a published OSN server and friendship relationships 
facilitated independent overlays, simplified bootstrapping 
and enforced authentication for membership. The 
monolithic process was separated into a control and data 
plane and standards such as ICE, STUN, TURN was adopted. 
Moving from the Brunet library meant losing the Symphony 
structure; to accommodate this links were create to all 
friends and IP mapping performed between them. An SDN 
inspired approach was adopted which split IPOP into 
controller and data plane processes. However, the coarse 
granularity of the architectural components still left code 
maintenance and enhancements challenging. 
Generation 3 addressed the architectural problems by 
introducing the controller application framework. The 
controller utilized modular components focused on topology, 
link management and signaling. Improvements to the data 
plane supported multiple, concurrent, isolated layer 2 
overlays within a single process. 
Generation 4 reintroduced the Symphony structured ring 
topology, implemented in an IPOP controller module. To 
provide the switching routes for the specialized topology, a 
Ryu/OpenFlow module implementing Bounded Flood is 
used. Both the algorithms for the topology and switching 
rules were designed to be parameterized and scalable to 
function for networks as small as two nodes to hundreds on 
nodes. 
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