

1 **High-surety isothermal amplification and detection of SARS-CoV-2**

2
3 Sanchita Bhadra^{1,2*}, Timothy E. Riedel³, Simren Lakhotia³, Nicholas D. Tran³, and
4 Andrew D. Ellington^{1,2*}

5
6 ¹ Department of Molecular Biosciences, College of Natural Sciences, The University of
7 Texas at Austin, Austin, TX 78712, USA.

8
9 ² Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX
10 78712, USA.

11
12 ³ Freshman Research Initiative, DIY Diagnostics Stream, The University of Texas at
13 Austin, Austin, TX 78712, USA

14
15 *Corresponding authors:
16 Email: ellingtonlab@gmail.com, sanchitabhadra@utexas.edu

17
18 Keywords:
19 Loop-mediated isothermal amplification, strand displacement probes, SARS-CoV-2,
20 multiplex assays, isothermal nucleic acid diagnostics, lateral flow assays, Boolean logic

21
22
23
24

25 **ABSTRACT**

26 Isothermal nucleic acid amplification tests (iNAT), such as loop-mediated isothermal
27 amplification (LAMP), are good alternatives to polymerase chain reaction (PCR)-based
28 amplification assays, especially for point-of-care and low resource use, in part because
29 they can be carried out with relatively simple instrumentation. However, iNATs can often
30 generate spurious amplicons, especially in the absence of target sequences, resulting in
31 false positive results. This is especially true if signals are based on non-sequence-specific
32 probes, such as intercalating dyes or pH changes. In addition, pathogens often prove to
33 be moving, evolving targets, and can accumulate mutations that will lead to inefficient
34 primer binding and thus false negative results. Multiplex assays targeting different regions
35 of the analyte and logical signal readout using sequence-specific probes can help to
36 reduce both false negatives and false positives. Here we describe rapid conversion of
37 three previously described SARS-CoV-2 LAMP assays that relied on non-sequence-
38 specific readout into individual and multiplex one-pot assays that can be visually read
39 using sequence-specific oligonucleotide strand exchange (OSD) probes. We describe
40 both fluorescence-based as well as Boolean logic gated colorimetric lateral flow readout
41 methods and demonstrate detection of SARS-CoV-2 virions in crude human saliva.

42

43

44

45

46

47

48

49 **Importance**

50 One of the key approaches to treatment and control of infectious diseases, such as
51 COVID-19, is accurate and rapid diagnostics that is widely deployable in a timely and
52 scalable manner. To achieve this, it is essential to go beyond the traditional gold standard
53 of qPCR that is often faced with difficulties in scaling due to complexity of infrastructure
54 and human resource requirements. Isothermal nucleic acid amplification methods, such
55 as loop mediated isothermal amplification (LAMP), have been long pursued as ideal, low
56 tech alternatives for rapid, portable testing. However, isothermal approaches often suffer
57 from false signals due to employment of non-specific readout methods. We describe
58 general principles for rapidly converting non-specifically read LAMP assays into assays
59 that are read in a sequence-specific manner using strand displacement probes (OSD).
60 We also demonstrate that inclusion of OSD probes in LAMP assays maintains the
61 simplicity of one-pot assays and visual yes/no readout using fluorescence or colorimetric
62 lateral flow dipsticks while providing accurate sequence-specific readout and the ability
63 to logically query multiplex amplicons for redundancy or co-presence. These principles
64 not only yielded high surety isothermal assays for SARS-CoV-2 but would aid in design
65 of more sophisticated molecular assays for other analytes as well.

66

67

68

69

70

71

72

73 **INTRODUCTION**

74 Loop-mediated isothermal amplification (LAMP) uses the strand-displacing *Bst* DNA
75 polymerase and 4 primers (FIP, BIP, F3, and B3) that bind to 6 target regions
76 (B3, B2, B1, F1c, F2c and F3c) to generate 10^9 to 10^{10} copies of DNA or RNA targets,
77 typically within 1 to 2 h (**Figure 1**) (1). In greater detail, F2 in FIP (F1c-F2) and B2 in BIP
78 (B1c-B2) initiate amplification. F1c and B1c self-prime subsequent amplification.
79 F3- and B3-initiated DNA synthesis displaces FIP- and BIP-initiated strands. 3'-ends of
80 the resulting single-stranded, dumbbell-shaped amplicons are extended to hairpins by
81 *Bst* polymerase. FIP and BIP hybridize to the single-stranded loops and initiate DNA
82 synthesis that opens the hairpin to form concatameric amplicons containing self-priming
83 3'-end hairpins. The ensuing continuous amplification generates double-stranded
84 concatameric amplicons with self-priming hairpins and single-stranded loops (1).

85

86 LAMP can rival PCR for sensitivity without thermocycling (2), and additional stem and loop
87 primers (LB and LF for backward and forward loop primer, respectively) can accelerate
88 amplification, with some LAMP assays being complete within 10 min (3, 4). However, since
89 LAMP is commonly read using non-specific methods (such as, Mg^{2+} precipitation,
90 intercalating dyes, or labeled primers) that cannot distinguish spurious amplicons that
91 frequently arise from continuous amplification, its utility can be limited. We have previously
92 overcome these drawbacks using oligonucleotide strand exchange (OSD) probes (5),
93 based in part on advances in strand exchange DNA computation (**Figure 1**) (6). Strand
94 exchange occurs when two partially or fully complementary strands hybridize to each
95 other by displacing pre-hybridized strand(s) (**Figure 1B**). Strand exchange usually

96 initiates by basepairing at single-stranded 'toeholds' and progresses to form additional
97 basepairs via branch migration, allowing the rational design of complex algorithms and
98 programmable nanostructures (7-11). The hemiduplex OSD probes contain a so-called
99 'toehold' that allows sequence-specific interaction with a target molecule, and have
100 opposed fluorophore and quencher moieties. In the presence of a complementary target,
101 the OSD probes can undergo strand exchange and separation, leading to an easily read
102 fluorescence signal (5). In essence the OSD probes are functional equivalents of TaqMan
103 probes and have been shown to accurately report single or multiplex LAMP amplicons
104 from few tens of targets without interference from non-specific amplicons or inhibitors (5,
105 12). Of equal import, the programmability of OSD probes allows their adaptation to many
106 different assay formats, including readout of LAMP signal using off-the-shelf devices such
107 as glucometers and colorimetric lateral flow dipsticks for pregnancy hormones or
108 fluorescein (13-18).

109

110 LAMP-OSD is designed consciously to be easy to use and interpret, which makes it a
111 reliable choice for either screening or validation of disease states. Base-pairing to the
112 toehold region is extremely sensitive to mismatches, ensuring specificity, and the
113 programmability of both primers and probes makes possible rapid adaptation to new
114 diseases or new disease variants. We have shown that higher order molecular information
115 processing is also possible, such as integration of signals from multiple amplicons (19).
116 Overall, the use of sequence-specific probes allow construction of strand exchange
117 computation circuits that act as 'matter computers' (7-10), something that is not generally
118 possible within the context of a PCR reaction (which would of necessity melt the

119 computational devices).

120

121 We have taken pains to make LAMP-OSD robust for resource-poor settings. Lyophilized
122 master mixes are stable without cold chain for extended durations and can be operated
123 simply upon rehydration and addition of crude sample (20). The one-pot operation, direct
124 analysis of crude specimens, and easy yes/no visual readout make LAMP-OSD ideal for
125 field operation with minimal training and resources.

126

127 OSD probes can be readily designed for integration into existing LAMP assays without
128 significant disruption to standard assay practice. To that end, here we demonstrate the
129 conversion of three recently described LAMP primer sets for detection of SARS-CoV-2,
130 but that used non-specific readout methods (**Supplementary Table 1**). The individual
131 and multiplexed LAMP-OSD versions of these assays maintain the simplicity of visual
132 yes/no readout, while endowing the assays with the inherent accuracy of probe-based
133 signal transduction including conversion to Boolean AND logic gated colorimetric readout
134 of amplicon co-presence on lateral flow dipsticks. We also demonstrate the feasibility of
135 sample-to-answer operation of LAMP-OSD by directly analyzing human saliva spiked with
136 SARS-CoV-2 virions. (An earlier version of this manuscript was submitted to an online
137 preprint archive (21)).

138

139 **METHODS**

140

141 **Chemicals and reagents**

142 All chemicals were of analytical grade and were purchased from Sigma-Aldrich (St. Louis,
143 MO, USA) unless otherwise indicated. All enzymes and related buffers were purchased
144 from New England Biolabs (NEB, Ipswich, MA, USA) unless otherwise indicated. All
145 oligonucleotides and gene blocks (**Table 1**) were obtained from Integrated DNA
146 Technologies (IDT, Coralville, IA, USA). SARS-CoV-2 N gene synthetic transcript was a
147 gift from the Schoggins lab at UT Southwestern Medical Center, Dallas, TX. SARS-CoV-
148 2 genomic RNA and inactivated virions were obtained from American Type Culture
149 Collection, Manassas, VA, USA. SARS-CoV-2 N gene armored RNA was obtained from
150 Asuragen, Austin, TX, USA. HybriDetect - Universal Lateral Flow Assay Kit (Milenia
151 Biotec, Gießen, Germany) for detection of biotin- and fluorescein-labeled analytes was
152 purchased from TwistDx (Maidenhead, UK).

153

154 **OSD probe design**

155 We designed OSD probes (**Table 1**) for three recently described LAMP primer sets, from
156 here on referred to as the Tholoth, Lamb (5-Lamb uses 5 primers – FIP, BIP, F3, B3, LB
157 while 6-Lamb uses 6 primers – FIP, BIP, F3, B3, LB, LF), and NB primers. The three
158 primer sets target different regions in the ORF1AB and N genes of the SARS-CoV-2
159 genome. Fluorogenic OSD probes were designed for each of these primer sets using our
160 previously described principles and the nucleic acid circuit design software NUPACK
161 available freely at <http://www.nupack.org/> (5, 22). Briefly, the target derived loop regions
162 between the F1 and F2 primer binding sites were chosen as OSD binding regions for
163 each of the three LAMP primer sets (**Supplementary Figure 1**). The long OSD strand

164 was designed to be complementary to this loop region. Single stranded 10-12 nucleotides
165 long toehold regions were designated on one end of this long strand while a
166 complementary short OSD strand was designed to hybridize to the remaining portion of
167 the long strand. The long strand was labeled with a fluorescein moiety at the terminus not
168 acting as the toehold. The short strand was labeled with a quencher and all free 3'-OH
169 ends were blocked with inverted dT to prevent extension by DNA polymerase.

170

171 Strand displacement probes for Boolean AND gated reporting (AND-OSD, **Table 1**) of
172 Lamb and NB LAMP amplicon co-presence on fluorescein-specific lateral flow dipsticks
173 were designed by making the following modifications to the amplicon-specific OSD
174 probes described above. The fluorescein moiety at the 3'-end of the Lamb OSD long
175 strand was replaced with a 52 nucleotide long random sequence engineered to act as a
176 handle for hybridization to the NB AND-OSD long strand (**Figure 7A**). Similarly, the Lamb
177 AND-OSD short strand was extended with 53 random nucleotides at its 5'-end to act as
178 a hybridization handle for the NB AND-OSD short strand. The NB AND-OSD was created
179 by using the reverse complementary sequences of the long and short NB OSD strands
180 such that the toehold was now situated at the 5'-end of the AND-OSD long strand. The
181 3'-end of the long strand and the 5'-end of the short strand of the NB AND-OSD were also
182 extended with 52 and 53 nucleotide long sequences, respectively. Both extensions
183 included 28 base domains that were complementary to the Lamb AND-OSD long and
184 short strand extensions, respectively (**Figure 7A**). All free 3'-OH ends were blocked with
185 inverted dT to prevent extension by DNA polymerase.

186

187 **Reverse transcription (RT) LAMP assay**

188 Individual LAMP assays were assembled in a total volume of 25 μ L of 1X Isothermal
189 buffer (NEB; 20 mM Tris-HCl, 10 mM $(\text{NH}_4)_2\text{SO}_4$, 50 mM KCl, 2 mM MgSO₄, 0.1% Tween
190 20, pH 8.8 at 25°C). The buffer was supplemented with 1.4 mM dNTPs, 0.4 M betaine, 6
191 mM additional MgSO₄, 2.4 μ M each of FIP and BIP, 1.2 μ M of indicated loop primers, 0.6
192 μ M each of F3 and B3 primers, 16 units of *Bst* 2.0 DNA polymerase, and 7.5 units of
193 warmstart RTX reverse transcriptase. Amplicon accumulation was measured by adding
194 OSD probes. First, Tholoth, Lamb, and NB OSD probes were prepared by annealing 1
195 μ M of the fluorophore-labeled OSD strand with 2 μ M, 3 μ M, and 5 μ M, respectively of the
196 quencher-labeled strand in 1X Isothermal buffer. Annealing was performed by denaturing
197 the oligonucleotide mix at 95 °C for 1 min followed by slow cooling at the rate of 0.1 °C/s
198 to 25 °C. Excess annealed probes were stored at -20 °C. Annealed Tholoth, Lamb, and
199 NB OSD probes were added to their respective LAMP reactions at a final concentration
200 of 100 nM of the fluorophore-bearing strand.

201

202 Boolean OR logic processing fluorogenic multiplex RT-LAMP-OSD assays comprising
203 both Tholoth and NB primers and probes were set up using the same conditions as above
204 except, the total LAMP primer amounts were made up of equimolar amounts of Tholoth
205 and NB primers. Boolean OR logic processing multiplex RT-LAMP-OSD assays
206 comprising 6-Lamb and NB primers and probes were also set up using the same
207 conditions as above with the exception that the total LAMP primer amounts were made
208 up of equimolar amounts of 6-Lamb and NB primers supplemented with 0.2 μ M each of
209 additional NB FIP and BIP primers.

210

211 Individual RT-LAMP-OSD assays for colorimetric lateral flow readout for Tholoth and 6-
212 Lamb primer sets were set up as detailed above except the LB primers were replaced
213 with equal amount of respective biotinylated LB primers. NB RT-LAMP-OSD assays for
214 colorimetric lateral flow readout were set up as detailed above except with inclusion of
215 additional 0.4 μ M each of biotinylated FIP and BIP primers. OR Boolean logic processing
216 multiplex RT-LAMP-OSD assays for lateral flow readout were set up using NB and 6-
217 Lamb primers and probes as detailed above with the following exceptions: the 0.2 μ M
218 additional NB FIP and BIP were both biotinylated and the NB and Lamb annealed OSD
219 probes were used at a final concentration of 50 nM and 80 nM, respectively, of the
220 fluorophore labeled strand. AND Boolean logic processing multiplex RT-LAMP-OSD
221 assays for lateral flow readout were set up in a total volume of 25 μ L comprising 1X
222 Isothermal buffer, 1.4 mM dNTPs, 0.4 M betaine, 6 mM additional MgSO₄, 1.2 μ M each
223 of Lamb FIP and BIP, 1.2 μ M each of NB FIP and BIP, 0.6 μ M of biotinylated Lamb LB
224 primer, 0.6 μ M of Lamb LF primer, 0.6 μ M of fluorescein-labeled NB LB primer, 0.3 μ M
225 each of both NB and Lamb F3 and B3 primers, 16 units of *Bst* 2.0 DNA polymerase, 7.5
226 units of warmstart RTX reverse transcriptase, and annealed AND-OSD probes at a final
227 concentration of 100 nM. Annealed AND-OSD probes were assembled by mixing 1 μ M
228 each of polyacrylamide gel purified NB and Lamb AND-OSD short and long strands in 1X
229 Isothermal buffer followed by 1 min incubation at 95 °C and slow cooling to 25 °C at the
230 rate of 0.1 °C/sec.

231

232 Templates were serially diluted in TE buffer (10 mM Tris-HCl, pH 7.5, 0.1 mM EDTA, pH
233 8.0) immediately prior to use and 3 µL to 5 µL of these template preparations were
234 included in each LAMP-OSD reaction, achieving a total reaction volume of 25 µL. In
235 some experiments, templates were introduced with human saliva that had been heated
236 at 95 °C for 10 min. Templates used included: zero to several hundred copies per reaction
237 of synthetic double stranded linear DNA gBlock (IDT, Coralville, Iowa, USA), *in vitro*
238 transcribed RNA, SARS-CoV-2 viral genomic RNA, inactivated SARS-CoV-2 virions, and
239 inactivated SARS-CoV Urbani virions. Following addition of templates to RT-LAMP-OSD
240 reagents, reaction mixes were incubated at 65 °C for indicated duration.

241

242 Some LAMP-OSD reactions were analyzed in real-time using LightCycler 96 real-time
243 PCR machine (Roche, Basel, Switzerland). Reactions were subjected to 30 cycles of two-
244 step incubations – step 1: 150 sec at 65 °C, step 2: 30 sec at 65 °C. Fluorescence was
245 measured in the FAM channel during step 2 of each cycle. LAMP-OSD assays intended
246 for visual ‘yes/no’ readout of endpoint fluorescence were assembled in 0.2 mL optically
247 clear thin-walled tubes with low auto-fluorescence (Axygen, Union City, CA, USA).
248 Following indicated duration of amplification at 65 °C, endpoint fluorescence was imaged
249 using either a cellphone and a blue LED transilluminator or a BioRad ChemiDoc camera
250 (Bio-Rad Laboratories, Hercules, CA, USA).

251

252 Colorimetric lateral flow readout of fluorescein and biotin dual labeled RT-LAMP-OSD
253 amplicons was performed using HybriDetect - Universal Lateral Flow Assay Kit (Milenia
254 Biotec, Gießen, Germany) for detection of biotin- and fluorescein-labeled analytes

255 according to the manufacturer's instructions. Briefly, following 1 h amplification at 65 °C,
256 the entire 25 µL of a RT-LAMP-OSD reaction was mixed with an equal volume of
257 HybriDetect assay buffer (Tris-buffered saline). A HybriDetect dipstick was then placed
258 upright in this solution such that only a portion of the sample application pad was
259 immersed in the liquid. Upward lateral flow of liquid was allowed to occur for 5-15 min at
260 room temperature prior to imaging the colorimetric results with a cellphone camera.

261

262 **RESULTS**

263

264 Integration of OSD probes into pre-published SARS-CoV-2 LAMP primer sets

265 A series of 11 recently described primer sets for SARS-CoV-2 were screened using
266 WarmStart® Colorimetric LAMP 2X Master Mix (NEB, Ipswich, MA, USA) according to
267 the manufacturer's protocol (**Supplementary Table 1**). Spurious amplification was also
268 assessed in standard real-time RT-LAMP reactions assembled from individual
269 components where OSD reporters were substituted with the intercalating fluorophore
270 EvaGreen (Biotium, Hayward, CA, USA), according to the manufacturer's instructions.
271 While there was some variation in the false positive rates between the two assay
272 methods, likely due to differences in assay composition and readout sensitivities, overall
273 we found that 9 of the 11 sets showed significant no-template amplification often in over
274 10% of the replicates in less than an hour of incubation at 63-65 °C (**Supplementary**
275 **Figure 2**). These results are consistent with other published results that rely on non-
276 specific readout, such as colorimetric LAMP reactions, rather than on nucleic acid probe-
277 based detection (23). In fact, for many published assays, color changes must be read
278 within a narrow window of time in order to minimize spurious conclusions, a consideration

279 that does not scale well for diagnostic screening, especially at point-of-care or as an early
280 part of a clinical diagnostics pipeline.

281

282 To suppress potential false positive readout, we chose to develop OSD probes for three
283 of the LAMP primer sets, termed herein as NB, Lamb, and Tholoth (**Table 1** and
284 **Supplementary Figure 1**). These primer sets target three different regions of the viral
285 genome, the N gene, the NSP3 coding region of ORF1AB, and the RNA-dependent RNA
286 polymerase coding region of ORF1AB. Of the three primer sets, the NB assay had the
287 lowest propensity for spurious signal when analyzed by non-specific colorimetric readout
288 or by fluorescence dye-based measurements (**Supplementary Figure 2**). Similarly, the
289 Lamb primer set displayed minimal non-specific amplification. However, the Tholoth
290 assay demonstrated a frequent tendency for false signal. To create LAMP-OSD versions
291 of these assays, we designed OSD probes that were complementary to one of the loop
292 sequences in each of the three LAMP amplicons. Subsequently, Tholoth, Lamb, and NB
293 LAMP-OSD assays were setup individually by mixing separate reaction components as
294 indicated in the **Methods** section. Each individual assay contained its specific OSD
295 probes along with both inner primers FIP and BIP and both outer primers F3 and B3. In
296 addition, each assay also received the backward loop (LB) primer that bound to the
297 amplicon loop between B1c and B2 sites that was not recognized by the respective OSD
298 probe. The forward loop (LF) primers that overlapped the Tholoth and NB OSD binding
299 regions were excluded. The LF primer was also initially excluded in Lamb LAMP-OSD
300 assay even though the amplicon loop that bound this loop primer was long enough to
301 accommodate a non-overlapping OSD reporter; this was done to fairly compare the

302 amplification kinetics of all three assays in a 5-primer format. In later versions of the
303 assay with the Lamb primers, all 6 primers were included (designated as “6-Lamb”).
304
305 For rapid prototyping, these LAMP-OSD assays were challenged with readily available *in*
306 *vitro* transcribed RNA or double stranded DNA templates as surrogates for SARS-CoV-2
307 virions and viral genomic RNA. As shown in **Figure 2**, in response to target templates, all
308 three LAMP-OSD assays generated strong OSD signal that could be measured both in
309 real-time and observed visually at endpoint without interference from noise. No spurious
310 signals were observed in response to RNA from other coronaviruses, such as Middle East
311 Respiratory Syndrome coronavirus (MERS-CoV) (**Figure 2**) or SARS-CoV Urbani
312 (**Supplementary Figure 3**). We then tested the three LAMP-OSD assays using SARS-
313 CoV-2 genomic RNA as templates. While the NB and Tholoth LAMP-OSD assays were
314 performed using 5 primers (FIP, BIP, F3, B3, and LB), the Lamb LAMP-OSD assay was
315 tested using either 5 primers (FIP, BIP, F3, B3, and LB) or 6 primers (FIP, BIP, F3, B3,
316 LB, and LF). Amplification kinetics in representative assays was verified in real-time
317 (**Supplementary Figure 3**) and following 90 min of amplification at 65 °C, presence or
318 absence of OSD fluorescence at endpoint was visually observed. As shown in **Figure 3**,
319 presence of SARS-CoV-2 genomic RNA resulted in bright, easily detected fluorescence
320 in all three LAMP-OSD assays. The 6-primer version of Lamb LAMP-OSD could detect
321 fewer genomic RNA copies compared to the 5-primer version of the assay. In contrast,
322 all assays showed no signal in the presence of only human genomic DNA. Differences in
323 performance of various primer sets is likely due to the interplay of their propensities for

324 spurious amplification (24), primer and foldback stabilities, amplicon lengths (region from
325 F2-B2), loop lengths, and amplicon GC contents.

326

327 **Multiplex LAMP-OSD assay for SARS-CoV-2**

328 Multiplex assays designed to detect multiple sequences from an organism are often
329 employed to improve the accuracy of identification (25, 26). CDC recommended
330 diagnostic protocol for SARS-CoV-2 includes RT-qPCR amplification of at least two
331 different regions of the viral genome. In fact, a recent pre-publication demonstrated a
332 multiplex PCR approach to enhance efficiency of detecting SARS-CoV-2 at low copy
333 numbers (27).

334

335 Having determined that the individual LAMP-OSD assays with NB, Tholoth, and Lamb
336 primers could signal the presence of SARS-CoV-2 RNA, we sought to execute these
337 assays in a multiplexed format to create internally redundant assays for SARS-CoV-2.

338 We chose to multiplex the NB assay with either the 6-Lamb assay or the Tholoth assays
339 because they target different viral genes: the N gene and the ORF1AB region,
340 respectively. We first tested the ability of both NB and Tholoth primer sets to amplify their
341 respective synthetic targets (*in vitro* RNA transcripts of N gene and ORF1AB gBlock DNA
342 templates) in a multiplex assay format by assembling LAMP-OSD reactions containing
343 equimolar amounts of both LAMP primer sets with either only one or both OSD probes.

344

345 When these multiplex assays were seeded with both types of target templates, both
346 Tholoth and NB primer sets led to an increase in their respective OSD fluorescence that

347 could be readily distinguished visually from assays lacking specific templates at
348 amplification endpoint (**Supplementary Figure 4**). Multiplex assays containing both OSD
349 probes demonstrated an additive effect, with OSD signal being brighter than assays
350 containing only one type of OSD. Similarly, both NB and 6-Lamb primer sets could also
351 amplify their respective targets in a multiplex assay (**Supplementary Figure 4**).

352

353 Having confirmed that both the primer sets are able to amplify their respective targets in
354 one-pot multiplex reactions containing SARS-CoV-2 N gene and ORF1AB sequences,
355 we tested the multiplex assays using full length SARS-CoV-2 viral genomic RNA (**Figure**
356 **4**). Visual observation of endpoint fluorescence revealed a bright signal in both types of
357 multiplex assays containing only few tens of copies of SARS-CoV-2 genomic RNA. This
358 sensitivity might be driven to a large extent by the NB primer set present in both multiplex
359 assays since it displays slightly faster amplification kinetics compared to both the Tholoth
360 and the Lamb primer sets (**Supplementary Figure 3**). Meanwhile reactions containing
361 non-specific human DNA remained dark (**Figure 4**).

362

363 **Direct LAMP-OSD analysis of SARS-CoV-2 virion-spiked human saliva**

364 Given the low limits of detection we have observed, it is possible that LAMP-OSD might
365 be used as part of diagnostics pipelines, or in direct patient screening. However, for this
366 the reactions would need to operate under conditions commensurate with sample
367 collection, especially in resource poor settings. Collection of nasopharyngeal and
368 oropharyngeal swab specimens causes considerable discomfort to patients and requires
369 supplies in the form of sterile swabs and transport media. Moreover, these samples are

370 relatively difficult to self-collect. In contrast, saliva can be non-invasively collected simply
371 by spitting in a sterile collection vessel and it can be done just as easily in a clinic as well
372 as at home. Furthermore, studies have shown that SARS-CoV-2 can be consistently
373 detected in patient saliva with median and mean viral loads of 3.3×10^6 copies/mL and
374 3.8×10^5 RNA/mL, respectively (28-30).

375

376 We tested the direct sample analysis ability of individual and multiplex LAMP-OSD assays
377 by seeding them with 3 μ L of human saliva and different amounts of SARS-CoV-2 virions.
378 As controls, duplicate LAMP-OSD reactions were seeded with virions suspended in 3 μ L
379 of TE buffer. Following 60 to 90 min incubation at 65 °C, endpoint observation of presence
380 or absence of OSD fluorescence revealed that all assays seeded with SARS-CoV-2
381 virions, whether in the presence of human saliva or TE buffer, were brightly fluorescent
382 (**Figure 5**). Even in the presence of saliva, LAMP-OSD could readily detect as few as 50
383 virions (in 3 μ L saliva) per reaction (equivalent to $\sim 1.7 \times 10^4$ SARS-CoV-2 virions/mL), an
384 amount considerably lower than reported median and mean salivary SARS-CoV-2 viral
385 loads (28, 30). In contrast, assays lacking specific templates remained noticeably darker
386 compared to assays with specific templates. The faint fluorescence seen in some
387 reactions containing saliva but no SARS-CoV-2 templates (for instance, in **Figure 5C**) is
388 due to sample autofluorescence and is readily distinguishable from the bright OSD
389 fluorescence observed only in the presence true amplicons (5, 17, 19). In several other
390 direct sample analysis studies performed with varied biological samples, such as
391 environmental and waste water and field-collected mosquitoes, the LAMP-OSD platform
392 demonstrated accuracy on par with gold standard methods such as qPCR (17, 19, 20,

393 31). These results suggest that LAMP-OSD assays might be used for direct analysis of
394 human saliva samples in order to amplify and detect genetic signatures from SARS-CoV-
395 2 virions. Accurate readout of a direct sample-to-fluorescence LAMP-OSD test can be
396 readily achieved by comparing test fluorescence with a bright positive control, a dark 'no
397 sample' negative control, and a reference reaction lacking LAMP primers, which would
398 allow observation of sample autofluorescence. In a valid test, the negative control would
399 be dark and the reference reaction will display minimal sample autofluorescence readily
400 distinguishable from the bright positive control (**Supplementary Figure 5**). If signal
401 brightness of the direct sample test is comparable to that of the positive control, the test
402 would be considered positive for SARS-CoV-2. In contrast, if test fluorescence is as dim
403 as the reference reaction, the test outcome would be negative (**Supplementary Figure**
404 **5**).

405

406 **Logically integrated readout of multiplex LAMP-OSD using colorimetric lateral flow**
407 **dipsticks**

408 To aid deployment under different local constraints, such as available instruments and
409 reagents, and human resource and preferences, we sought to diversify assay platform
410 options by adapting the LAMP-OSD assays for colorimetric readout using lateral flow
411 dipsticks. Since the OSD reporters are labeled with fluorescein, one of the simplest ways
412 to transform LAMP-OSD signal into visible color accumulation is by incorporating
413 biotinylated primers in the assay in order to generate LAMP amplicons that are dually
414 labeled with biotin (via primer extension) and fluorescein (via OSD hybridization) (18).
415 Such dual labeled amplicons can be readily detected using colorimetric lateral flow

416 dipsticks where they first bind to gold-labeled fluorescein-specific antibodies next to the
417 sample application area and are subsequently captured by biotin ligands immobilized at
418 the test band leading to generation of red color (**Supplementary Figure 6A**). In the
419 absence of dual labeled analytes, gold particles only accumulate at the control band
420 containing species-specific antibodies and no color develops at the test line.

421

422 To enable colorimetric readout of Tholoth, Lamb, and NB LAMP-OSD assays on lateral
423 flow dipsticks we included biotinylated primers in each assay. In particular, for the Tholoth
424 and 6-Lamb assays, the unlabeled LB primers were replaced with corresponding
425 biotinylated primers while the NB assays were appended with 0.4 μ M additional FIP and
426 BIP primers that were both labeled with biotin. Following 60 min of LAMP-OSD
427 amplification, all three individual assays produced clearly distinguishable red colored test
428 lines in the presence of few tens to hundreds of SARS-CoV-2 viral genomic RNA while
429 producing no false signals in the absence of specific templates (**Supplementary Figure**
430 **6B**).

431

432 Next we re-reconfigured the NB and 6-Lamb multiplexed LAMP-OSD assay for execution
433 of Boolean OR gated lateral flow colorimetric readout. To confirm that the internally
434 redundant assay generated a colorimetric signal when any one or both viral amplicons
435 are produced, we executed the multiplex assay with either both NB and 6-Lamb primers
436 or with only one type (NB or 6-Lamb) of SARS-CoV-2 specific LAMP primer set to mimic
437 the scenario where one primer set fails to amplify its target. The omitted primer set was
438 substituted with a non-specific LAMP primer set containing all five primer types including

439 the same amount of biotinylated primers in order to maintain similar concentration of
440 oligonucleotides and biotin. When tested with SARS-CoV-2 genomic RNA, the
441 multiplexed NB and 6-Lamb LAMP-OSD assay generated distinct red colored test lines
442 on lateral flow dipsticks upon amplification of one or both viral amplicons from a few tens
443 of copies of viral templates without producing false signal (**Figure 6**).

444

445 By querying simultaneous presence of two or more target-specific amplicons, multiplex
446 assays can also potentially enhance test accuracy by reducing false positives. In the
447 simplest form, each amplicon in such multiplex assays is distinctly labeled for
448 independent readout. For instance, fluorophores with distinct emission spectra can be
449 measured using a fluorimeter. Meanwhile different small molecule labels can enable
450 amplicon capture and color development at two or more distinct test lines on specialized
451 lateral flow devices. However, the added expense of multiple labels and need for
452 specialized devices might pose hurdles for widespread adoption. Therefore, we sought
453 to develop an alternative readout mode that queries the co-presence of multiple
454 amplicons and generates a single visual signal only when all expected amplicons are
455 present. To achieve this, we set up the multiplex assay using a NB primer set containing
456 one fluorescein-labeled loop primer and a 6-Lamb primer set containing one biotinylated
457 loop primer. When applied on fluorescein-biotin-specific lateral flow dipsticks, neither
458 single-labeled amplicon by itself would generate a red color at the test line; the two labels
459 must be conjoined to enable signaling. To form a physical bridge linking the two types of
460 amplicons and hence labels that can then be detected on a lateral flow dipstick, we
461 engineered a Boolean AND-gate OSD reporter module that would undergo sequence-

462 specific strand displacement hybridization with both NB and Lamb LAMP amplicons
463 (**Figure 7A**). This complex would bind anti-fluorescein gold particles and would also be
464 captured by the biotin ligand at the lateral flow test line leading to color development. This
465 approach minimizes requirement for both differently labeled oligonucleotides as well as
466 specialized readout platform while ensuring the sequence specificity and logical
467 computation of readout inherent in strand displacement reactions.

468

469 To test the AND-gated multiplex NB and 6-Lamb LAMP-OSD assay we challenged it with
470 purified genomic materials from infected cell cultures containing different copies of SARS-
471 CoV-2 genomic RNA or with only the SARS-CoV-2 N gene armored RNA or the Lamb
472 assay specific gBlock template. Following 60 min of amplification at 65 °C, the assays
473 that had received even a few tens of copies of SARS-CoV-2 genomic RNA produced
474 distinct red colored test lines on the lateral flow dipsticks (**Figure 7B**). In contrast, assays
475 without any specific templates only produced a red colored control line. Similarly, assays
476 with only one type of viral template (N RNA or Lamb gBlock) also failed to produce a red
477 colored test band despite producing individual amplicons (**Figure 7B and 7C**). These
478 results demonstrate the versatility of the LAMP-OSD platform and describe rapid re-
479 programming techniques for different testing modalities to meet varied/changing testing
480 needs.

481

482 **Discussion**

483

484 In summary, we have demonstrated a facile way to rapidly configure LAMP assays for
485 accurate probe-based readout of SARS-CoV-2 by integrating OSD probes into individual

486 and multiplex assays. These probes suppressed noise from spurious amplification by
487 LAMP primers and thereby yielded target-specific signals. As a result, a few hundreds to
488 a few tens of virion genomic RNA could be identified using individual or multiplex LAMP-
489 OSD assays read by imaging probe fluorescence or by converting amplicon accumulation
490 to color development on lateral flow dipsticks. In fact, the programmability of strand
491 displacement probes allowed logical computation of the joint presence of viral amplicons
492 on lateral flow devices. These results reinforce the fact that unlike many other
493 fluorescence resonance energy transfer-based signal detection systems reported for
494 LAMP, such as assimilating and DARQ probes (32, 33), strand displacement probes are
495 versatile information processors that can be programmed to glean more sophisticated
496 diagnostic information from LAMP amplicons than the mere presence or absence of a
497 target sequence (17, 19). Consequently, integration of strand displacement, which was
498 initially popularized as a mechanism for DNA computation (6), into LAMP has transformed
499 this powerful nucleic acid amplification process into not only a more reliable method but
500 also a more versatile and information-rich tool. Into the future, it is likely that strand
501 displacement probes will be one of the only means by which LAMP can be used in a
502 highly multiplexed format to detect multiple pathogens in parallel. While there would be
503 differences in cost-effectiveness of different assay modes for various application
504 scenarios, ultimately, information programmability of strand displacement probes
505 combined with their modular flexibility of signal transduction enable greater fungibility of
506 readout platforms, which should in turn facilitate timely, cost-effective, and sustainable
507 implementation that fits site-specific needs, available infrastructure, and human
508 resources.

509

510 It is important to note that the enhanced sophistication of the LAMP-OSD platform does
511 not compromise assay portability and ease of use. The SARS-CoV-2 LAMP-OSD assays
512 can be executed in one-pot reactions assembled using individual reverse transcription
513 LAMP reagents. An open reaction system with known components affords tremendous
514 flexibility for fine tuning the assays to meet local needs and constraints. In particular, to
515 the extent that simply heating human saliva and adding it directly to LAMP-OSD reactions
516 could lead to SARS-CoV-2 detection without spurious signals, this would engender robust
517 sample-to-answer SARS-CoV-2 testing. Although our results are not yet clinically
518 validated, they nonetheless suggest the feasibility of using LAMP-OSD for rapid and
519 simple self-testing. Preheating the saliva using just a heat block or water bath is one of
520 the simplest and cost-effective ways to neutralize many amplification inhibitors, such as
521 nucleases and proteases, while also providing the added benefit of reducing the viscosity
522 of saliva and thereby making sample transfers easier and more uniform. In ongoing work
523 using assays supplemented with RNase inhibitors, we have begun to demonstrate the
524 feasibility of preheating saliva at only 65 °C without compromising the accuracy of direct
525 sample analysis via LAMP-OSD (**Supplementary Figure 5**). With further saliva additives,
526 such as chemical denaturants or protease inhibitors, it may become possible to eliminate
527 sample pretreatment entirely. In addition, adaptation of SARS-CoV-2 LAMP-OSD assays
528 to low temperature operation (34) may further reduce power requirements during point-
529 of-care operation. We suggest that while LAMP-OSD may not often have the same
530 sensitivity as 'gold standard' RT-qPCR assays, the versatility of LAMP-OSD, especially
531 for resource poor settings with limited infrastructure, might prove useful for screening for

532 positives, which could then be followed up with more limited or difficult to execute RT-
533 qPCR tests.

534

535 Beyond demonstrating high surety assays for SARS-CoV-2, these results also serve as
536 general guidance for rapid reconfiguration of LAMP assays into LAMP-OSD reactions that
537 can be readily form fit for different readout modes, including multiplex readouts. Not only
538 is it straightforward to design OSD probes but their inclusion in LAMP assays requires
539 minimum assay amendments. Furthermore, one pot operation and visual readout
540 eliminate procedural difference for the user while ensuring sequence specificity of signal
541 similar to that afforded by TaqMan probes in qPCR.

542

543 In conclusion, the LAMP-OSD platform effectively combines simple one-tube operation
544 with sophisticated nucleic acid sequence computation capacity. The user can anticipate
545 robust and accurate answers from crude samples, based on modest technology
546 requirements, features that are especially important for use in austere or resource-limited
547 conditions. Moreover, deft platform adaptability, as demonstrated here by configuring
548 SARS-CoV-2 assays for either colorimetric and logical probe-based readouts, should
549 further promote synergies with local diagnostic needs and available infrastructure.

550

551 **Acknowledgements**

552 We acknowledge the FRI DIY Spring 2020 Peer Mentor Cohort for their project initiation
553 and screenings of the preprint COVID-19 primer sets; Emma Aldred, Patricia Cadar, Elvi
554 Casia, Haroon Dossani, Alijah James, Madi Kahanek, Andrew Kan, Shivani Kottur, Niam
555 Kuttanna, Rory Malek, Maggie Miller, Morgan Motakef, Vylan Nguyen, Maria Nguyen,

556 Nicole Nyamongo, Samantha Outar-Sankarpersad, Purvee Patel, Shiv Patel, Kush Patel,
557 Lisa Sanchez, Sophia Solomon, Malaika Tah, Jose Torres, Reshan Warnesuriye, Sofia
558 Williams, Eric Yang, and Julia Zheng. The Freshman Research Initiative (FRI) (35, 36)
559 DIY Diagnostics Research Lab (37) at the University of Texas at Austin develops point-
560 of-care diagnostics with undergraduate students. The WarmStart® Colorimetric LAMP 2X
561 Master Mix was generously donated by NEB to support the FRI program. This work was
562 supported by the following funding agencies – the Welch Foundation (F-1654), the
563 National Institutes of Health (R21 AI135576), and the National Science Foundation
564 (RAPID 2027169).

565

566 **References**

- 567 1. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase
568 T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res
569 28:E63.
- 570 2. de Paz HD, Brotons P, Munoz-Almagro C. 2014. Molecular isothermal techniques
571 for combating infectious diseases: towards low-cost point-of-care diagnostics.
572 Expert Rev Mol Diagn 14:827-43.
- 573 3. Nagamine K, Hase T, Notomi T. 2002. Accelerated reaction by loop-mediated
574 isothermal amplification using loop primers. Mol Cell Probes 16:223-9.
- 575 4. Gandlerman O, Jackson R, Kiddle G, Tisi L. 2011. Loop-mediated amplification
576 accelerated by stem primers. Int J Mol Sci 12:9108-24.
- 577 5. Jiang YS, Bhadra S, Li B, Wu YR, Milligan JN, Ellington AD. 2015. Robust strand
578 exchange reactions for the sequence-specific, real-time detection of nucleic acid
579 amplicons. Anal Chem 87:3314-20.

580 6. Zhang DY, Seelig G. 2011. Dynamic DNA nanotechnology using strand-
581 displacement reactions. *Nat Chem* 3:103-13.

582 7. Zhang DY, Turberfield AJ, Yurke B, Winfree E. 2007. Engineering entropy-driven
583 reactions and networks catalyzed by DNA. *Science* 318:1121-5.

584 8. Seelig G, Soloveichik D, Zhang DY, Winfree E. 2006. Enzyme-free nucleic acid
585 logic circuits. *Science* 314:1585-1588.

586 9. Yin P, Choi HM, Calvert CR, Pierce NA. 2008. Programming biomolecular self-
587 assembly pathways. *Nature* 451:318-322.

588 10. de Silva AP, Uchiyama S. 2007. Molecular logic and computing. *Nat Nanotechnol*
589 2:399-410.

590 11. Scalise D, Schulman R. 2019. Controlling Matter at the Molecular Scale with DNA
591 Circuits. *Annu Rev Biomed Eng* 21:469-493.

592 12. Bhadra S, Jiang YS, Kumar MR, Johnson RF, Hensley LE, Ellington AD. 2015.
593 Real-time sequence-validated loop-mediated isothermal amplification assays for
594 detection of Middle East respiratory syndrome coronavirus (MERS-CoV). *PLoS*
595 One 10:e0123126.

596 13. Jung C, Ellington AD. 2014. Diagnostic applications of nucleic acid circuits. *Acc*
597 *Chem Res* 47:1825-1835.

598 14. Du Y, Hughes RA, Bhadra S, Jiang YS, Ellington AD, Li B. 2015. A Sweet Spot for
599 Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange
600 Circuits to Glucometers. *Sci Rep* 5:11039.

601 15. Li B, Ellington AD, Chen X. 2011. Rational, modular adaptation of enzyme-free
602 DNA circuits to multiple detection methods. *Nucleic Acids Res* 39:e110.

603 16. Allen PB, Arshad SA, Li B, Chen X, Ellington AD. 2012. DNA circuits as amplifiers
604 for the detection of nucleic acids on a paperfluidic platform. *Lab Chip* 12:2951-8.

605 17. Jiang YS, Stacy A, Whiteley M, Ellington AD, Bhadra S. 2017. Amplicon
606 Competition Enables End-Point Quantitation of Nucleic Acids Following Isothermal
607 Amplification. *Chembiochem* 18:1692-1695.

608 18. Phillips EA, Moehling TJ, Bhadra S, Ellington AD, Linnes JC. 2018. Strand
609 Displacement Probes Combined with Isothermal Nucleic Acid Amplification for
610 Instrument-Free Detection from Complex Samples. *Anal Chem* 90:6580-6586.

611 19. Bhadra S, Saldana MA, Han HG, Hughes GL, Ellington AD. 2018. Simultaneous
612 Detection of Different Zika Virus Lineages via Molecular Computation in a Point-
613 of-Care Assay. *Viruses* 10:Preprint accessible at: doi:
614 <https://doi.org/10.1101/424440>.

615 20. Jiang YS, Riedel TE, Popoola JA, Morrow BR, Cai S, Ellington AD, Bhadra S.
616 2018. Portable platform for rapid in-field identification of human fecal pollution in
617 water. *Water Res* 131:186-195.

618 21. Bhadra S, Riedel TE, Lakhotia S, Tran ND, Ellington AD. 2020. High-surety
619 isothermal amplification and detection of SARS-CoV-2, including with crude
620 enzymes. *bioRxiv* doi:10.1101/2020.04.13.039941:2020.04.13.039941.

621 22. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM,
622 Pierce NA. 2011. NUPACK: Analysis and design of nucleic acid systems. *J
623 Comput Chem* 32:170-3.

624 23. Goncalves DDS, Hooker DJ, Dong Y, Baran N, Kyrylos P, Iturbe-Ormaetxe I,
625 Simmons CP, O'Neill SL. 2019. Detecting wMel Wolbachia in field-collected Aedes

626 aegypti mosquitoes using loop-mediated isothermal amplification (LAMP). Parasit
627 Vectors 12:404.

628 24. Meagher RJ, Priye A, Light YK, Huang C, Wang E. 2018. Impact of primer dimers
629 and self-amplifying hairpins on reverse transcription loop-mediated isothermal
630 amplification detection of viral RNA. Analyst 143:1924-1933.

631 25. Molina F, Lopez-Acedo E, Tabla R, Roa I, Gomez A, Rebollo JE. 2015. Improved
632 detection of Escherichia coli and coliform bacteria by multiplex PCR. BMC
633 Biotechnol 15:48.

634 26. Riojas MA, Kiss K, McKee ML, Hazbon MH. 2015. Multiplex PCR for species-level
635 identification of *Bacillus anthracis* and detection of pXO1, pXO2, and related
636 plasmids. Health Secur 13:122-9.

637 27. Li C, Debruyne DN, Spencer J, Kapoor V, Liu LY, Zhou B, Lee L, Feigelman R,
638 Burdon G, Liu J, Oliva A, Borcherding A, Tan H, Urban AE, Liu G, Liu Z. 2020.
639 High sensitivity detection of coronavirus SARS-CoV-2 using multiplex PCR and a
640 multiplex-PCR-based metagenomic method. bioRxiv
641 doi:10.1101/2020.03.12.988246:2020.03.12.988246.

642 28. To KK, Tsang OT, Chik-Yan Yip C, Chan KH, Wu TC, Chan JMC, Leung WS, Chik
643 TS, Choi CY, Kandamby DH, Lung DC, Tam AR, Poon RW, Fung AY, Hung IF,
644 Cheng VC, Chan JF, Yuen KY. 2020. Consistent detection of 2019 novel
645 coronavirus in saliva. Clin Infect Dis doi:10.1093/cid/ciaa149.

646 29. Medeiros da Silva RC, Nogueira Marinho LC, Neto de Araújo Silva D, Costa de
647 Lima K, Pirih FQ, Luz de Aquino Martins AR. 2020. Saliva as a possible tool for

648 the SARS-CoV-2 detection: a review. Travel medicine and infectious disease
649 doi:10.1016/j.tmaid.2020.101920:101920-101920.

650 30. Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M,
651 Vijayakumar P, Warren JL, Geng B, Muenker MC, Moore AJ, Vogels CBF, Petrone
652 ME, Ott IM, Lu P, Venkataraman A, Lu-Culligan A, Klein J, Earnest R, Simonov M,
653 Datta R, Handoko R, Naushad N, Sewanan LR, Valdez J, White EB, Lapidus S,
654 Kalinich CC, Jiang X, Kim DJ, Kudo E, Linehan M, Mao T, Moriyama M, Oh JE,
655 Park A, Silva J, Song E, Takahashi T, Taura M, Weizman O-E, Wong P, Yang Y,
656 Bermejo S, Odio CD, Omer SB, Dela Cruz CS, Farhadian S, Martinello RA, Iwasaki
657 A, Grubaugh ND, et al. 2020. Saliva or Nasopharyngeal Swab Specimens for
658 Detection of SARS-CoV-2. *The New England journal of medicine* 383:1283-1286.

659 31. Bhadra S, Riedel TE, Saldana MA, Hegde S, Pederson N, Hughes GL, Ellington
660 AD. 2018. Direct nucleic acid analysis of mosquitoes for high fidelity species
661 identification and detection of Wolbachia using a cellphone. *PLoS Negl Trop Dis*
662 12:e0006671.

663 32. Tanner NA, Zhang Y, Evans TC, Jr. 2012. Simultaneous multiple target detection
664 in real-time loop-mediated isothermal amplification. *Biotechniques* 53:81-9.

665 33. Kubota R, Jenkins DM. 2015. Real-time duplex applications of loop-mediated
666 AMPlification (LAMP) by assimilating probes. *Int J Mol Sci* 16:4786-99.

667 34. Cai S, Jung C, Bhadra S, Ellington AD. 2018. Phosphorothioated Primers Lead to
668 Loop-Mediated Isothermal Amplification at Low Temperatures. *Anal Chem*
669 90:8290-8294.

670 35. Rodenbusch SE, Hernandez PR, Simmons SL, Dolan EL. 2016. Early
671 Engagement in Course-Based Research Increases Graduation Rates and
672 Completion of Science, Engineering, and Mathematics Degrees. *Cbe-Life*
673 *Sciences Education* 15.

674 36. Beckham JT, Simmons SL, Stovall GM, Farre J. The Freshman Research Initiative
675 as a Model for Addressing Shortages and Disparities in STEM Engagement, p 181-
676 212, *Directions for Mathematics Research Experience for Undergraduates*
677 doi:10.1142/9789814630320_0010.

678 37. Freshman Research Initiative DDS. <http://diystream.cns.utexas.edu/> Accessed
679 August 25th, 2020.

680 38. El-Tholoth M, Bau HH, Song J. 2020. A Single and Two-Stage, Closed-Tube,
681 Molecular Test for the 2019 Novel Coronavirus (COVID-19) at Home, Clinic, and
682 Points of Entry. *ChemRxiv* doi:10.26434/chemrxiv.11860137.v1
683 10.26434/chemrxiv.11860137.

684 39. Zhang Y, Odiwuor N, Xiong J, Sun L, Nyaruaba RO, Wei H, Tanner NA. 2020.
685 Rapid Molecular Detection of SARS-CoV-2 (COVID-19) Virus RNA Using
686 Colorimetric LAMP. *medRxiv*
687 doi:10.1101/2020.02.26.20028373:2020.02.26.20028373.

688 40. Lamb LE, Bartolone SN, Ward E, Chancellor MB. 2020. Rapid detection of novel
689 coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by
690 reverse transcription-loop-mediated isothermal amplification. *PLoS One*
691 15:e0234682.

692

693 **Figure Legends**

694

695 **Table 1. LAMP primers and OSD probes.**

696

697 **Figure 1. LAMP-OSD schematic.** (A) Schematic depicting LAMP mechanism where FIP
698 and BIP indicate inner primers, B3 and F3 indicate outer primers, SP indicates stem
699 primers, LP indicates loop primers, *Bst* indicates strand displacing DNA polymerase, and
700 'c' denotes complementary sequences. (B) Schematic depicting OSD design and toehold-
701 mediated strand exchange process where the strand labeled A represents the LAMP loop
702 sequence and the B.C complex represents the hemiduplex OSD probe. F and Q on the
703 OSD denote fluorophore and quencher, respectively. OSD and subsequent strand
704 exchange intermediates are denoted by numbered domains, which represent short
705 (usually <12 nt) sequences in an otherwise continuous oligonucleotide. Complementary
706 domains are indicated by asterisk.

707

708 **Figure 2. SARS-CoV-2 LAMP-OSD assays.** OSD fluorescence measured in real-time
709 during LAMP amplification for NB (A), 5-Lamb (B), and Tholoth (C) LAMP-OSD assays
710 are depicted as amplification curves. Presence or absence of OSD fluorescence visually
711 observed at assay endpoint after 90 min of amplification for NB (D), 5-Lamb (E), and
712 Tholoth (F) LAMP-OSD assays are depicted as images of reaction tubes. NB LAMP-OSD
713 assays were seeded with indicated copies per reaction of SARS-CoV-2 N RNA or MERS-
714 CoV N RNA or no templates. 5-Lamb and Tholoth LAMP-OSD assays were seeded with
715 indicated copies of gBlock DNA templates. Data are representative of three biological
716 replicates.

717

718 **Figure 3. LAMP-OSD analysis of SARS-CoV-2 genomic RNA.** Indicated copies per
719 reaction of SARS-CoV-2 genomic RNA were analyzed using NB, Tholoth, and both 5-
720 primer and 6-primer Lamb LAMP-OSD assays. Negative control assays received 23 ng
721 of human genomic DNA. Images of endpoint OSD fluorescence taken after 90 min of
722 amplification are depicted. Data are representative of four biological replicates.

723

724 **Figure 4. Multiplex LAMP-OSD analysis of SARS-CoV-2 genomic RNA.** Indicated
725 copies per reaction of SARS-CoV-2 genomic RNA were amplified at 65 °C using NB +
726 Tholoth (panel A) or NB + 6-Lamb (panel B) multiplex LAMP-OSD assays for 90 min and
727 60 min, respectively. Control reaction received 23 ng of human genomic DNA. Images of
728 OSD fluorescence captured after completion of amplification are depicted. Data are
729 representative of three biological replicates.

730

731 **Figure 5. LAMP-OSD analysis of SARS-CoV-2 virions in the presence of human
732 saliva.** Indicated copies of virions per reaction were analyzed by individual or multiplex
733 (Mx) LAMP-OSD assays in the presence of TE buffer or human saliva. Endpoint images
734 of OSD fluorescence taken after 90 min of amplification are depicted for Tholoth (A), 6-
735 Lamb (B), and NB (C) individual LAMP-OSD assays and NB + Tholoth multiplex LAMP-
736 OSD assays (D). Endpoint images of OSD fluorescence taken after 60 min of
737 amplification are depicted for NB + 6-Lamb multiplex assays (E and F). 'BL': blank tubes
738 lacking any reaction mixes or templates. Data are representative of four biological
739 replicates.

740

741 **Figure 6. Colorimetric Boolean OR-gated readout of multiplex LAMP-OSD assays**
742 **using lateral flow dipsticks.** (A) Schematic depicting colorimetric Boolean OR logic
743 gated readout of multiplex LAMP-OSD assays using lateral flow dipsticks designed to
744 detect analytes labeled with both biotin and fluorescein. AuNP refers to gold nanoparticle.
745 (B, C, D) Cellphone images of colorimetric lateral flow readout of NB and 6-Lamb (NL)
746 multiplex LAMP-OSD assays seeded with indicated copies of SARS-CoV-2 viral genomic
747 RNA per reaction followed by 60 min of amplification prior to analysis on lateral flow
748 dipsticks. The multiplex assays contained either (B) NB and 6-Lamb primer sets (NL), (C)
749 NB and a non-specific biotinylated LAMP primer set (NL-N), or (D) 6-Lamb and a non-
750 specific biotinylated LAMP primer set (NL-L). Data are representative of three biological
751 replicates.

752

753 **Figure 7. Colorimetric Boolean AND-gated readout of multiplex LAMP-OSD assays**
754 **using lateral flow dipsticks.** (A) Schematic depicting colorimetric Boolean AND logic
755 gated readout of multiplex LAMP-OSD assays using strand displacement gating probes
756 (AND Gate OSD) and lateral flow dipsticks designed to detect analytes labeled with both
757 biotin and fluorescein. AuNP refers to gold nanoparticle. (B) Cellphone images of AND-
758 gated colorimetric lateral flow readout of NB and 6-Lamb (NL) multiplex LAMP-OSD
759 assays seeded with indicated copies per reaction of either SARS-CoV-2 viral genomic
760 RNA, or 30,000 copies of only N gene armored RNA, or 30,000 copies of only Lamb-
761 specific gBlock DNA followed by 60 min of amplification prior to analysis on lateral flow
762 dipsticks. (C) Multiplex LAMP-OSD assays comprising unlabeled primers and fluorogenic
763 OSD reporters for both NB and 6-Lamb assays seeded with either no specific templates

764 or with 30,000 copies per reaction of only N gene armored RNA, or 30,000 copies of only
765 Lamb-specific gBlock DNA. Endpoint images of OSD fluorescence taken after 60 min of
766 amplification are depicted. Data are representative of four biological replicates.

767

768 **Supplemental Material Legends**

769

770 **Supplementary Methods**

771

772 **Supplementary Table 1. Pre-published LAMP primer sets for SARS-CoV-2 found**
773 **online before March 04, 2020.**

774

775 **Supplementary Figure 1. LAMP primer and OSD probe binding sequences in the**
776 **SARS-CoV-2 genome.** Binding regions for primers and OSD probes used in 6-Lamb (A),
777 NB (B), and Tholoth (C) LAMP-OSD assays are annotated on the SARS-CoV-2 genomic
778 RNA sequence. Forward and reverse directions of the annotation arrows indicate sense
779 (same as genomic RNA sequence) and antisense (reverse complement of genomic RNA
780 sequence) nature of the primer and probe sequences. Outer primer F3 and B3 binding
781 regions are shown in red, inner primer FIP (F1-F2) and BIP (B1-B2) binding regions are
782 shown in blue, while loop primer (LF and LB) binding regions are indicated in green. The
783 fluorophore (Fam) and quencher (Q) labeled OSD strand binding regions are highlighted
784 in pink.

785

786 **Supplementary Figure 2. Non-specific amplification profile of a set of**
787 **(pre)published SARS-CoV-2 LAMP primers.** Primer sets listed in Supplementary Table

788 1 were tested for non-specific amplification at preprint amplification temperatures
789 indicated in Supplementary Table 1 using ten replicate reactions each of real-time
790 EvaGreen RT-LAMP and colorimetric pH LAMP that did not receive any viral templates.
791 Amplification curves generated by measuring EvaGreen fluorescence in real-time are
792 depicted in the top panel for each primer set. Images of colorimetric LAMP reaction color
793 taken after 60 min of amplification are depicted in the bottom panel for each primer set.
794 False positive color reactions are encircled in blue. Data are representative of two
795 biological replicates.

796

797 **Supplementary Figure 3. Specificity of SARS-CoV-2 LAMP-OSD assays.** (A) Real-
798 time OSD fluorescence accumulation in NB, 6-Lamb, and Tholoth LAMP-OSD assays
799 seeded with 3000 (black traces), 300 (red traces), or 0 (gray traces) SARS-CoV-2 viral
800 genomic RNA. Representative data from three biological replicates are depicted. NB
801 (Tubes 2 and 5), 6-Lamb (Tubes 3 and 6), and Tholoth (Tubes 4 and 7) LAMP-OSD
802 assays were seeded with either no templates (Tubes 5, 6, and 7) or with 10,000 SARS-
803 Urbani virions (Tubes 2, 3, and 4). Multiplex NB+6-Lamb LAMP-OSD assay seeded with
804 3000 SARS-CoV-2 virions (Tube 1) was used as a positive control. Images of endpoint
805 OSD fluorescence taken after 90 min of amplification at 65 °C are depicted. Data are
806 representative of two biological replicates.

807

808 **Supplementary Figure 4. Multiplex LAMP-OSD assay for SARS-CoV-2.** Tholoth and
809 NB (panel A) or 6-Lamb and NB (panel B) LAMP-OSD assays were combined in a
810 multiplex format and analyzed using either individual or both OSD probes. Images of
811 endpoint OSD fluorescence taken after 90 min (panel A) or 60 min (panel B) of

812 amplification of indicated viral genomic RNA (gRNA) templates are depicted. Integrated
813 densities and plot profiles of each assay tube measured using ImageJ are depicted. Data
814 are representative of three biological replicates.

815

816 **Supplementary Figure 5. Direct LAMP-OSD analysis of saliva samples preheated at**
817 **65 °C.** NB + 6-Lamb multiplex LAMP-OSD assays supplemented with 20 units of
818 Superase-In RNase inhibitor (Thermo Fisher Scientific) (tubes 4, 5, 6, and 7) were seeded
819 with indicated copies of irradiated SARS-CoV-2 virions in the presence of 3 µL of human
820 saliva that had been preheated at 65 °C for 15 min. Positive control (tube 1), reference
821 (tube 2), and negative control (tube 3) reactions comprising human *gapd* LAMP-OSD
822 assays assembled with (tubes 1 and 3) or without (tube 2) primers were seeded with 3
823 µL of either water (tube 3) or saliva (tubes 1 and 2) preheated at 65 °C for 15 min. Images
824 of endpoint OSD fluorescence taken after 60 min of amplification at 65 °C are depicted.
825 Data are representative of four biological replicates.

826

827 **Supplementary Figure 6. Colorimetric readout of individual LAMP-OSD assays using**
828 **lateral flow dipsticks.** (A) Schematic depicting method of colorimetric readout of LAMP-OSD
829 using lateral flow dipsticks designed to detect analytes labeled with both biotin and fluorescein.
830 AuNP refers to gold nanoparticle. (B) Cellphone images of colorimetric lateral flow readout of
831 individual Thlooth, 6-Lamb, or NB LAMP-OSD assays seeded with indicated copies of SARS-
832 CoV-2 viral genomic RNA followed by 60 min of amplification. Data are representative of three
833 biological replicates.

834

835 **Supplementary References**

836

837