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Abstract. We consider the problem of scheduling appointments for a finite customer
population to a service facility with customer no-shows to minimize the sum of customer
waiting time and server overtime costs. Because appointments need to be scheduled ahead of
time, we refer to this problem as an optimization problem rather than a dynamic control one.
We study this optimization problem in fluid and diffusion scales and identify asymptotically
optimal schedules in both scales. In fluid scale, we show that it is optimal to schedule ap-
pointments so that the system is in critical load; thus, heavy-traffic conditions are obtained as
a result of optimization rather than as an assumption. In diffusion scale, we solve this opti-
mization problem in the large horizon limit. Our explicit stationary solution of the corre-
sponding Brownian optimization problem translates the customer delay versus server
overtime trade-off to a trade-off between the state of a reflected Brownian motion in the half-
line and its local time at zero. Motivated by work on competitive ratios, we also consider
a reference model in which an oracle provides the decision maker with the complete ran-
domness information. The difference between the values of the scheduling problem for the two

models, to which we refer as the stochasticity gap (SG), quantifies the degree to which it is harder
to design a schedule under uncertainty than when the stochastic primitives (i.e., the no-shows
and service times) are known in advance. In the fluid scale, the SG converges to zero, but in the
diffusion scale, it converges to a positive constant that we compute.

Funding: The research of R. Atar was supported in part by the Israel Science Foundation [Grant 1184/
16]. The research of H. Honnappa was supported in part by the National Science Foundation
Division of Civil, Mechanical & Manufacturing Innovation [Grant CMMI-1636069].

Keywords: queues * appointment scheduling « stochastic optimization * asymptotic optimality « fluid approximation ¢ diffusion optimization
stochasticity gap

1. Introduction

We study the problem of determining an optimal appointment schedule for a finite number of customers at
a service system that only accepts arrivals in a finite time horizon but renders service to all arriving customers.
Broadly, the objective is to assign deterministic arrival epochs to a finite population such that the server is
optimally utilized while the cumulative delay experienced by the customers is minimized. The optimization
problem is stochastic in nature not only because of the randomness in service times, but also because some
arrivals do not show up. As opposed to typical stochastic control problems that appear in the literature, the
schedule needs to be determined off-line, ahead of time, with no access to the realization of the stochastic
primitives over time. Thus, in standard queueing terminology, the problem under consideration is about
selecting arrival times for a given number of customers into a -/G/1 queue over a finite time horizon so as to
minimize delay and server utilization costs and in presence of customer no-shows.

Our research is motivated by systems such as outpatient clinics that render service to a finite number of
patients during a working day (7 a.m. to 4 p.m., for instance). No patients are accepted for service if they
arrive after the end of the horizon, but all patients that do arrive are rendered service. No-shows in outpatient
care is a problem most clinics struggle with regularly. According to Cayirli et al. [9], no-show rates may be up
to 60%, depending on the clinic-specific characteristics. Patient overbooking has been proposed as an effective
strategy to handle clinic underutilization resulting from patient no-show (LaGanga and Lawrence [23]). At the
same time, overbooking may lead to clinic overcrowding that will intensify patient waiting time and doctor
overtime. Our paper aims at determining effective appointment schedules that will minimize these wait times
and overtimes.

We model the service system as a single-server queue with an infinite buffer. We assume that the service
times are generally distributed, independent and identically distributed (IID), nonnegative random variables
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(RVs) with a finite second moment and that the server is nonidling and operates according to a first-come,
first-served (FCFS) discipline. The entire finite population needs to be provided with appointments, and these
appointments are allowed to span the entire time horizon but not beyond. The actual arrival process is thinned
with probability p because of no-shows from this deterministic appointment schedule.

Our optimization problem’s goal is to determine an appointment schedule to minimize the objective of a
weighted sum of the expected cumulative wait time of all the customers that arrive in the (finite) arrival horizon
and the expected overage time, defined as the amount of time it takes for the server to clear out the backlog after
the end of the horizon. The appointment-scheduling problem is reducible to a stochastic bin-packing problem,
making it NP-hard, and is generally solved using various heuristics (see Gupta and Denton [14]).

Here, we introduce two large population-limit regimes that lead to simpler optimization problems and yield
exact solutions. We operate in a large population-limit framework that reveals the fundamental complicating
factors in the optimization problem. Our scaling regimes let the population size tend to infinity while si-
multaneously accelerating the service rate in proportion to the population size. In the fluid regime, the service
time cost is scaled by the inverse of the population size. Customers are assigned arrival epochs according to
a sequence of arbitrary schedules. In the limit, the fluid regime washes out the stochastic variation and
captures the “mean” or first-order effects in the queue performance. We posit a variational fluid optimization
problem (FOP) and solve it in Proposition 1 under an “overload” condition that the aggregate available fluid
service is less than the expected aggregate fluid arrivals, and thus, the overtime cost is nonzero. The optimal
cumulative fluid schedule function matches the cumulative service completions in the arrival horizon and
schedules the remaining fluid at the end of the horizon. This result shows that the heavy-traffic, critical-load
condition emerges as a consequence of optimization as opposed to a postulated assumption. In Theorems 1
and 2, we prove that the value of the fluid optimization problem is asymptotically achievable by a carefully
constructed sequence of simple finite population schedules.

Although the FOP results in a simple and intuitive schedule, it only considers first-order effects and washes
away stochastic fluctuations. In reality, we expect the inherent stochasticity of the system to have a significant
impact on system performance and, thus, on the design of the schedule. Indeed, one might ask whether
considering second-order terms would shed more light on the optimal appointment schedule. Specifically, it is
of interest to see how fluctuations of order of the square root of the population size about the fluid solution
impact the schedule. To formalize this question, we posit a Brownian optimization problem (BOP), assuming
the same overload condition as in the fluid scale. The BOP is stated in terms of an equation driven by
a Brownian motion and a control, obtained as a formal diffusion limit of the queue length in heavy traffic. This
is in line with the fact that the fluid-optimal schedule enforces criticality within the appointment horizon. The
BOP is not a dynamic control problem, but one in which the control trajectory has to be planned ahead of time
zero. This makes insights, structure, and tools from dynamic programming irrelevant. Although we are unable
to obtain an explicit solution of the BOP when set on a fixed time horizon, we do derive an explicit solution to
it in the large time-horizon limit. This limiting procedure allows for a long-run average argument in a way that
does not trivialize the end-of-horizon effect. In Proposition 3, we prove that the value of the BOP in the large
horizon limit can be achieved by a reflected Brownian motion (RBM) that has a constant negative drift.
Equivalently, in this limit, the BOP is solved by a stationary RBM. We identify the optimal drift coefficient in
Lemma 6. In Theorems 3 and 4, we prove that the value of the BOP is also asymptotically achievable by
a carefully constructed sequence of finite population schedules.

There is, of course, a “price” to be paid for having to schedule appointments at time zero without any
stochastic information revealed ahead of time. We quantify this by introducing the notion of a stochasticity
gap (SG), defined as the difference between the appropriately scaled finite population value and the value
of the “complete information” (CI) problem. In the CI problem, an oracle reveals all stochastic primitives
(or future events) to the optimizer at time zero. The CI problem is not completely trivial, but much easier than
the original one. The CI and the fluid-optimal schedules are similar in that they both schedule appointments
such that customers arrive at (precisely or approximately, respectively) the time when they are ready to be
served, and any excess jobs are scheduled at the end of the horizon. Indeed, Proposition 2 shows that in the
fluid scale the asymptotic SG is zero. On the other hand, in diffusion scaling we calculate the SG and show in
Proposition 4 that it is strictly positive.

To summarize, our main contributions are as follows:

i. Under an overload condition, we identify explicitly computable asymptotically optimal (AO) schedules in
the fluid and diffusion regimes. Our proposed schedules are simple in that they set interarrival times to be
deterministic and stationary up to the end of the horizon. They schedule the remainder of the arrivals to show
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up at precisely the end-of-horizon time. Ours constitute the first analytical results for the appointment-
scheduling problem with no-shows in the large population limit.

ii. A critical load condition, which sets the ground for a heavy traffic analysis at the diffusion scale, emerges
because it is optimal to operate at criticality rather than as an assumption.

iii. The essence of the optimization problem is that it must be carried out without the randomness being revealed.
We analyze the SG as a means of quantifying the cost associated with this uncertainty.

The rest of the paper is organized as follows. We conclude this section with a brief overview of the relevant
literature and notational convention. Section 2 provides the problem formulation and a summary of the main
results. In Sections 3 and 4, we solve the problem under fluid and diffusion scaling, respectively. We compute
the corresponding SG in these sections as well. Section 5 contains a numerical study and its analysis. We
conclude with final remarks and a discussion of future research directions in Section 6.

We now review some of the relevant results in the field. There is a vast literature on appointment scheduling
in healthcare, which we will not attempt to summarize here; we direct the reader to the comprehensive
reviews in Cayirli and Veral [8], Gupta and Denton [14], and Hall [15]. We note two that are particularly
relevant to our study. A scheduling problem close to ours has been studied in Zacharias and Pinedo [26]. The
problem they consider is that of determining an optimal schedule for heterogeneous patients in the presence of
no shows with the objective of minimizing waiting cost plus idling and overtime cost. Our model may be
considered a special case of their model in that our patients are homogeneous, and our idling cost is zero.
However, their model considers fixed appointment slots, and ours allows for appointment times to be a result
of the optimization problem. For a finite and fixed patient population, the authors characterize structural
properties of an optimal schedule. Explicit solutions are given for some special cases and are studied nu-
merically for the more general problem. The authors observe that optimal solutions tend to front-load (more
overbooking toward the beginning of the day). The numerical solutions of Zacharias and Pinedo [26] also
show that some appointment slots should be overbooked but not all, with only up to a couple of patients
scheduled per slot.

A second paper that is relevant is Hassin and Mendel [17], which considers a similar problem definition.
However, the model there assumes that service times are exponentially distributed, and there is no fixed
horizon in which the finite number of arrivals must be scheduled. The cost function again trades off the
expected cumulative waiting time of the customers that show up against the expected “server time” beyond
the last scheduled arrival epoch. The authors provide extensive numerical analysis of the finite-population
scheduling problem. In particular, they numerically compute the optimal schedule, which shows that
overbooking is possible for the first few and last few arrival epochs, and arrivals “in the middle” are almost
uniformly spread out. Furthermore, they also contrast the value of their problem against that of an oracle
problem akin to our CI problem and note the fact that value of the latter is significantly lower.

Also relevant is Benjaafar and Jouini [3], which considers finite population scheduled arrival models with
both no-shows and tardiness. Under the assumption of exponentially distributed service times, the authors
derive exact expressions for various performance metrics. More recently, Kim et al. [20] develop a high-fidelity
simulation model in a data-driven manner using arrival and appointment information from a single clinic and
observe that randomness in the number of scheduled patients, unscheduled arrivals, and no-shows contribute
to the stochasticity in the traffic pattern.

The second relevant stream of literature is on the asymptotics of scheduled arrivals (Araman and Glynn [1])
and transitory queueing (Honnappa et al. [18, 19]). This stream considers limits of processes that are generated
from a queue with an arrival process that is originated from a finite population. Closest to our model is section
4.3 of Honnappa et al. [19], in which the authors consider scheduled arrivals with epoch uncertainty. Indeed,
the asymptotic scaling and limiting regimes are similar to ours. The two main differences are that (i) the
appointment times are given and are assumed a priori to be equally spaced and (ii) all customers are assumed
to show up but they may be nonpunctual.

Perhaps the closest paper to ours is Kuiper et al. [22], in which the authors consider a similar limiting regime
as ours and are also concerned with optimizing the scheduled appointments. Like Hassin and Mendel [17], the
paper focuses on the infinite-horizon problem and restricts itself to the set of deterministic and stationary
schedules; however, no-shows are not considered. Its objective is to minimize the sum of customer waiting
cost plus server idling cost. A scheduling policy based on a diffusion approximation is proposed without
formally establishing asymptotic optimality. In contrast, we establish asymptotic optimality of our proposed
schedule and, by way of doing that, establish that, indeed, asymptotic optimality is achieved by optimizing
only within stationary policies.
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1.1. Notation

Let %[0, 00) be the space of functions f : [0,00) — R that are right continuous with left limits, equipped with the
Skorokhod Ji topology. Let 9*[0, c0) C [0, o) be the subset of nonnegative, nondecreasing functions. For
a sequence {X,}, X, of RVs, X,, = X as n — co denotes convergence in law. For a sequence {X,}, X, of
stochastic processes with sample paths in %[0, ), X,, = X denotes convergence in law in the [; topology. In
this paper, all statements involving convergence of processes X, = X are to processes X that have almost
surely (a.s.) continuous sample paths; thus, these convergences can equivalently be understood as convergence
in law in the uniformly on compacts (u.o.c.) topology. Let (-)*:= max{-,0}. For an event A, 14 is the corre-
sponding indicator function. For f:R, —» R, T>0, we denote ||fll; =sup,qoz [f(f)]. A one-dimensional
Brownian motion (BM) with drift m and diffusion coefficient o, starting from zero, is referred to as an
(m, 0) BM. The letter ¢ denotes a positive constant whose value is immaterial and may change from line to line.

2. Problem Setting

2.1. Model

Consider a single-server queue with an infinite waiting room. A finite number of jobs arrive at the queue over
a finite time horizon and are served on a FCFS schedule. Jobs are given appointments at fixed times during
the day (not necessarily uniformly spaced), and we assume that jobs that do turn up do so precisely at the
appointment time; that is, we assume punctual arrivals but allow no-shows. We also assume that the service
times are IID with finite second moments.

The RVs and stochastic processes are defined on a probability space (Q, %,P), and the symbol E denotes
expectation with respect to P. The number of requested appointments (or population size) is denoted as N. Let
H>0 denote the operating time horizon. A schedule is any deterministic, nondecreasing sequence {T;, i =
1,...,N} taking values in [0,H]. It represents scheduled arrival epochs. The collection of all schedules is
denoted by J. We denote by E(t) the cumulative number of scheduled arrivals by time t; that is, E(t) =
>N, 1<y The function E is referred to as the scheduling function. Let {&;,i € N} be IID Bernoulli RVs with
mean p € (0,1]. They are used as a model for actual arrivals, namely &; = 1 if and only if the ith scheduled job
shows up. With these elements, the cumulative arrival process, A € 9*[0,H], is given by A() = =N, &lr.<p-
Note that, with E(k) = 3%, &, k € Z,, one can express this relation as

E(t)

Alt)= > & =EoE(1). 1)
i=1

Let {v;} be an IID sequence of nonnegative RVs with mean p~! and squared coefficient of variation C2 € (0, o).
Assume that this sequence and the sequence {¢;} are mutually independent. These RVs are used to model
service times in the following way. Let {v;i € N} be the service time of the ith served job. Let S(t) =
max{m| X, v; < t}. Then S(f) is the cumulative number of service completions by the time the server is busy
for t units of time.

Let Q denote the number-in-system process. Then the cumulative busyness process is given by B(-) =
fd 1(oe)>01ds. A simple balance equation for Q is

Q=A-SoB. )

2.2. Cost and Optimization Problem
Two primary performance measures of interest to us are the overall waiting time, or makespan, and the overage
time. The former is defined as

W= /0 " Q) ~ 1)*ds, ()

and represents the sum, over all arriving jobs, of the job’s waiting time in the queue (not counting the time of
service). The overage time is the amount of time after the end of the horizon [0, H] it takes to complete the last
arrival in [0, H]. If we denote by 7 the time when the last arrival in [0, H] departs from the server, then the
overage time is given by

O = (t - H)". (4)
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Note that 7 can be expressed in terms of the processes introduced earlier as
T =inf{t : S o B(t) > E(N)}, 5)

for E(N) is the total number of arrivals, and S o B(t) is the number of departures by time .

The goal of the system operator is to schedule the N jobs so as to minimize a combination of the expected
overall waiting time experienced by the jobs (makespan) and the expected overage time. Thus we consider the
finite population optimal-schedule problem (FPOP) defined by considering the cost

]({Tl}) = CwE[W] + COE[O]/ {TZ} € ‘Ojr (6)
and the value
V= inf JUT). @)

Here, ¢, and c, are nonnegative constants. In general, solving the FPOP is formidable. Rather than solve it
directly, we solve fluid- and diffusion-scale problems and prove the existence of asymptotically optimal finite
population schedules that approach the fluid- and diffusion-optimal solutions in the large population limit.

The main objective of this work is to study the asymptotics of problems (6) and (7). Before we turn to it, we
comment on another, related problem setting. Suppose that all the information on the stochastic data are
known to the decision maker when the decision maker selects the schedule at time zero. In this version of the
problem, which we refer to as the CI problem, the selection of schedule {T;} may depend on the stochastic data
({&}, {vi}). We do not consider it as a practically motivated setting by itself because in applications we have in
mind these stochastic ingredients are not known in advance. However, it is useful to regard it as a reference
model and to relate it to our main problems (6) and (7). We also observe that the CI problem represents an
information relaxation of the actual problem, and the solution to the CI problem yields what can be considered
the expected value of perfect information in stochastic programming and dynamic programming (Avriel and
Williams [2], Dempster [11], Birge [5], Brown et al. [7], Brown and Haugh [6]).

For a precise formulation, let © denote the sigma field generated by the collection ({&;}, {vi}). An Z-measurable
RV {©;} taking values in 7 is called a CI schedule. Let T denote the collection of all CI schedules (note that
schedules in 7! are not allowed to change the order of the scheduled jobs). Then, analogously to (6), we let

JY{O1}) = cE[W] + E[0],  {©;} €T, 8)

vel= inf J(©0) ©)

where W and O correspond to the selection {®;}. Clearly, one always has V > VL. We refer to the difference
y=v-vd

as the stochasticity gap as it quantifies the gap between performance with and without knowing the stochastic
ingredients.

Problem (8)—(9) is much easier than our main problem and is in fact, fully solvable. We devote Section 2.5 to
present its solution.

2.3. Large-Population Asymptotic Framework

Because problem (6)-(7) is prohibitively difficult to solve exactly, we instead take a large-population as-
ymptotic approach in which we consider a sequence of systems in which the number of scheduled jobs grows
large and the cost is scaled to make the problem tractable. Specifically, we consider a sequence of systems
indexed by n € N in which the population size N, satisfies N, = [an], where >0 is a fixed parameter.
A schedule in the nth system is a nondecreasing sequence {T;,, i =1,...,N,} taking values in [0, H] with the

corresponding scheduling function defined as E,(f) = Zﬁ”l 11, <y, and Au(t) = Zfz”l(t) & = EoE,(t). The col-
lection of all schedules for the nth system is denoted by J,. Let S,(f):=S(nt) = max{m| X", v; <nt} =
max{m| X", v, < t}, where v;, = n”lv;. In parallel to (2), the resulting number-in-system process for the nth

system may be expressed as

Qn = An - Sn o By, (10)

with B,(-) = [) Lg,)>04s-
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Under the large-population scaling, population is assumed to grow linearly with n. One may interpret the
scaling of the various processes a couple of different ways. Under one interpretation, time is scaled by n, the
scheduling time horizon becomes [0, nH], and service times are of order O(1). A second interpretation is that
the scheduling time horizon remains as [0, H], but the service times are scaled by 1/n. That is, when the
population grows, the server speeds up at a rate that is proportional to the population size. Although these
two interpretations are mathematically equivalent, we provide intuition throughput the paper that is con-
sistent with the second interpretation.

Paralleling (3)-(5), we have that the makespan, the overage time, and the departure time of the last arrival
are respectively defined as

n = N n -1)*d y
1 /0 (Qu(s) — 1)*ds (11)
O, = (Tn - H)+r (12)
and
T, = inf{t : S, o B,() = E(N,,)}. (13)

Paralleling (6) and (7), the large population optimal-schedule problem (LPOP) defined by considering the cost
Ja({Tin}) = conE[Wn] + conE[On], {Tin} €Ty, (14)
where ¢, and ¢,, are appropriately scaled constants and the value

Vi= _inf  L({Tiu}). 1
iy JnTind) (15)

Similarly, for the complete information case, we have

IS {©in}) = conBIWa] + couE[O,], {8} € T, (16)
and
V= inf JI({©;,)). (17)
{©1)eT ¢!
Finally, let
Yn=Vu-V5h

To see what is the appropriate scaling for the cost coefficients of J,(-), note that the leading (first-order) term in
the expression for the number of jobs that the server can handle in the interval [0, H] is nuH (recall that we
assume that in the nth system the server works at a rate ny). Similarly, the leading term in the total number of
jobs that arrive into the system in [0, H] is pan. To capture the case in which the server incurs a nonnegligible
overage cost, we assume that the system is overloaded. That is, we assume that pan >nuH, or equivalently,

pa> uH. (18)

Thus, regardless of the schedule, at time H, the number of jobs present in the system is of order n. Because the
service rate is also of order #, it takes a constant (order one) time to handle these jobs. That is, the overage time
is O(1). Along the same lines, notice that the number of arriving jobs is of order 7, and their individual waiting
time is of order one. Thus, the total waiting time (makespan) is O(n). This suggests that, to get a meaningful
cost function J,(-), the cost parameter c,,, should be scaled by n~1, and the cost parameter ¢,, should remain
a constant. Thus, we assume for the rest of the paper that

Con = n_lcwr Con = Co- (19)

We study this asymptotic problem under two scalings. The first is a fluid scaling (see Section 3) in which only
first-order deterministic effects are accounted for. The second is a diffusion scaling (see Section 4) under which
a refinement of the fluid solution is considered to account for stochastic second-order terms.

2.4. Main Results
Our paper focuses on solving the LPOP asymptotically under the large population limiting regime. Our first-
order analysis uses fluid scaling and captures the deterministic elements of the system, not accounting for
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stochasticity. This type of analysis allows us to identify a simple near-optimal scheduling rule and gives us
useful insights about the original finite-population problem. Our second-order analysis incorporates the
stochastic elements back into the model and offers a solution that is asymptotically optimal under diffusion
scaling for large time horizon H. In both scaling regimes, we also identify the SG defined as the appropriately
scaled difference between our proposed solution and the solution under complete information.

2.4.1. Fluid Scale. Assume that the cost parameters are of the form postulated in (19), and recall that this form
was selected in such a way that the two additive components of J,(-) in (14) are both of order 0(1). In the fluid
scaling, the stochastic variation is “washed out,” ensuring that the stochastic optimization in (14) is ap-
proximated by a variational problem in the large population asymptotic. This allows us to focus on the 0(1)
terms in the optimization.

Consider
nt
E{:(t)= 1+[th<H, (20)
N, t=H,
and its corresponding schedule
T{nzmin{izl(i—l),H}, i=1,...,N,, nen. 1)

Then, we establish that {T{ .t is asymptotically optimal in the fluid scale. Specifically, we show that
lim J,, ({T/,}) = lim Vv, = V..

The schedule {T,{ .} satisfies the following properties:

* The appointment times up to time H are at intervals of equal duration of - time units.

e All patients who do not get appointments before time H are scheduled to arrive at that time.

e The arrival rate during [0, H) is equal to the service rate of nyu. Thus, it is asymptotically optimal to operate the
system at a critically loaded heavy-traffic regime. Note that heavy traffic is obtained here as a result of optimality
and not as an assumption.

e The critically loaded regime implies that, in the fluid scale, the server idle time is negligible compared with
the overage time when all customers have been served and that no customers wait during [0, H).

In terms of SG, our results show that in the fluid scaling this gap vanishes in the limit. Specifically, we
show that

lim y, = lim (V, - veh =o. (22)
This result implies that, at the fluid scaling, knowing whether customers will show or not and their actual
service time is only marginally beneficial to the system manager. In particular, knowing these quantities, on
average, is sufficient at the fluid level.

2.4.2. Diffusion Scale. In diffusion scaling, we are interested in fluctuations about the fluid solution that are of
order 0(1/+/n). Specifically, we focus on the centered and scaled cost function

Tu({Tin}) = Va(lu({Tin}) = V), (23)

and its corresponding centered and scaled value function

‘A/n = {Ti,i,gie:gn fn ({Ti,n})'

Our diffusion scale results are for a large time horizon. To state these results, we add the time horizon H as
a subscript to all relevant quantities. Consider the following scheduling function

EL () = {;* [ (1 +57)] Zii (24)
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. ’ cw(p(l—p)+‘u302) .
where ’8 = - m with

The corresponding schedule is

T=

pa. 25
i (25)

T  =mind— P (G-1),HY, i=1,...,N, neN. 26
in,H {n(y+ﬁ*/\/ﬁ)( ) } ( )

Then, we establish that {T¢ ,} is asymptotically optimal in the diffusion scale. More precisely, under the
assumption that the service times v; possess a 3 + ¢ moment, we show that

- 1 i RS (S
gim lim sup 2,y ({Th ) = Jim liminf 22 Vo

The schedule {T¢, ;} satisfies the following properties:

¢ The appointment times up to time H are at intervals of equal duration of time units. This interval

P
n(u+p/ Vi)
duration is slightly longer than that of the fluid schedule and deviates from it by a term of the order of O(1/+/n).

¢ For general negative §, if the appointment times are at integer multiples of m then, in the scaling limit, the

queue length process converges to an RBM on the half line with a constant negative drift f.

e The constant §* is obtained by considering this RBM and minimizing a cost with two additive terms: one
proportional to |f| and representing server idleness cost and the other inversely proportional to |f| and representing
the holding cost.

In terms of SG, it turns out that, although in the fluid scale the SG is negligible, it is strictly positive in the
diffusion scale. Specifically, let 7, ,; = Vin(V,u — V). Then, we show that

TP A P S .
lim liminf Ey”'H = P%lm lim inf EV"’H =V'>0,

H—oo n—oo —00 N—0

where V* is a constant.

2.5. Exact Analysis of the ClI Problem

In the CI problem, all stochastic data are known to the decision maker. It, thus, can be treated, for each
realization of these data, as a deterministic allocation problem. The number of show-ups is given by Z(N), and
the total amount of work associated with them is t*:= V(E(N)) = inf{t : 5(f) > E(N)}. Hence, t* is a lower
bound on 7 for any CI schedule. It is easy to see that there is no gain by allowing the system to be empty (thus,
the server idle) for some time prior to the time of completion of all jobs, 7. Indeed, if there is any interval [a, b)
on which the system is empty and there is still a job (or more) that will show up at time b, then advancing all
jobs scheduled at b or later by b — a units of time (so that the job originally scheduled at b arrives at 4, etc.) does
not affect the waiting time of any of the jobs arriving at times t > 4, and it can only decrease the overage time.
Thus, it suffices to consider only allocations for which B(t) = t (equivalently, Q(t) > 1) for all t <. Moreover,
for all such allocations, clearly 7 = 7*. As a result, (2) gives

Q=A-Son]|0,1]. (27)
The sample path of A(t), t € [0, o), can be any member of D[0, c0) that is integer valued and satisfies
A(t) = E(N) for all t > H. (28)
Now, in view of (27), the requirement Q(¢) > 1 alluded to implies
A(f) =1+ S(¢) for all t<T". (29)
Among all paths satisfying (28) and (29), there is one that is pointwise minimal, namely

. 1+5(), t<H,
A = {E(N), t>H.
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It Corresponds to allocating the jobs in such a way that there are no waiting customers during [0, H), and in the
event that 7 > H, the remaining customers that are E(N) — (1 + S(H-)) in number are all scheduled at the very
last moment, H. By (3) and (27), W = fo (A(s) = S(s) — 1)*ds. Thus, W is monotone in A in the following sense: if
A(t) > A(t) for all t € [0,7"], then W > W*. We conclude that A* minimizes W, and because we have already
mentioned that it minimizes 7, it also minimizes their weighted sum in pathwise sense. Consequently, this CI
schedule minimizes the cost (8).

Finally, we can also compute this cost. On the event " <H, W* =0, when 7" > H,

W* = /H (E(N)—=S(s) —1)"ds = /H (E(N) — S(s) — 1)ds.
We, thus, obtain
VC = ¢, E[W'] + ¢ E[(7" — H)"]
/HW(E(N) —S(s) — 1)ds
H

=, E + cE[(T" — H)*]. (30)

3. Large Population Asymptotics: Fluid Scale

This section studies our appointment-scheduling model in fluid scale. By exploiting the stochastic regularity
that emerges in this scaling limit, we identify a deterministic, first-order approximation to the FPOP that
governs the limit behavior. We find an optimal solution to this limiting problem and show that the cost
associated with this solution is asymptotically achievable in the fluid-scale limit.

We start by stating and solving a formal fluid problem. Later, we show that the optimal value of this fluid
problem constitutes a lower bound on the fluid-scaled FPOP. Subsequently, we show that this value also
constitutes an upper bound on the fluid-scaled FPOP shown by identifying a sequence of simple policies for
the FPOP that asymptotically achieve this value. Thus, we establish that this sequence of policies is as-
ymptotically optimal in the fluid scale.

3.1. Fluid Model
Let {E,} be an arbitrary sequence of scheduling functions. Following (1), the fluid-scaled cumulative arrival
process is defined as

1 _
A, =—Eonk,
n

where E, =1E, is the fluid-scaled schedule. The functional law of large number (FLLN) implies that,
as n— oo,

L= pe, (1)

where ¢: R, — R, is the identity map; note that here the convergence is u.o.c. even though the prelimit
processes are assumed to exist in the Skorokhod J; topology because the limit process is continuous. This is the
case in the remainder of the discussion unless noted otherwise. Throughout this section, we use the notation ¢,
for a generic sequence of stochastic processes that converge to the zero process in probability as n — oo as well
as for a generic sequence of RVs that converges to zero in probability. It follows from (31) that

A, =n'EnE,) = pE, + ¢,. (32)

Also, the FLLN for renewal processes (Chen and Yao [10, chapter 5]) implies that, as n — oo,
- 1
Spi= ES" = ue. (33)

As a result, S, (B, (1)) = uB,(t) + €. In view of these identities, the fluid-scaled queue length process Qn =n"1Q,
is given by

Q,=A,~S5,0B, =pE, — pe+ ule —By,) + &y.
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The idleness process I, :=e — B, is nondecreasing and is flat on excursions of Q, away from zero, and thus,
(Q,., ul,) forms a solution to the Skorokhod problem with data pE, — ue + ¢,,. That is,

(Qn/ Hln) = (rl(pEn —ue+ €n), r2(pEn — pe+ En))/ (34)

with T'1(x) = x + T2(x) and Ta(x)(t) = sup,_,,(—x(s))*.

Recall the fluid-scaled makespan RV W,, := n'W, = n~! me(Qn(t) —1)*dt, and the overage time O, = (7, — H)*,
where 7, = inf{t>0: S,(B,(t)) = E(N,)}. From (32)-(34), by formally removing the error terms, we derive
a fluid model as follows. Let &£ ={A € @*[0,00): A(t) =a for t > H}. Given Ae &, let q=T1(pA - pe) =
pA = ue + 1, where 1(t) :=T2(pA — pe)(t) is the correction term (or Skorokhod term). These are fluid models for
the arrival process and queue length, respectively. Let also B(t):=t — u~'n(t) stand for cumulative busyness,

and let T = inf{t> 0: uB(t) > pa}, W = fooo q(t)dt, and O = (t — H)* denote the fluid models for the termination
time, wait, and overage time, respectively. An FOP is formulated by letting

J(A) = cuW + ¢,0, (35)

and

V= inf J(A).

inf J(1) (36)
In Section 3.2, we show that there exists a A* € £ that attains the minimum in (36). In Section 3.3, we show that
the FOP value V is an asymptotic lower bound on the fluid scale cost J,({T;}) under an arbitrary sequence of
schedules. In Section 3.4, we construct a bespoke sequence of finite population schedules that asymptotically
achieves V, thus proving asymptotic optimality in fluid scale.

3.2. Fluid Optimal Schedule

Under our overload assumption (18), it is straightforward to see that our fluid model satisfies, for any A € &,
0<7—H = pu'g(H). An optimal control should minimize the trade-off between the fluid overage time and
fluid makespan. The main result of this section in Proposition 1 identifies such an optimal control.

Proposition 1. The optimal value of the FOP is given by

— 2 —
V:cw(”“ puH) Lo pampH

2p v
and a fluid optimal control A* € & that obtains this value is
-1
«py = P ut, t€[0,H)
A() {0(, t € [H, o). (37)

Proof. Let A € &£. The identity g = I'1(pA — pe) and the fact that A(H) = a imply q(H) > pA(H) — uH = pa — uH. As
a consequence, for t € [H, 1),

q(t) 2 q(H) - (t - H)u = pae — uH — (t = H)p. (38)
Consequently,

T—H > p(pa — uH). (39)

The lower bounds (38) and (39) translate easily into lower bounds on W and O. Namely,

_ 00 g ' pa _ 2
W = / q(t)dt > / q(t)dt > / [par — uH — (t - Hyp)dt = (par— pH)” (40)
0 H H 2u
where the second inequality uses both (38) and (39). Moreover, because, by (39), t — H >0, we have
O=1-H>yu ' (pa-uH). (41)

The lower bounds (40) and (41) on W and O, respectively, are valid for arbitrary A € . Moreover, by direct
calculation, they are both achieved by A*. This completes the proof. Q.E.D.
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Some remarks on Proposition 1 are warranted. First, and most importantly, under (18), the optimal schedule
ensures that the queue length is zero in [0, H) (note that, by the very definition of 7, g and positive in [H, ) and
zero on [7,00)). This is an intuitively satisfying result in the sense that, given the system operator’s goal of
minimizing a positive combination of makespan and overage time, it would make most sense to fully utilize
the available capacity but not overload the system. Thus, the optimal schedule matches the arrival “rate” with
the effective service rate p~'u in the interval [0, H) and schedules the remainder (of a — p~!uH fluid units) at H.
In other words, the heavy-traffic condition, valid throughout the interval [0, H), emerges as a consequence of
optimization. This result is in stark contrast to most queueing control problems in which the heavy-traffic
condition is assumed at the outset. Notice too that the fluid-optimal solution parallels the sample pathwise
solution in the complete information problem. In the absence of stochastic variation in the arrivals and service,
it is clearly possible to optimally arrange the appointments such that there is no waiting for any of the jobs that
do turn up and schedule the remainder at the end of the horizon.

3.3. Lower Bound on the Fluid Scale Cost B .
Recall that the fluid-scaled makespan W, is defined as W, = n~! /0 (Q.(s) — 1)*ds. Now, fix 0<K<oo (to be
determined later) and note that

W,>nt /K(Qn(s) -1)"ds > /K Q,(s)ds — Kn*. 42)
0 0

By (34), there exists a sequence of processes {¢,} that converges to the zero process in probability as n — oo,
such that Q, = Ty(pE, — ue + &,). By the Lipschitz continuity of the Skorokhod map, it follows that Q, >
T1(pE, — ue) + €,. Substituting this into (42), we observe that

K
W, > / T1(pE, — pe)(s)ds + &, — Kn™!,
0

clearly implying that

K

W, > inf ./ T1(pA — pe)(tdt + &, — Kn™". (43)
Ae%*[0,00) J

From the definition of 7, (13), it follows that 7, > inf{t : uB,(f) + ¢, > ap}, where we have used the fact that

S (Ba(t)) = uB,(t) + ¢, and A (H) = ap + er; note that we use ¢, to represent the difference between the two

mean-zero error sequences. Because we have t > B,(t), it follows that 7, > inf{t : ut + ¢, > ap}, implying that

T, > apu~' + &, =T + &,. It follows that

(ta—H)* > (T—H+é¢,)" (44)

Now, consider
V:i=cy inf {/ I1(pA - ye)(t)dt} +co(T—H)*.
AL 0

As the next lemma shows, V equals the FOP value and can be achieved by the optimal schedule in
Proposition 1.

Lemma 1.
LVv=V.
2. The upper limit oo in the integral can be replaced by any K sufficiently large.
3. The minimum is attained by A* defined in (37).

Proof. Consider V first and recall that, for a fixed A, T = inf{t > 0 : u(t - I(t)) = ap}. If T > 7, it automatically follows
that I(T) > 0. This implies that the makespan cost c;, fo (pA(t) — u(t — I(t)))dt is not optimal. To see this, note that the
makespan cost can be lower bounded by choosing A’ such that A’(t) = uf for all f € [0, 7], and 7 = 7 in this case.
Thus, any optimal solution should be such that I(f) = 0 up to T = 7, in which case we minimize

/OT_ q(t)dt = /Of pA(t)dt — /0f utdt,
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where only the first term on the right-hand side (RHS) is controlled. The minimizing schedule A that satisfies
the constraint that A(f) = a,t > H is

_[p7lut, te[0,H)
/\(t)—{a, { ¢ [H, o). Q.E.D.

Now we show that Lemma 1, together with (43) and (44), implies that the FOP value lower bounds the fluid-
scaled cost.

Theorem 1. The fluid-scaled cost of an arbitrary sequence of schedules, {T;}, is asymptotically lower bounded by the fluid
optimal value V. That is, liminf, . [,{T:}) > V.

Proof. Letj,:=cy W, + ¢,0,, represent the random cost incurred by following schedule {T;}. Because the constant K
was arbitrary, we can set it to be greater than 7. Lemma 1, together with (43) and (44), implies that

ju>(V+e, —Knt)vo.
Observe that j, = V as n — co. Because j, > 0, Fatou’s lemma (Ethier and Kurtz [13]) implies that

liminfE[j,] > E[liminfj,] = V. Q.E.D.

3.4. Upper Bound on the Fluid Scale Cost
We now construct a sequence of scheduling policies whose fluid-scaled cost is asymptotically upper-bounded
by the FOP value V. Given the lower bound result in the previous subsection, this sequence is, thus, as-
ymptotically optimal in the fluid limit.

Recall the fluid-optimal schedule

v _ Jup7't, te[0,H)
A = {04, t € [H, ).

Consider the following sequence of scheduling functions indexed by n

nut
Eﬁ(t):{l'i‘\‘?J, t<H,
Nu, t=H,

and its corresponding schedule

T{n:min{%(i—l),H}, i=1,...,N,, neN. (45)

The scheduling function E} is interpreted as follows: for each 1, customers are scheduled to arrive one at
a time at uniformly spaced intervals of length p(nu)™' up to time H with the leftover N, — (1 + [nuH/p])
customers who are scheduled to arrive at time H.

The main result of this section establishes the fact that the expected fluid-scaled cost ]n({T{ .} converges to
the fluid-optimal value as well.

Theorem 2. Suppose that the schedule is {T{f .} for each n. Then
limsup J,({T/,}) < V. (46)
n—oo

Lemma 2. The finite population schedule satisfies Ef > A uniformly on compacts as n — co.

Now, let (Qy,I,) represent the queue length and the idleness processes when appointments are scheduled
per E}. FLLNs for the arrival and service processes and Lemma 2 together imply the following result:

Lemma 3. The following hold with respect to the schedule T{ . Of (45): .
i. The fluid-scaled queue length and idleness processes satisfy an FLLN: (Q,, I,) = (q", (") as n — oo, where
0, t € [0,H)
q(t)=qap—ut, te[HT]
0, t € (T, ),
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and

0, te[0,7]
t— f/ te (’f/ OO),

o) = {

where T is given in (25).

_ ii. The fluid-scaled makespan and overage time RV satisfy (Wy, On) = (W*,O%) as n — oo, where W* = W and
O* = (T - H).

Proof of Theorem 2. Let] ,If({Tlf W) =Cw W,, + ¢,0,, be the random cost. We start by noting that the convergence result
in Lemma 3 implies that the random cost ]}f({T{ ,}) weakly converges to J(A*) = V as n — co. This implies that
I ({Tlf ) =E[ ]ff({Tlf D] will converge to V provided that ]ff({Tif +}) is uniformly integrable. The remainder of this
proof is dedicated to proving this claim.

We prove that ]ﬁ({T{ +}) is uniformly integrable by showing that E| ]5({7{ LDI? < C< oo forall n € N. Consider
the sequence {O,} first. Note that it suffices to consider the case in which 7, > H. The number of jobs waiting in
the queue at the end of the arrival horizon H is N, — D,(H) >0, where D, (H) is the number of departures in
[0, H]. Because there are no more arrivals after time H, it can be seen that

N, N,
T—H< D vin <D Vin (47)
i=Dy(H)+1 i=1

Now, let Y(m):= 3", v; and Y,,(m):= 2, v;,. Then Minkowski’s inequality implies that (E[Y(N,)[*)!/?> < N,(E-
[Y(1)[?)!/2. Therefore, we obtain

12 N, 1/2
(EMamR) ™ <=2 EPR) < a(E@P), (48)
n
where the last inequality follows from the fact that N,/n < a by definition. Equation (47) and this bound
imply that
El(ty — H)*P* < Elt, — H* < aE[Y(D < oo,

where the finiteness of the second moment is by assumption. Because the bound is independent of 7, it follows
that O, = (1, — H)* are uniformly integrable.

Now consider the fluid-scaled makespan. Using the fact that the queue drains out and remains empty after
T,, it follows that

W, =n! / H(Q,,(t) 1)t 4! / HVTH(Qn(t) —1)*dt.
0 H

Note that the first term on the right-hand side of the inequality is bounded above by n'N,H < aH. Thus, it
suffices to consider the second term when 1, > H. As there are N,, — D,,(H) jobs waiting for service at the end of
the horizon, it follows that

n_l [q Qn(t)dt < n_l {(Nn - Dn(H))VD,,(H)H,n + (Nn - Dn(H) - 1)VD,,(H)+2,n +toeet V?\],,}

1 Nn*Dn(H)

- n Z (Nn - Dn(H) +1- i)VD,,(H)Jrz’,n
i=1

N, = D (H) N2 1N
e VD Hyrin =2 25 (= DV, ysin
i=1 =1

N Nn
< = Z Vins
nia

where the last inequality follows from the fact that n~! ZZ”{D”(H)(Z' — 1)vp,Hy+in = 0 and D,(H) > 0 for all n > 1.
Using the bound in (48), we have

(i /H Qn(t)dt)z)l/ 2 < a(®)P)2.
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Thus, it follows that E|W,|? is uniformly bounded for all n € N, implying that {W,} is uniformly integrable.
Finally, because {]ﬁ({T{n}),n > 1} is a sequence of RVs that are each linear combinations of uniformly in-
tegrable RVs, it is uniformly integrable as well. Q.E.D.

Thus, Theorem 2 shows that the family of finite population schedules (El} is asymptotically optimal in the
sense that the FOP value can be achieved in the large population limit.

Proof of Lemma 2. Fix t € [0,H) and n > 1. By definition, it follows that

f
B ) 51+1("_MV_WJ) <2
n n n\p p n

On the other hand, fix t > H and observe that

a)s|%—a(s%. (49)

EnH
n

These two bounds are independent of f, proving the lemma. Q.E.D.

Proof of Lemma 3. Part (i) follows by Lemma 2 and (34), upon applying the continuous mapping theorem, and by
noting that indeed 4" = I'1(pA* — pe) and * = Tp(pA* — pe)/ .

For part (ii), we first establish that O, = O or, equivalently, that 7, = 7 = pa/u. We first argue that 7, is
equal to the total work that enters in the entire horizon plus the idleness by time 7,. That is,

E(Ny)
Ty = Z Vin + In(Tn)- (50)
i=1

To see this, note that by (13) 7, satisfies
E(Ny) = Sy 0 Bu(ty) = Sy o (15 — Lu(T1)),

and (50) follows by taking the inverse of S, on both sides. Note that by the FLLN the first term in the
expression for 7, in (50) converges to pa/u. It is left to show that I,(t,) = 0. To show the latter, note that if
T, > H then the server is nonidling on the interval [H, 1,,). Thus, I,(1,) < I,(H) regardless of whether 7, >H or
not. But by part (i) of this lemma we have that [,(H)= *(H) = 0.

Second, normalizing by 7 in (11) and using the fact that Q,(t) =0 for ¢ > 7, we have

W, = /0 " (Qus) - ) s,

We have already shown that 7,= 7 and that Q,=¢", and because these two limits are deterministic, joint
convergence also holds. Thus, by the continuous mapping theorem, W, = fo q'(s)ds= /H q*(s)ds :W. Q.E.D.

3.5. The Stochasticity Gap at the Fluid Scale
The first-order deterministic FOP is solved by scheduling demand to match the available capacity. In addition,
the previous two sections have shown that the fluid-scale cost is bounded by the FOP value and proposed an
asymptotically optimal schedule for the LPOP. At the same time, for the CI problem, we identified, in Section
2.5, that a £,-measurable schedule (30) that optimizes this problem; this schedule allocates appointments such
that there are no waiting customers during [0, H), and the server is never idle. Clearly, for the LPOP, there is
a cost to be paid for scheduling appointments without a priori knowledge of the randomness. The parallels
between the CI and FOP optimal schedule and Theorem 1 suggest that there may be a gap between the LPOP
value (V,,) and the value of the CI problem (V). We quantify this stochasticity gap by showing that y,, :=V, —
(pa;ﬁH)z +e, Pa;lyH

VS > 0 decreases to zero as n — co. Recall from Proposition 1 that V = ¢, is the value of the

FOP. The following is the main result of this section.

Proposition 2. The SG in the fluid limit is zero. That is, y, — 0 as n — oo.

The proof of Proposition 2 follows as a consequence of the following lemmas.
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Lemma 4. The optimal overage time in the CI problem satisfies
E[(t, -H)"] » (1 -H) = pa—pH asn — oo, (51)
where recall from (25) that T = pa/u. '
Now, let X, (t):=n"(E(N,) = Su(t) = 1)" and x(t) = (ap — ut)* for all t > 0. We prove that the expectation of
the integral /I_IIWT:’ X, (H)dt converges as n — .
Lemma 5. The optimal expected makespan of the CI problem satisfies

/ e Xn(t)dt] . / ' x(Bdt = (pa—pH)? o (52)
H H

E %

Proof of Proposition 2. Note that y,, = V,, = VS = (V,, = V) + (V = V$!). Then, Lemmas 4 and 5 imply that V —
VE' — 0 as n — oo. Theorem 2 implies that limsup, . (V, — V) < lim supn_,oo(]_n({T{ )= V) <0. On the other
hand, Theorem 1 implies that liminf, (V) — V)>0. Thus, (V, - V) —0asn — c. Q.ED.

Proof of Lemma 4. By definition, 7},:=Y,(E(N,)), where recall that Y, (m):= X/, v;,. It is straightforward to
deduce that (7}, — H)* = (T — H) as n — oo as a consequence of the FLLN. Because E(N,) < N,, and Y,,(-) > 0 for all
n > 1, it follows that (z;, — H)* < (Y,,(N,) — H)*. On the other hand, following (48), we have E|(Y,,(N,) — H)*]* <
2a’E|Y (1) + 2H? < o0, where recall that Y(m) := 27, v;, implying that E|(t;, — H)*|> < co. Therefore, (7, — H)* is
uniformly integrable, implying (51). Q.E.D.

Proof of Lemma 5. We first prove that the optimal makespan converges in probability to the limit on the right-hand

side. It suffices to assume that 7}, > H because we know from the proof of Lemma 4 that 7}, = 7 as # — oo and that
7> H (by the overload assumption (18)). Thus, consider

/H " Xt - /H "t /H Xt - /H "X, (0t

Consider the first term on the RHS and observe that
‘ / " X, (Hdt - / X, (Hdt
H H

where the last inequality follows from the fact that X,(t) < a for all f € [0, 00). Therefore,

/H v X, (f)dt — /H ' Xn(t)dt' =0

as n — oo. Next, consider the second term on the RHS. Using the facts that X,(t) = x(t) as n — oo pointwise
and [X,(f) — x(t)] < a for all t € [0, ), the bounded convergence theorem implies that f; |X,.(t) — x(t)|dt =0 as
n — oo. Thus, it follows that flf Vo X, (Hdt = f; x(t)dt as n — oo. Finally, observe that

HVT),
/ X, (t)dt

H

< +

/H "X, (Bt — /H ' x(t)dt‘. (53)

T Ty
/ Xn(t)dtl{T;sf} + / Xn(t)dtl{f,*, > 7}
T, T

n

<alt, -1,

2
< a?|(t}, - H)'P,

and from the analysis in Lemma 4, it follows that

HVT),
/ X, (t)dt

H

2
E

<00,

Therefore, the sequence of integrals are uniformly integrable, implying (52). Q.E.D.

4. Large-Population Optima: Diffusion Scale
Some of the results in this section require a strengthening of the second moment condition of the service time.

Assumption 1. The service times v; possess a finite 3 + ¢ moment; that is, E[vi™¢] < co for some &> 0.
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4.1. Model Equations and BOP Derivation

As captured by the fact that the FOP is deterministic, the inherent stochasticity in the FPOP degenerates in
fluid scale. A more realistic setting should capture the effect of the stochastic variation introduced by the no-
shows and the random service times. In this section, we consider the scheduling problem at diffusion scale
that incorporates second-order effects.

Our goal in this subsection is to write down equations for the various quantities of interest related to the
diffusion-scale problem and then use these equations to propose a BOP.

By the fluid scale analysis, the rescaled asymptotically optimal schedule Ef(t) converges to A*(t) = (p~'ut) A a.
Under our assumption (18), p~'uH < a, and so the function A* has a jump of size A :=a — p~'uH at H. In general,
we denote with a superscript H quantities that correspond to the allocation at the singular time point H.

Denote

€ [0, H).

Recall that E,(H) = N,, = [an]. If we let Eff = E,(H) - E,(H-), then

. EH —nAH _Nu-E W(H=) —na + np‘lyH [na] — na
EH .= =n —E,(H- 4
e B - )+ 64
Next, recall E(k) = Z;‘Zl ¢, keZ,. Let
[nt] = _
o ZE-p SO gt o5

Vi Vn ’
Now, A,(f) = E o E,(t) by (1). Let us consider this process on [0, H) separately from its jump at H. For t € [0, H),
use the previous notation to write

An(t) —nut _ E(Eq() —pEn(t) | En(t) —np~'ut

Vi Vi SR

_ E([nEw(t)]) — p[nE,(1)] N E,(t) —np~tut _
Vi SN

The number of show-ups at time H is Al := A, (H) - A,(H-) = E(N,) — E(E,(H-)). Hence,

Ant) =

Eu(En(t) + pEa(H), te[0,H). (56)

AH ._ Al —npA”
Al = 7
_ E(Ny) —npa _ E(En(H-)) = pEn(H=) _En(H-)—np~'uH
Vi Vi T
= é:n( ) - én(En(I{ )) PE (H ) (57)

Next, we let

Su(t) —nut
—_—t, t>0.
\Vn

We define the diffusion-scale queue length, for ¢ € [0, H) only, as

Qu(®)
\/—

It is possible to consider the diffusion-scale queue length for + > H by first centering about §*(t) (as defined in

Lemma 3) and then rescaling, but to avoid confusion, we do not extend the process (" beyond the interval
[0,H). We denote g, = n/%(Q,(H) — ng*(H)).

gn(t) =

Qn (t) -

€ [0,H).
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By (2), letting I,(t) = t — B,(t) denote the cumulative idleness process,
Q) = 72 (A(b) = Sy 0 By (D))
= Ay(H) = Su(Bu(1)) + 1P ul(t)
= Eu(Ea(t)) + pE4(t) = Su(Bu(t) + n'?ul,(t),  te[0,H), (58)
=TilpE, + X8, te[0,H), (59)
where (56) is used, and one denotes

Xu(t) = é'n(En(t)) - Sn(Bn(t))‘

The queue length dynamics for the BOP are later derived from this relation.
As for g,, we can write it, using (57) and (58), as

qn = Qn(H_) +A£I_I
= 1—'1 [pén + Xn](H_) + én(a) - én(En(I_I_)) - pﬁn(H_) (60)

Next, we develop equations for the two ingredients of the cost, namely the overtime [t, — H]* and the
makespan, suitably normalized at the diffusion scale.

For t > H, (2) is still valid, but A,(t) is simply given by A,(H) because there are no arrivals after time H.
Moreover, the server is busy continuously on [H,1,) on the event t,>H. Hence, B,(t) = B,(H) + t — H for
t € [H,1,). Clearly, Q,(H) = Q,(H-) + AH. For t € [H,1,], the queue length is given by

Qn(t) = Qn(H) - Dn(t) + Dn(H) = Qn(H) - Sn(Bn(t)) + Sn(Bn(H))
= npA" + [Qu(H-) + A}l = npA"] = np(t — H) = [Su(Ba(t)) — npu(B(1))]
+[Sn(By(H)) — nuB,(H)].
Dividing by +n for t € [H, 1,],
n_l/an(t) = nl/szH +qn — nl/zﬂ(t -H)- gn(Bn(t)) + §n(Bn(I_I))- (61)

We have for 7, the equation Q,(t,) =0 and for 7, 4°(T) = 0, where we recall that, for t>H, g*(t) = (pA—
p(t—H)) V0= (pa—uH - p(t—H)) V0= (pa — ut) v 0. Hence, pAf — u(7 — H) = 0. Using these two relations in
(61) gives

0= 711/2[‘#(% -17)] + qn — gn(Bn(Tn)) + Sn(Bn(H))-
If we set
Ty =n"* (1, = 7), (62)
then
ity = g = Su(Bu(Ta)) + Su(Ba(H)). (63)
Equation (63) is used to propose a formal limit of 7, and, later, to analyze rigorously the weak limit thereof.
Next, the FOP quantity for the makespan is W = f;(p/\H — u(t - H))dt, where 7 = H + pu~' A Thus,
W, = n' (W, - W)
= n‘l/ZWn —n'?w

= W,(1) + W,(2), (64)
R HAT, .
W, (1) := /0 O, (Hdt, (65)
W,@)=n2 [ Qb - / f(pAH — u(t - H))dt. (66)
HAT, H
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On the event 1, <H, the first term in the expression for W,(2) is zero, and we obtain W,(2) = -n'/2W. Next,
consider the event 7, > H. Then

W)= [ 12,0 = (A = E)ldt+ 2 [ 2" = e = H)e (67)
A use of (61) and the computed value of T gives
W,2) = [ 19, = $u(Bu(0) + B H) + pant 2(c, =) = S 2, =2 (68)
H

To derive the BOP, note first that the functional central limit theorem (FCLT) applies to the processes Z,, and S,,. That
is, let XV and X® be mutually independent, one-dimensional BMs with zero drift and diffusion coefficient
(p(1 - p))"/? and p'/2Cs, respectively. Then by the FCLT, (Z,,5,) = (X, X®) (Billingsley [4, section 17]).
We take formal limits in Equation (58). Denote by Q, U, and L limits of the processes Qn, pEn, and n'/ zyI,,,
respectively, on the time interval [0, H). Denote {i = p~'u, and approximate E,(t) as [it, and B,(t) as t, t € [0, H).
Then, we expect the following relationship to hold in the limit
Q) = Ut + XW(at) - XD () + L(t),  te[0,H). (69)

Moreover,
Q(t) >0, te[0,H), and / Q(H)dL(t) = 0. (70)
[0,H)

From (57), letting A" be a weak limit of A, we have A" = X (a) — X(iiH) — U(H-). To obtain an expression
for 7, a weak limit of 7,, use (63) to wrlte

uHQH-) + AM = XO(7) + XP(H)) = p7 (XD () - XP(7) + L(H-)).

With W, W(l) and W(2) representing limits of W,., W,(1), and W,(2), respectively, we have, from (64),

EW(1) =E fo Q(t)dt (because T, converges to 7> H), and by (68), taking into account that n'/?(t, — 7)? =
n~12%2 and that £, weakly converge (recall that this derivation is a formal step),

EW(2) = (T - H)E(Q(H-) + A") + pakt = (T — H + p~'pa)EL(H-) = 2u 'pa — H)EL(H-).
The cost is, thus, given by
J() = e, BIW(1) + W(2)] + ¢, B[]

=c,E / : Q(b)dt + c,,2u " pa — H)E[L(H-)] + o 'E[L(H-)]
0

H
= GE / At + &,E[LH-)], 1)
0

where ¢, = cw(Zy_lpzx —H)+ Coy‘l. Finally, we can simplify (69) by considering X, a BM with drift zero and
diffusion coefficient o = (fip(1 — p) + uC%)¥2 = u12(1 —p + C3)'/2 in place of the two BM terms and write

Q@) = U(t) + X() + L(D), te[0,H). (72)

We, thus, let U denote the collection of right continuous with left limits (RCLL) functions u : [0,H) — R and
note that given u € A, (70) and (72) uniquely define QY and LY in terms of X.
We can now state the BOP of interest as a problem involving (70)—(72) with value given by
V=inf] j(u). (73)

We stress that the BOP has been obtained by means of formal limits. Its justification as a problem that is
rigorously related to the prelimit constitutes the main results of this section.

Remark 1. Instead of U being RCLL functions defined on [0, H), we can work with U, the set of RCLL functions on
[0, H], and replace the term E[L(H—)] by E[L(H)] in (71). This does not change the value V because, at - optimality, U
must be continuous at H. This is because having a jump L(H) — L(H—) > 0 can only increase the cost | as compared



Armony, Atar, and Honnappa: Appointment Schedules
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1345-1380, © 2019 INFORMS 1363

with having L(H) = L(H-) (the jump cannot be negative because L is nondecreasing). Throughout what follows,
we work with Uy instead of U and also with this slightly modified definition of J(U).

Remark 2. We can present the optimization problem in a way that the cost is more explicit and moreover makes
it easy to see that it is a convex optimization problem (Mitter [24]). The pair of Equations (70) and (72) is related to
the Skorokhod problem on the half line. Namely, Q = I';[U + X]. Thus,

Q) = U(®) + X(t) - Slr[})ﬁ][(U(S) +X(s) A0], L) = Q) — U(b) - X(1). (74)

We can, therefore, write | as

J(U) = c,E ‘/OH I [U + X](t)dt + &,E[T1[U + X](H) — U(H) — X(H)].

4.2. Large Time Solution of the BOP
In this subsection, we analyze the BOP at the large H limit. Note carefully that assumption (18) puts a re-
striction on H, namely p~'uH < a. Thus, H cannot be taken arbitrarily large without modifying (u,p, @). In our
treatment, 1 and p remain fixed, and @ and H grow so that the assumption remains valid. However, this issue
is not significant in this subsection in which we only work with the BOP itself because the parameter a does
not show up in it. It does become relevant in later sections.

Recall that X is a (0,0) BM, AUy denotes the collection of RCLL functions [0, H] — R, and for U € Uy let
L=LY and Q = QY be defined as

L = sup(-X(s) - UG)*, O = X(t) + U() +L(H),  te[0,H].
s€[0,¢]

Let also

Cw

Julth = B / Ot + LEIQH) - UH)], U €y 75)
Vi = ulef}q{H Tu(U).

Denote by UM the collection of linear functions U(t) = Bt, t € [0,H] for some f € R. Note that the process Q
corresponding to such a control is a reflected BM with drift § and diffusion coefficient o.

For <0, let mppyp(dx) = -2 £ %%/ dx, x € [0,00). This probability measure on [0,c0) is the stationary
distribution of RBM with drift [3<O and diffusion coefficient o. Let

= kr(lg [Cw /meBM(,g)(dx) — Cof|- (76)

We next establish that for the large horizon BOP it is sufficient to consider control functions in UR.

Proposition 3. One has

I}I_I{‘}o Vi = hl[l_r{(}o ulenmfh" Ta(U) 77)
= V* = 0V2¢,0G,. (78)

Moreover, B* = —a+/cw/(28,) is optimal for both the expressions in (76) and (77); that is, with UW'(t) = p't,
Moo [ (U) = V* and ¢y [ xmremg(dx) — Ep° = V™.

The proof is based on several lemmas. The first is concerned with large time behavior of RBM and
computes V*.

Lemma 6.
1. For each B € R, let Qf be a (8,0) RBM starting at the origin. Then, for <0 and t > 0, E[Q] < [ xmgpng)(dx).
Moreover,
fim inflc, E[Qf] - &f] =

t—o0 BeR
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2. The infimum in (76) is attained at f* = —o+/cw/(2C,) and V* = oy2c4,Co.
The following lemma shows that one can focus on controls under which E[Qg] is sublinear in H. Stated
precisely, we show

Lemma 7. For every &>0, there exists Hy such that for H>Hy and U for which E[QY] > eH one can find U with
E[QY] < eH and [ (U) < Ju(U) + e1(H). Here, e1(H) does not depend on U and converges to zero as H — 0.

This lemma confirms the following intuition. Because the driving BM X has mean zero, a nearly optimal U
will dictate that the process Q(f) remains O(1) as time ¢ gets large rather then let it grow linearly in ¢ so as to
avoid penalty associated with Q. Hence, policies under which one has E[Qy] > ¢H can be improved.

The following lemma argues that one may focus on controls that are constant on initial and terminal
intervals. More precisely, given z,k, H € (0, o), 2z < H, define the class of controls WU#(z,k, H) as the collection of
members U € Uy that satisfy U; =k for t € [0,z) and U; = Uy for t € [H -z, H].

Lemma 8. Given z,k,H and U € Uy, let U* € U*(z,k, H) be defined as
k, te|0,z),
=11, telzH-z),
Uy, te [H—Z,H].
Fix ¢>0, let Hy = Ho(e) be as in Lemma 7, and consider H>Hy and U € Uy for which E[Qy] < eH. Then
Tu(U") < J(U) +ex(z,k, H), (79)
where
limsupey(z, k, H) < ¢, E[r] + cpez, (80)
H

r=r(k,z, X) = sup (—k — X5)*.
s€[0,z)

The intuition behind this lemma is that, if the time horizon H is large, one could modify the control U on
intervals of fixed length (namely, [0,z] and [H — z, H]) with little overall effect.

The following lemma relates the large time behavior of J r(U) for U as in Lemma 8 to the expression V*. Its
proof uses the special structure of controls from Lemma 8 that are constant in the initial and terminal parts of
the time horizon.

Lemma 9. One has

liminf inf [y(U)>V*- ,
I el (D 2V

where e3(z) — 0 as z — co.

Proof of Proposition 3. Using Lemmas 7-9, for any ¢ >0, z>0 and k>0,

lim inf Vi > liminf inf Ju(U)
H—o0 H—eo el EQY < eH
> lim inf inf J.,(U) = limsup ex(z, k, H
H—o0 erw‘(z,k,H):EQg <e¢H ]H( ) H_)oop 2( )
> V' —limsupes(z, k, H) —es(z),
H—o

for e, and e; as in these lemmas. Thus,

sup (—k — X;)*
s€[0,z)

Iiminf Vg > V' — ¢, E — cpez — e3(2).
H—o

We refer to the last three terms on the RHS as the first, second, and third error terms in the order at which they
appear. We first take ¢ — 0 so that the second error term vanishes. Then we take k — oo to have the first error
term vanish as a direct consequence of supse[olz)(—k—Xs)Jr < (—k+IX|I,)* and E[]|X]|,] < co. Finally, we take
z — o0, and the third term vanishes. We have, thus, shown that liminfy_,., Vg > V".
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For a matching upper bound, for any g <0, letting U(t) = UF(t) = Bt, we have with the notation of Lemma 6

Cw

Mo Com <o o
Ju(UP) = /0 Qpdt + EE(QH - BH) < cy /meBM(ﬁ)(dx) —Coff + E/meBM(ﬁ)(dx)/

where we used (75) and the domination stated in Lemma 6(1). As a result,

Vir < Jn(U?)

~ -« C
<cw / xmgpm(p (dx) = Coff +ﬁ0 / xmggm(p) (dx)

Co
= V* + — o d ,
H/meBM(ﬁ)( x)

where Lemma 6(2) is used. This shows lim supH_mIA/H < V*. We conclude that limy_,.. Vi = V*. Q.E.D.

Proof of Lemma 6. For each t > 0, the cumulative distribution function (CDF) of Qf is given by

- pt
PQ <y = CD(%) -7 ztl/f ) y=o,
where @ is the standard normal CDF (Harrison [16]). For fixed f<0, the limit distribution as t — oo is
exponential with mean ¢2/(2|g|). Moreover, it can be directly checked that the CDF is monotone decreasing in t.
Hence, by monotone convergence, the expectation E[Q] converges as t — oo to 0%/(2|f|), provided B<0.
Moreover, by the aforementioned monotonicity of the CDF, E[Qf ] is monotone increasing in t and is, therefore,
bounded above by the latter constant, which proves the first assertion in Lemma 6(1). For g > 0, P(Qi3 <y)—0
for all y; hence, ]E[Qf] — o0. Thus, denoting F(t, B) = cwE[Qf] —&B and F(B) = c,0%/(2||) + &,p for p<0, F(B) =
oo for B >0, we have the pointwise convergence lim;_., F(t, ) = F(f).

Our goal now is to show

lim mf F(t,B) = 1an(ﬁ) (81)

t—o0 BeR

We achieve this in three steps. First, we show that infg.o F(t, §) — o0 as t — co. Then we argue that there exist
—o0 <a < —1<b<0such that, for all large ¢, infger F(t, f) = infges) F(t, B). Then we are in a position to use Dini’s
theorem to argue that the order of the t-limit and the 8- 1r1f1mum can be 1nterchanged We use an additional
monotonicity property. It can be readily Checked by the CDF formula that g — P(Qt <y) is monotone de-
creasing (for each t and y). Hence, § — E[Qt] is monotone increasing (for each f).

For the first step alluded to, the pointwise convergence EQ] — oo as t — oo can be used to deduce infgejo 1]
[cwEQtﬁ — Cof] — oo because for g € [0,1] and all + we have cwEQtﬁ —Cofp = CZUEQ? -, = o as t — 0. To show
infﬁe(llw)[cwEQtﬁ —Cof] — o0, we argue as follows. By the formula for Qf , we have the lower bound
Qtﬁ > X, +pt. Hence, for all B>1, chtﬁ —CoP = co X + Blcwt — 6,). Hence, for t>¢,/cy, chf —Cof 2
cw Xt + (ot — G,). Taking expectation gives infge(y o) [cwEQtﬁ — Pl = cpt — G — o0 as t — .

For the next step, fix >0 and let —co<a<—-1<b<0 such that éla|>u, &lb|<1 and F(b)>u (note that
F(0—) = o0). Then, for any p<a, F(t,f) = ¢|B|>u. Next, consider B € (b,0). The p01ntw1se convergence of F(t,b)
to F(b) implies that, for some ¢, and all t > ty, F(t,b)>u — 1, and because &|b| <1, ¢, EQ? > u — 2. Using again the
monotonicity in g, F(t, f) > cwEQt >u—2 for g €(b0).

Because for fixed g <0 the limit limy_, F(t, B) is finite, and the constant u is arbitrary, it follows that 2 and b
can be found so that the infimum is achleved in [a,b] for all large ¢.

Next, by the explicit representation of Qt in terms of I'y, it follows that |Qﬁ Qﬁ | <2|8 - p'|t. Hence, IE[Qt] is
Contmuous in B in the compact interval [a,b]. Moreover, as already mentioned in the first paragraph of the
proof, E[Qt] is monotone in t. Because we have that F(t, ) = cw]E[Qt] — ¢, converge pointwise as t — oo to
a continuous function F(8), we can use Dini’s theorem and obtain that the convergence is uniform in f. We
conclude that, as t — oo, infge(qp) F(f, ) — infge(qp) F(B). This proves part 1 of the lemma.

It remains to solve the optimization problem (76) or, equivalently, the RHS of (81). As already stated, for
B <0, the first moment of mrpm) is given by 02/(2|B]). We are, therefore, interested in minimizing

Cw + Eo|ﬁ|

9
2|l
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over B € (—0,0). By a direct calculation, the minimum is attained at g* = —0(cw/28,)V? and is given by
0(2c,6,)"%. Q.E.D.

Proof of Lemma 7. Fix ¢ >0. Given any H and any U € AUy, we have for Q = QY the relation

Qt: U; + X; +su (—US—X5)+, te [O,H]
1%

s<t
Define q = q! as
gr = U; + sup(-Us)*, t e [0, H]J.

s<t

Then
1Q = qlly < 2lIXI|x, (82)

by the Lipschitz continuity of the Skorokhod reflection map. Consider U for which E[Qy] > ¢H. Then gy >
eH - 2E[||X||y]. Fix Hy so large that, for every H> Hy, 2E[||X]|y] <eH/4 (Hp exists due to Doob’s maximal
inequality and Jensen’s inequality), and consider in what follows only H>Hj. Then qu >3¢H/4. Let U be

defined as U = U on [0,H) and Uy = Uy - gu (here, g = g). Denote Q= Qﬁ and § = qa. Clearly, on [0, H), we
have §j =g and Q = Q. As for the time H, we have

EIH =Uy—-qu+ sup(—Us + qu{s:H})+ =0.
s<H

As a result, Qy =Gy + Qn — dy = On — Gy < 2Xlly, by the Lipschitz continuity of the Skorokhod reflection
map. This shows E[Qy] < 2E[||X]|y] < eH/4. Moreover, by (75),

(T < Ji(U) + 221Xl ] < Ji(U) + coH2,

for a suitable constant c; (again, by Doob’s and Jensen’s inequalities). This proves the lemma. Q.E.D.

Proof of Lemma 8. Denote Q = QY and Q" = Qu#. First, we provide lower estimates on Q — Q" on each of the three
intervals separately.
The interval [0,z). Here we use the trivial lower bound Q; > 0. As for Q,
Qf =k + X; +sup(~k — X5)* < 2k + 2||X],.
s<t
The interval [z, H — z). We have
Qr = Uy + X + sup(-U, — X)*

s<t
> Ut + Xt + sup (—Us — XS)+

s€(z,t]

> Uy + X; + max |r, sup (U — XS)+] -7,

s€|z,t]

where we have used the fact that a > a Vv b—b provided a > 0 and b > 0. Recalling that for t € [z, H —z) U and
U* agree and that U* =k on [0,z), the expression is equal to

Ut + X; + sup (U - X,)* —r.
s€[0,t]

It follows that Q; > Qf —r.
The interval [H -z, H]. In fact, we only need a lower estimate on Qy — Qf,. We have

Qu = Uy + Xy + sup(-U; — X)",
s<H
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and
Qf, = Uy + Xy + max| sup (-U* - X,)*, sup (-Uy- XS)+].
s<H-z se[H-z,H]

Hence,

Qu = Uy + Xu + sup (-Us — Xs)*
s€[z,H|

> Uy + Xy + max >r, sup (—Us — Xs)+] -7
- s€(z,H]

> Uy + Xy + max Vr, sup (-Us;—X5)*, (-Uy - XH)+] -7
- s€[z,H-z)

> Uy + Xy + max >r, sup (-Us—X;)*, sup (-Uy-— Xs)+] —r—7,
- s€lzH-z) se[H-z,H|

where 7 = SUPse(p—z ] |Xs — Xgl|. This shows Qy > Qf, —r—17.

Next,
& Cw H Co
Tl = 348 [ Qs + 2 BIQu ~ Ui
s [ Qs+ ROy - U]
2 E . s(S ﬁ H H
Cw Bz Co # # o
> / Qtds — (H ~ 22)E[]| + < (BIQY, ~ Ufj) ~ Elr + 7))
ql= ). H
Also,
& o _ Cw H # Co # #
(U = 48 [ Qs + 2 BIQ - )

H—z ~
< CE [Zk + 2E[[IX]..] + E / Q*ds + 2E[QF, + ?]] + %E[Q}g —ut],

where we used that for t € [H —z H] one has Qf = X; + U} + Lf < X; + U}, + L}, = X; — Xy + Qf}; hence, Qf <
QF + 7. Combine these two bounds to obtain

fH(U#) - fH(U) < % [(H —22)E[r] + 2k + 2E[||X]|,] + zIE[QE + ?]] + %]E[r + 7]

< | (H = 22)B[ 7] + 2K + 2B[IXIL] + 2E[Qy + 7 +27]| + 2 Bl + 7]

< Cﬁw [(H — 22)E[r] + 2k + 2E[|X]|.] + zeH + zE[r + 2?]] + %]E[r +7].
Denote by ex(z, k, H) the expression on the last line. Note that although 7 depends on H, its expectation does not
(and is finite). Thus, e, satisfies (80). Q.E.D.

Proof of Lemma 9. Fix z,k,H and a control U € U*(zk, H). Then Q; = Qf = X; + U; +sup,_[-Xs — Us]* >
sup,[X; — Xs + Uy — Us]. Hence, for z+t < H,

Z+t Z+t
/ Qqds > / Qqds
0 z
Z+t

> / sup [Xs — Xs—g + Us — Us—g]ds
z 0€[0,s]

z+1t
> / sup [Xs — Xs—g + Us — Us—p]ds.
z 0€[0,z]
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For each s >z, the stochastic process {X; — Xs-0}gejo-] is equal in law to {X; — X,_g}gefo.]- As a result,

Z+t Z+t
IE/ Qsds > E/ sup [X; — X, + Us — Us_g]ds.
0 z

6€[0,z]

We now use the inequality

b b
/ sup f(s, 0)ds = sup / f(s, 0)ds.
a 0 0 a

This gives

z+t
—E/ Qsds >~ E sup [X, — X, 9+ Us — Us_g]ds
6€[0,z]
1 z+t
= E sup {[Xz - Xeol +7 / (U, - us_g]ds}.
6€[0,z] z
We have

z+t Z+t z—0+t Z+t Z
/ [Us — Us_glds = / Usds — / Usds = / U,ds — / Usds.
z z z—0 z—0+t z—0

Moreover, by the assumption on U, we have U =k on [0,z), U= Uy on [H -z H]. Thus, with t+z =H,

1
> - Uy -k
H - /st E sup fix. Xeco] + 0 (Un o)

Thus,
- o [ &
() =E [t + £ BIQu - Un)

H - k _ Uy
> B sup{ [X X, 9]+9(———}—co—
oef0\ H H H H

H—
> inf {cw]E sup { z
BeR 0€[0,2]

ol + 05— )} - &)
Denoting 6 = z/H,

faU) > inf {cwE sup {(1 X, = Xoop] + 95} —coﬁ}
0€[0,z]

2 ir Hg{cwmei%};{[xz X, o]+ 95} - coﬁ} — k& — 28E||X]l..

Send H — oo (hence, 6 — 0) to obtain

lim inf f  Ju(U) > inf Az B),
im in m}? kH)]H( )_[132]R (z,B)

where

Az B) = {cwE QSEI[,:)IIDZ]{[XZ — X, o] + 9/3} - 505}.

Now, if we let Q, = Supeelo,z]{[xz — X;-0] + 6B}, then Q, is a (B,0) RBM starting at origin. Hence, by Lemma
6(1), lim,_,« infger A(z, f) = V*. This proves the lemma. Q.E.D.
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4.3. Lower Bound on the Diffusion-Scale Cost

Recall from (75) the definitions of [ and V, the cost and value of the BOP. Also recall the diffusion-scale cost
Jun({T:}) and value V,, i = n'/2[V,, 11 — V], where V,, ; is defined in (7) and Vp is the FOP value defined in (36).
This subsection is devoted to proving the following result.

Theorem 3. Let Assumption 1 hold. Fix H. Then

H ' liminf V, g > Vy. (83)
n—00

Assumption 1 is in force throughout this subsection. (It is used in the proof of Lemma 11.)

We say that a sequence {T}'} € I, n € N achieves the limit inferior in (83) if
lim [, ;({T"}) = liminf V,, 1. (84)

If the expression on the left-hand side (LHS) of (83) is infinite, then there is nothing to prove. Hence, we may
and will assume that, for any such {T}'}, the sequence ], z({T}'}) of (84) is bounded. The following lemma
provides various convergence results based on, to a large extent, the boundedness of the sequence of costs.

Lemma 10. There exists a sequence {T'} C I, n € N that achieves the limit inferior in (83) and for which assertions (i)—(iv)
hold.

i. sup, E[(2,)?] V E[%}] <co (in particular, %, are tight, and T, =T as n — o).

ii. supye(q ., |Bu(t) —t{=0 as n — oo.

iii. sup,, fOH T1[pE,|(t)dt < oo and sup, {I'1 [pE,(H-) - pE,(H-)} < co.
iv. Sup,eqo ) [En(t) = p~'ut] — 0 and |E[f = AF| — 0 as n — co.

Fix a sequence {T"} as in Lemma 10. Let all the processes and RVs, such as W, Qn, 7,, etc., denote those
associated with the schedule {T"} for each n. Recall the diffusion-scale expression W, from (64). Also recall
W, = W,(1) + W,(2). Then, by (23),

Turn (T8 = ElcoWa(1) + coWa(2) + cota]- (85)

Recall that (2, 5,) = (X1, X?); that these two BMs are mutually independent; and that, by its definition, X is
equal in law to the sum XM(i:) + X@(-).

In the derivation of the BOP in Section 4.1, we took formal limits in the equations that describe the scaled
processes, such as (58) for Qn, (63) for 7, etc. We are unable to turn this into a rigorous arqument in
a straightforward manner because there is no apparent precompactness for the sequence of functions {E,}. For
example, in (58), there is no justification to replace the limit of the term pﬁ,, by some control U. We, therefore,
take a different route, in which we are able to provide a lower bound in which the error term converges to zero
as n — oo only because of the convergence of the stochastic processes and RVs involved (such as 7,, ﬁn), not
relying on any convergence associated with E,.

An outline of the argument is as follows. We appeal to Skorokhod’s representation theorem and derive (in
Lemma 11) a bound of the form

Elco Wi (1) + coWa(2) + coa] = Hiy(pEn) — Elen], (86)

where ¢, is a sequence of RVs satisfying E[¢,] — 0 as n — co. The argument leading to this estimate is based
on the closeness of (En, §,,) to (XM, X®). However, it does not require E, to be close to any candidate limit and,
thus, allows us to avoid the aforementioned issue regarding precompactness of this sequence. Now, for each n,
pﬁn is a member of Uy. Thus, using (85), it follows from the definition of Vi that

Jon({TI}) = HVy — Ele, 1. 87)

In view of the fact that E[¢,] — 0, the result follows.

Toward stating Lemma 11, note that the convergence Z, = X and the one stated in Lemma 10(iv) imply
that £, o E, = XD (i) (recall that fi = p~' ). By Lemma 10(i), 7, > H with probability tending to one; hence, by
Lemma 10(ii), sup,.(o ; 1Bx(t) = {{ = 0. Consequently, S, 0B,=X?, and so X, = X in the uniform topology on
[0,H). Moreover, for t€[H,1,) (on the event t,>H), B,(t) = B,(H) + (t — H) by the nonidling property. It
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follows that (5, o B,)(-AT,) = X@(-A%). We now appeal to Skorokhod’s representation theorem, by which we
may assume without loss of generality that, a.s.,

A

7, — 7, and (Hn/ Eno Enl (gn ° Bn)('/\Tn)) - (X(l)/ X(l)((a')/ X(z)('/\f))/ (88)
uniformly on compacts. If we let X = X(l)(ﬁ-) — X@, then we also have X, (-A1,) = X(-AT) a.s.
Lemma 11. The estimate (86) holds with a sequence of RVs e, for which E[e,] — 0 as n — oo.

Proof of Theorem 3. The estimate (86) holds by Lemma 11. Hence, (87) is valid. Taking the limit inferior and using
the convergence E[¢,] — 0 stated in Lemma 11 establishes the result. Q.E.D

We turn to the proofs of the lemmas. We use uniform second-moment bounds as follows. For every t,

sup E[||Z,|?] <o,  supE[||S,[*] <o, (89)

where the first assertion follows by Doob’s L2 maximum inequality (Durrett [12, section 4.4]), and the second is
shown in Krichagina and Taksar [21, theorem 4].

Recall that ¢ denotes a generic positive constant (nonrandom, independent of 1), whose value may change
from line to line. Moreover, {©,} denotes a generic sequence of nonnegative RVs that are uniformly square
integrable; that is, sup, E[@2] <. The value of the sequence {©,} may also change from line to line.

Note that, in view of (89), for every fixed t, one has ||S,||, < ®, and ||E,||; < ©,. Moreover, ||S, o B,||, < ©,
because 0 < B,(s) < s for all s.

Proof of Lemma 10. We argue that assertions (i)—(iii) hold for any sequence {T7} that achieves the limit inferior in
(83). Hence, we fix such a sequence and denote it by {T7'} (thus, (84) is valid for this sequence). On the other hand, the
proof of part (iv) requires a certain construction; it is achieved by modifying this fixed sequence in a suitable way.

It follows from (85) and the fact that the sequence of costs is bounded that
BIWa(D)] + coBIW,(2)] + B[ 2,] < c. (90)

We would like to deduce from (90) that each of the terms on the LHS is bounded above by a constant. Before
we may do so, we must provide a lower bound on each of these terms. The first term is nonnegative by its
definition.
Next we show that E[(7;)*] < ¢, equivalently 7, < ©,. By (58), using the boundedness of E,(H-) and B,(H-)
and the nonnegativity of I,, we have Qn(H )> -0®, +pE,(H-). By (57), AH > -0, pE (H-). Thus,
Q.(H) = -©,. 1)

Consider the event 7, < 0 and use (63). On this event, the expression B,(1,) is bounded above by 7. Hence, the
term S,(B,(t,)) is bounded in absolute value by 15,11+ Using this and the lower bound (91) in (63) gives
Tnliz,<0p = —©,. This gives

E[(£,)*] <c, neN. (92)

A lower bound on E[W, (2)] is achieved by considering the three expressions I, = IE[{W @<y, I =
E{W,(2)1r,emmy), and 1 = E[{W,(2)1(,,57]. For I, we use the lower bound —cn'/? on W,(2) and (92), by
which P(t, <H) = P((t, — T)~ > (7 — H)) = P(£, >n'*(T — H)) < cn!. This shows I, > —cn~1/2.

For I, on the event 7, € [H, 7], we use (68). By this equation, we have

W@MJ”>®“WUMWW

By (92), ©, 2 —©,,. This shows I/, > —
As for 17, it follows from (66) by a calculation similar to that leading to (68) that, on {7, > 7},

W,2) = [ 1= Su(BED + £ = H)+ S,Bu ()t + ' [ 0,0
H 7
The last term is nonnegative on the indicated event; hence,

Wn (2)1{7n>f} > -0,.
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Thus, I > —c. We conclude that E[W,(2)] > —c.
In view of these lower bounds, (90) now implies

@ E[W, ()] <¢c, () E[W.(2]<c, (o) E[f]] <c (93)

The bounds (92) and (93)(c) prove part (i) of the lemma.

Next, the tightness of 7, used in (63) implies the tightness of g,,. By (60), this gives the tightness of n'/2[,,(H-).
Because I,(H-) = I,(H) = H — B,(H), we obtain B,(H) = H. By the property |B,(f) — B,(s)| < |t —s|, this implies
SUPye(0, 1] |B,(t) — t|=0, and because for t € [H, 7,] we have B,(t) — B,(H) = t — H, the result stated in part (ii) of
the lemma follows.

The bound (93)(a) clearly implies the tightness of W,(1). By the expression (65) for W,(1) and the con-
vergence 1, = T, this gives the tightness of /0 Q,(Hdt. Using (59) and the Lipschitz property of I'; (with
constant two),

H H H
/O Fl[PEn](f)dtS/O F1[PEn+Xn](t)dt+2H||XnIIH=/0 Qu(B)dt + 2H|| Xl

Hence, the tightness of the RHS implies that of the LHS. However, the expression on the LHS is deterministic;
thus, it is, simply, bounded. This gives the first assertion in part (iii).

The aforementioned tightness of the RVs n'/2[,(H-), along with the equality between the two expressions
(60), implies the tightness of the RVs I’y [pE.(H-)] — pE,(H-) (in view of the tightness of the terms involving &,
and S, in these expressions). Arguing by the Lipschitz continuity of T'; establishes the second assertion in
part (iii).

Finally, we prove part (iv). Given ¢>0, we first show that sup, gy (E (t)—ptut) <e prov1ded n is
sufficiently large. Recall that E,(t) is nondecreasing. Thus, if the inequality SUPye(o, 1 t](E,q(t) p~tut)> ¢ is valid
for some n, then there exists t=1t, €[0,H—¢] such that, for all s€[t, t+ ‘eone], where & = eppt/2,
Eu(s)—plus>e—plus—t)> 5. Hence, by the definition of E,, E"(s) > \Vn& 5 for the same set of times s. By the
definition of T, we have F[pE”](s) > pE,(s), for each s in the interval alluded to. Hence, fo T(pE")ds > c.n,
where c. >0 depends on ¢ but not on n. By part (iii), thls can occur for only finitely many n. Hence, the claim.

Next, given ¢ >0, assume that the inequality E,(t) — p~'ut > 3ep~'p is valid for some nandt=t, € [H-¢ H).
Then E,(t)>p~'u(t +3¢)n > p~ u(H + 2¢)n. Construct from E, another schedule EY(s) = E,(s) Ap~'u(H + 2&)n
for s € [0,H). Then the schedules agree on s € [0, ). Moreover, the new schedule satisfies the constraint E,(t) —
p~! ut <ce for all times t. The resulting queue length can only be decreased by this modification. Moreover, the
effect of the modification on the overage time is negligible at the scaling limit as follows by the following
argument that shows under both schedules no idle time is accumulated during [t, H) with high probability.
This is because, for s € [t, H),

EY(s) = p' u(H +2e).
Hence, according to (34), with the error term ¢, as in that equation,
Q,(s) = pEu(s) - s + &n(s) + sup(=pE, (1) + put — e ()"
u<s

= u(H + 2€) — s + £4(5) + sup(—pEa(u) + it — e,(u))*

uss
> u(H +2¢) — us + &,(s)
> 2pie — lenlly-
This shows that for any ¢ >0 one can construct E,, for which Supte[O,H)(E”(t) —plut)<e, and (84) and assertions

(i)-(iii) of the lemma hold. A diagonal argument may now be used to take ¢ = ¢(n) | 0.
Next, a similar use of the formula (34) now for the term ul, shows that if

. - _ -1 _
tel[gg](En(t) put) < —¢,
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then one has I,,(H) > ce with high probability. In this case, the cost associated with the scaled overage time 7,
grows without bound as n — oo. )
Finally, the second assertion of part (iv) follows from the first one by using the constraint E,(H) = N,,. Q.E.D.

Proof of Lemma 11. We first estimate VAV,,(l)Afro_m below. By (58), for t € [0, H), Q. (1) is given by pE,(t) +
X, () + n2ul,(t), where we recall that X,,(t) = Z,(E,(t)) — Su(B(t)). We use (59) and the fact that I'; is Lipschitz
with constant 2 in the supremum norm to write

HAT, .
Wo(1) = /0 A, (it
HAT, R R HAT, R
- /O (CilpEy + X, 1(6) = TilpE, + X1(0))dt + /0 TulpE, + X](Ddt

H
> / Th[pE, + X](t)dt - £°,
0

where
H A
e = 2HAT)IX, = Xy, + [ Talpk, + X100

HAt,
The term g, (see (60)) appears in the expression for both W,(2) and ,. We have
gn = TilpEy + Xul(H=) + En(@) = En(Ea(H-)) = pEu(H-) (94)
>N, - 6111,
where
A =Ti[pEs + XI(H-) = pEu(H-) + X(@) - XV (aH),
ey = 201X = Xl + [Ea(@) = XD (@) + [E,(E,(H-)) = XD (EH)|.

Recall that, on the event 7, < H, W, (2) = —n'/2W. On the event 1, > H, we have the expression (68). We obtain
(in both cases)

HVT,
W, (2) 2 (1, — H)'(Q,(H-) +Alf) - / (XP(tAT) = XPUH)dt + pat, - e — & — €5,
H

where
eft = 2||§n oB,(-AT,) — X(Z)(-/\f)HT”, 5?1 = %nl/z(’cn -7, eﬁ = n1/2W1{Tn<H}.
Hence,
7
W,(2) > (T - H)A, — / (XP(tAT) = XP(H))dt + pat, — 2 — & — &t — &5,
H
where

&5 = |ty = T(Q,(H-) +All) + e}, + 2/t — 7| X
As for 1,, using (63),
> y‘l[/\n — XO(7) + XO(H) - ¢! — &|.

We now combine the lower bounds obtained on W,(1), W,(2), and %, and compare with expression (71) with
pE, substituted for U. The term L(H-) appearing in (71) is related to A, via

E[L(H-)] = E[T1[pE, + X](H-) — pE.(H-)] = E[A,].
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We have, thus, shown that (86) holds with ¢, = C5(€2 +- 4 ef,), where ¢5 is a constant.

It now remains to show that each of the terms E[¢!], i =0,1,...,5 converges to zero.
The first term in € converges to zero a.s. by (88). It follows from (89) that this term is uniformly integrable.
Hence, its expectation also converges to zero. As for the second term in &Y, using the Lipschitz property of Iy,

this term is bounded by

H
e, /0 T[pE, 10t + 2HIXll } < 1e,<in{e + 2HIX |,

where we used Lemma 10(iii), and c is a suitable constant. The indicator function converges to zero a.s. by (88),
and the expectation of ||X||; is finite. Hence, by dominated convergence, E[¢%] — 0.

The a.s. convergence of ¢! and &2 to zero follows from (88), whereas their uniform integrability follows from
(89). Thus, E[¢l] — 0 and E[¢2] — 0.

Next, by (62), n'/?(t, — 7)* = n"/222. Thus, to show that E[¢3] — 0 it suffices to improve the estimate from
Lemma 10(i) to show that E[2] is bounded.

To this end, recall expression (63). Because we already established the boundedness of the second moment
of gy, it suffices to show that also the second and third terms in (63) have bounded second moments. Because
B,(H) < H, the second moment of the last term in (63) is bounded by ]E[||§,,||%1] ; hence, (89) gives a uniform
bound. It remains to show that

sup E[én(Bn(Tn))z] < 0o, (95)

Here we use the 3 + ¢ moment assumption. First, note that B,(7,) is the total time the server works on jobs,
which thus is equal to the total arriving work. A bound on this is given by =N v,, = n~! 5N ;. Denoting
W, = Zﬁ"l v;, we have

E[gn(Bn(Tn))z] = E[l{n*w,,<1}~§n(Bn(Tn))2] + Z E[]-{nflw,,e[Zk,Z"”)}gn(Bn(Tn))z]
k=0

< E[l{n‘lwn<1}|lgnl|3r1wn] + Z E[l{n*wne[zklk*l)}||§n||$r1wn]
k=0

)

< EMISAR] + 237 I gyt et 2o ISl ]
k=0

= A 12
<c+ >\ P(w, > n2k)l/p ]E[“Sn”quu]l/q,
k=0

where (89) is used for the first term, and for the sum, Holder’s inequality is used, where p~t + 47! = 1. Fix €
(3,3 + ¢). Then by Minkowski’s inequality we have E[wﬁ] < cnﬁ]E[v/f]. Hence, P(w, > n2%) < 27, where c is
finite and does not depend on 1 or k. Next we appeal again to Krichagina and Taksar [21, theorem 4], which
states that E[||S,[I/1"/f < c(£'/2 + 1) (under the hypothesis that the fth moment of v; is finite and B > 2), where c
does not depend on t or n. We use this estimate with t =21, and g = /2 (accordingly, p is determined).
This gives

]E[gn(Bn(Tn))z] <c+c Z 272k 4 7).
k=0

Now, p = (1-2/B)7!, and because >3, we have p <3. In particular, > p. Therefore, the sum is finite. This
proves (95) and, hence, follows the estimate on E[&]].

To show that E[¢*] — 0 amounts to showing that n'/?P(t, <H) — 0. Now, 1, — 7 >H, and we have just
shown that sup, E[?2] <co. Hence, for ¢ =7 - H,

n'?P(t, < H) < n'PP(n~"?|t,>¢) < én”V?,

for some constant ¢ This shows E[¢%] — 0.

Finally, for a bound on &>, we use Cauchy-Schwartz to write

]E[ei] <E[(t, - %)2]1/2]E[q§]1/2 + f]E[si] + cE[(t, — 7)*]V2.
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We have already shown that g, are uniformly square integrable. Hence, the convergence of the first and last
terms to zero follows from the boundedness of E[72]. The second term has already been argued to converge
to zero.

This concludes the proof that E[¢/] — 0 for i=0,1,...,5 and completes the proof of the lemma. Q.E.D.

4.4. Upper Bound on the Diffusion-Scale Cost
In this section, we propose a sequence of schedules (indexed by 1) whose diffusion-scaled cost converges to
the cost we obtained as a solution to the BOP. This establishes that the BOP cost is an asymptotic upper bound
for diffusion-scaled cost, which, together with the lower bound, establishes the asymptotic optimality of our
proposed schedule.

Let 5 be the optimal drift associated with the problem defined in Proposition 3; namely f* is such that the
control U(t) = p't is optimal for the problem limp e infjjcqm Ju(U). Note that g*<0. Let n> (8*/u)?, and for

t € [0,H], define
nt B
ﬂw:l?@+ )

Ny, t=H.

t<H,
(96)

5

To see that E%(t) is an admissible schedule, we need to verify that F%(t) > 0 and that it is nondecreasing in f.
Both of these requirements follow from the condition that 7> (8*/u)* and from our assumption that p~'uH <«
in (18). The latter is used to verify that the jump of EZ at t = H is nonnegative.

Next, consider the diffusion-scaled schedule % := Vn(n™E4 — 1*); recall that A* is the fluid-optimal schedule
defined in (37). A straightforward computation shows that, as n — oo,

t € [0,H)

t>H. ©7)

El(H) — a(t) = {gt

Furthermore, it can also be easily shown that the convergence is uniformly on compact sets of the time index.
It follows that as H — oo, i converges to the drift of the stationary optimal RBM associated with the problem
Lim oo infyyeqin Ji(U). The main result of this section proves that this sequence of schedules asymptotically
achieves the large time horizon value of the BOP determined in Proposition 3.

Theorem 4. The sequence of schedules {T¢ ,n > 1} corresponding to the scheduling functions {E%,n > 1} of (96) satisfies

in’
lim limsup H™'J, ;({T%,}) = lim V.
H—o0 n—00 4 4 H—o0

Proof. Recall the diffusion-scaled cost in (85):

]An,H({Tgn}) = E[wan(l) + Can(Z) +cotul,

where W,(1), W,(2), and %, are defined in (65), (66), and (71) (respectively). Applying Skorokhod’s repre-
sentation theorem as in (88), we have that a.s.

7, — 7, and (8,8, 0E%, (S, 0B,)(-A1y)) — (XU, XD(1), XP(-AT))as n — oo.

As before, let X := XW(fi-) — X@ so that X,(- A 1,) = X(- A T) ass.
Consider W,(1) first. From (18), (88), and (97) and the fact that B,(t) € o(n'/?) a.s. for all t € [0, H), it follows
that W,(1) = fOHM" Q, (Hdt — n~Y2B,(1,) satisfies

H
W,(1) — / (pit + X)(t)dt a.s. as n — oo. (98)
0
Next, recall from (68) that on the event {7, > H}

W,2) = [ (a0 8.8 + S.(BED e + pact, 5 Vi(e, — 27,
H 2
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where g, = Q,(H-) + A and A" = B, (a) - E,(E4(H-)) - pE4(H-). Again, using (88) and (97), it can be easily
seen that

gn — T1(pit + X)(H-) + XY (a) - XV(gH-) — pii(H-) = § a.s. as n — co. (99)
It follows from (63), (88), and (99) that

- %(q - XP(7)+ X?(H)) = % a.s. as n — oo. (100)

Now, because 7> H, it follows from (68), (99), and (100) that

W,(2) — / [4— XP(t) + XD (H)|dt + pat as. as n — oo, (101)
H

where we have used the fact that vn(t, — 7)> = (1, — ©)t, — 0 a.s. as n — oo.
At this point, we have shown that, as n — oo, a.s.

H T
coWu(1) + cuoWy(2) + oty — Co f L1 (pit + X)()dt + ¢, f [§— XP(t) + XD (H)| dt + (c, + pa)t.
0

To prove convergence in L!, following the analysis in Section 4.3, we prove that the second moments of W, (1),
W,(2), and %, are bounded. This, however, follows directly from (89) and the analysis in the proof of Lemma
11 and will not be repeated here. Therefore, we have that

in,H({Tgn}) = wan(l) + wan(z) + ¢on

is uniformly integrable, implying that lim,_e ]AH,H({T;{,I}) = Ju(it), where
o [ T
Jut@ = 5| [ 1o+ X)(0|
0
+ R [ / (G- XD() + X(z)(H))dt] L O P, (102)
H | /g H

Using the fact that XM and X® are Brownian motion processes and the definition of ¢ in (100), fH(ﬁ)
simplifies to
Ju(@) =

c H G
Cop / Ty(pi + X)(Odt| + E[Ty(pit + X)(H-) - pi(H-)],
0 H

where we recall that ¢, = ¢,/ + c,(T — H). Now, using the fact that ii converges to the drift function f’e as
H — oo, it follows that limy_,« [r(@) = limy_e Vy, thus completing the proof. Q.E.D.

4.5. The Stochasticity Gap at the Diffusion Scale
Continuing our investigation of quantifying the effect of the stochasticity on the scheduling problem, we now
consider the asymptotic SG in the diffusion scale. We study the limit of 7, ;; = Vi(V,;z = Vi) 2 0 as n — oo
and then H — co. We first show that the value of the CI problem in the diffusion scale is asymptotically null.
Lemma 12. Fix H>0. We have Pt = Vn(VSl = Vi) — 0 as n — oo

We delay the proof of the lemma to after the main result of this section.

Proposition 4. Let Assumption 1 hold. Then the large horizon SG is positive. More precisely, limy_, iminf, o P, jy =
limyy o0 Vi =2 V.

Proof. First note that 9, ,; = =vVn(Vyu — Vi) - \/H(Vﬂq — Vi), where Vj is the FOP value from (36). Also recall the
definition Vn,H =vVn(V, g — V). Then, Theorem 3 and Lemma 12 imply that
hm liminfyp, ;> V. (103)

H—oco n—oo

On the other hand, Theorem 4 and Lemma 12 together imply that
hm limsupp, ,; < v, (104)

H—oo 1 y00
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completing the proof. Q.E.D.

Proof of Lemma 12. Straightforward algebraic manipulation of (30) shows that

~CI  _
yn,H =E

HvT;, T
% i (% /H (E(N,) = Sut) - 1) dt - /H (ap - yt)dt) + (T - H)* - (2~ )|,

where we have used the fact that Vi = H !¢, f;(ap — ut)dt + Hc,(T — H).

In the proof of Lemma 4, it was shown that 7, — 7 a.s. as n — oo. Let x € R and consider the event {\/n(t}, — T)
>x} or, equivalently, {t},>n""2x + 7}. Recall that 7, := inf{t>0: S,(t) > E(N,)} so that

{t,>n" P+ 7} = {S, (n7%x + 1) <E(N,)} = {En(a) — S, (n2x + 7) > xp}, (105)

where the last equality follows by simple algebraic manipulations and recognizing that 7 = u~tap.
Now, consider

Eala) = S, (nPx +7) = (En(a) - én(f)) + (§n(’f) - 8,(nV?x + 7)).

Recall that (£, 5,) = (X1, X®@) as n — . Therefore, ﬁn(a)A - 5,(7) = XD(a) = XD(7) as n — 0. On the other
hand, because n™"/?x + T — 7 as n — oo, we have S,(7) — S,(n"2x + T) =0 as n — co. Therefore,

[1)>

W) = 5, (17 %x + T) = XD () — XP(7). (106)
Displays (105) and (106) together imply, as n — oo,
e %(X(l)(a) - X@(7)). (107)
Now, consider £}, = Vn((t}, — H)* — (T — H)). For each n > 1, we write 1}, = T e smy + 21 <my- The first term
on the right-hand side is simply fZl{TIPHJ‘ Because 7, = T>H as n — oo, it follows for large enough n that
i >H, implying that %} = %(X(l)(a) - X®)(7)). Following (89), it is straightforward to deduce that % is
uniformly integrable, implying that
E[£;] - E[u (XP(@) - X@(7))] =0 as n — c. (108)

Next, the first term in the definition of ?SIH can be written as
1 rHvT T
\/ﬁ(— / (E(Nn)—sn(t)—l)dt— / (ap—yt)dt)
nJH H
1 £ _ 1 . T
=il [ @) = 5,00t =5~ 1= [ (o= it 1
nJH n H
+ \/71_(—/ (ap - yt)dt)l{fst}.
H
Consider the first term on the right-hand side under the event {7} >H]},

vils [ @) - it~ [ oy - o

and focus on the term under the integral first:

_ 1

\/1-/1-(’.[:1 - H)/

w/E(% /HT(E(NH) ~ S,(t)dt — /wa - ut)df) T % / (E(N,) = Su(t))dt. (109)

Note that breaking up the integral is justified because S,(t) is well defined for all ¢t > 0. Consider the latter
integral:

1 Ty Ty . . ™
NT / (E(N,) = S,(H)dt = / (En(@) = Su(B)dE + 7 / (ap — )it
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It follows that the right-hand side equals

[ (E0(@) = Su(e0dt + apty — 52555+ ),
and as n — oo
% / "(E(N,) - Su(B)dt = apt* — pEt.
Now, using (89), it can be shown that % f_T;' (E(N,) = Su(t))dt is uniformly integrable so that

[\/_‘/ (E(N,) =S (t))dt] — Elapt" — u7t"] =0 as n — oo. (110)

Returning to (109), consider the term

iy [ @00 = sy - [ = air) = Vi [t = .00

Figure 1. Expected queue length comparisons at different population sizes and at different overload conditions when traffic is
scheduled using the fluid- and diffusion-scale AO schedules. (a) Small overload with 1 = 10. (b) Small overload with n = 100.
(c) Large overload with n = 10. (d) Large overload with n = 100.
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Table 1. Estimated expected costs of the fluid- and diffusion-scale AO schedules.

H n=10 n =100
1.0 Fluid scale 1.8144 0.9597
Diffusion scale 1.7368 0.9895
5.0 Fluid scale 18.8153 9.818
Diffusion scale 15.7282 8.7902
10.0 Fluid Scale 64.7717 27.0111
Diffusion scale 47.0690 23.067
25.0 Fluid Scale 210.1238 116.3872
Diffusion scale 144.7316 99.5102
50.0 Fluid Scale 499.5357 339.8137
Diffusion scale 343.1662 304.6898

It is straightforward to see that this sequence of RVs converges weakly to /I;(X(l)(a) — X@(t))dt. Furthermore,
it is again true that the prelimit integral is uniformly integrable, implying that as n — oo

E

\n ( / (En(a) - §,,(t))dt)] - E[ / (XD(a) - XD (1))dt| = 0. (111)
H H
From (108) and (111), it follows that )?SIH — 0 as n— oo for all H>0. Q.E.D.

5. Numerics

We illustrate the analytical results obtained in the prior sections with a few simulation results. Recall that we
focus on optimization problems in which the overload condition pa>uH holds. In the simulations, we
consider a “small” overload condition in which pa is barely larger than uH and a “large” overload condition in
which pa is appreciably larger than uH.

Figure 1 reports the expected queue length (computed from 30 Monte Carlo repetitions) when traffic is
scheduled using the fluid and diffusion AO schedules (respectively) in Equations (21) and (26) (respectively).
We set the service rate u = 1.0 with exponentially distributed service times, the horizon H to 5.0, the no-show
probability to 1 —p =0.2, and we vary a to be 5.01/p in the small-overload case and 10.0/p in the large-
overload case (observe that uH = 5.0). First, compare the figures longitudinally: the first row depicts the small-
overload experiment and the second the large-overload one. We make the following qualitative observations.

One can immediately note that, in the small-overload case, using the diffusion-scale AO schedule in (26), the
average queue length is closer to zero in the interval [0, H] with a large increase in queue length at H = 5.0, just
as predicted by the (fluid) optimal schedule. On the other hand, as expected, the fluid-scale AO schedule tends
to schedule more jobs in [0, H], thereby increasing wait times, but it also has fewer overage jobs. Note that the
overage time is decreased when n = 100 because the service rate has been accelerated by n. In the large-
overload case, we observe that there is minimal qualitative difference between the fluid- and diffusion-scale
AO schedules with the latter scheduling marginally fewer jobs in [0, H).

Figure 2. Percentage improvement using diffusion-scale AO schedule.
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The results in Table 1 and Figure 2 show that the diffusion-scale AO schedule affords substantial im-
provements in terms of expected cost over the fluid AO schedule. The table displays the estimated expected
scaled cost under the overload condition pa = 1.1H > uH (because u = 1.0) for n =10 and n = 100. Figure 2
shows the percentage improvement in the expected cost of using the diffusion-scale AO schedule over that of
the fluid-scale AO schedule.

Two important points stand out from these displays: First, Table 1 demonstrates that the diffusion-scale AO
schedule shows a marked improvement over using the fluid-scale AO schedule when the horizon is large for
a fixed overload condition. Second, the “degree” of overload is critical; as Figure 2 demonstrates, the diffusion-
scale AO schedule has an improvement of between 10% and 15% over the fluid-scale AO schedule when the
overload condition satisfies pa — pH = 0.1 (as in Table 1). On the other hand, when the overload condition is
smaller at 0.01, we observe that the diffusion-scale AO schedule is always better (over the chosen range of
horizons), and furthermore, the improvement ranges between 30% and 35% for larger horizon lengths. In
general, one would expect that a system operator would prefer a small overload, implying that the system is
not excessively undercapacitated, and in this case, the diffusion-scale AO schedule is appropriate.

6. Conclusions

Exact solutions for the optimal scheduling problem studied in this paper are intractable in general. The
analytical results provide the first rigorously justified approximate solutions to this problem in the large
population limit. We have taken the approach of first formulating an optimization problem that is expected to
govern the asymptotics in the respective scales (based on formal limits), then solving it, and finally proving
that the value of these limit problems indeed gives the limit of the values for the rescaled scheduling problems.
A by-product of the last step, which is important in its own right, is to derive asymptotically optimal schemes
for the prelimit scheduling problems.

It is customary to distinguish a control problem, in which online information on the state of the system is
available to the decision maker, from an optimization problem, in which decisions are made at the initial time.
The three-step approach alluded to is well established in work on control in asymptotic regimes, specifically in
the heavy-traffic literature, but it is less studied in optimization problems. As far as the authors know, an
optimization problem involving diffusion of the type of the BOP we have formulated has not been considered
before in relation to heavy-traffic applications or in the context of solving stochastic programs without re-
course. It seems that versions of this problem might be relevant in applications far beyond the present model.

Although the FOP is easy to solve, we have not been able to find an explicit solution to the BOP over a time
interval of finite horizon. As we have mentioned, the BOP is a convex optimization problem, and thus, it is
plausible that one could treat it via numerical schemes; this is left for future work. However, one of our main
findings is that, when set on an infinite time horizon, this BOP is solvable explicitly. Its solution, in the form of
a reflected BM with constant drift, is rather simple. The form of the optimal drift captures the trade-off
between the two parts of the cost.

Another main ingredient of our work is the notion of an SG, which we have introduced as a means of
quantifying the performance loss resulting from the inherent stochasticity in the model as compared with the
complete information problem. As one may expect, we have shown that the gap converges to zero in the fluid
limit but remains positive in the diffusion limit. It is natural to associate this to (but it certainly does not
automatically follow from) the fact that the FOP is a deterministic problem, whereas the BOP is stochastic.
Moreover, our calculation of the gap in the diffusion limit shows that it is proportional to the diffusion
coefficient 0. Thus, the loss in performance resulting from stochasticity is proportional to the standard de-
viation of the underlying noise. It is also interesting to note that the CI problem can be viewed as a single-stage
stochastic program with recourse (Shapiro et al. [25]) because the optimization is conducted after the stochastic
values are revealed to the decision maker. The SG, thus, provides a useful measure of the impact of recourse
on such problems.

A possible source of uncertainty not accounted for in this work but that is important in practice is that of
nonpunctual arrivals. This aspect may be addressed in future work. Moreover, the analysis has focused
exclusively on a single-server queue, and consequently, the limit-optimization problems are one-dimensional.
Appointment scheduling in multiqueue networks is natural to consider next as the limit problems are
concerned with multidimensional diffusion processes that are constrained to lie within a quadrant or, more
generally, a cone.

We also note that admission control is often used to manage customer scheduling, especially with walk-ins.
Walk-ins are not considered in the current model, and incorporating them requires a reworking of our current
model. In particular, admission control is more of a real-time/stochastic optimal control problem. It is
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interesting to note that walk-ins also provide a means of “recourse” in this setting as they give the service
system more flexibility in how many customers to schedule at each time instant. We leave this to future study.
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