
D OI: 1 0. 1 5 8 7 /t r a n s c o m. 2 0 1 9 C PI 0 0 0 1

P u bli ci z e d: 2 0 1 9 / 0 8 / 0 5

 T hi s a rti cl e h a s b e e n a c c e pt e d a n d p u bli s h e d o n J- S T A G E i n a d v a n c e of

c o p y e diti n g. C o nt e nt i s fi n al a s p r e s e nt e d.

1

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

Invited Paper

On the Design and Implementation of IP-over-P2P Overlay Virtual
Private Networks

Kensworth Subratie†, Saumitra Aditya†, Vahid Daneshmand†, Kohei Ichikawa††, and Renato Figueiredo†

SUMMARY The success and scale of the Internet and its protocol IP has
spurred emergent distributed technologies such as fog/edge computing and
new application models based on distributed containerized microservices.
The Internet of Things and Connected Communities are poised to build on
these technologies and models and to benefit from the ability to
communicate in a peer-to-peer (P2P) fashion. Ubiquitous sensing, actuating
and computing implies a scale that breaks the centralized cloud computing
model. Challenges stemming from limited IPv4 public addresses, the need
for transport layer authentication, confidentiality and integrity become a
burden on developing new middleware and applications designed for the
network’s edge. One approach - not reliant on the slow adoption of IPv6 -
is the use of virtualized overlay networks, which abstract the complexities
of the underlying heterogeneous networks that span the components of
distributed fog applications and middleware.
This paper describes the evolution of the design and implementation of IP-
over-P2P (IPOP) - from its purist P2P inception, to a pragmatic hybrid
model which is influenced by and incorporates standards. The hybrid client-
server/P2P approach allows IPOP to leverage existing robust and mature
cloud infrastructure, while still providing the characteristics needed at the
edge. IPOP is networking cyber infrastructure that presents an overlay
virtual private network which self-organizes with dynamic membership of
peer nodes into a scalable structure. IPOP is resilient to partitioning,
supports redundant paths within its fabric, and provides software defined
programming of switching rules to utilize these properties of its topology.
key words: Overlay Networks, P2P, FOG, EDGE Computing, SDN.

1. Introduction

The Internet’s core protocol (IP) has been successful at an
unprecedented scale. While the use of IPv4 identifiers and
lack of security simplified the addition of devices to the
Internet in its early days, they have turned into shortcomings
as the network scales and security becomes a primary
concern. In today’s Internet, IPv4 addresses are scarce
because of near-exhaustion of the 32-bit address space, and
many networks have to resort to the use of private addresses
and Network Address Translation (NAT) [1] middleboxes.
Security concerns also have led to the proliferation of
firewall middleboxes, while the need for authentication,
confidentiality and integrity have led to transport-layer

protocols (e.g. TLS [2], [3]). As a result, distributed
applications that run across the Internet often must deal with
devices without public IPv4 addresses that are behind
various NAT and firewall middleboxes and must create
secure transport sessions for communication. While these
issues are relatively easy to handle with client-server
applications, they place a burden to applications where peer-
to-peer communication is needed.
Emerging distributed applications in edge/fog [4], [5]
computing are poised to benefit from the ability for IoT and
edge nodes to communicate in a peer-to-peer fashion.
However, the connectivity challenges outlined above
become an increasing burden on the development of
middleware and applications as they move from the cloud to
the edge [6], including security and privacy [7]. While the
subsequent IPv6 protocol offers a larger address space and
built-in security features, it is still not widely deployed
despite decades since its release. An approach to address
these challenges that does not require a core change to
Internet protocols is to create overlay networks [8], [9] that
tunnel traffic over the existing infrastructure. Coupled with
network virtualization, overlays offer the ability to support
existing middleware and applications, while shielding them
from dealing with complexities due to private addressing,
network address translation, and firewall policies.
This paper describes the design and implementation of IP-
over-P2P (IPOP [10]–[15]), an overlay virtual private
network that supports tunneling of layer-2 (Ethernet) and
above (including IPv4) traffic across peer-to-peer tunnels.
IPOP exposes virtual network interface endpoints that
integrate with existing operating systems, automatically
manages NAT traversal across peers with private IP
addresses, self-organizes scalable overlay topologies and,
supports encryption of peer-to-peer links, and allows
software-defined programming of switching rules. IPOP
provides a network virtualization substrate upon which
geographically distributed IoT, edge, and cloud computing
resources can be logically aggregated to facilitate the design
of fog computing applications. This paper describes the
evolution of the design and open-source implementation
IPOP over several iterations of the project.
The advent of virtualization and cloud computing has
fundamentally changed the way in which distributed
applications and services are deployed and managed. With
the proliferation of IoT and mobile devices, virtualized
systems akin to those offered by cloud providers are
increasingly needed geographically near the edge of the

 † ACIS Lab, Electrical and Computer Engineering,
University of Florida, USA

 †† Division of Information Science at the Nara Institute of
Science and Technology (NAIST), Japan

This material is based upon work supported in part by the
National Science Foundation under Grants No. 1527415,
1339737, 1234983 and 1550126. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
2

network [4]. Applications on resources at the edge can
perform operations on high-volume data produced by
sensors (e.g. real-time high-definition camera feeds) near
IoT devices for latency-sensitive, bandwidth-intensive
applications – a model referred to as fog computing [5]. Not
only is performance important, but also a trustworthy
network is key to guarantee privacy and integrity at the
network layer across all participating resources (e.g. IoT,
cloud VMs, and containers in edge resources [16]).
While software-defined virtual networking systems exist
within large-scale cloud data centers [17] - at the core of the
Internet and under a single administrative entity - these are
not suited for future distributed applications spanning edge
resources. Such fog applications are distributed across
multiple providers and edge networks, raising more complex
security and privacy issues than in cloud environments [6].
Unlike within a cloud, edge virtual networks require
traversing multiple (possibly NATed [7]) administrative
environments across different providers and enforcing data
privacy and integrity in communication. While transport-
layer network security (e.g. TLS, DTLS) and VPN tunneling
(e.g. IPSEC) technologies exist, they are not readily
applicable to systems where resource membership is
dynamic, and where most devices are constrained by
NAT/firewall middleboxes. Furthermore, the effort
associated with developing or porting applications to
enforce privacy and integrity in communications comes with
significant costs.
To accomplish its required functionality, a fog application
requires the ability to deploy, aggregate and process data
from sensors on edge and cloud resources in a dynamic
fashion. It also needs to support dynamic changes in the
membership of participating devices over time, as devices
may be mobile (e.g. video cameras in smartphones and
vehicles). Fundamentally, the network connecting IoT, edge
and cloud resources must provide trustworthy, seamless
communication across a dynamic, heterogeneous, mobile set
of resources.
The current version of IPOP implements a hybrid
overlay/software-defined network (SDN [18]) software that
is novel in how it supports dynamic grouping/aggregation of
edge and cloud devices into a trustworthy virtual private
network that leverages Online Social Network (OSN)
interfaces for self-configuration. The following sections
outline the core concepts in the design, and the evolution of
the implementation leading to its current form.

2. Core Abstractions and Architecture

The core abstraction exposed by IPOP to a computer system
using it is of a virtual network. The 1st generation of the
designed exposed the abstraction of a layer-3 (IP) virtual
network [10]–[12], while the 3rd and 4th generations expose
the abstraction at layer-2 (Ethernet) [13], [14]. In both cases,
the abstraction is exposed through a virtual network
interface (VNIC), such as the TAP pseudo-device available
in the Linux and Windows kernels, from which

frames/packets that are sent and received are intercepted.
IPOP nodes are implemented as a user-space process that
runs in each node connected to the overlay; this process
reads/writes from the TAP device, using the system call
interface, as illustrated in Fig. 1.
IPOP nodes form virtual links among each other, where each
virtual link is an Internet tunnel that carries encrypted and
encapsulated virtual network frames/packets through a
transport protocol – typically UDP, which is more amenable
to NAT traversal than TCP.
Each IPOP node in an overlay is uniquely identified by a
node ID (e.g. A, B, ..., F) in Fig. 1. The set of virtual links
among IPOP nodes forms a topology. While different
overlay topologies have been implemented in IPOP versions
over time, a structured P2P topology has been a feature of
the design since its inception. In this topology, nodes form a
logical ring, with successor links ordered by their node IDs,
and shortcut links across the ring, following a structured P2P
algorithm for topology construction and identifier-based
routing such as Chord [19] or Symphony [20].

C

A

B

F

E

D

TAP

IPOP

Fig. 1 IPOP’s structured P2P architecture and virtualized endpoint.
Nodes are connected in successive order based on their integer node

identifiers (e.g. A < B < C < D) to form an outer “ring”. Additionally, the
overlay features shortcut links (e.g. A-D) which reduce routing

complexity. In each IPOP node (e.g. C), there is a TAP device to
pick/inject packets from the O/S kernel, and a user-mode IPOP application

that implements the overlay virtual network functionality.

3. Fully Decentralized P2P Design

The 1st generation of IPOP [10] was fully decentralized,
following a structured P2P design using the Brunet [21]
library and a Symphony-based protocol. Two key
motivations for this approach were to avoid any external
dependences, and any single point of failure. Each node
implemented the functionality to 1) discover other nodes by
means of a peer list file, 2) bootstrapping by contacting
nodes in the peer list and using them to send messages to the
joining peer’s left and right neighbors, 3) providing support
for discovery of a node’s public IP:port endpoint, and 4)
forwarding messages according to a greedy routing
algorithm.
This implementation provided a layer-3 virtual network for
the IPv4 protocol. There was no encryption, and no
authentication of nodes into the overlay. IP addresses were

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
3

assigned to nodes by leveraging a Distributed Hash Table
(DHT [19]) key/value store which was also implemented by
IPOP nodes. The DHT used a compound key, comprising of
a virtual network namespace and a virtual IP address to map
the node’s IPOP ID. This allowed multiple virtual networks
to share a single overlay without collision of private subnets.
IPOP nodes also included an implementation of a user-level
DHCP server that handed out IP addresses by randomly
assigning an address within a declared virtual network
namespace and inserting the mapping into the DHT [22].
While this implementation proved to be useful in many
scenarios, and resilient to failures and churn, it had several
shortcomings. First, the monolithic design led to a complex
node that implemented several modules for discovery and
bootstrapping, DHT, overlay routing, NAT traversal, IP
address assignment/mapping, as well as virtual network
interface bindings. Second, the use of a monolithic design
implemented as an application written in C# made it difficult
to incorporate standards and functionality in libraries written
for different languages into a single process. In particular,
the ICE, STUN, and TURN [23], [24], [24] protocols for
NAT traversal were not supported, as well as transport-layer
security. Third, the design did not provide a mechanism to
authenticate peers into the overlay. Fourth, rules for packet
forwarding and header manipulation, such as IP mapping,
were implemented in the monolithic node, preventing the
ability to change them without significant code investment.
These shortcomings were progressively addressed in
subsequent implementations of IPOP, as described in the
next sections.

4. Decoupling Endpoint Discovery from Overlay

To tackle the complexities of overlay membership, endpoint
discovery and bootstrapping links - which stem from its
initial design - the 2nd generation of IPOP [12] introduced a
signaling process reliant on online social networks (OSN).
Each host in an overlay is represented and identified by an
OSN Identity (ONSI) which exists on an OSN server. The
ONSI maintains the notion of a social network (i.e., its
private roster of friends) which corresponds to the peer hosts
that participate in its overlay.
By using an XMPP [25] compliant instant messaging service,
issues of overlay membership and credentialing are handled
externally by a service that follows a widely used standard,
and that supports the authentication of user accounts and the
establishment of trust relationships between users.
Additionally, a published service eliminates the need to have
prior knowledge of online nodes in order to join the overlay.
Instant messaging provides the facility to exchange
bootstrapping data that is used in support of other
established standards, e.g., ICE, STUN and TURN.
Collectively, these changes decouple endpoint discovery
and connection bootstrapping from the overlay.
Whereas prior to this approach, anyone with the software
could join the single global overlay for all participants,
OSNs now provided the necessary mechanism to restrict the

participants of an overlay, and subsequently define multiple
separate overlays. An ONSI is protected by credentials
which requires each identity to authenticate with a
centralized OSN server (or federation) prior to using its
services. Once authenticated, the OSNI discovers its roster
of friends which it interprets as an indication of direct
acquaintance and mutual trust. Friends are therefore used to
identify the network endpoints that are eligible to participate
in the overlay network. In this regard, the overlay network
is the realization of an individual’s social relationships. The
view of social relationships in this approach is taken broadly
– on one hand it may be mapped to resources owned by
multiple individuals connected by a social network, while on
the other hand it may be mapped to resources managed by a
single (or federated) administrative domain with trust
relationships capturing the membership in an overlay.
When an OSNI signs on, a presence message is broadcasted
to all its available friends. This presence awareness is used
to trigger the process of negotiating peer links. Establishing
peer links using ICE requires each node to discover and
share endpoint data with its peer – all of which must occur
before a communication channel between the peers is
established. The instant messaging facility of the OSN is
utilized to exchange messages which indicate the intent to
create a P2P channel as well as exchange the necessary
bootstrapping data between peers. This data includes the
peer UUID, certificate fingerprints, and network address
endpoints that will ultimately be used for creating all the
facilities of the tunnel.

OSN

B

C

D

TURN

STUN

Fig. 2 Illustration of decoupling endpoint discovery from IPOP overlay.
Shown is segment (B, C, D) of the overlay in Fig. 1. Provided that nodes
B and C have a trust relationship recorded in the OSN, they use external

services (STUN, TURN) to discover their addressable endpoints and share
them via the OSN. Once endpoint and certificate fingerprints are

exchanged, a successor link (in red) is established. The integrity and
confidentiality of link communication is enforced by DTLS.

5. Decoupling Control from Datapath

Another enhancement introduced in 2nd generation IPOP
was the separation of concerns between control and datapath.
Rather than the monolithic process of its initial
implementation, starting in [12], IPOP adopted an SDN-
inspired modular design of controller and data-path
components.
The IPOP datapath (Tincan) builds on WebRTC [26], [27] to
create its communication links. WebRTC is an open standard

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
4

and industry effort to enable direct, real-time media
communication between browsers. Tincan utilizes the
WebRTC native C++ libraries for data channels which
constitutes the virtual link between peers. These virtual links
use either direct, reflexive, or relay connections. Direct
connection occurs when two nodes have routable endpoints
using their local IP address (e.g. within a LAN); reflexive
connections occurs when nodes are behind cone-style NATs
that are amenable to STUN-based traversal; relay
connections occurs when an intermediary server is
necessary to exchange messages. Tincan also handles the IO
interaction between the VNIC and the virtual link. Ethernet
frames read from the VNIC are encrypted using DTLS,
encapsulated as the payload of an IP datagram and
transmitted on the link. Conversely, incoming messages are
stripped of the UDP headers, decrypted and written to the
VNIC.
The 3rd generation IPOP Controller uses a modular
framework which separates the application framework from
the modules which implement specific functionalities [14].
The controller framework loads and initializes a
parameterized list of modules at startup, providing an
asynchronous task-based messaging service for inter-
module communications. The Controller Brokered Task
(CBT) abstraction is used for this purpose; it is a self-
contained structure that fully describes the task over its
lifetime, including all the details pertaining to its request and
response. A CBT is created by a module, submitted to the
framework, and delivered to the recipient modules work
queue. When the requested task is completed, the CBT is
returned to the initiator via the framework.
A control module is a component with an application-
specific role within the IPOP Controller. By implementing a
framework defined interface, modules can be loaded and
initialized, sent CBTs for processing, and invoked at
periodic intervals. Modules can be created for any purpose
to extend the capabilities of the IPOP Controller. A few core
modules include signaling, link negotiation and creation,
topology definition, and status reporting.
The signaling module leverages XMPP to advertise presence,
indicate intent, and exchange connection bootstrap data. At
sign-on, and on periodic intervals, a node broadcasts a
presence message to all peers on its friendship roster
indicating its availability for a communication channel. This
module services requests that require peer communication
over the XMMP band.
The link management module manages tunnels between
peers, mirroring the notion of the link layer between two
networked devices. It creates, maintains and destroys
tunnels as a service to other modules and utilizes the signal
module to indicate the intent to create a link as well as
exchanging the link bootstrapping data. Additionally, it
tracks the VNIC and link for each tunnel and instructs the
datapath to create them – coordinating as an intermediary
the CAS exchange handshake between the local and peer
data planes.
The topology module determines the placement of tunnels

and their duration. It utilizes the link management services
for the creation of individual tunnels and orchestrates the
local node’s participation in the construction of the global
structure. The 4th generation implementation is a structured
P2P topology based on a successor ring with shortcut paths.
Monitoring of the overlay state is accomplished by
cooperative work among the reporting module and the other
controller. Participating modules periodically submit their
respective state to the reporting module which aggregates
the data into a node wide representation. The node data is
sent to a central collector webservice which aggregates node
data into a global view encompassing all the reported
overlays and their respective nodes.

B

C

D

TURN

TAP

IPOP

KERNEL

OSN

STUN

Controller

Tincan

Fig. 3 Decoupling of the IPOP node design into control and data-path

modules. The data-path module is responsible for packet capture/injection,
as well as for the setup and maintenance of peer-to-peer private tunnels

through which virtual network traffic flows. The control module is
responsible for signaling, link management, and topology management,

among other functions. These modules are implemented as separate
processes, written in separate languages (currently, a Python controller

and C++ datapath) that execute in the same node and communicate via a
localhost network API.

6. Software-Defined Switching

In its 4th generation, IPOP moved from a layer-3 to a layer-
2 virtual network and implemented an OpenFlow SDN
controller. This allows IPOP to support broadcast/multicast
protocols other than IP (e.g. ARP), relocatable IP addresses,
and a wider variety of applications. Furthermore, supporting
the OpenFlow API and SDN-based software switches, opens
the virtualized overlay to a variety of possible networking
implementations.
IPOP virtualizes a layer 2 broadcast domain via the local
system TAP device or an OpenFlow software bridge, and by
tunneling Ethernet frames. The ring structure with shortcut
links provides multiple redundant paths between network
switches in the overlay. If utilized, these links provide
alternate paths to avoid IO bottlenecks and resilience against
link failures. However, typical Ethernet switching does not
accommodate a topology with cycles, and network failure
from broadcast storms occurs if cycles are not disabled.
Approaches such as Spanning Tree Protocol (STP) are used
in local-area Ethernet networks to selectively disable links
and construct a cycle-free spanning tree. Unfortunately, this
approach ignores functional links that could otherwise be

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
5

used as alternative paths between pairs of communicating
hosts. To address the issues stemming from cyclic paths
while still retaining the functional benefits of multiple links,
an OpenFlow compliant switching protocol, called Bounded
Flooding, has been designed and implemented for structured
P2P topologies in IPOP.
Each IPOP node instantiate two controller components: an
IPOP controller and an OpenFlow controller module –
producing a decentralized system. The IPOP controller
builds and maintains the topology while the OpenFlow
controller programs the switching rules. The OpenFlow
controller functionality is topology dependent and relies on
structural information queried from the IPOP controller,
such as the node’s adjacency list. It is designed to be scalable
from overlays with two nodes to thousands of nodes.
The IPOP topology is a ring of successors with identifiers
increasing clockwise and arcs of shortcut links. Each
switching node running IPOP is assigned a UUID, and each
node bears the responsibility of identifying its closest
neighbor (next larger UUID) and building a successor link
between them; a node may select more than one successor
for resilience against interruptions from churn. This process
continues with each node until the ring is complete. The
number of nodes in the overlay are proportional to the
average number of switching hops to deliver frames in the
overlay and subsequently is used as a measure of the
perceived latency in communication. While a complete
network would provide constant switching cost, it is
infeasible for overlays with more than tens of nodes. For an
overlay with 𝑛 nodes, each new node adds (𝑛 − 1) edges
for a total 𝑛(𝑛 − 1)/2 edges. As each tunnel incurs an
ongoing communication cost over its lifetime this approach
does not scale as maintenance data begins to saturate the
network.
Shortcut links can used to bound the average latency, and
using 𝑙𝑜𝑔2(𝑛) links per node provides an equivalent bound
[19]. To choose a suitable peer for the shortcut links the
Symphony Long Distance Links [20] selection algorithm is
used. The overlay is parameterized to tune the trade-offs
between node degree and latency, and each node can be
independently configured.
Topology data provided by the IPOP controller is used to
distinguish between directly connected peer bridges and leaf
devices, and to associate the leaf devices with their
respective root bridge. Knowledge of a device’s root bridge
is necessary for building on demand tunnels which are a
mechanism for eliminating additional switching hops
between actively communicating leaf devices.
The OpenFlow controller implements the novel bounded
flooding protocol, which is fundamental to building its
learning table (a mapping of observed source MAC address
and the associated ingress ports) and subsequently
programming the data plane flow rules. Whenever a
broadcast is necessary, a Flooding Route and Bound (FRB)
is used to greedily flood all its peer ports, i.e., egress ports
that connect to another bridge. FRB is a custom Ethernet

layer protocol implemented and used by IPOP SDN
switching to perform link layer broadcasts in dynamic cyclic
switched fabrics. The FRB prefixes the original broadcast
with a header describing the root bridge and the message’s
bound. The root bridge is the switch that manages the device
that initiated the broadcast. The flooding bound is a closed-
open interval [𝑖, 𝑗) , specifying the recipient 𝑖 , and the
furthest node 𝑗 , the message should be forward. The
recipients are adjacent peers and each bound can potentially
differ. On receiving an FRB, a node will deliver the payload
on its managed leaf ports, determine if any adjacent peer
bridges are within the message bound, recalculate and
update the bound as necessary, and retransmit the message.
Retransmitting an FRB is done clockwise around the ring on
successor and shortcut edges. This approach ensures that
broadcasts are never duplicated, are delivered to all devices
in the overlay, and will eventually terminate. As FRBs are
propagated throughout the overlay, they are tracked at each
node and used to update its local learning table. This
information collectively provides a return route across the
overlay to the FRB initiator. Additionally, an FRB is used to
exchange the managed leaf devices for a switch with its peer.

Node BNode A

IPOP

Bridge

Controller

Tincan

TAP TAP TAP TAP

Openflow

Controller

Fig. 4 IPOP functions as a switch by extending a software bridge such

as Open vSwitch. Tunnels are added to the bridge as subordinate
interfaces as they are created and removed when destroyed.

7. Discussion

7.1 Related Work

Two related approaches to virtualized overlay networks are
VIOLIN [28] and VNET/P [29]. VIOLIN uses a virtualized
layer 2/layer 3 (Ethernet/IP) model, and all components –
vHost, vNic, vSwitch, and vRouter – are virtualized.
VIOLIN’s goal is to isolate the vHost within the overlay
from the public Internet. This approach allows the complete
network to be orchestrated by software, but it has no
mechanism for peer identification, authenticating overlay
membership, topology planning, or NAT traversal – all
which are necessary for dynamic management. Also, in the
absence of programable switching routes, standard layer 2
switching (MAC learning) is implied; furthermore, IP routes
must be manually configured at each vHost. By comparison

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
6

it is less scalable as each layer 2 domain must be a spanning
tree which results in bottlenecks at high contention overlay
links. The manual specification of topology, switching and
routing rules means longer deployment and reconfiguration
times. While the communication channels are encrypted,
any host with the overlay peer list can join.
VNET/P presents a layer 2 network that is geared at tightly
coupled HPC workloads. It implements its switching core in
the Palacios hypervisor and a tunneling bridge in the host
kernel. The overlay topology, nodes and switching routes are
defined in a static configuration file which are generated and
validated by a separate centralized management tool with a
global view of the network. The configuration must be
regenerated to reflect any changes and reapplied to the
applicable hosts. VNET/P also supports encrypted
communication channels but no authentication method for
peer membership. These properties result in less scalable
overlays, which are open to any host with the peer list, and
increased response times to changes in the overlay when
compared to Bounded Flood.

7.2 P2P Architecture

While both unstructured and structure P2P schemes have
their respective advantages and disadvantages [30], the
structured P2P properties inherent to Symphony are
particularly beneficial to IPOP. Specifically, these are with
respect to decentralization, topology, system parameters,
routing performance and state, and resiliency. Being
decentralized the system is highly scalable, supporting very
large networks. Its topology is simple to create and maintain
in realistic deployments, even in systems with frequent

churn where nodes have short lifespans. The system
parameters, those that significantly influence the system
characteristics, are primarily the number of nodes in the
overlay and the number of links per node, 𝑘. Furthermore,
each node within the system can be independently
configured. Routing and state costs are bounded as a
function of the systems parameters and at limits that are
amenable to deployments at large scale. The routing cost is
for symphony 1/𝑘 𝑙𝑜𝑔(𝑛), and its state varies with 𝑘. It is
a resilient system such that node failure will not cause
enduring network-wide failure. Additionally, the overlay can
tolerate up to 𝑓 node failures without partitioning by using
𝑠 = 𝑓 successor links per node.

8. Example Use Cases

PerSoNet [31] built upon the virtualized layer 2
functionality provided by IPOP to create a two-layered,
software defined VPN network for community-based
collaboration at the edge. The Personal layer connects
devices owned and managed by an individual exposing OSI
Layer-2 semantics. Above it, connectivity among devices
belonging to different peers is provided by interconnecting
the personal networks of individuals via SDN-
programmable gateways to create a Community layer
overlay network with OSI Layer-3 semantics. PerSoNet
abstracts the complexities involved in managing IP layer
addressing, device name management, access control and
connectivity by a combination of DNS query interception
and processing along with reactive programming of
software defined gateways to perform address translation
and switching.

Table 1 Taxonomy of IPOP Generations
Taxonomy 1st Generation 2nd Generation 3rd Generation 4th Generation

Bootstrapping

Decentralized - requires peer

list Centralized OSN Centralized OSN Centralized OSN

Endpoint Addressing IP4, fixed to node IP4, fixed to node

MAC, user configurableIP4 or

IP6, relocatable IP

MAC, user configurableIP4 or

IP6, relocatable IP

Forwarding Structured P2P, Greedy Direct Link STP with MAC Learning Bounded Flooding

Overlay Global with namespaces

Independent overlay

per process

Multiple independent overlays in

single process

Multiple independent overlays

in single process

Scalability Complete decentralization

Decentralized

topology and

forwarding

Decentralized topology and

forwarding

Decentralized topology and

forwarding

Software Architecture Monolithic

Single purpose

Controller, Tincan

Controller framework,

Specialized modules, Tincan

Controller framework,

Specialized modules, Tincan,

SDN Controller

Support for Standards

No ICE, No XMPP, No

OpenFlow

ICE, XMPP, No

OpenFlow ICE, XMPP, No OpenFlow ICE, XMPP, OpenFlow

Topology Structured P2P/Symphony Social and All-to-All All-to-All Structured P2P/Symphony

Virtualization Layer Layer 3/IP Layer 3/IP Layer 2/Ethernet Layer 2/Ethernet

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
7

GRAPLE is an inter-disciplinary collaboration between
computer scientists and lake modelers associated with two
international networks, GLEON (Global Lake Ecological
Observatory Network) and PRAGMA (Pacific Rim
Applications and Grid Middleware Assembly). The
GRAPLE collaboration’s main software product is
GRAPLEr [32]. While it is relatively easy to run one lake
model simulation on a personal computer, it is more
challenging to execute multiple simulations, which requires
additional computing and human resources. To overcome
this constraint, GRAPLEr, as a distributed computing
system, integrates and applies the IPOP overlay virtual
network to support high-throughput computing, and Web
service technologies. By using IPOP as a virtual network
substrate, GRAPLEr is able to reuse existing, unmodified
software, including the HTCondor job scheduler, and to
enable simple addition of resources across the Internet to the
HTCondor pool. GRAPLEr allows submission of hundreds
or thousands of General Lake Model (GLM) simulations,
runs these lake model simulations efficiently, and retrieves
the model output.
PRAGMA Experimental Networking Testbed
(PRAGMA-ENT) is an international SDN testbed that is
designed to offer complete freedom for researchers to access
network resources to develop, experiment, and evaluate new
ideas without interfering with a production network.
PRAGMA-ENT connects OpenFlow-enabled switches in
different institutions over high-speed networks and builds a
large scale OpenFlow-based network testbed. In this use
case scenario, IPOP has been used to extend the testbed with
a software-defined overlay, in order to enable sites that do
not have OpenFlow-enabled switches nor a direct
connection to the backbone of PRAGMA-ENT. Using IPOP,
each end-user can deploy an access network between their
resources and the nearest PRAGMA-ENT endpoint. This
approach works effectively for those end-users who just
need to connect their resources to PRAGMA-ENT
temporarily for their experiments.

Conclusion

We have traced the evolution of IPOP from its P2P origins
in Brunet to its current hybrid implementation, showing how
specific needs of a real-world system have driven pragmatic
design changes at each stage. These changes allow IPOP to
fill a gap in emergent technologies and seamlessly integrate
existing applications. We have also illustrated real world
systems that utilize IPOP’s capabilities, demonstrating its
practical applications.
Generation 1 virtualized a layer 3 network through VNIC
host integration and tunneling IP packets within UDP/IP. It
was a fully decentralized overlay, utilizing the Brunet library.
The architecture reflected a monolithic process that
incorporated all services for bootstrapping and packet
forwarding which made interoperability with open standards
difficult. The global overlay used namespace identifiers and
DHT store to provide scope for IP subnetting. Joining the

overlay required a peer list and used overlay links to carry
bootstrap messages, and there was no support for
authentication or encryption.
Generation 2 introduced OSNs to decouple endpoint
discovery from the overlay and introduced a client-server
model for bootstrapping. While no longer a pure P2P model,
using a published OSN server and friendship relationships
facilitated independent overlays, simplified bootstrapping
and enforced authentication for membership. The
monolithic process was separated into a control and data
plane and standards such as ICE, STUN, TURN was adopted.
Moving from the Brunet library meant losing the Symphony
structure; to accommodate this links were create to all
friends and IP mapping performed between them. An SDN
inspired approach was adopted which split IPOP into
controller and data plane processes. However, the coarse
granularity of the architectural components still left code
maintenance and enhancements challenging.
Generation 3 addressed the architectural problems by
introducing the controller application framework. The
controller utilized modular components focused on topology,
link management and signaling. Improvements to the data
plane supported multiple, concurrent, isolated layer 2
overlays within a single process.
Generation 4 reintroduced the Symphony structured ring
topology, implemented in an IPOP controller module. To
provide the switching routes for the specialized topology, a
Ryu/OpenFlow module implementing Bounded Flood is
used. Both the algorithms for the topology and switching
rules were designed to be parameterized and scalable to
function for networks as small as two nodes to hundreds on
nodes.

References

[1] P. Srisuresh and K. Egevang, “Traditional IP Network Address
Translator (Traditional NAT),” 2000. [Online]. Available:
https://www.rfc-editor.org/info/rfc3022. [Accessed: 13-Jun-2019].

[2] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” 2018. [Online]. Available: https://www.rfc-
editor.org/info/rfc8446. [Accessed: 13-Jun-2019].

[3] E. Rescorla and N. Modadugu, “Datagram Transport Layer
Security Version 1.2,” 2012. [Online]. Available: https://www.rfc-
editor.org/info/rfc6347. [Accessed: 13-Jun-2019].

[4] A. Yousefpour et al., “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” J. Syst.
Archit., Feb. 2019.

[5] N. Bessis and C. Dobre, Eds., Big Data and Internet of Things: A
Roadmap for Smart Environments, vol. 546. Cham: Springer
International Publishing, 2014.

[6] H. Chang, A. Hari, S. Mukherjee, and T. V. Lakshman, “Bringing
the cloud to the edge,” in 2014 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2014, pp.
346–351.

[7] Y. Guan, J. Shao, G. Wei, and M. Xie, “Data Security and Privacy
in Fog Computing,” IEEE Netw., vol. 32, no. 5, pp. 106–111, Sep.
2018.

[8] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris,
“Resilient Overlay Networks,” in Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, New York, NY,
USA, 2001, pp. 131–145.

[9] H. Eriksson, “MBone: the multicast backbone,” Communications
of the ACM, vol. 37, no. 8, pp. 54-, Aug-1994.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
8

[10] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo, “IP over
P2P: enabling self-configuring virtual IP networks for grid
computing,” in Proceedings 20th IEEE International Parallel
Distributed Processing Symposium, 2006, pp. 10 pp.-.

[11] D. I. Wolinsky, Y. Liu, P. S. Juste, G. Venkatasubramanian, and R.
Figueiredo, “On the design of scalable, self-configuring virtual
networks,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2009, pp. 1–12.

[12] P. S. Juste, K. Jeong, H. Eom, C. Baker, and R. Figueiredo,
“TinCan: User-Defined P2P Virtual Network Overlays for Ad-hoc
Collaboration,” EAI Endorsed Trans. Collab. Comput., vol. 1, no.
2, p. 15, Oct. 2014.

[13] K. Subratie and R. Figueiredo, “Towards Island Networks: SDN-
Enabled Virtual Private Networks with Peer-to-Peer Overlay Links
for Edge Computing,” in Internet and Distributed Computing
Systems, 2018, pp. 122–133.

[14] K. Subratie, S. Aditya, S. Sabogal, T. Theegala, and R. Figueiredo,
“Towards Dynamic, Isolated Work-groups for Distributed IoT and
Cloud Systems with Peer-to-Peer Virtual Private Networks,” in
Sensors to Cloud Architectures Workshop (SCAW-2017), Austin,
Texas, USA, 2017.

[15] ACIS, “IP Over P2P Virtual Private Network,” IPOP VPN, 2006.
[Online]. Available: http://ipop-project.org/. [Accessed: 20-Mar-
2015].

[16] C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee, “A Container-
Based Edge Cloud PaaS Architecture Based on Raspberry Pi
Clusters,” in 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud Workshops (FiCloudW), 2016, pp.
117–124.

[17] C. Chen, C. Liu, P. Liu, B. T. Loo, and L. Ding, “A Scalable Multi-
datacenter Layer-2 Network Architecture,” in Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined Networking
Research, New York, NY, USA, 2015, pp. 8:1–8:12.

[18] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus
Networks,” SIGCOMM Comput Commun Rev, vol. 38, no. 2, pp.
69–74, Mar. 2008.

[19] I. Stoica et al., “Chord: A Scalable Peer-to-peer Lookup Protocol
for Internet Applications,” IEEEACM Trans Netw, vol. 11, no. 1, pp.
17–32, Feb. 2003.

[20] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed
Hashing in a Small World,” in Proceedings of the 4th Conference
on USENIX Symposium on Internet Technologies and Systems -
Volume 4, Berkeley, CA, USA, 2003, pp. 10–10.

[21] P. O. Boykin, J. S. A. Bridgewater, J. S. Kong, K. M. Lozev, B. A.
Rezaei, and V. P. Roychowdhury, “A Symphony Conducted by
Brunet,” ArXiv07094048 Cs, Sep. 2007.

[22] A. Ganguly, D. Wolinsky, P. O. Boykin, and R. Figueiredo,
“Decentralized Dynamic Host Configuration in Wide-Area
Overlays of Virtual Workstations,” in 2007 IEEE International
Parallel and Distributed Processing Symposium, 2007, pp. 1–8.

[23] J. Rosenberg, “Interactive connectivity establishment (ICE): A
protocol for network address translator (NAT) traversal for
offer/answer protocols,” 2010. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc5245.txt.

[24] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN),” 2010. [Online]. Available:
https://www.rfc-editor.org/info/rfc5766. [Accessed: 13-Jun-2019].

[25] E. P. Saint-Andre, “Extensible Messaging and Presence Protocol
(XMPP): Core,” 2004. [Online]. Available: https://www.rfc-
editor.org/info/rfc3920. [Accessed: 13-Jun-2019].

[26] S. Loreto and S. P. Romano, Real-Time Communication with
WebRTC: Peer-to-Peer in the Browser. O’Reilly Media, Inc., 2014.

[27] “WebRTC 1.0: Real-time Communication Between Browsers.”
[Online]. Available: https://w3c.github.io/webrtc-pc/. [Accessed:
29-Jun-2018].

[28] X. Jiang and D. Xu, “VIOLIN: Virtual Internetworking on Overlay
Infrastructure,” in Parallel and Distributed Processing and
Applications, 2005, pp. 937–946.

[29] L. Xia, Z. Cui, J. R. Lange, Y. Tang, P. A. Dinda, and P. G. Bridges,
“VNET/P: Bridging the Cloud and High Performance Computing
Through Fast Overlay Networking,” in Proceedings of the 21st

International Symposium on High-Performance Parallel and
Distributed Computing, New York, NY, USA, 2012, pp. 259–270.

[30] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE
Commun. Surv. Tutor., vol. 7, no. 2, pp. 72–93, Second 2005.

[31] S. Aditya, K. Subratie, and R. J. Figueiredo, “PerSoNet: Software-
Defined Overlay Virtual Networks Spanning Personal Devices
Across Social Network Users,” presented at the 2018 IEEE
International Conference on Cloud Computing Technology and
Science (CloudCom), 2018, pp. 171–180.

[32] K. C. Subratie, S. Aditya, S. Mahesula, R. Figueiredo, C. C. Carey,
and P. C. Hanson, “GRAPLEr: A distributed collaborative
environment for lake ecosystem modeling that integrates overlay
networks, high‐throughput computing, and WEB services,”
Concurr. Comput. Pract. Exp., vol. 29, no. 13, p. e4139, 2017.

 Kensworth C Subratie is a PhD Candidate
at the Department of Electrical and Computer
Engineering (ECE) of the University of
Florida. His research interests include
computer communications and networked
systems, software systems design, edge
computing and IoT.

 Saumitra Aditya is a PhD Candidate at the
Department of Electrical and Computer
Engineering (ECE) of the University of
Florida. His research interests broadly span
networked systems and their applications in
realization of smart communities.

 Vahid Daneshmand is a PhD student at the
Department of Electrical and Computer
Engineering (ECE) of the University of
Florida. His research interests include
distributed computing, serverless
architecture, and IoT.

 Kohei Ichikawa is an Associate Professor in
the Division of Information Science at the
Nara Institute of Science and Technology
(NAIST) Japan. He received his B.E., M.S.,
and Ph.D. degrees from Osaka University in
2003, 2005, and 2008, respectively. He was a
postdoctoral fellow at the Research Center of
Socionetwork Strategies, Kansai University
from 2008 to 2009. He also worked as an
Assistant Professor at the Central Office for
Information Infrastructure, Osaka University
from 2009 to 2012. His current research
interests include distributed systems,
Software Defined Networking, and the
related information technologies.

 Renato J. Figueiredo is a Professor at the
Department of Electrical and Computer
Engineering (ECE) of the University of
Florida. Dr. Figueiredo received the B.S. and
M.S. degrees in Electrical Engineering from
the Universidade de Campinas in 1994 and
1995, respectively, and the Ph.D. degree in
Electrical and Computer Engineering from
Purdue University in 2001.

