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A generalized framework that naturally incorporates the free energy contributions of thermochemical,
structural, mechanical, and electrical fields is presented to describe the Space Charge Layer (SCL) and
their effect on transport properties of ionic ceramics. The theory recovers existing analytical, ideal so-
lution models, such as Debye-Hiickel (DH), Mott-Schottky(MS), Symmetric Gouy-Chapman (SGC), and
Asymmetric Gouy-Chapman (AGC). Strong solution models, such as Mebane-De Souza (MDS) and Vikrant-
Chueh-Garcia (VCG) are discussed. DH, SGC, and AGC models naturally describe the SCL for intrinsic sys-
tems, while MS has the capability to capture SCL for substitutional systems with an immobile charged
dopant. In general, the ideal solution models fall short in capturing the physical effects associated to
SCL in a highly doped system, even though millivolt adjustments to the interfacial voltage decreases
the cumulative error associated to experimental electrical conductivity values. In contrast, MDS and VCG
models capture very well the concentration-dependent electrical conductivity and contribute a smaller
cumulative error, as compared to ideal solution models. Even though MDS provides conductivity fits with
uncertainties lower than 0.549%, the defect profiles show sharp, unphysically large concentration gra-
dients, on the order of a few Angstroms. VCG captures the description of a thick SCL, up to 20 nm,
due to locally induced chemomechanical stresses, by using physical quantities, delivering uncertainties
of 1.79% in total conductivity. The comprehensive theory presented herein sets the stage to model the
microstructural evolution of ionic materials and their properties, and enables to design the underlying
microstructure under different external fields such as temperature, stress, electrical, magnetic, and chem-
ical stimuli.
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1. Introduction charge distribution in the grain boundary core and its adjacent

space-charge during grain growth can be altered by modifying the

The materials processing, associated microstructural evolution,
and resultant performance of currently existing and emerging ion-
conducting solids used in sensors, actuators, and energy storage
systems, such as SOFCs, lithium-ion batteries, and super-capacitors
are controlled, to a first approximation, by the macroscopic com-
position, and, to a finer level, by the local defect chemistry, partic-
ularly at grain boundaries and interfaces. Further, the identification
of microstructure-properties relations enables to specify materials
processing conditions to obtain the desired local defect chemistry
near interfaces, and thus tailor the transport properties to enhance
the overall device performance [1-8]. In particular, the solute and
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defect chemistry, temperature, electromagnetic fields, and applied
stresses, leading to a wide variety of ionic solids used in energy
storage systems and environmentally friendly applications. Specif-
ically, the ionic and electronic conductivity of surfaces and inter-
faces can differ by several orders of magnitude with respect to the
properties of the abutting grains [2,9-11]. In particular, in high
electrical conductivity materials, grain boundaries can define a fa-
vorable percolation path for charge flow due to their small activa-
tion energy for transport [9]; however, in ionic solids, low ionic
defect mobility within the grain boundary can result in a non-
zero equilibrium charge, which, in turn, can be unfavorable to the
through thickness transport properties [12-14].

Grain boundaries form when two crystals of identical composi-
tion and structure, but different crystallographic orientations, join
during sintering [15]. The difference in orientation sometimes fa-
vors the formation of intergranular films, see Fig. 1(a) [7], the
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Fig. 1. Three example chemistries displaying different types of interfaces: Inset (a)
shows a nanoscale intergranular films (IGF), as displayed in LiFePO, (LFP) particles,
which enhances the overall electrical conductivity [7]. Inset (b) shows a structurally
disordered interface in (Y203 )008(Zr0Oz)o9:. (8YSZ) with a large segregation of ionic
defects, which suppresses the total electrical conductivity [16]. Inset (c) shows two
types of interfaces in LiLaTiO; (LLTO): Type I, a disordered grain boundary exhibit-
ing large conductivity, and Type I, an ordered grain boundary with poor transport
properties. The magnified view of Type I and Type Il grain boundaries are shown in
inset (d) and (e), [8].

formation of disordered structures with a large segregation of ionic
defects, see Fig. 1(b) [16], and even form the different types of
grain boundary faceting or disconnections, see Fig. 1(c) through
(e), Ma et al. [8], Luo [9], Priester [17]. In ionic ceramics, grain
boundaries that favor charged point defects, result in an electri-
cally charged interface [8,18]. If, for example, positively charged de-
fects preferentially accumulate at interfaces, they will attract neg-
atively charged defects in the vicinity of the interface to counter-
act the interface-induced deviation from charge neutrality [4]. This
negatively charged layer is defined as the Space Charged Layer,
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SCL, Gobel et al. [4], and extends beyond the structural interface
into the bulk of the abutting grains.

Historically, the description of the electrical state of an ionic
solid, both for the interface and the bulk, was found by solving
Maxwell’s Equations [20], specifically, Coulomb’s equation in its
differential form [20], also known as Poisson’s equation [4,12,21]:

eeVip+p=0 (1)

Here, ¢ is the electrostatic potential, p is the volumetric charge
density, €, is the permittivity of the vacuum, and €, is the rela-
tive dielectric constant for the material [3,4,20]. All symbols used
in this paper can be found in the Table of Symbols in Appendix A.
Typically, in published models, €., the material relative permittiv-
ity, is assumed a material constant, even though the interfacial per-
mittivity is known to differ from the bulk due to structural differ-
ences [1,4,22-25]. p is a function of the contributions to the spatial
charge distribution from intrinsic and extrinsic species,

N
FZyi
p= @)
i=1

where F is Faraday’s constant, Z; is charge number or valence, v;
is molar volume density of the sublattice where ith defect resides,
and y; is site fraction of the ith chemical species.

Without any loss of generality, define the grain boundary re-
gion as a space contained within the yz plane in a Cartesian (right
handed) coordinate system, while the normal of the interface is
parallel with the x-direction. In the absence of ferroelectricity, for
an interface at equilibrium, assume that the extended multiphysi-
cal fields away from the boundary are the same when measured at
the same distance from the interface on both sides: they are sym-
metrically distributed [1], and historically solved for x > 0. Thus,
the description of the grain boundary plus surrounding grains is
reduced to a one dimensional (1D) system by considering the nor-
mal distance from the grain boundary core. Also historically, the
grain boundary has been treated as an infinitely thin region in
space at x = 0. Typically, the fields at the grain boundary core
are considered a boundary condition for the abutting surrounding
grains, even though experimental evidence demonstrates that the
properties of polycrystalline ceramics are a result of the local ther-
modynamic equilibrium that develops between grains and grain
boundaries, as demonstrated by Gibbs [26], and later Cahn [27,28].
The historical set of 1D solutions are applicable as long as the ex-
tent of the region of influence of the interface is much smaller than
the grain size or the next closest grain boundary [29,30].

The thermodynamic [31], and phase field [32,33], communi-
ties describe polycrystalline ceramics by defining the thermochem-
ical Helmholtz free energy per unit volume, f, as a function of M
phases described by a set of order parameters, {;} = {11, ..., nu}.
N charged species having a site fraction, {yi} ={v1.....yn}. and
Q sublattices described by {q;...qq} each contributing to the en-
tropic and enthalpic free energies of mixing through expressions of
the form

N1
Fyl ). Ty =) ;(fi({ﬂj}, T)yi + RTy; lﬂy:)
i=1 !

£ i %(1 _ iyi) In (1 - iy;) + AHpe (v}, T (3)
=1 icq iq

where R is the universal gas constant, T the absolute tempera-
ture, and AH,,;,'the excess enthalpy energy of mixing including
all non-ideal contributions from the local thermochemical interac-
tions between the different ionic components. Additionally, f; is a

U In the literature, AHpy = AGpix + T ASpix.
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combination of the formation energies of ith defect in all phases
present, including any that may only form metastably within the
grain boundary [9]. Here, in thermodynamics-based constructions,
the material energetically favors chemical attraction to the grain
boundary of those ionic components that minimize the interfacial
energy of the system [32,34,35].

The description of the interaction energetics found in Eq. (3) re-
quires, to a first approximation, to split the lattice into cation and
anion sites, in terms of a sublattice model. Each ith species has
a site fraction, y;, for each sublattice, in agreement with Sund-
man and Agren [36], enabling sublattice-sublattice interactions to
be considered. For non-ideal systems, i.e., AHpj, # 0, the simplest
non-ideal description corresponds to a regular solution model, i.e.,

N

AHmix({Y'\}, )= Z
i =1,
counts for the pair-wise chemical interactions between each of the
defects. Here, the self-interaction energy of the ith defect on a sub-
lattice, £2;; = 0 in a regular solution model [36]. This follows from
the definition of the enthalpy of mixing for a regular solution and
the assumption of random mixing of defects. The description of
higher order interactions of ion-defect and defect-defect in a sub-

lattice is formulated using clustering entropy models [38].

From classical thermodynamics, the differential of the

2y for ionic interfaces [37], and ac-
i

N
Helmholtz free energy density is df = Zpl,i-% —sdT + ¢pdp, where
- i
1
;i is chemical potential of ith defect, and s is entropy density. By
N
combining Eqgs. (2) and (3), in the dilute limit, In(1 — Zy;) -0,

i=1
and for a single phase of an ideal solution, AHp,;, =0, the classic
electrochemical potential, §; is defined as, [39]. [40],

£ = fi(T) +RT Iny;, + Zi:F¢ (4)

At equilibrium, the local electrochemical potential of the ith
species, £ is equal to the far field electrochemical potential of
the ith species, & .. ie., & .i(x — 00) =& . Assuming, y;(x —
00) = Vi o |1,4,30,41,42,43,4445,46], and by defining the electro-
static potential relative to the bulk, ie., ¢ = 0, the site fraction of
the charged species is obtained as a function of local electrostatic
potential through the expression:

Yi = Yi,00 €XP (—Z; F ¢ /RT) (5)

The scientific communities attempt to describe the same ma-
terials through very different means, by substituting the physi-
cally simplified (ideal solution), Eq. (4) into Eq. (2) and then fur-
ther into Eq. (1), which has allowed to propose models to ratio-
nalize the properties in the vicinity of the interface. In this pa-
per, a continuum thermodynamic treatment based on a free energy
density is used to describe the extended electrochemical state of
a grain boundary and its local surroundings. The proposed frame-
work generalizes ideas originally proposed by Cahn, Hart, and Pen-
rose [47-50], and has been applied to electrochemical systems by
Guyer [51,52], and the authors of this work [37,53,54]. It allows
to formulate advanced physical descriptions with thermodynami-
cally consistent mechanisms. In the asymptotic ideal solution limit,
the proposed variational framework reduces to classic descriptions.
The proposed formulation is a function of the controlling physical
variables of the system [50,53], and allows for a direct comparison
against experimentally measurable quantities as e.g., conductivities
or grain boundary migration rates.

2. Variational framework

For an ionic solid, define the volumetric free energy of
the system, foy({yi}. {n;}. p.0.T) = f({vi}. (n;}: T) + p¢ + 3D -E.
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Here, the volumetric Helmholtz free energy increases when the
local charge density, p, has the same sign as the electrostatic
potential, ¢, while the third term, the dipolar energy density,
penalizes the increase of electrostatic energy when an elec-
tric field, E, is induced by a nearby electrostatic charge or
externally imposed by the boundary condition. The Legendre
transformation defines the electrochemical free energy density,
fee(lyib. (1), 2. ET) = fya (i), {13} p. D.T) ~ B -, in agreement
with previous work [26,51,53-55]. In addition, the electrostatic po-
tential and the electric field are related through the relation, £ =
—V¢, because the position-dependent electric field is a solution of
Faraday's Law, V x E =0, for a constant magnetic induction field
[20]. Lastly, the electric displacement vector and the electric field
are related through the constitutive equation, D = e.¢E, in the ab-
sence of piezoelectric and pyroelectric effects [20]. In agreement
with Hart [49], and recent work [18,37,53,54,56], the total free en-
ergy of the system, F, is:

F[{vi}. p. . (nj) (nii T
= [ (Fth tn). T+ 06 — e (V)?)av
+Faa i, & (03}, (ne: T (6)

Here, V is the total volume of the system,and {;} correspond to
a set of order parameters, each defining a material phase [32,57].
For example, 1, represents a continuous transformation from an
ordered, crystalline structure, 77 =1, to a completely crystallo-
graphically disordered structure or phase, 5y = 0. The second term
of Eq. (6), Fyyq, corresponds to an additional free energy contri-
bution to the system that goes beyond the traditional volumetric
electrochemical or thermochemical driving forces, such as inter-
facial energy contributions, mechanical energy.v, corresponds to
the kth controlling variable describing other volumetric thermo-
dynamic driving forces for phase transformation and are repre-
sented by the set of order parameters, {1}. Specific forms of F,g4
have been proposed by Cahn in his seminal work, [27,28,4748],
or its extensions to multiphysical systems [37,51,53,58], and mi-
crostructural evolution [27,28,47,48,59-61]. Specific examples in-
clude [1,19,47], as well as those that aim to include the effects of
mechanical stresses [2,37], or interfacial ion adsorption [62].

The local equilibrium conditions of the polycrystalline system
correspond to the minimum of F subjected to boundary conditions
and is related to the generalized thermodynamic potentials defined
by the variational derivatives of Eq. (6):

OF 9 0Faq

w,e@erv ¢+p+W70

S _ A Sk

SF of  4iF SFua

S T T T Ty

8F

Sy = Gk (7)

The first row of Eq. (7) corresponds to Coulomb’s equation
(Eqg. (1)), in agreement with the classical electromagnetics litera-
ture [20], and previous work [51,53,54|. The second row embodies
the effect of the set of order parameters, {7;}, on the local stability
of the spatially coupled grain boundary-grain system, and defines
their equilibrium and phase transition conditions [37,63-66]. The
third row corresponds to the generalized electrochemical potential,
&;, of the i-th ionic species and reduces to its classic form (Eq. (4))
in the limit of a single phase system [51,53,54]. Finally, the last
row corresponds to the generalized contribution of the k-th poten-
tial, ;. as a result of the variational derivative with respect to its
controlling variable, v;. Eq. (7) defines a generalized local thermo-
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dynamic driving force for mass segregation at interfaces as a result
of gradients of chemical potential, electrostatic potential, or gen-
eralized order parameters, and enables to formulate space charge
layer models.

3. Space charge layer models
3.1. Ideal solution models

In all the ideal solution models, additional contributions to the
free energy in Eq. (6), F,gy =0 because there are no underlying
phase transitions or additional physical driving forces. Thus, the
only controlling variables are the electrostatic potential, ¢, and
the concentration of defects, y;. Other contributions to the free
energy that are function of order parameters, 7;, and controlling
variables, v, are negligible. Therefore, the second and fourth rows
of Eq. (7) are trivially satisfied, and are thus ignored. In the di-
lute defect concentration limit, the third row of Eq. (7) results in
Eq. (5). Specifically, the first row of Eq. (7) reduces to the Debye-
Hiickel model (DH) [46,67,68], also known as the Dilute Gouy-
Chapman model [56], in the dilute defect concentration limit (see
Appendix B.1 and B.2 for details). Specifically, for high tempera-
tures and low electrostatic potentials, F¢(x)/RT « 1, Eq. (5) is ap-
proximated as y; = yi o (1 — Z;F¢ (x)/RT), reducing the first row in
Eq. (7) to

d?¢p(x) ¢ (x)

dx> A3, (8)
where
hop = | — (©)
F23 " Z2yi ol Vi
i=1
is known as the Debye length [1]. Define ¢(x =0) =¢,, as the

electrostatic potential at the grain boundary core. Thus, the analyt-
ical solution of Eq. (8) is ¢(x) = ¢, exp (—X/App), the electrostatic
potential distribution away from the grain boundary. DH shows
that grain boundaries influence the defect concentrations in the
SCL and defines a measure for the extent of the SCL. Although DH
is not commonly used today, the Debye length is a popular mea-
sure of the extent of the space charge due to the ease with which
the parameters in Eq. (9) are obtained experimentally [56,62,69-
72].

Based on the same concepts, Mott [44,45] and Schottky [73] de-
veloped a model (MS) to describe a heterogeneous interface be-
tween a metal and a semiconductor, and account for the effects
of the resultant charge accumulation due to the differing electron
electrochemical potential affinities of the materials. The MS model
has since been applied to describe the effect of a dominant immo-
bile charge carrier in the SCL on the spatial extent of the electro-
static potential and the intrinsic defect concentrations [1]. In this
context, the first row in Eq. (7) reduces to (see Appendix B.3 for
details):

dz({b (X) _ 7-7‘—Ziinm

= 10
dx? Vim€o€r (10)
whose analytical solution is:
bo(£—1)% x=i*
= 11
$ ) {O, Yy (1)

and

A= A[,m/% (12)
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MS remains a popular analysis for doped systems to predict space
charge layers in the presence of immobile charge carriers of va-
lence Z;, [4,74,75].

The model developed by Gouy [43] and Chapman [42] con-
sidered the interactions at the liquid-solid interface, but has
since been extended to describe intrinsic systems in ionic ceram-
ics [1,4,9]. In the symmetric Gouy-Chapman model (SGC), DH is
extended to describe the effect of two intrinsic defects of equal but
opposite charge, Z and —Z. Thus for ¢, = y;—f’ =2 Eq. (7) be-
comes

d?p(x)  F

dx?2 e.er

(Zcoo exp (%qﬁ(x)) — ZCop EXp (f%(b(?{)))
(13)

whose analytical solution is [3,4,30,69], (see Appendix B.4 for de-
tails):

e () -1
exp (—%qﬁi,) +1
(14)

Eq. (14) is used to approximate a wide variety of situations [30,76].
SGC model has become more popular than DH for intrinsic sys-
tems [3,4,69], as its simplifying assumptions result in better con-
ductivity predictions than DH [71].

An asymmetric extension of the symmetric Gouy-Chapman
(AGC) ignores the effect of one of the defects and considers one
mobile carrier with formal charge Zi; [4]. Its analytical solution is:

~ 2RT . (1+0exp(—X/hpn)
¢(X)—ﬁln(19exp(></lnb))’

2RT ImF
by = |9 2E (L4 g exp 5o ]) x =2k g
0, X > 2).[)[1

This simplification works well for intrinsic systems [4]. AGC is
used instead of SGC when each charge carrier needs to be treated
independently, e.g., when one charge carrier dominates over dilute
ones [4]. This has also led to two-dimensional model extensions
(parallel and perpendicular to the grain boundary) [30]. For most
of the 20th century, these four models were the basis to analyze
charged grain boundaries in ionic ceramics [1].

3.2. Strong solution models

Recently, Mebane and De Souza contributed a model (MDS)
based on a free energy penalty for concentration gradients to re-
move the dilute limit assumption that was added to the additional
free energy [19]:

N

Faalb: T1 = [ (305 (Vw)? Jav (16)

i=1

where «; are the gradient energy coefficients, as introduced by
Cahn and Hilliard to describe the spinodal decomposition for
metallic systems [27]. In MDS, the regular solution-like defect
interaction parameters and the gradient energy coefficients are
treated as fitting parameters to reproduce the experimentally
measured ionic conductivity in gadolinium-doped cerium oxide
(GCO).2 The dopant-vacancy interaction energy was fitted to repro-
duce the peak conductivity as observed by Tschépe and cowork-
ers [77]. MDS assumes the interface to be atomically sharp and

_ (f;;of,w) at
x=0

x=0, with y; = yj in the limit of x — oc. f7 — f7 is the segre-

gation energy of the ith defect and v, is the area-specific molar

imposes the interfacial boundary condition, %%
1

2 Typically gradient energy terms are used for spinodally decomposing systems
and the phase separation of materials [27].
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site density at the grain boundary, thus establishing an interfacial
boundary condition, in agreement with the classic models. MDS
delivers large defect concentrations in highly-doped systems and
reports a space charge layer two to three times longer than the
Debye length, (see Appendix B.5 for details).

Vikrant, Chueh, and Garcia developed a model (VCG) with a
regular solution thermo-chemical free energy and formulated the
additional free energy contribution to the functional as the elastic
energy density, % G- Ee [37]:

Fad ). 7] = [ (56 5)av (17)

where oI is the mechanical displacement vector, & is the stress
tensor, and . is the elastic strain tensor. Specifically, &y, =

N
e — Z By (ym — ym,.) | is the kith component of elastic strain

m=1
N
tensor and O'!'j = Cijk!‘gkf.e = Ci.j’d Epl — Z ‘8‘:,? (ym — ym‘c,) is the
m=1

ijth component of the elastic stress tensor, all of which are directly
measurable quantities. Here, Gj is the ijkith component of stiff-
ness tensor, & is klth component of total (or geometrical) strain,
4 15 kith component of the Vegard tensor of the mth species, and
Ym.o 1S the stress-free concentration of mth species.
The free energy of formation of chemical species in Eq. (3) is
described as:

fim. T) = f7(MpQA —n)+ [F(T)p(n) (18)

where fp is the grain boundary formation energy of the ith species,
and f* is formation energy in the bulk of the crystal. 5 repre-
sents a structural order parameter, which is 1 in crystalline struc-
ture, and is O in crystallographically disordered region. p(n) =
n3(6n% — 151 + 10) is an interpolation function. Here, the struc-
tural disorder in the grain boundaries naturally accumulates or de-
pletes point defects and ionic species based on the segregation en-
ergy differences, f7 — f*°. With this framework, VCG captures the
electrochemical, structural and chemomechanical state of a grain
boundary and its abutting grains which allows to physically de-
scribe the equilibrium and transport properties of polycrystalline
ionic ceramics (see Appendix B.6 for details).

4. Application to gadolinia-doped ceria
4.1. Material and numerical generalities

For this paper, gadolinium-doped cerium oxide (GCO), a well-
studied cubic material system [1,3,77-80,80-82], was selected as
a test material. In the present study, the major defects considered
are Gdg. and Vg. GCO has high bulk ionic conductivity [81], but
is limited by its grain boundary conductivity. Additionally, GCO
is sometimes heavily-doped, which breaks the assumptions es-
tablished for the historical models and highlights the need for
strong-solution models. Experimental results reported that grain
sizes ranged between 0.5 and 5 pm, with an average grain size
of 1 pm [77]. For the calculations performed herein, polycrystals
were assumed to have a grain size of 1 um. As the SCL length is
much smaller than 500 nm, the assumption of noninteracting SCL
holds. Gadolinium site fractions between 0.01 and 0.3 were mod-
eled, with oxygen vacancies as the charge compensating defect.
Other defects, such as electrons and holes, were ignored. Ionic con-
duction is assumed to occur solely through oxygen vacancy motion
alone. Thus, lower oxygen vacancy concentrations result in lower
conductivities.

A two-grain system with a planar grain boundary was modeled
by placing the interface (the grain boundary plane) at the origin of
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Fig. 2. Schematic of charged defect distribution in the vicinity of grain boundary
of thickness, 8. The simulation domain is 20 nm. An SCL of characteristic extent,
A, corresponds to a symmetric region abutting the interface, where the concentra-
tion of ionic species deviates from the bulk values. Charge distribution symmetry
enables to focus on one side (e.g., x > 0) away from the interface. Thus, for a pos-
itively charged interface and two oppositely charged point defect site fractions, y1
and ys., if yp. has a positive charge, it will deplete in the SCL, and y;, with a nega-
tive charge will accumulate in the SCL, given a set of far field concentrations, yq
and yj .

the laboratory reference system (at x = 0), as shown in Fig. 2. The
normal of the interface was arbitrarily set to point along the x-
axis. For the ideal solution models, the interface was considered as
atomically sharp, i.e.,, § = 0. Because of the symmetry of the bicrys-
tal, the right edge of the grain was set to be electrically grounded,
while chemically the defect site fractions were set based on the
amounts of dopant concentration. At x =0, the voltage was set to
the Schottky potential, ¢ = ¢,. The defect profiles for all ideal so-
lution models were obtained by using Eq. (5). For the DH, and MS
models, the electrostatic potential distribution was solved by using
Egs. (8) and (10) in Mathematica, [83]. For the SGC, the voltage
profile was obtained by using Eq. (14). Similarly, for the AGC, the
voltage profile was obtained by using Eq. (5).

In the case of the strong solution models, the MDS model as-
sumes the interface to be atomically sharp, ie., § =0. The right
edge of the simulation domain was electrically grounded, while
the defect site fractions were set to be equal to the macroscopic
dopant concentration. At x =0, a boundary condition was im-
posed in terms of segregation energy, (7 — f*), through the ex-

_
x=0 Vo
a 20 nm simulation domain, and discretized into a 200 finite el-
ement mesh using an iterative Newton's method implemented in
Matlab, as available in the literature [19,84]. For the VCG model,
the degree of order of the structure, 1, was set to the analyti-
cal solution n =1— (1 —1n,)exp[—]||x]|/8], in agreement with the
phase field literature [34,35]. Here, 1, = 0 is the order in the grain
boundary and the thickness of the grain boundary was set to
8 =2 nm. The right edge of the simulation domain was set to be
electrically grounded and the defect site fractions were set based
on the macroscopic amounts of dopant concentration. Because of
the symmetry of the two-grain system, the horizontal mechanical
displacement at the center of the grain boundary was set to be
zero, while set to expand freely in the vertical direction. Equation

pression: QT:% . Equation set (7) was solved across

set (7) and the mechanical equilibrium equation, V- 3:8, were
solved across a 20 x 20 nm simulation domain and discretized
into a 200 x 200 finite element mesh. The mechanical equilib-
rium equation was solved using OOF2 under plane-stress condi-
tions by using a Bi-Conjugate Gradient solver with an ILU pre-
conditioner [85]. The relative tolerance for convergence was set to
1 x 108, The electrochemical parts of the partial differential equa-
tions were solved by using FiPy with a Linear PCG solver [86]. The
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relative tolerance for convergence was set to 1 x 1078, Each calcu-
lation took on the order of two hours of wall time to complete in a
2.6 GHz, 16 core, Ubuntu 16.04 workstation machine with 128 GB
of RAM.

A brick resistor-network model was used to calculate the con-
ductivity as described by Guo [12]. The single crystal conductiv-
ity is assumed to be due to the contribution of major carriers, in
this case, the oxygen vacancies. All used parameters are summa-
rized in Table 1. The total conductivity, «, is given by the sum of
the contributions to resistivity across a representative grain bound-
ary [12,37]:

1 1t dx
=1/ (19)
Ko Lho X e2z2y2D; Eai(yi)
i |exp o a.l 1
; kBT J{BT
where L is the grain size and kg is Boltzmann con-
stant. The pre-exponential constant for self-diffusion co-
efficient, D‘\’,é:0.00l m2/s. and its activation energy,

Ea,v-(-} :2'45253’V6+0'7629 eV, were fitted to the single crys-
tal conductivity [77]. An adaptive mesh scheme NIntegrate, as
implemented in Mathematica [83], was used to compute the
electrical conductivity for the ideal solution models. The three
orders of magnitude level of resolution discretization for the large
variations in concentration near the grain boundary were spatially
resolved. The strong solution models are solved numerically in the
original work, and the code published by the respective authors
was used .

The deviation between experiment and numerical model was
computed through the expression:

3 (log (k™ (y1)) — log (k™ (y,)))?

i=1
- (20)

CIT =

where err is root mean square error, n is number of measure-
ments, and y; is the dopant site fraction, as reported by Tschope
and coworkers [77]. For those calculations that optimized the con-
ductivity for each of the models, Eq. (20) was minimized. The con-
centration gradient energy parametric analysis was performed by
modifying the VCG model, removing the elastic energy contribu-
tions. The resulting optimized values are summarized in Table 2.

4.2. Results and discussion

Fig. 3 compares the GCO conductivity predictions against ex-
perimental data for each model, based on the input parameters of
Table 1, which correspond to experimental data reported in the
literature [77]. The reported grain boundary voltages, ¢,, range
between 0.14 and 0.5 V [87-92]. Experimental results show that
grain boundaries suppress the electrical conductivity regardless of
gadolinium content [77]. Further, at large defect concentrations,
the contributions from the SCL to conductivity are less dominant
as compared to the grains, thus all models eventually converge to
describe the single crystal behavior. Additionally, an increase in
gadolinium site fraction increases oxygen vacancy concentration,
which, in turn, increases the electrical conductivity up to a max-
imum value of 1.57 x 103 S/cm.

Because the chemical interactions between the different species
in the ideal solution models were ignored, they fall short in pre-
dicting the electrical conductivity at large defect concentrations.
Specifically, SGC assumes point defects with equal and oppo-
site charges, which is not satisfied by V) and Gdg,.. At low de-
fect concentrations, this causes an over prediction of conductiv-
ity. Conversely, AGC ignores the effects of extrinsic defects, and
thus under predicts the electrical conductivity. Similarly, both the

Acta Materialia 205 (2021) 116525

o 2%t Whew

001 0.1 02 03
y[GdyCer{)g_y/Q]

Fig. 3. Macroscopic ionic conductivity as a function of dopant concentration in GCO
for each described model using parameters in Table 1, Experimental data corre-

sponds to O for single-crystal GCO and @ for polycrystalline GCO [77]. Model re-
sults correspond (0 wmm fOr DH, mmmm fOI MS, mmm for SGC, for acc, M for

MDS, and A for VCG. AGC shows large conductivity losses at intermediate and
large dopant concentrations, The predicted polycrystalline conductivity values using
ideal solution models are three orders of magnitude smaller than the experimental
values at intermediate dopant concentrations. The MDS model under-predicts poly-
crystalline conductivity given the resistor-network description, VCG correctly pre-
dicts at low and high dopant concentrations, but does not show the maximum con-
ductivity as seen experimentally.

DH and MS models fail to predict the maximum experimental
conductivity value. Thus, for y = 0.05, none of the ideal solution
models are valid. The MDS model reproduces the experimental
conductivity for y = 1.5 and successfully predicts the orders-of-
magnitude smaller electrical conductivity value at low dopant con-
centrations [19,93].

The VCG model reproduces the experimental result very well
across the entire range of dopant compositions. The authors be-
lieve that the small differences are a result of the higher or-
der thermochemical interactions and additional chemomechanical
non-linearities that require a finer level of multiphysical descrip-
tion. Also, the authors successfully extended the VCG model to
explain the interfacial phase transitions in ionic ceramics by in-
corporating the effect of crystallographic misorientations and their
impact on electrical conductivity [29], something that is limiting
in MDS because it was not developed to track interfaces. In this
context, the approach layed down by VCG sets the stage to ratio-
nalize the microstructural evolution during grain coarsening and
charge transport in a sintering process under an external applied
field [94-98].

To provide an equal footing point comparison for each model,
the parameters were freely allowed to vary to be optimized to fit
the experimental data, see Table 2. The predicted electrical con-
ductivity for these optimized parameters is shown in Fig. 4. For the
ideal solution models, millivolt adjustments to the grain boundary
voltage delivers nearly the same predicted electrical conductivity
value, improving it within an order of magnitude of the experi-
mental results for all reported gadolinium site fractions. However,
even though the ideal solution models appear to show the cor-
rect electrical conductivity trend, the analysis shows that it is very
easy to impose non-physical boundary conditions and unphysical
parameters, e.g., the gradient energy coefficients for defects [99],
and models such as MS and AGC have contradictory assumptions,
highlighting that only one or neither, can have physical represen-
tations of the actual material system.

The MDS model optimization was performed using the same
resistor-network conductivity model in Eq. (19). Its cumulative er-
ror is the lowest of all the models (see Table 3), and is able to
successfully capture the maximum conductivity. However, as with
the ideal solution models, this does not imply that the description
is physical. The effect of different additional free energy contribu-
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Table 1
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Summary of material parameters for GCO based on literature. Note that all the ideal solu-
tion models used the same parameters. Here, ¥ denotes a fitting parameter used to match
experimental data for the models, and T denotes MDS model used a fitting parameter, not

reported in literature,

Symbol DH, MS, SGC, AGC MDS VCG Units Ref
E — — 190 GPa [80]
féd,&— g;,& — 0.0 0.0 eV/atom  —
f“,'o —f‘j',z — —-2.0 -2.0 eV/atom [77,79]
L 0.5x10-6 0.5x10-6 0.5%x10-6 m [77]
T 440 440 440 C [77]
Zea -1 -1 -1 - -
Zo +2 +2 +2 — —
o, — 2.5t — eV nm’ —
ay — 0.125% — eV nm? —
Br - - 0.00095 - [81]
§ — — 2t nm —
& 35 35 35 - [78]
v - - 0.3 - [80]
Ved 2.409x10°3 2.419x10°5  2.409x10°5  mol/m®  [19]
Vo 1.205%10-5 1209x10~5  1204x10-5  mol/m?®  [19]
v, - 2.6x10°2 - mol/m? [771
., — — o2 - —
b, 0.3% — — Y% [87]
QGd'&Gd'& 0.1 - eV/jatom  [79]
Qea v, - —0.07 -03 eV/atom  [79]
Qyov, - 0.9 - eV/atom [79]
Table 3
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Fig. 4. Macroscopic ionic conductivity as a function of GCO dopant for each de-
scribed model optimized to fit the experimental data (see Table 2). Experimental
data corresponds to O for single-crystal GCO and @ for polycrystalline Gco [77].
Model results correspond (0 me= 0 DH, mmm [0 MS, m fOr SGC, for AGC,

ILL
0.01 0.3

M for mDs, and A for vCG. In addition, 4 shows vCG without mechanical ef-
fects, v shows VCG with gradient energies, [ shows mDs fitted with resistor-

circuit conductivity model, and 0 shows conductivity values reported in [19] that
were fitted using MDS and a model for oxygen-ion conductivity in doped fluorite
electrolytes given by Nakayama and Martin [93]. Optimization of the parameters in
Table 2 give the appearance of a small error without capturing the actual physics
of the SCL, highlighting the sensitivity of the models to the accuracy of measured
values.

Table 2

Summary of parameters changed from Table 1 so that the polycrystalline conduc-
tivity would match experimental results. Parameters unlisted here remained un-
changed.

Symbol DH MS SGC AGC MDS VCG Units
o, — — - — 0.15 0.05 eV nm?
ay — — - — 0.1 0.0023 eV nm?
¢, 0.239 0.226 0.276 0.189 - — v

Summary of root mean square error calculated using Eq. (20). Reported error%
(err% = err/100) corresponds to parameters reported in Table 1, whereas error for
optimized models correspond to parameters reported in Table 2. 'VCG reported uses
the mechanical energy contribution, whereas the fitted value uses gradient energy
coefficients, similar to MDS.

Model Reported % Fitted %
DH 13.456 6.654
MS 16.302 6.654
SGC 7.562 6.653
AGC 24139 6.656
MDS 12,78 0.549
veeh 1.77 1.79
VCGpr_g 4536 -

tions, F,qq, Was quantified to explore the changes in total electrical
conductivity. Without any additional free energy contributions (i.e.,
Fuqqa = 0), both VCG and MDS models fall short in predicting the
drop in conductivity at low gadolinium concentrations. They show
the general trend for conductivity and thus contribute a lower er-
ror than the ideal solution models. In the absence of mechani-
cal stresses and addition of gradient energy penalties (shown in
Table 2) of F,qq in modified VCG model shows a lower cumulative
error than MDS and VCG models.

An analysis was made on the impact of the segregation en-
ergy term, which is a dominating factor in the defect concentra-
tion within the grain boundary. This parameter has the same ef-
fect on all the published strong solution models as ¢. does for the
ideal solution models, which is to be expected because the inter-
facial potential is proportional to the interfacial chemical poten-
tial, ¢, = % and thus the segregation energy. In this context, ¢,
could be tuned for the ideal solution models, when fg. ff\?g is var-

ied slightly, and conductivity prediction will change drastically, as
shown in Fig. 5.

If VCG is used without any additional free energy term (ie.,
Faqq = 0), as the segregation energy favors oxygen vacancy accumu-
lation in the grain boundary, the total conductivity decreases, due
to a larger depletion zone of oxygen vacancies. The opposite effect

occurs when f2 , —f> decreases. If gadolinium prefers the grain
Gdp, Gdg,
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Fig. 5. Macroscopic ionic conductivity as a function of dopant concentration in GCO
for vCG with no Fyy. Experimental data corresponds to O for single-crystal GCO
and @ for polycrystalline GCO [77]. Model results correspond to a segregation en-
ergy, f\';gff{;g(ewamm), of —1 for A, -2 for D —3 for V and —3.5 for q
Similar to how the core voltage, ¢, can be varied systematically to better fit exper-

imental conductivity for the ideal solution models, the segregation energy can also
be adapted to improve the fit of strong solution models.

Table 4
Summary of conductivity error for VCG for various oxygen vacancies segregation
energies.

f\""o _ \?Z -1 _2 -3 -3.5 eV/atom

error % (Eq. (20)) 6.01 454 2.83 1.91 -

boundary core to the bulk, the interfacial voltage, ¢., decreases

and the bulk electrical conductivity increases. However, in the ab-

sence of experimental data, f. —fg2 becomes another fitting pa-
o Vo

rameter that can be used to adjust any proposed model, regardless
of its validity, as shown in Table 4.

Fig. 6 highlights the effect of the different models on the resul-
tant concentration profiles for gadolinium site fraction of y = 0.01.
By construction, ideal solution models displaying infinitely thin
grain boundaries result in a discontinuity in the interfacial voltage
and composition, thus leading to infinitely large charge gradients
at the grain boundary core. This assumption is common in analyti-
cal solutions, but does not allow to capture any features pertaining
to the grain boundary core and its impact on SCL in the abutting
grains. In addition, AGC has an additional discontinuity between
the SCL and the bulk due to extrinsic material effects.

In contrast, MDS and VCG models avoid discontinuities by
specifying a symmetric boundary condition with a slope of zero
at the center of the grain boundary (specified as x =0). Due to
the gradient energy coefficient, «;, MDS shows large concentration
gradients on the order of a few Angstroms. VCG has no such sharp
concentration gradients due to the large mechanical energy con-
tributions that would result at the interface. However, a large gra-
dient energy coefficient would suppress concentration gradients in
any phase field model formulation [32], and inhibit the naturally
occurring phase transitions.

For higher concentrations of gadolinium, ie., y=0.1, Fig. 7
shows the profiles of concentration of defects, charge density, and
electrostatic potentials (see Table 1 for used model parameters).
Here, the defect concentration profiles display discontinuities, only
a few unit cells wide, breaking the assumption of model continuity
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Fig. 6. For a bulk gadolinium dopant site fraction of y =0.01 in GdyCe;_yOz 5,
(a,e) corresponds to the site fraction of gadolinium defects, (b,f) to the site fraction
of oxygen vacancies, (c,g) to charge density, and (d,h) to electrostatic potential as a
function of distance away from the grain boundary core, Insets (e-h) have the same
axis as their larger counterparts, but show the extent of the SCL for the strong
solution Models, me= COITESPONAS [0 DH, s [0 MS, mumm [0 SGC, [0 AGC,
t0 MDS, and m== t0 VCG. Calculations show that close to the grain boundary, the
ideal solution models predict extremely small lengths for the SCL.

in those models that display it. Additionally, near the grain bound-
ary, the site fraction of gadolinium exceeds a value of unity, which
is unphysical. At this high site fraction, the differences between
MDS and VCG models are appreciable. The MDS model appears to
have a discontinuity at around X = 0.04 nm and predicts a drop of
several orders of magnitude in oxygen vacancy site fraction within
a single unit cell, which also breaks the assumption of continuity.
In contrast, the VCG model has no such discontinuity, and predicts
a SCL of over 5 nm in width. This prediction is on the same or-
der of magnitude, as experimental reports [16,80,100-102]. Further,
[80] reported that the SCL varies with crystallographic misorienta-
tion at the grain boundary and this effect has been reproduced by
using the VCG approach by Vikrant and coworkers, [29].
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Fig. 7. For a bulk gadolinium dopant concentration of y = 0.10 in GdyCey_y03 yp,
(a) corresponds to defect concentration of gadolinium, (b) corresponds to defect
concentration of oxygen vacancies, (c) corresponds to charge density, and (d) cor-
responds to electrostatic potential as a function of distance away from the grain
boundary cOre, = COrresponds t0 DH, mmmm [0 MS, mum 10 SGC, [0 AGC, mum
0 MDS, and == t0 VCG. At higher dopant concentration, the SCL is modeled as
only a few atomic layers thick. Conductivity loss in such a short SCL is due to the
fact that all models except VCG have a layer of atoms of almost no oxygen vacan-
cies.

5. Summary and conclusions

A thermodynamically consistent variational framework has
been presented that can encapsulate both analytical ideal solution
models and strong solution descriptions, including the effects of
structure, stress, and the multiphysical behavior that occurs in real
material systems. In general, DH, MS, SGC, and AGC models are
unable to capture the physical effects of the SCL in a highly doped
system, regardless of their ability to correctly predict the conduc-
tivity [56]. The DH, SGC, and AGC models describe accurately in-
trinsic systems, whereas MS is limited to lightly doped systems
with immobile charge carriers. SCLs of length less than 2 nm can
be predicted, which is not realistic for ionic materials. The MDS
model provides a good fit to experimentally observed conductivity,
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but the defect gradients shown in Fig. 7(b) are unphysically sharp
across one lattice parameter. VCG incorporates the contributions
of mechanical energy due to chemical expansion of excess defects
in the lattice, a well-known phenomenon in the ceramics, met-
als, polymers, and semiconductors literature, and allows to accu-
rately describe a thick SCL of 20 nm, without introducing any un-
measurable parameters. Instead, the resultant thick SCL favorably
contributes to accurately describe the total electrical conductivity
of polycrystals by using only experimentally measurable physical
quantities. Further, the model has the capability to predict the SCL
and electrical conductivity as a function of crystallographic misori-
entation [29], and sets the stage to understand grain growth and
sintering in ionic ceramics.

Overall, a comprehensive thermodynamically-consistent frame-
work for space charge and segregation enables the multiphysical
description of grain boundaries and interfaces, and would be a
valuable tool for microstructure design, including grain size, grain
boundary character and crystallographic texture optimization. Ulti-
mately, any proposed formulation demands constant tests to their
validity and versatility to capture the physics of other material
applications. Additionally, model validation requires experimental
data of more than just one physical parameter, e.g., SCL length,
effect of grain size on electrical conductivity, etc. In this context,
the framework allows to computationally analyze less known and
more complicated multi-component systems to predict materials
properties and evaluate the effect of external thermal, chemical,
mechanical, electrical and magnetic stimuli to tailor the interfacial
properties for a given application.
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Appendix A. Symbols

Table Al

Glossary of symbols.
Name Definition Units
c Concentration of defects in SGC mol/m?
C_U‘” Component of stiffness matrix N/m?
D Electric displacement vecter Cm
D; Self-diffusion coefficient of i-th species m?/[s
D\‘,O Self-diffusion coefficient of oxygen vacancies m?/s
Egi Activation energy of ith species for migration eV
E“-Vo Activation energy of oxygen vacancies for eV

migration

e Electronic charge C
E Electric Field v/m
E Modulus of elasticity Gpa
F Total Helmholtz free energy ]
Fada Free energy contributions besides electrochemical ]
F Faraday’s constant C/mol
f Helmholtz free energy density Jjm3
fec Electrochemical free energy density of the system  J/m’
fool Volumetric Helmholtz free energy density Jjm3
fi Formation energy of i-th defect Jjm?
fr-f= Segregation energy of i-th defect to gb eV
f{,‘o - f\?g Segregation energy of oxygen vacancies eV

(continued on next page)
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Table A1 (continued)

Name Definition Units

f&d(’e = fgg;& Segregation energy of gadolinium defects eV

AGpix Gibbs free energy of mixing Jjm3

AH iy Enthalpy of mixing Jjm?

Kp Boltzmann constant eV/atom

M Number of phase -

N Number of charged species -

n Number of measurements -

AN Entropy of mixing J(m*K)

S Entropy J/(m3K)

5 Entropy density J(m*K)

R Universal gas constant J/(mol K)

err Root mean square error -

T Temperature K

v Volume of the system m?

Vi Site fraction of the ith defect -

Vi.oo Site fraction of the ith defect in the bulk -

Yim Site fraction of the major immobile charge carrier -

Veiia Stress free site fraction of the mth defect -

X Distance from the center of the grain boundary nm

i Mechanical displacement nm

Vg kth controlling variable -

Z; Charge number or valence of the i-th defect -

Zo Oxygen vacancies ionic valence -

Zcq Gadolinium defects ionic valence -

Zia Charge number of the major immobile charge -
carrier

o; Gradient energy coefficient of ith defect eV nm?

s ijth component of Vegard tensor of mth species -

BO Vegard expansion constant of oxygen vacancies -

BEDd Vegard expansion constant of gadolinium defects -

) Thickness of the grain boundary (VCG) nm

€, Permittivity of free space F/m

€ Relative dielectric constant -

?., Elastic strain -

= klth component of total strain -

& Generalized contribution of the kth potential J/m?

n Order parameter in phase field -

7. Disorder at the gb -

K Conductivity Sfcm

4 Grain size nm

App Debye length nm

A Mott-Schottky Length nm

& Generalized electrochemical potential of ith J/mol
species

a ) Classical electrochemical potential of ith species J/mol

,uf Standard chemical potential from ith defect J/mol
formation

[ii Equilibrium chemical potential of ith defect J/mol

Vi Molar site volume of sublattice where ith defect m>/mol
resides

V. Area-specific molar site density m?/mol

v Poisson ratio -

p Charge density C/m?

o Elastic stress tensor N/m?

ajj ij-th component of stress tensor N/m2

¢ Electrostatic potential referenced to the bulk \

¢, Electrostatic potential at the gb 1

P Bulk electrostatic potential Vv

2 Interaction energy between ith and jth defect J/mol

Q Number of sublattices -

Appendix B. Model derivations

B1. Generalities to deriving historical models from a free energy
functional

Define f as an ideal free energy with each defect on a separate
sublattice,

1
fonya D) =4 (f1 (T)y1+RTy1 In (y1)+RT (1—y) In (1—y1))

1
+72(fz(T)y2+RTy21n(y2)+RT(1—yg)lnu—yz)) (B1)
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If the defects are dilute, In (1—y;) = 0. Using Eq. (2), the variational
derivative of F,

F
yi(?—y- = fi(T) + RT In (y;) + Z;F ¢, (B.2)
is spatially uniform at equilibrium.

Additionally, the variational derivative of F with respect to ¢ is

OF

6—¢>- =ZiFy1/vi +Zo Fyz/vs +€V2h =0, (B.3)
at equilibrium. Eq. (B.3) constitutes the basis to describe DH, MS,
SGC, and AGC models.

B2. Debye-Hiickel (DH) model

The underlying assumption for DH is that for high temperatures
and small electrostatic fields, exp [—Z;F¢(x)/RT] ~ 1 — Z;F¢p(x)/RT.
Eq. (1) is then simplified to Eq. (8) [1].

B3. Mott-Schottky (MS)

MS neglects all defects except one major, immobile charge car-
rier, which simplifies Eq. (1) into Eq. (10). Note that y;, is con-
stant spatially as a result of its immobility. Eq. (10) is solved with
boundary conditions: ¢(0) = ¢, ¢(1*) =0 and ¢’ (A*) = 0, where
A* is the edge of the space charge layer. Eq. (11) is for ¢(x > 0)
At x =0, d’¢/dx? is undefined because the model neglects other
defects [4].

B4. Symmetric Gouy-Chapman (5GC)

SGC considers a two defect system of equal and opposite
charge (ie, Z=27Z, = —Z_) is considered. Since there is electro-
neutrality in the bulk, &(x) = )\?f = ¥=. Thus, Eq. (13) leads to
Eq. (14) for intrinsic systems.

B5. Mebane-DeSouza (MDS)

MDS does not provide a free energy functional (see
Eq. (16)) [19]. They do, however, define the electrochemical
potential as

Ay = ‘u{: + Quyy + Qavya +RT In ( ? ) +Z,Fep — aI'VZYV

1—yy
(B.4)

flg = tuaf + Qaaya + Qavyy + RT 1r1(1 79 ) +ZoFh — aaV?y,

—Ya
(B.5)

for a two-defect system: a dopant, a, and vacancies, v. £;; is
the interaction energy between the ith and jth species and «; is
the gradient energy coefficient [47]. While a separate paper by
Mebane [99] was cited for the corresponding free energy func-
tional, the two papers do not agree, and it is not possible to infer
the functional from Eqs. (B.4) and (B.5).

B6. Vikrant-Chueh-Garcia (VCG)

By using the thermochemical free energy density,
1N
£ (. T) = 5 3 (501 Ty + RTvln ()
i=1
+RT(1 —yi)In (1 —w)

N
+ Qij)fiyj)~ (B.6)

=Tz
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where ;; are the interaction energies between species, and sub-
stituting into the fundamental variational principle, Eq. (6), one
readily finds Equation set (7).

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.actamat.2020.116525
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