
Transactions in GIS. 2021;25:1249–1276.	 wileyonlinelibrary.com/journal/tgis	   |  1249© 2021 John Wiley & Sons Ltd

DOI: 10.1111/tgis.12726  

R E S E A R C H  A R T I C L E

Conflating linear features using turning function 
distance: A new orientation-sensitive similarity 
measure

Ting L. Lei1  |   Rongrong Wang2,3

1Department of Geography and 
Atmospheric Science, University of Kansas, 
Lawrence, KS, USA
2Department of Computational 
Mathematics, Science and Engineering, 
Michigan State University, East Lansing, 
MI, USA
3Department of Mathematics, Michigan 
State University, East Lansing, MI, USA

Correspondence
Rongrong Wang, Department of 
Computational Mathematics, Science and 
Engineering, Michigan State University, East 
Lansing, MI 48824, USA.
wangron6@msu.edu

Funding information
National Natural Science Foundation of 
China, Grant/Award Number: 41971334; 
NSF CCF, Grant/Award Number: 1909523

Abstract
Measuring the similarity between counterpart geospa-
tial features is crucial in the effective conflation of spatial 
datasets from difference sources. This article proposes a 
new similarity metric called the “map turning function dis-
tance” (MTFD) for matching linear features such as roads 
based on the well-known turning function (TF) distance in 
computer vision. The MTFD overcomes the limitations of 
the traditional TF distance, such as the inability to handle 
partial matches and insensitivity to differences in scale and 
rotation. In particular, the MTFD allows one to: (a) partially 
match a linear feature to a portion of a larger feature from 
a certain position of match; and (b) consider both the shape 
and orientation differences of polylines based on comparing 
their turning angles. In finding the best match position, we 
prove that the optimal position can be found among a fi-
nite set of positions on the target feature. We then combine 
the MTFD with widely used point-offset distances such as 
the Hausdorff distance to form a composite similarity met-
ric. Our experiments with real road datasets demonstrate 
that the new metric has greater discriminative power than 
traditional point-offset-based similarity measures, and sig-
nificantly improves the precision of two tested conflation 
models.
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1  | INTRODUC TION

Conflation is needed in a wide range of spatial analyses because data about a spatial phenomenon are often pro-
duced by different agencies and vendors, each with a different role and scope. Take road networks for example. 
Public agencies such as the U.S. Census and the U.S. Geological Survey maintain regularly updated databases 
such as TIGER/Line (with rich socioeconomic attributes). Private companies such as TomTom and HERE provide 
network datasets for navigation and planning purposes, with better geometric accuracy and attributes of trans-
portation infrastructure. Open data projects, such as OpenStreetMap (OSM), have made an increasingly richer set 
of data available as volunteered geographic information (VGI). Transportation research often needs comprehen-
sive information from all these sources in order to study travel behavior, predict traffic flow, and develop future 
policies and plans. For this reason, conflation has an important role in transportation studies.

In conflating linear features such as road segments, a fundamental question is how to effectively measure the 
similarity between features. Traditionally, offset-based metrics, such as the Hausdorff distance, have been used 
widely to measure the difference between coordinates of a pair of features (e.g., Chehreghan & Abbaspour, 2017b; 
Li & Goodchild,  2010, 2011; Tong, Liang, & Jin,  2014; Xavier, Ariza-López, & Ureña-Cámara,  2016). However, 
Hausdorff-like distances can be unstable, especially in matching small features. As will be discussed in the next 
section, due to its size, a small linear feature can often be matched to any nearby polylines without regard to its 
shape and orientation, resulting in erroneous matches.

In this article, we propose to measure the (dis)similarity between two linear features by considering their 
angular differences in terms of shape (deformation) and orientation (rotation), respectively. Inspired by the stan-
dard turning function (TF) distance (Arkin, Chew, Huttenlocher, Kedem, & Mitchell, 1991) between polygons, we 
develop an orientation-sensitive “map turning function distance” (MTFD) for measuring the discrepancies of linear 
features in terms of angular differences. We prove that the correct shape deformation and rotation can be found 
by evaluating the difference of directional angles at a finite number of match positions on the target feature (called 
critical event positions). We then combine the new angular similarity measure with the conventional offset-based 
Hausdorff distance. We evaluate the effectiveness of the combined similarity measure with case studies and per-
formance tests using two open datasets in Santa Barbara, CA from OSM and TIGER/Line, respectively.

2  | BACKGROUND

In this section, we briefly review related work and concepts for linear feature conflation, with a focus on geometric 
similarity measures and typical match-selection methods. The interested reader is referred to Ruiz, Ariza, Ureña, 
and Blázquez (2011) and Xavier et al. (2016) for comprehensive reviews on other aspects of the conflation problem.

2.1 | Measures of similarity between features

A fundamental concept for matching geographic features is the closeness or similarity between a pair of features. 
It indicates the likelihood that the two features may belong to the same object in reality. Effective conflation re-
lies on good similarity measures, since a conflation method may produce very different results depending on the 
measures used (Xavier et al., 2016). Numerous similarity measures have been developed in the literature based on 
the geometries, attributes, or spatial contexts of geographic features, with geometric and attribute-based similar-
ity measures (Xavier et al., 2016) being the most commonly used methods.

A straightforward way of measuring the geometric similarity of two features is to compute a certain geometric 
property for each feature and compare the difference in that geometric property. For example, Zhang et al. (2012) 
used geometric properties including size, shape, and orientation to match polygons of building footprints. Each 
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geometric property is described by a number (or index). This includes a shape index based on well-known com-
pactness measures (MacEachren,  1985; Wentz,  1997), an orientation index based on a statistical weighting 
method (Duchêne et al., 2003; Zhang et al., 2012), and the size of the polygon itself. For each index, the dissimilar-
ity between two building polygons is then computed as either the difference or the ratio between their values of 
the index. Similarly, Yang, Zhang, and Luan (2013) have used the length and orientation of linear features to match 
roadways. Other scholars have used geometric properties including size (Tang, Hao, Zhao, & Li, 2008), bounding 
box (Tong, Shi, & Deng, 2009), and inertial axis to compare geographic features.

A potential limitation of geometric property-based methods is that the geometry of each feature is reduced 
to a single number on an individual basis, and specific information about the geometry may be lost before the 
comparison. For example, Wentz (1997) found that geometries with very different shapes can have near-identical 
compactness measures. Researchers (Tang et al., 2008; Yang et al., 2013; Zhang et al., 2012) often find it necessary 
to use other similarity metrics such as positional similarity to support the matching process (Xavier et al., 2016).

Similarity can also be computed directly from the coordinates of two geometries. For example, the similarity 
between two areal features can be computed based on their percentage overlap (Ruiz-Lendínez, Ariza-López, & 
Ureña-Cámara, 2013). This polygon overlap method may also be used to measure the similarity of two linear fea-
tures if their buffer polygons are generated first and then compared. This leads to the simple buffer method (SBM) 
of Goodchild and Hunter (1997). In a similar vein, one can employ various distance metrics between features to 
measure similarity. The simplest example is the Euclidean distance, which has been widely used to match point 
features (Beeri, Kanza, Safra, & Sagiv, 2004). More complex distance metrics are required to match linear and areal 
features. Considering the relevance to the proposed method, in the sequel, we introduce three types of distance 
measures: point-offset distance, shape-based, and orientation-based distances.

2.1.1 | Point-offset distance measures

A type of generic geometric similarity for points, lines, and polygons is pointwise offset-based distances such 
as the widely used Hausdorff distance (Chehreghan & Abbaspour,  2017b; Li & Goodchild,  2010, 2011; Tong 
et al., 2014; Xavier et al., 2016). The directed Hausdorff distance Hd (A,B) from a feature A to a second feature B is:

where d (p,B) = min
q∈B

d (p, q) is the straight-line distance from any given point p of A to feature B. Hd (A,B) is the maxi-

mum of all such distances from feature A. The directed Hausdorff distance reflects the maximum amount of pointwise 
offset from one feature to another.

Pointwise distance measures such as the Hausdorff or Frechet distance may be incomplete. If a linear feature 
is very short, it may be matched to many neighboring features with very different shapes and orientations by 
the Hausdorff distance. Figure 1 presents an example of matching roads in two street networks near Alameda 
Avenue, Santa Barbara, CA. The two street networks are from OSM (in green) and the U.S. Census TIGER/Line 
(red), respectively. Figure 1 demonstrates the matches between roads using the offset-based directed Hausdorff 
distance and a conflation model to be discussed in Section 3. Each arrow represents a partial match—that is, the 
source feature corresponds to a part of the target feature. We can observe many partial matches near Alameda 
Avenue here because it was divided into many small segments in the OSM data (green), but it was represented as 
one polyline in the TIGER/Line data (red).

Moreover, we can observe that a fire lane in the OSM network is matched to Alameda Avenue in the TIGER/
Line network. Clearly, this match is incorrect (rendered as a yellow arrow in Figure 1) as the fire lane has very 
different shape (and orientation) to Alameda Avenue. Yet an offset-based similarity metric such as the Hausdorff 

Hd (A,B) = max
p∈A

d (p,B)
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distance would not be able to tell, because the fire lane is a small feature with a total length of about 150 m (or 
effectively 70 m considering the fact that it is almost a double line). The directed Hausdorff distance from the fire 
lane to Alameda Avenue will be 70 m at most, which is comparable to the normal positional displacement between 
real corresponding features (such as the polylines representing Verona Avenue nearby).

Figure 2a presents the specific computation of the directed Hausdorff distance from the geometry of the fire 
lane to that of Alameda Avenue in Figure 1. The directed Hausdorff distance (53.66 m) is the distance from the 
dead-end loop of the fire lane to its nearest point on Alameda Avenue. Figure 2b presents the directed Hausdorff 
distance in the opposite direction, from Alameda Avenue to the fire lane. We can observe that the directed 
Hausdorff distance in this direction is much larger (216.97  m). The large directed-distance value in Figure  2b 
indicates correctly that the geometry of Alameda Avenue is unlikely to correspond to a part of the fire lane. The 
relatively small distance value in Figure 2a, however, is misleading. One may be led to believe that the fire lane 
corresponds to a part of Alameda Avenue, even though they look different. Clearly, the difference in shape and 
orientation here should be accounted for during the matching process.

In addition to the Hausdorff distance, the Frechet distance (Alt & Godau,  1995; Eiter & Mannila,  1994) is 
also based on pointwise offset. Also known as the dog-leashing distance, it is defined to be the minimum length 
of a leash that allows a dog and its owner to walk along their respective paths without backtracking (Chambers 
et al., 2010). The Frechet distance is better at differentiating certain circuitous curves but is also more expensive 
computationally. It has been used in GIS for matching coast lines (Mascret, Devogele, Le Berre, & Hénaff, 2006) 
and other linear features (Devogele, 2002).

F I G U R E  1   An incorrect match (yellow arrow) of roads caused by insensitivity to shape and direction using 
Hausdorff distances. Blue arrows represent correct matches
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In solving the gateway shortest-path problem, researchers have studied the similarity of alternative paths 
(Lombard & Church, 1993; Matisziw & Demir, 2016) between a fixed origin–destination pair in one network data-
set. The spatial difference between two paths is measured either as the total area separating the two paths or 
as two paths' average area of deviation between their unshared portions. Two paths may share certain network 
nodes, and the areal deviation in these shared portions is counted as zero.

These methods address a different problem from conflation. While conflation aims to match two heteroge-
neous datasets, the above methods are aimed at finding the deviation of paths in one dataset. In conflation, coun-
terpart polylines from two different data sources rarely have any shared portion. However, the areal deviation 
metrics are similar to the Hausdorff and Frechet distances in that they all measure deviation. Their difference is 
that the areal deviation metrics measure the accumulated or average deviation while the Hausdorff distance or 
Frechet distance measures the worst-case deviation. Neither the Hausdorff distance nor the areal deviation met-
rics consider angular differences as we do in this article. Therefore, they may be insensitive to shape differences 
in Figure 2a. In addition, the areal deviation metrics are defined between a fixed pair of origin and destination and 
imply a one-to-one comparison between two lines. Partial matching is therefore not accounted for.

2.1.2 | Shape measures

Shape is another criterion that can be used to tell the difference between linear features. The standard TF distance 
(Arkin et al., 1991) was designed to compare shapes of two polygons that may be in different orientations and 
scales. Frank and Ester (2006) used the TF distance to evaluate the quality of generalized maps. Li, Li, and Xie (2017) 
used the TF distance to evaluate the difference between different generalizations of a building's footprint that they 
produced using a “morphing” algorithm. The possibility of using the TF distance to measure polyline similarity was 
also discussed by Zhang (2009) and Chehreghan and Abbaspour (2017a), but no experimental results are reported.

The turning function is a function for describing the shapes of objects using cumulative turning angles. In the 
function, the angles between the segments of a polygon's boundary and the horizontal axis are accumulated over 
the length of the boundary lines. The lengths of the two boundary lines are typically scaled to 1 (unit length) and 

F I G U R E  2   Directed Hausdorff distances between the fire lane (OSM) and Alameda Avenue (TIGER) in 
Figure 1: (a) from OSM to TIGER; and (b) from TIGER to OSM
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the area between the cumulative functions of two lines is defined to be their shape dissimilarity. The area is com-
puted as the accumulated Lp distance of the TF over the unit length, with L2 distance being used originally (Arkin 
et al., 1991). Zhang (2009) and Chehreghan and Abbaspour (2017a) described the formula of the shape dissimilar-
ity measure between polylines A and B (using L1 distance) as shown in Equation (1):

In the above, �A (s) is the turning function of polyline A; t is the position in percentage length for a point on A 
measured from the starting point of A. Of note is that this definition assumes that the two polylines to be com-
pared are approximately of the same length, and are scaled to unit length. The comparison of turning angles is 
therefore performed on the unit interval [0, 1]. This assumption may not hold if one polyline is a (proper) part of 
the other (or in a partial match situation in Figure 1). As will be discussed in Section 3, we allow the features with 
different lengths to be compared in the proposed MTFD distance, and overcome the scale-insensitivity by not 
rescaling the line features at all.

2.1.3 | Orientation measures

Orientation is another useful geometric property for measuring the similarity between polylines (Zhang, 2009) 
and polygons (Duchêne et al., 2003; Zhang et al., 2012). According to Zhang (2009), the orientation difference 
between two polylines A and B can be calculated by

where �A, �B are orientations of A and B; vA is the vector from the starting point of polyline A to its end point; and vB 
is a similar vector for polyline B. This definition of orientation difference is effective when two polylines are relatively 
straight. However, when they are curved, this definition will be problematic as it does not reflect variation of direc-
tions within each polyline. Moreover, this definition may not be suitable for the partial matching of a shorter polyline 
to a longer one to which it “belongs” (Figure 1). As we will demonstrate in Section 3, a more subtle definition of orien-
tation difference (or rotation) is needed for the partial matching of polylines. We will show that one can measure the 
shape and orientation difference in one algorithm.

In addition to geometric similarity metrics, attribute metrics compute the difference of two features based 
on their non-spatial properties, such as street names or place names (McKenzie, Janowicz, & Adams, 2014). For 
example, the Levenshtein distance measures the difference between two strings as the number of operations 
(insertion, deletion, or substitution) required to change one string into the other. Other string distances, such as 
the Hamming distance, have been used to match streets (Li & Goodchild, 2011). While the focus of this article is 
on enhancing geometric similarity measures, it should be noted that attribute-based similarity measures can be 
incorporated, when available, to enhance a geometric similarity measure.

(1)

TF (A,B)=

1

�
0

f
�
�A (t) , �B (t)
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dt
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2.2 | Conflation methods

Given one of the similarity measures mentioned above, a method is needed to decide which pairs of features 
should be selected as matched features. One of the earliest match-selection methods is the so-called one-sided 
nearest-neighbor join (Beeri et al., 2004). In its simplest form, one can match a feature in one dataset to its closest 
feature in the other dataset with respect to a distance or similarity metric. This kind of operation can readily be 
performed using many existing GIS packages or spatial databases.

However, the one-sided nearest-neighbor join is flawed in that the closeness relation can be inconsistent. As 
pointed out by Beeri et al. (2004) (illustrated in Figures 3a,b), if feature A in dataset 1 has the smallest distance 
to feature B in dataset 2, feature B can have the smallest distance to an entirely different feature C in dataset 1. 
Figure 3a presents an example of comparing TeleAtlas road data (green) and TIGER data (red) in Santa Barbara, 
CA. In the figure, Calle Grananda street in TIGER is the closest to the same road in the TeleAtlas data. However, 
Calle Grananda street in TeleAtlas is the closest to Colorado street in TIGER. Clearly, if one performs two near-
est-neighbor joins starting from dataset 1 and dataset 2, respectively, one may draw different conclusions about 
which feature one should match B in Figure 3b (or Calle Granada in TeleAtlas in Figure 3a) to.

One possible method to avoid the aforementioned inconsistency is to use a “greedy” strategy called the k-clos-
est pair query (KCPQ) [e.g., Ahmadi & Nascimento (2016) and Equation (1)]. It is widely used in the database lit-
erature and in pattern recognition due to its simplicity. The KCPQ method is iterative. In each iteration, it selects 
the closest pair of features from the two datasets as a pair of matched features, and then removes them from 
both datasets. The selection process stops after k pairs of features are selected or when no more features can 
be matched. Since a matched pair is excluded from further consideration, there will be no conflict in the selected 
matches. By design, KCPQ can only capture one-to-one matches. That is, a feature in a dataset can be matched to 
at most one feature in the other dataset. Due to its widespread use and simplicity, KCPQ will be used as one of the 
match-selection methods in this article to test the proposed similarity measures.

F I G U R E  3   Inconsistent assignments in two directions of matching between datasets 1 (green) and 2 (red): (a) 
an example near Colorado St. in Santa Barbara, CA for TeleAtlas (green) versus TIGER (red) road networks; and 
(b) a simplified example
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Beeri et al. (2004) attempted to solve the inconsistency between two opposite nearest-neighbor joins by 
computing a more general confidence value for matching features in what they called a probabilistic method. The 
confidence value for a pair of features is proportional to their similarity measure. A pair of features is matched if 
their confidence value is greater than a threshold value. With a similarity measure akin to the directed Hausdorff 
distance, Tong et al. (2009) extended the work of Beeri et al. (2004) so as to allow partial matching and handle 
one-to-many matches.

Another group of matching methods is the optimization-based methods, in which the feature-matching prob-
lem is formulated as an optimization problem of minimizing the total dissimilarity between matched features. Li 
and Goodchild (2010) formulated the feature-matching problem as an assignment problem, a classic model in 
operations research for crew assignment. It aims to assign a set of n workers to the same number of jobs, assuming 
that each worker i has a different cost cij for completing job j. The assignment problem minimizes the total assign-
ment cost under the constraint that each worker is assigned to exactly one job. The assignment problem can be 
used for conflation by treating the features of one dataset as the workers and those of the other dataset as the 
jobs. The dissimilarity between a pair of features is then used as the assignment cost. Similar to the KCPQ method, 
the assignment problem is suitable for one-to-one matches only.

Multiple attempts have been made to extend optimization methods to handle (two-sided) one-to-many 
matches. Li and Goodchild (2011) developed a variant of the assignment problem that utilizes the directed 
Hausdorff distance to capture part–whole relationships. They employed two independent assignment-like mod-
els, one for each direction of matching, to find one-to-many matches in both directions. They then resolved the 
conflicts described by Beeri et al. (2004) (see Figure 3) after the optimization by deleting inconsistent matches. 
Tong et  al.  (2014) developed a hybrid model based on applying the assignment problem and then a heuristic 
method (logistic regression) in tandem. More recently, Lei, Church & Lei (In review) proposed a unified conflation 
model (in a companion article), which solves the consistency issue of opposite assignments (Beeri et al., 2004) 
(Figure 3) during optimization. Rather than removing inconsistent matches afterwards, they developed structural 
constraints to forbid conflicting assignments in advance and unify matches in opposite directions in one model.

Beyond one-to-many conflation methods, some methods can handle the more complex “many-to-many” 
matches. Walter and Fritsch (1999) proposed a “buffer-growing process,” which connects adjacent polylines to 
form paths and then matches the paths. Masuyama (2006) proposed a similar method for matching polygons (cen-
sus boundaries of 1990 and 2000, respectively), in which the author manually merged smaller boundary polygons 
into larger polygons until one-to-one matches can be established.

We have reviewed closely related methods in the literature both for measuring feature similarity and for se-
lecting matches. This review is not comprehensive by any means. The reader may refer to Xavier, Ariza-López, 
and Ureña-Cámara (2017) for more comprehensive reviews of similarity measures, as well as Ruiz et al. (2011) for 
reviews of various processes of conflation, including useful pre- and post-processing procedures.

3  | METHOD

This section presents the definition of the proposed MTFD, which measures the difference of linear features both 
in terms of shape and orientation. We then demonstrate how to use the new metric in combination with tradi-
tional point-offset-based metrics to match linear features.

3.1 | Limitations of the standard TF distance

The TF distance (Arkin et al., 1991) was designed originally in the image processing and pattern recognition lit-
erature for matching the shapes of the same object appearing in different image scenes. It describes polygon 
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boundaries using the mathematical construct of TFs and measures the difference between the shapes of two 
polygon boundaries as the difference of their TFs. The TF distance is rotation- and scale-invariant. This is desir-
able because the rotation and scale difference between objects in different image scenes is often caused by a 
difference in perspectives and does not matter. Due to its generality, the TF distance has found a wide range of 
applications in matching objects in computer vision and many other fields, including GIS.

However, the standard TF distance has a number of restrictions that limit its usage in conflating geographic 
features in maps and GIS. First, rotation is important in map data. Large discrepancies of orientation between cor-
responding features (i.e., rotation) rarely happen in proper maps. Rotation should not be ignored in the conflation 
of maps. For example, two straight, perpendicular road segments have zero shape distance, but they are unlikely 
to represent the same road in two maps of the same coordinate system.

Second, the standard TF distance cannot handle partial matches. Instead, it can only match an entire polygon 
to another one. For example, a polygon A will match perfectly with itself. But if one splits A into two equal halves, 
A1 and A2, neither part will match A due to the deviation of turning angles at the common boundary of A1 and A2. 
This means that the standard TF distance can only handle one-to-one matches; it cannot handle the more complex 
many-to-one (or many-to-many) matches because a part of the shape can have a very large distance to the shape 
itself. This is where the TF distance falls short while quasi-distance measures such as the directed Hausdorff dis-
tance (or the proposed partial TF distance) work well.

Third, and related to the one-to-one matching assumption, the standard TF distance depends on rescaling two 
shapes so that their boundaries have the same length (or unit length). While scale-invariance is required in object 
recognition, it is undesirable to match two features of different sizes in GIS, since two shapes representing the 
same object should have approximately the same size. Therefore, introducing scale-invariance can lead to false 
matches.

Fourth, the standard TF definition is mathematically dependent on the fact that the boundaries of the two 
polygons form closed loops, and the extension of turning functions cyclically to an infinite domain. Such an as-
sumption does not apply to non-closed polylines. Nonetheless, the TF is a powerful tool in matching shapes in 
that it provides a direct measurement of the shape deformation between two counterpart features. This is often 
lacking in other similarity measures such as the Hausdorff distance or the Frechet distance. Next, we present the 
orientation-sensitive MTFD, based on extending the standard TF distance (Arkin et al., 1991).

3.2 | MTFD

To define the MTFD, the following notation is needed. Given a polyline A (or a curve in general), suppose a person 
walks along it from the beginning to the end at unit speed (e.g., 1 m/s). Then each point on A is uniquely identified 
by the time t at which it is visited. Therefore, we can write each point of A as A(t). Since we assume a unit speed 
of travel, t also represents the length of curve on A between the starting point and A(t). Essentially, t defines an 
intrinsic coordinate system for points on the curve, which is commonly known as a linear referencing system in GIS. 
The use of the intrinsic coordinate t to uniquely identify any point A(t) of A is also called a parameterization of A, 
where the time t is also referred to as a parameter of the curve A.

Mathematically, the turning function ΘA (t) of a curve A is a function of the tangent direction at any point A(t) 
on A versus intrinsic coordinate t (Arkin et al., 1991). The tangent direction at A(t) is also called the turning angle, 
and is defined in radians and relative to the x-axis. Figure 4 depicts the turning angles and turning function of the 
fire lane in Figure 1, respectively. As shown in Figure 4a, the turning angle for a polyline is constant within each 
of its straight-line segments. Therefore, its turning function (Figure 4b) is a step function, in which changes of 
direction angle only happen at each time point t associated with a vertex of the polyline. If a polyline is a straight 
line (similar to Alameda Avenue in Figure 1), its turning function will be a constant function. Clearly, the difference 
between the turning functions of the fire lane and Alameda Avenue (Figure 1) will be large. The turning function 



1258  |     LEI and WANG

of a polyline A essentially carries the same information as the curvature at point A(t), as the curvature is merely the 
rate of change of the turning function at t. Roughly speaking, the proposed MTFD is used to gauge the difference 
between the two turning functions.

Given the above definitions, the basic assumptions of the MTFD are as follows. First, it is intended for match-
ing a linear feature A to a larger linear feature B, and A possibly corresponds to a part of feature B in reality. We 
call A the “from-feature” and B the “to-feature.” Suppose the lengths of A and B are l and L, respectively, with l ≤ L

. Then in case of a perfect match, all points of A (i.e., A (t) , t ∈
[
0, l

]
) should coincide with a subset of B starting at a 

certain point B(s) (i.e., A (t) = B (t + s) , t ∈
[
0, l

]
). In this case, the directions (and locations) of A and B must match ev-

erywhere in this interval of B, and their MTFD (as well as Hausdorff distance) should be zero. The MTFD distance 
is non-zero otherwise. In the remainder of the article, we call the time s associated with the starting point B(s) the 
starting position of comparison. Each starting position s on B may give rise to a different value of dissimilarity. The 
MTFD is defined to be the smallest dissimilarity of all starting positions s.

Intuitively speaking, we restrict our attention to the part–whole or many-to-one matches. This is more general 
than the one-to-one matches considered in the standard TF distance. In addition, we do not normalize the two 
polylines to the same length as in the traditional TF distance, and instead measure dissimilarity without any resca-
ling. This makes our similarity measure sensitive to differences in scale, a property that is essential in comparing 
GIS features. We do not consider the symmetric case of matching a larger feature B to a smaller feature A. This 
is because without rescaling, a portion of B will have no counterpart in A, and it is not obvious how a distance or 
similarity metric for this part of B can be defined.

Second, if rotation is required to “align” feature A to feature B (or in other words, a systematic difference of 
orientation exists between the two features), the rotation is considered a type of dissimilarity between the two 
features. Just like shape deformation, rotation is an angular measurement. Among all possible starting positions 
of comparison, the position that minimizes the sum of shape deformation and rotation is used to characterize the 
difference between the features.

Third, we rely on well-established metrics (such as the Hausdorff distance) to determine the amount of 
pointwise offset between two features. We then combine a point-offset metric with our angular metric (deforma-
tion and rotation) to form a composite similarity metric.

Figure 5 presents an example of the turning functions of two polylines A (blue) and B (red). Under the afore-
mentioned assumptions, we can define the MTF distance between two polylines as follows. Similar to Arkin 
et al.  (1991), we measure the angular difference of polyline A with respect to polyline B using the Lp distance 

F I G U R E  4   Definition of the TF of a polyline: (a) polyline of the fire lane in Figure 1; and (b) turning function of 
the fire lane
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(with p = 2) between their turning functions in the space of the intrinsic coordinate (or time) t (Figure 5b). For a 
given starting position s on B, we measure the angular difference between A(t) and B(t + s) for each value of time 
t ∈

[
0, l

]
, which is ΘA (t) − ΘB (t + s). Conceptually, the accumulated angular difference between A(t) and B(t + s), 

t ∈
[
0, l

]
 contains two types of difference—a global rotation between A and B, and the shape deformation (i.e., the 

remaining difference after the global rotation is removed). To distinguish these two types of difference, we create 
an auxiliary variable θ for the global rotation, and the correct value of θ is yet to be found. Then, ΘA (t) − ΘB (t + s) 
decomposed into two parts: the overall rotation θ and the residue ΘA (t) − ΘB (t + s) − �, which represents the 
shape deformation (called deformation hereafter). The deformation between A and B for a given starting position 
s and rotation θ is:

where l and L are the lengths of A and B, respectively, with l ≤ L. Since shape deformation should not include any an-
gular difference that can be accounted for by the systematic rotation, we need to find the minimum mp (A,B, s, �) over 
θ. That is we seek, for any given s, the following:

as well as the associated optimal θ value in Equation (4):

The optimal value α (s) represents the estimated rotation, and � (A,B, s) is the deformation. Then, at a second 
(higher) level of optimization, we seek to find the starting position s that minimizes the weighted sum of deforma-
tion and rotation as follows:

(3)mp (A,B, s, �) =

� ∫ l
0
��ΘB (t + s) − ΘA (t) + ���p dt

�1∕p
√
l

(4)� (A,B, s) = min
�

mp (A,B, s, �)

(5)� (s) = � ∗
s

(6)m (A,B) = min
s

(
� (A,B, s)2 + wr ⋅ � (s)

2
)1∕2

F I G U R E  5   Example directed polyline-based turning functions: (a) two polylines; and (b) their turning 
functions
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In the above, we use a weight value wr to represent the relative importance of seeking a position that minimizes 
rotation versus one that minimizes shape deformation. m(A, B) is the MTFD. If the weight value wr is zero and l = 
L, then the MTFD reduces to the regular TF distance. The solution of the lower-level minimization problem (4) can 
be found by setting �mp(A, B, s, �)

��
= 0, which renders:

Insert Equation (7) into Equation (4) and, after simplification, we obtain the estimated deformation:

The overall MTFD (6) can be obtained by substituting Equations (7) and (8) into Equation (6):

In addition, we define m (B,A) = ∞.

3.3 | Choosing minimum shape difference versus minimum rotation

The above computation implicitly looks for the portion of the to-feature B from a certain point B(s) that best 
matches the from-feature A. We seek to find the starting position s of B with the minimum overall deformation 
and rotation. Our criterion for aligning A with B (in the space of time t) is more general than that of the standard 
TF distance. The new criterion is needed because we may get wrong answers about the relationship between two 
features if we use only deformation.

Figure 6a presents an example of a potential partial match of a straight line A to a polyline B with three seg-
ments. If they are in a map, one would expect that A should be matched to the two horizontal segments of B in 
Figure 6a, since it will incur a reasonably small shape deformation, but nearly no rotation. However, if deformation 
is the only match criterion as with the standard TF metric, A will be matched to the longer segment of B that is al-
most perpendicular to A, because this match will incur zero shape deformation (as shown in Figure 6b). Meanwhile, 
the TF distance will report that A is perpendicular to B. This is clearly not the case in GIS. To avoid such issues, 
we set the weight value of the rotation objective in Equation (6) to a positive value. In this article, we assume that 
wr = 1.

(7)a (s) = � ∗
s
=

1

l

l

∫
0

ΘA (t) − ΘB (t + s) dt

(8)

� (A,B, s)=
1√
l

�
∫
l

0

�
ΘB (t+s)−ΘA (t)+� (s)

�2
dt

�1∕2

=
1√
l
min
s

�
∫
l

0

�
ΘB (t+s)−ΘA (t)

�2
dt+ l ⋅�2 (s)−2� (s) ⋅∫

l

0

ΘA (t)−ΘB (t+s) dt

�1∕2

=
1√
l
min
s

�
∫
l

0

�
ΘB (t+s)−ΘA (t)

�2
dt− l ⋅�2 (s)

�1∕2

(9)
m (A,B)=

1√
l
min
s

�
∫
l

0

�
ΘB (t+s)−ΘA (t)+� (s)

�2
dt+wr ⋅ l ⋅ (a (s))

2

� 1

2

=min
s

�
1

l
⋅∫

l

0

�
ΘB (t+s)−ΘA (t)

�2
dt+

�
wr−1

�
⋅�2 (s)

�1∕2
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3.4 | Finite-optimality set for locating partial matches

The work of Arkin et al. (1991) is important not only because they defined the TF distance mathematically, but also 
because they identified a finite set of starting positions on B called the critical events. They proved, in a series of 
lemmas and theorems, that it is only necessary to evaluate shape deformation at this finite set to find the optimal 
match position s. In this subsection, we provide a proof of the finite optimality of the generalized MTFD distance 
(6) and show that a similar finite-optimality set is sufficient for the new distance.

Definition 1 Given a polyline A, a time point t0 is called a vertex position of A if A(t0) is a vertex of A.
Definition 2 Given a polyline B, we call the polyline Bs (t) : = B (t + s) the shifted version of B.
Remark 1 By Definition 1 and Definition 2, if t0 is a vertex position of Bs� (t), then t0 − s + s � is a vertex position of 

Bs (t) .

Definition 3 The starting position s is called a crossing point for polylines A and B if there exists a time t ∈
[
0, l

]
 

such that both A (t) and B (t + s) are vertices.

Intuitively, a starting position s is a crossing point if two persons walk on A and B at the same speed (unit 
speed), starting from A(0) and B(s), respectively, and encounter a pair of vertices of A and B at the same time. For 
example, the first crossing point is e1 = 0 (because with s = 0, the two persons arrive at the starting vertices of 
A and B at the same time, t = 0), and the last crossing point is eK = L − l for some integer K (at which the agents 
arrive at the end vertices of A and B at the same time, t = l). Similarly, all s for which B(s) are vertices are crossing 
points because vertices A(0) and B(s) are encountered at the same time, t = 0. In general, if A and B have m and 
n vertices, respectively, there are at most O (m ⋅ n) crossing points because each vertex of B can coincide with at 
most m vertices of A.

Lemma 1 Let e1,…, eK be the set of crossing points. For any interval 
(
ei, ei+1

)
, � (s) is a linear function of the form:

� (s) = gi ⋅ s + hi

F I G U R E  6   Minimizing shape deformation is insufficient: (a) potential partial match; and (b) optimal match by 
shape alone
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for some constants gi and hi, and the objective function �2 (s) defined in Equation (8) is a quadratic function in (
ei, ei+1

)
.

Proof  We will first show that for a given starting position s on polyline B, the difference in the turning angle 
ΘA (t) − ΘB (t + s) is a piecewise constant function in t. Consider the following intervals Ii =

[
ti−1, ti

]
, i = 1, … , q, 

where the set of 
{
ti, i = 1,…, q

}
 with ti < ti+1 includes all the vertex positions of A (Definition 1) and Bs (Definition 2). 

In particular, we have t0 = 0, tq = min (l, L − s). By Equation (7), the estimated rotation � (s) is:

For a fixed i , both A
(
Ii
)
 and B

(
s + Ii

)
 are straight-line segments since, by definition, the interior of Ii does not 

contain any vertex positions of A or B. Therefore, the difference in turning angles ΘB (t + s) − ΘA (t) , t ∈ Ii is a con-
stant, which we denote as Di. Then, the rotation � (s) in Equation (7) reduces to the following:

Next, we will show that � (s) changes linearly with s as long as s is not a crossing point. Suppose the starting 

position s is not a crossing point. When s is changed by an infinitesimal amount �s, let 
{
t̂i, i = 1,…, q

}
 with �ti <�ti+1 

be the new set of vertex positions corresponding to A and Bs+�s, and Îi =
[̂
ti−1, t̂i

]
. By a similar argument, we have:

We show next that the change in interval width |||Îi
||| − ||Ii|| can have four possible cases, depending on what type 

the interval ||Ii|| is:

1.	 If both ti−1 and ti are vertex positions of Bs, by Remark  1, ti−1 − �s and ti − �s are vertex positions of 
Bs. Therefore, by the definition of t̂i and the fact that �s is infinitesimal, t̂i−1 = ti−1 − �s and t̂i = ti − �s. 
Hence |||Îi

||| − ||Ii|| = 0.
2.	 If ti−1 is a vertex position of Bs, and ti is a vertex position of A, then t̂i−1 = ti−1 − �s (due to the same reasoning as 

in 1) and t̂i = ti (due to the fact that vertex positions of polyline A do not change with s). Hence |||Îi
||| − ||Ii|| = �s.

3.	 If ti−1 is a vertex position of A and ti is a vertex position of Bs, then t̂i−1 = ti−1 and t̂i = ti − �s. Hence |||Îi
||| − ||Ii|| = −�s

.
4.	 If both ti−1 and ti are vertex positions of A, then t̂i−1 = ti−1 and t̂i = ti. Hence |||Îi

||| − ||Ii|| = 0.

(Note that since s is not a crossing point, each ti is either a vertex position of A or a vertex position of Bs, but not 
both. Hence the above cases cover all possible scenarios.)

Define an auxiliary vector b =
(
b1, … , bq

)
, such that bi = 0 if Ii is Type 1 or 4, bi = 1 if Ii is Type 2, and bi = −1 if 

Ii is Type 3. Then, � (s) changes by � (s + �s) − � (s) = C ⋅ �s, where C =
∑q

i=1

1

l
biDi is a constant. This implies that the 

derivative of � (s) is a constant, hence � (s) is linear. This linear relationship holds until s reaches a crossing point. 
This is because when s reaches a crossing point, some of the intervals Ii may shrink to zero width (i.e., disappear) 

� (s) =
1

l

q∑
i=1

ti

∫
ti−1

ΘA (t) − ΘB (t + s) dt

(10)� (s) =
1

l

q∑
i=1

−Di ⋅
||Ii||

(11)� (s + �s) =
1

l

q∑
i=1

−Di ⋅
|||Îi
|||
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and new intervals with new angular difference between the two polylines may appear. On such occasions, new 
linear relationships between � (s) and s may take over. Therefore, a (s) is piecewise linear between each pair of 
consecutive crossing points. And we can write:

for some constants gi and hi. From the above computation, we have gi =
1

l

∑q

j=1
bjDj and 

hi = �
�
ei
�
− gi ⋅ ei =

1

l

∑q

j=1
∫ tj
tj−1

ΘA (t) − ΘB

�
t + ei

�
dt − gi ⋅ ei.

By the same argument above, the first main term of m (A,B) in Equation (9) (shown below) is a piecewise linear 
function of starting position s:

Since � (s) is piecewise linear, the second term 
(
wr − 1

)
⋅ �2 (s) is a piecewise quadratic in s and the boundaries 

of the pieces are in the set of crossing points. Therefore, �2 (s) is a piecewise quadratic function of s in each interval (
ei, ei+1

)
.

Theorem 1 If wr ≤ 1, the minimizers of m (A,B) in Equation (9) occur at the crossing points E =
{
ei, i = 1,…,K

}
. If wr > 1,  

the minimizers occur either at the crossing points in E, or at the set of stationary points 
F =

{
fi | fi ∈

(
ei, ei+1

)
and fi =

g̃i

2(1−wr)g2i
−

hi

gi
, i = 1, … ,K

}
, where g̃i =

1

l

∑q

i=1
biD

2
i
.

Proof  m (A,B) and m2 (A,B) have the same minimizer, and m2 (A,B) is piecewise quadratic in each 
(
ei, ei+1

)
 by 

Lemma 1.

If wr ≤ 1, the fact that wr − 1 ≤ 0 implies that the objective function in Equation (9) is concave (downwards). Hence, the 
minimizers only occur at ei, i = 1,…,K.

If wr > 1, then m (A,B) is convex (downwards) in 
(
ei, ei+1

)
, and the minimizer must be at either the boundary points ei, or 

the stationary point determined by:

Let g̃i =
1

l

∑q

i=1
biD

2
i
, and inserting Equation (11) into the above, we have:

(12)� (s) = gi ⋅ s + hi, s ∈
(
ei, ei+1

)

1

l

l

∫
0

(
ΘB (t + s) − ΘA (t)

)2
dt =

1

l

q∑
i=1

D2
i
⋅
||Ii||

�
(
m2 (A,B)

)
� s

=
1

l

q∑
i=1

biD
2
i
+ 2wr� (s) �

� (s) = 0

gi ⋅ s
∗
i
+ hi =

g̃i

2
(
1 − wr

)
gi

s ∗
i
=

g̃i

2
(
1 − wr

)
g2
i

−
hi

gi
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Therefore, if s ∗
i
∈
(
ei, ei+1

)
, then fi = s ∗

i
 is a possible minimizer of m (A,B).

The proof of the finite-optimality set above is similar, at least in spirit, to the proofs of the finite-optimality sets 
of the p-maxima problem (Church & Garfinkel, 1978) and the vector assignment ordered median problem (Lei & 
Church, 2015). In essence, we proved that improvements of the objective function (here, the sum of deformation 
and rotation) can be made in continuous regions of positions until certain critical event positions (E and F here) are 
encountered. Therefore, an optimal solution must exist among the break points. Overall, Theorem 1 means that 
to find the best position for matching A to B, we only need to enumerate the MTFD objective function at all critical 
events and then select the position with the smallest value of the following expression:

In particular, as we assume wr = 1 in this article, we only need to find the smallest 
∑

iD
2
i �Ii�
l

 for all the critical 
events along B.

3.5 | Combining angular difference and pointwise offset

To complement the angular discrepancy measure (shape deformation and rotation), we incorporate the directed 
Hausdorff distance and the MTFD to form a composite similarity measure that considers both pointwise offset 
and angular difference. The composite measure, called the directed turning function Hausdorff distance (DTFH 
distance), is defined as follows:

In the above, �AB and �AB are the shape deformation and rotation from A to B; hAB is the directed Hausdorff 
distance (i.e., point “offset”) from A to B. m � (A,B) is a weak angular distance, defined as:

m � (A,B) represents the minimum of the MTFDs (i.e., angular discrepancies) in the two opposite directions of 
matching. cshp, crot, and coff are cutoff values for shape difference, rotation, and offset, respectively. If any of them 
exceeds its associated cutoff value, the composite distance is defined to be infinity. Since the weak MTFD m � (A,B) 
is in radians and the point-offset distance hAB is in meters, we use a constant R to convert angular difference in 
radians to meters. In this article, we use R = 100 m∕rad. This means that we equate 1 radian of angular difference 
(approximately 57°) to 100 m of point-offset distance. In addition, we use a relative weight value wa on m̂ (A,B) to 
represent the emphasis over angular difference versus positional difference.

We also define an overall cutoff value c. If dDTFH ≥ c, then we consider dDTFH as infinity. The cutoff values should 
be chosen carefully to filter out only counterpart features that are unlikely to match. Of note is that we use the 
weak MTFD distance instead of the directed angular distance in the DTFH distance because the shape difference 
from the longer feature in A,B to the shorter one is not well-defined (and set to infinity).

It should also be noted that when the angular weight wa is set to 0, the DTFH measure involves the Hausdorff 
distance measure with a preprocessing step using the multiple cutoff distances (e.g., rotation and shape deforma-
tion). So even if wa = 0, the composite DTFH measure is not purely the Hausdorff distance measure.

(13)1

l

�
i

⎛⎜⎜⎝
Di −

∑
jDj

���Ij
���

l

⎞⎟⎟⎠

2

��Ii�� + wr ⋅ � (s)
2 =

∑
iD

2
i
��Ii��

l
+
�
wr − 1

��∑
iDi

��Ii��
l

�2

dDTFH (A,B) =

⎧
⎪⎨⎪⎩

∞, if 𝛽AB> cshp, 𝛼AB> crot , or hAB> coff

m� (A,B) ⋅R ⋅wa+hAB, otherwise

m � (A,B) = min (m (A,B) ,m (B,A))
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3.6 | Choosing a match plan based on the combined metric and optimization

To evaluate the effectiveness of the DTFH distance, we use two simple selection methods mentioned in Section 2 in 
a set of experiments to match road features. The first is the KCPQ, widely used in the database literature. The KCPQ 
assumes a one-to-one correspondence between counterpart features, and therefore cannot handle many-to-one cor-
respondence. To handle the many-to-one cases in part–whole relations, we use a unified conflation model developed 
in a companion article (Lei, Church & Lei, In review). It is an extension of the work of Li and Goodchild (2011), which 
uses two independent assignment problems (Li & Goodchild, 2010) to select part–whole matches in the two opposite 
directions of matching. By comparison, the unified conflation model harmonizes assignments in opposite directions in 
one model by utilizing new constraints to ensure the compatibility of opposite assignments. For the sake of complete-
ness, we describe the unified conflation model below. The following notation is needed:

•	 i, I are the index and set of features in dataset 1
•	 j, J are the index and set of features in dataset 2
•	 F =

{
(i, j) |dTFH (i, j) < c, i ∈ I, j ∈ J

}
 is the set of potential forward assignments for which assignment distances are 

less than the cutoff value
•	 Fi =

{
(i, j) |dTFH (i, j) < c, j ∈ J

}
 is the subset of admissible forward assignments from feature i ∈ I, and ||Fi|| is its size

•	 B =
{
(j, i) |dTFH (j, i) < c, i ∈ I, j ∈ J

}
 is the set of backward assignments with below-cutoff distances

•	 Bj =
{
(j, i) |dTFH (j, i) < c, i ∈ I

}
 is the subset of admissible backward assignments from feature j ∈ J, and |||Bj

||| is its 
size

•	 cij = D + 1 − dTFH (i, j) is a similarity measure between i  and j, where D is the largest finite distance between 
features I  and J. By definition, all cij and cji for F and B are positive.

The decision variables are:

•	 uij = 1 if feature i ∈ I is matched to feature j ∈ J, or 0 otherwise. Semantically, uij = 1 means that feature i  be-
longs to j, or i  corresponds to a part of j.

•	 vji = 1 if feature j ∈ J is matched to feature i ∈ I, or 0 otherwise. If both uij and vji are 1, i  and j are considered to 
be the same feature.

Given this notation, the unified conflation model is:

Subject to:

(14)Maximize Z =
∑

(i,j) ∈ F

cijuij +
∑

(j,i) ∈B

c �
ji
vji

(15)
∑

(i,j) ∈ F

uij ≤ 1 for each i

(16)
∑

(j,i) ∈B

vji ≤ 1 for each j

(17)
(|||Bj

||| − 1
)
uij +

∑
k∈Bj ,k≠ i

vjk ≤ |||Bj
||| − 1 for (i, j) ∈ F

(18)

(|Fi| − 1
)
vji +

∑
k∈ Fi ,k≠ j

uik ≤ ||Fi|| − 1 for (i, j) ∈ B
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The objective (14) of the unified conflation model is to maximize the total similarity between matched features. 
Constraint (15) maintains that a feature i  in dataset I  can belong to at most one feature in dataset J. Conversely, 
constraint (16) maintains the same condition as constraint (15) in the opposite direction. Constraint (17) ensures 
the compatibility of opposite assignments. In particular, it maintains that if i  belongs to j (i.e., uij = 1), then j can-
not belong to any feature k in I  other than i  itself (i.e., 

∑
k∈Bj ,k≠ivjk = 0). If i  does not belong to j (i.e., uij = 0), then 

the constraint is not binding. Constraint (18) maintains compatibility of assignments in the opposite direction. 
Constraints (17) and (18) together prevent the inconsistency depicted in Figure 3 from happening. Constraints (19) 
and (20) define the assignment variables uij, vji as binary decision variables.

4  | E XPERIMENT

4.1 | Experiment settings

In this article, we have used road datasets (Figure 7) covering six test sites in Santa Barbara, CA as the test data. 
They have the same geographic extent as the datasets used by Li and Goodchild (2011), but come from differ-
ent data sources. We use OSM and TIGER/Line datasets, both publicly available. The OSM dataset represents 
road networks of the study areas in January 2018. The TIGER/Line dataset is the same as the one used by Li and 
Goodchild (2011).

To evaluate the accuracy of the proposed method, we manually labeled matches for all test sites as ground-
truth data. The accuracy is evaluated based on the widely used recall and precision rates, which compare the 
algorithm-predicted matches and the ground truth. Recall is defined as:

where TM is the number of true matches for which the algorithm and the ground truth agree, and AM is the number 
of all matches in the ground truth. Precision is defined as:

where TU is the number of true unmatches (features that the algorithm correctly kept unmatched according to the 
ground truth), FM is the number of false matches (features that are falsely matched by the algorithm, but not matched 
in the ground truth), and FU is the number of false unmatches (features that are matched in the ground truth but falsely 
unmatched in the algorithmic result). Recall reflects the algorithm's capability in capturing true matches. Precision 
reflects additionally the algorithm's discriminative power to filter out false matches. To evaluate the average accuracy 
of the conflation methods, we also compute the F score from the recall and precision as follows:

We coded the TF-based distances in Matlab/Octave and computed the distance matrix for the metric between 
all pairs of features. As mentioned earlier, we use a default rotation weight (wr) of 1.0. We then implemented the 
two conflation models. The first one is the KCPQ described earlier. The second is the unified conflation model 

(19)uij ∈ {0, 1} for each (i, j) ∈ F

(20)vji ∈ {0, 1} for each (j, i) ∈ B

Recall = TM∕AM

Precision = (TM + TU) ∕ (TM + TU + FM + FU)

F = 2 ⋅

Recall ⋅ Precision

Recall + Precision
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(14)–(20), which is implemented as an integer linear program using IBM/ILOG CPLEX Studio 12.10. We imple-
mented two versions of each model, with one version using only the directed Hausdorff distance and the other 
version using the hybrid DTFH distance. Both models are relatively straightforward to implement as they do not 

F I G U R E  7   Road networks of six test sites in Santa Barbara, CA using OSM (green) and TIGER/Line (red). 
Matched features in the ground truth are depicted with thicker lines
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require many parameters, except for cutoff distances to narrow down the search space. The composite DTFH 
distance requires additional parameters, including angular weight values. Next, we test the performance of the 
new distance metric versus the plain Hausdorff distance.

F I G U R E  8   Recall rates for the KCPQ and unified conflation models on six test sites, with angular weight 0 
and angular cutoff ranging over 0.1, 0.2, …, 1.5 radians
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4.2 | Performance of the composite distance metric

To evaluate the effectiveness of the composite DTFH distance, we computed the recall and precision rates for the 
above-mentioned conflation models under different parameters. Figure 8 presents the test results for recall rates 
of the tested models versus angular cutoff values, for each test site in Figure 7. We used the standard directed 
Hausdorff distance as the base case similarity measure for all tested models. For the proposed DTFH distance, we 

F I G U R E  9   Precision for the KCPQ and unified conflation models on six test sites, with an angular weight of 0 
and angular cutoff ranging over 0.1, 0.2, …, 1.5 radians
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initially kept the angular weight at 0 as a baseline and tested a series of angular cutoff distances in 0.1, 0.2, …, 1.5 
radians. We stop at 1.5 radians (approximately �∕2) because it is the maximum possible rotation and also a large 
value for angular shape difference. The offset cutoff and total cutoff values are set at 100 and 150 m, respectively, 
as these are what we found to be sufficiently large values.

Not surprisingly, the recall rates (Figure 8) for models with the composite TF Hausdorff distance dropped com-
pared to those of the original Hausdorff distance, since angular cutoff distances were used to remove candidate 
matches. This is especially true for stringent angular cutoff values of 0.3 radians or below, for which recall rates of 
the composite DTFH distance dropped below those of the baseline for all six test sites. For angular cutoff values of 

F I G U R E  1 0   Recall rates for the KCPQ and unified conflation models with angular weight from 0 to 1.0
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0.4 radians or greater, we observe no drop in recall rates. All that was captured by the standard Hausdorff distance 
is captured by the composite DTFH distance.

Somewhat surprisingly though, the recall rates for the composite distance are actually higher than those of 
the standard Hausdorff distance for several sites with suitable angular cutoffs. For sites 4 and 5, at angular cutoff 
0.4, recall increased by 2.4 and 7.4% respectively for the KCPQ model, and by 2.6 and 3.6% respectively for the 
unified model. This could be explained by the fact that in removing unlikely matches, the composite metric can 
free some road features from being incorrectly assigned and thereby allow them to be assigned correctly (thereby 
increasing recall).

F I G U R E  11   Precision rates for the KCPQ and unified conflation models with angular weight from 0 to 1.0
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Comparing results between the two models, we can observe that the many-to-one unified conflation model 
has consistently higher recall rates than the one-to-one KCPQ model. This is because the KCPQ model is limited 
by its basic one-to-one assumption and cannot capture any partial matches by design. Although both models gain 
from using the composite metric, the many-to-one unified conflation model seems to have higher improvement 
in recall rates on average.

Figure 9 presents the precision rates of tested models under the same settings as Figure 8. Similar to the recall 
test, the precision rates for the composite distance are lower for very small angular cutoff values below 0.3 radi-
ans. However, unlike the recall rates, we can observe that with few exceptions, the precision rates of models with 
the composite DTFH distance are generally better than those of the models with standard Hausdorff distance 
when the angular cutoff is greater than 0.3 radians. For example, when the angular cutoff is 0.4 radians, the pre-
cision for the unified model has increased by 6.9, 10, 9.2, 8.9, 8.4, and 1.2% respectively for test sites 1 through 6 
by using the new DTFH distance. This amounts to an average increase in precision of 7.4%. In terms of F score, the 
performance of the unified model has increased by 4.2, 5, 5.1, 6, 6.2, and 6.1% respectively for sites 1 through 6, 
which amounts to an average increase of 5.43% in F score.

The comparison of precision rates between the two conflation models is different from the situation of recall 
rates. For the standard Hausdorff distance, four out of six sites (sites 1, 2, 4, and 5) have similar precision rates 
for the unified (m: 1) and KCPQ (1: 1) models. This means that the significantly higher recall rates of the m: 1 model 
for these sites in Figure 8 came at a cost. Although the m: 1 model captures more true matches, it also introduces 
a greater number of false matches, which cancels out its potential contribution to precision. The difference also 
highlights the importance of using a strong similarity measure in the more “noisy” many-to-one conflation model.

Next, we test the sensitivity of the angular weight value wa. Based on the previous test, we chose an angular 
cutoff value of 0.6 radians. Figure 10 presents the recall rates for the two tested models for a series of angular 
weights in 0, 0.1, … 1.0. Since the composite DTFH distance is the sum of the point-offset distance and the 

F I G U R E  1 2   A solution of the unified conflation model with directed Hausdorff distance, for test site #5. 
Cutoff is 150 m. Blue/yellow arrows represent correct/erroneous matches
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weighted angular distance, a very large angular weight value may cause the composite distance to exceed the 
total cutoff value and therefore serve as a penalty. From Figure 10, there is no discernible drop in recall rates with 
the increase of angular weight values (except for a slight drop in recall for the unified model for site #2 at large 
angular weight values).

Figure 11 presents the precision rates for the same test (on angular weights) as Figure 10. We observe slight in-
creases of precision rates with increasing angular weights for sites 4 and 5. Overall, using angular cutoff (ca ) values 
seems to be a more effective strategy in enhancing traditional distances with orientation and shape differences.

4.3 | Case studies

To illustrate the effectiveness of the new DTFH distance metric, we present in Figures 12 and 13 solutions of the 
unified conflation model using the standard Hausdorff distance and the new distance, respectively. The blue ar-
rows in both figures represent correct matches and the yellow arrows represent false matches. In Figure 12, we 
can observe typical errors associated with the lack of angular information in the standard Hausdorff distance. 
Near the bottom of the map, two short horizontal lines were incorrectly matched to a street that is almost per-
pendicular to them. These should either have been forbidden or allowed only with great penalty. On the right edge 
and the lower left corner of the figure, we can observe two similar errors. By comparison, the model solution with 
composite TF Hausdorff distance (Figure 13) avoided most of these problems. While there are still some remaining 
error matches in Figure 13, they are primarily false matches associated with small segments in the OSM (green) 
dataset that do not have counterparts in the TIGER (red) dataset. Overall, the angular measure improved the ac-
curacy of the match considerably.

F I G U R E  1 3   A solution of the unified conflation model with composite distance. Cutoff distance is 150 m, 
angular cutoff is 0.4, offset cutoff is 100 m, angular weight is 0. Blue/yellow arrows are correct/erroneous 
matches, respectively
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5  | CONCLUSIONS AND FUTURE DIREC TIONS

Combining geospatial data from different sources is often required in the analysis of many spatial data. This pro-
cess is known as conflation, and it is often a difficult task due to the difference in representation and level of 
detail in different data sources. A key factor in matching linear features such as roads and rivers is their shape and 
orientation. This article extends the classic TF distance into a new composite similarity metric for matching linear 
features in maps and GIS. The new distance metric has several advantages over the standard TF distance.

First, the new distance allows matching a linear feature to a larger counterpart feature without requiring scal-
ing the input features. This avoids falsely matching map features that are of different sizes.

Second, the new TF distance allows the accurate location of the portion of the to-feature that corresponds to 
the from-feature by considering both shape deformation and orientation difference (rotation). This generalization 
of the location criterion in the TF distance metric allows the correct rotation in partial matches to be identified. As 
with the standard TF distance, we proved that the MTFD also has a finite set of positions and one only needs to 
evaluate these positions to compute the correct deformation and rotation.

To verify the effectiveness of the new distance metric, we compared its performance with the standard 
point-offset-based Hausdorff distance using two prototypical methods for handling one-to-one and one-to-many 
matching, respectively. Using data similar to prior work in the literature, we found that the proposed composite 
distance metric consistently improves the accuracy of both tested models. In particular, the precision under ap-
propriate parameters has been improved by 7.4% on average for the one-to-many model over the six test sites.

Overall, this article demonstrates the feasibility of applying angular distance metrics for matching polyline 
features such as roads in GIS. Several areas of research are worthy of future investigation. Given the generality 
of the new distance metric, it could be applied to other types of map conflation problems such as the conflation 
of river networks. In addition, future work will be needed to examine the choice of the parameters, including the 
weight values and cutoff values for datasets in large-scale analysis. This is left as future work. While this research 
focuses on measuring the similarity at the element level (e.g., between individual streets), topological relationships 
between polylines could provide valuable information about the similarity between groups of elements (e.g., at 
the path level).
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