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1. Introduction

In this paper, we establish strong embedding theorems, in the sense of the Komlés-Major-Tusnady (KMT) frame-
work, for the performance metrics of a general class of transitory queueing models (Bet et al. [3], Honnappa et al.
[22]). Transitory queueing models assume a large but finite population of customers arrive at the system over
some time horizon. Examples of such systems include hospital surgery departments and clinics, subscription-
based services such as video and game streaming, app-based ride-sharing/transportation, and delivery services.
In each of these cases, the pool of potential customers is known to the service provider a priori, because of ap-
pointments that are handed out to patients ahead of time in the healthcare examples and subscriptions/sign-ons
in the case of streaming and app-based services. Of course, not all the potential customers may turn up for ser-
vice. Nonetheless, the finite pool implies that transitory models are nonstationary, both in the sense that they are
purely transient in nature and because the model parameters can vary temporally. This makes the computation
of the performance metrics rather difficult. Consequently, we seek to approximate the performance metric sto-
chastic processes by simpler ones that capture their most vital temporal features. The strong embedding theo-
rems in this paper yield probabilistic error bounds between the discrete-event performance metric processes and
simpler diffusion process approximations in terms of the population size n. Our results will provide practitioners
and engineers with a turn-key analysis yielding error bounds in terms of the population size so that diffusion ap-
proximations can be confidently used in their performance analysis, system design, and control problems.

Strong approximations were first used for studying time homogeneous queueing models in Rosenkrantz [35]
(see the survey paper of Glynn [14] for a comprehensive introduction to the use of strong approximations to
G/G/1 queueing models in heavy traffic). In general, the transient analysis of queueing models is rather compli-
cated, and therefore, a number of approximations have been developed in appropriate scaling regimes, typically
by certain types of reflected diffusion processes (Chen and Yao [6]). As queueing models can be expressed (ap-
proximately) as functionals of random walks, strong approximations are particularly useful in this application
context because the driving random walks can be directly replaced by approximating Brownian motion process-
es. Strong approximation analysis yields rates of convergence and, consequently, rigorous justification of the
heavy-traffic approximation on a sample path basis. Our results provide similar insights for a class of nonstation-
ary queueing models under a population acceleration scaling framework.

We assume that the offered load to the queueing system is time-of-day dependent and displays long-range
correlations. The modeling and analysis of transitory queues is, in general, quite complicated, and we operate
under the simplifying assumption that the time-of-day and correlative effects are present solely in the traffic
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characteristics and that the service requirements of the arriving customers are independent and identically dis-
tributed. We propose a two-variable traffic model labeled RS(G, p) wherein we impute the ith arriving customer

(out of n) with the random variable tuple (T;, {;), where T; takes values in [0, c0) and ; is binary, taking the values
0 or 1. Th term T; models the (potential) arrival epoch of customer 7, and Zle C; is the number of customers who

actually enter the queue; here RS stands for randomly scattered. We assume that the tuples are independent and
identically distributed over the population and that T; follows a distribution G and EC; = p. We also assume that
the service requirements are generally distributed with finite moment generating function in the neighborhood
of zero and independent of the tuple. Consequently, we label this the RS(G, p)/G/1 queue. We make the follow-
ing contributions in this paper:

1. We prove functional strong approximation theorems (FSATSs) for the workload and queue length performance met-
ric processes of the RS(G, p)/G/1 queue in Theorems 2 and 3 (respectively). These FSATs yield sample path error bounds
between the performance metrics and nonstationary reflected Brownian Bridge processes. The nonstationary Brownian
Bridge processes capture the fact that the offered load is time-of-day dependent and has long range correlations.

2. The proofs of the FSATs are consequences of nonasymptotic functional strong embedding theorems
(FSETs) proved for the RS(G, p) traffic process in Proposition 8, the workload process in Proposition 10, and
the queue length process in Proposition 11 that yield exponential probability bounds as a function of the popu-
lation size.

3. Our proof of the nonasymptotic probabilistic bounds require Dvoretzky-Kiefer-Wolfowitz (DKW) (Dvoretzky
et al. [10]) style inequalities for Brownian motion randomly time-changed by a stochastic pure jump process,
proved in Proposition 3. This generalized DKW inequality may be of independent interest and useful in proving
bounds for other types of models. As a consequence, we obtain improved convergence rates for the diffusion ap-
proximations than what is obtained in Mandelbaum et al. [30] for nonhomogeneous Markovian networks.

1.1. Commentary on Main Results

Our analysis leans on strong approximations for empirical processes and random walks (Csorgo and Révész [7])
but also requires substantial innovation. The FSAT in Theorem 2 is a consequence of Proposition 10, where we
prove a strong embedding result for the workload process of a RS(G,p)/G/1 queue, under the assumption that
the service times possess finite moment generating functions in a neighborhood around zero. We show that,
with high probability, for a given fixed population size n the sample paths of the workload process can be ap-
proximated by those of a reflected Brownian bridge process with time dependent drift and diffusion coefficients.

Indeed, we show that the convergence rate is O(n'/4/logn). Next, the FSAT to the queue length process of the
RS(G,p)/G/1 queue in Theorem 3 follows from Proposition 11. Paralleling the result in Proposition 10, we show
that the approximating process is a reflected Brownian bridge process with time inhomogeneous drift and
diffusion coefficients. However, the drift and diffusion coefficients are scaled versions of those observed in
Proposition 10. We note that the analysis of the queue length strong embedding theorem is significantly more in-
volved. The proofs of these results requires a careful construction of a DKW-style inequality for a time-changed
Brownian motion process, which we did not find in the literature (Proposition 3). Again, we show that the con-

vergence rate for the queue length process is O(n'/*\/logn).

1.2. Relation with Prior Transitory Analyses

The RS(G, p) model affords flexibility for modeling service systems where the pool of potential customers is
known a priori. This typically includes systems where customers subscribe to the service ahead of time; for ex-
ample, clinics and surgical departments in hospitals where patients are given appointment times, video and
game streaming services with subscribing customers, or ridesharing and food delivery services where the pool
of customers are those who have downloaded the smartphone app. In each of these cases, the service provider
has knowledge of who the potential customers are, but not all customers will use the service on a given day. The
randomized arrivals in the RS(G, p) model accounts for this effect, which is ignored in the A(;/G/1 model where
>,C = n (rendering this variable redundant). The RS(G, p) model can be extended to a periodic traffic setting,
as done in Glynn and Honnappa [15], and the performance metric approximations can still be used in that
setting.

The bibliography on the A(;/G/1 model now includes pointwise limit results (Louchard [28], Newell [33]),
functional strong laws and central limits (Bet et al. [3], Glynn and Honnappa [15], Honnappa et al. [21, 22]), and
large deviations principles (Glynn and Honnappa [15], Honnappa [19]). In the population acceleration scaling
limit, the results in Honnappa et al. [21, 22] show that the limiting diffusion for the workload and queue length
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processes are regulated through a directional derivative reflection map (Mandelbaum and Ramanan [32]). This lim-
it can be recovered by the FSATs in Theorems 2 and 3, although the result in Honnappa et al. [21, 22] holds under
the weaker condition that the service requirements have two finite moments. However, extracting performance
measures (such as moments of the workload/queue length) from the directional derivative reflected process is in-
credibly hard. Indeed, in Bet et al. [3], a different critical scaling is used to show that the queue length converges to a
reflected Brownian motion with parabolic drift when the arrival epoch distribution G is exponential. On the other
hand, in Glynn and Honnappa [15], a special “critical” load condition is used to prove that the workload process is
approximated by a reflected Brownian motion process. These limit processes can be recovered automatically from
the FSATSs proved in this paper, albeit at the cost of stronger conditions on the service requirements. We note, how-
ever, that with effort it is possible to extend the FSATs to cases where only m > 2 moments are available.

1.3. Relation to FSATSs for Nonstationary Models

There is a large and growing literature on nonstationary queueing models covering the whole range of prob-
lems that confront the modeling of nonstationary service systems. A crucial difference between this large
body of work and the growing literature on transitory models is that the former implicitly assumes an infinite
population of customers, whereas transitory models are exclusively finite population. We cannot possibly do
justice to the large body of work on nonstationary models (see Whitt [39] for a recent review). Instead, we
focus on strong approximation results that are most closely related. To the best of our knowledge, strong ap-
proximations have been proved almost exclusively for Markovian nonstationary models; note that the litera-
ture on strong approximations for stationary queueing networks is far more extensive. The most influential
papers in this genre are Mandelbaum and Massey [29] and Mandelbaum et al. [30], where the important uni-
form acceleration scaling regime was introduced. In the former, strong approximations for Markov processes
were leveraged to prove an FSAT (and consequently functional strong laws and central limit theorems) for an
isolated time-varying Markovian single-server queue. This analysis was significantly generalized in the latter
paper to include multiserver queueing networks with abandonment. In Mandelbaum and Pats [31], strong ap-
proximations were leveraged to prove functional limits for state-dependent, nonstationary Markovian
queues. Cudina and Ramanan [8] and Armony et al. [2] use uniform acceleration to establish asymptotic opti-
mality of control policies under uniform acceleration scalings. More recently, Ko and Pender [26] consider
nonstationary Markovian arrival processes (MAPs) as models of the traffic and develop a bespoke Poisson
representation of the MAP process. They then exploit the strong approximations in Mandelbaum et al. [30] to
prove functional strong laws and central limit theorems. All of these results are premised on the availability
of strong approximation results for Markov processes (Eithier and Kurtz [11, chapter 7]). However, the per-
formance metric processes for the RS(G,p)/G/1 queue are not Markov (although, of course, one could do
state-space enlargement), and we therefore choose to develop the strong approximation results from scratch.
What is also nice is the fact that we are able to leverage strong approximation results proved for stationary
random walks and empirical processes to study nonstationary queueing models without making explicit
Markovian assumptions. We believe the methods highlighted in this paper can be used for analyzing other
nonstationary stochastic models (such as nonstationary many-server queues, networks of nonstationary
queues, and even nonstationary multiclass queues).

1.4. Technical Challenges and Contrast of Analysis Against Strong Approximations for
Markovian Queues

Observe that both Mandelbaum and Massey [29] and Mandelbaum et al. [30] use strong approximations of Pois-
son processes to obtain an approximating diffusion process to the queue length. In Mandelbaum and Massey
[29], the simplistic nature of the microscopic rates for both the arrival and departure Poisson processes implies
that the diffusion approximations need no further analysis. The standard strong approximations used yields the
best convergence rate of O(loge) (where € is the accelerating factor). On the other hand, in Mandelbaum et al.
[30, theorem 2.3 and its proof], the microscopic instantaneous rates are more general and (equation 2.24 for exact
statement) are assumed to satisfy an asymptotic second-order expansion on acceleration. Consequently, further
analysis of the time-changed Brownian motions is warranted. The most natural trick is to use continuity of the
Brownian motion to evaluate a uniform limit of the said time-changed Brownian motion as the acceleration term
1 — oo, where 1 = 1/e. However, this comes at the cost of an approximation error, and in Mandelbaum et al. [30],
the second-order diffusion approximation has a o(4/7) convergence rate. This highlights a crucial difference be-
tween Mandelbaum et al. [30] and our present work. The analysis in Section 4 establishing a DKW-style inequali-
ty for randomly time-changed Brownian motion provides a way of obtaining better convergence rates, without
requiring the asymptotic approximations on the microscopic rates in Mandelbaum et al. [30]. Our analysis, under
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reasonable DKW-style assumptions, provides a O(n'/*y/logn) convergence rate as n — oo, which is a significant
improvement over the o(y/n) rate that the analysis done in Mandelbaum et al. [30] would yield. Our arrival
process has a strong approximation courtesy the strong approximation for the empirical Cumulative Distribution
Function (CDF), whereas the strong approximation for random walks comes in handy for the departure process.
However, finding the best possible convergence rates led us to find approximations for Brownian motions evalu-
ated at renewal processes and the busy time process, thereby further complicating our path to obtain the desired
strong approximation with tighter convergence rates. Our DKW-style inequality can be used to prove strong ap-
proximations for other time-varying queueing models (such as the composition traffic model in Whitt [38]).

The rest of the paper is organized as follows. We start with preliminaries and main results in Section 2. In
Section 3, we provide a brief primer on the strong approximation methodology, particularly the coupling
arguments that underly the KMT construction. We do so to make the paper self-contained and because the KMT
construction is recondite and not widely understood. Next, we present the DKW-style inequality for controlling
the error between the Brownian motion and a counterpart process stochastically time-changed by a jump process
in Section 4. Section 5 presents strong embeddings for the RS(G, p) traffic process. The strong embeddings for the
workload and queue length processes are proved in Sections 6 and 7, respectively. We end with commentary
and conclusions in Section 8.

2. Preliminaries and Main Results

2.1. A Mechanistic Model of Queueing

Consider a single server, infinite buffer queue that is nonpreemptive, nonidling, and starts empty. Service fol-
lows a first-come-first-served (FCFS) schedule. Let n be the nominal number of customers applying for service.
Customers independently sample an arrival epoch T;, i =1,...,n, from a common distribution function. In addi-
tion, all customers independently sample identical Bernoulli random variables (;, i =1, ...,n. Customer i chooses
to turn up at time T; only if {; = 1; we call this the dropout variable. The arrival process is the cumulative number
of customers that have arrived by time ¢. Let Bern(p) represent the Bernoulli probability distribution with param-
eter p.

Assumption 1. For every n>1, let Ty, ..., T, be independent and identically distributed (i.i.d.) samples from a general
distribution with distribution function G. Denote G,, to be the empirical distribution function given by

1 n
Gu(t):= = > Lrny- @
iz
Let Cy,...,C, be iid. samples from Bern(p). Then the arrival process A,, is given by
nGy(t)
Aut)= 2 G @
i=1

Remark 1. We call A, in (2) as the RS(G, p) traffic model. The A;)/G/1 model introduced in Honnappa et al. [22]
is a special case of Assumption 1, corresponding to p = 1.

Remark 2. It is possible to consider other ways of modeling a random number of arrivals. However, the dropout
model considered here is a mechanistic way of describing the traffic. The model assumes each user will sample a
potential time to arrive and a binary indicator that the customer will actually enter the queue at that time. See
Section 8 for further discussion.

Remark 3. Observe that while the nominal number of arrivals is 7, the actual number of arrivals realized is ran-
dom. This traffic model provides a mechanistic description of nonstationary arrivals: because the distribution G
is nonuniform (in general), the expected number of arrivals per-unit time E[A,(t)]/t can be seen to equal
npG(t)/t, by an application of Wald’s identity. This can be seen as a surrogate of an arrival rate that is clearly
time varying; we have not assumed that the distribution is differentiable and consequently defining the rate as
the derivative of E[A,(t)] is inappropriate. A crucial point to note is that this time dependency arises from micro-
scopic behavior as opposed to a posited time dependency in the rate function. This stands in contrast with the
vast majority of nonstationary models proposed in the literature where the model description starts with posited
time-varying rate functions.

Sometimes it is useful to consider arrivals from a general distribution that in turn approaches the limiting dis-
tribution G as n — 0.
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Assumption 2. Foreveryn>1,let Ty, ..., T, be i.i.d. samples from a general distribution with distribution function G,
which satisfies the following condition:

1

1(G) := sup |G™(t) - G(t)| = o(—), ®3)
te[0, o0) \/ﬁ

for some strictly increasing and Lipschitz continuous distribution function G. In addition, assume that each G™ is Lipschitz

continuous and the Lipschitz coefficient increases at most polynomially in n. The arrival process A, is now defined similar

to (2) but with G\ instead of Gy..

Remark 4. For simplicity and ease of presentation, we will assume that arrivals are supported on [0, ), that is,
G(0)=G"™(0)=0

Next, let {V;,i > 1} be a sequence of independent and identically distributed nonnegative random variables. V;
represents the service requirement in time units of the i potential customer who turns up into the system. We
also assume that the sequence is independent of the arrival times T;, i = 1,...,n and the corresponding indicators
of turningup C,i=1,...,n.

Assumption 3. Foreveryn >1,let Vy,...,V, bei.id. samples from a distribution that admits existence of a moment gen-
erating function in a neighborhood of zero. Let u and o denote the mean and standard deviation, respectively, of this distri-
bution. Let

Aﬂ(t)

Wn(t) = Z Vi (4)
i=1
denote the cumulative offered load to the system until time t.

We assume that the server efficiency is c,, that is, it completes c, jobs in unit time. Let M, (t) be the “truncated”
renewal process counting the number of jobs that the server can complete by time ¢ if working continuously with
efficiency c, (notice that only # jobs arrive to the system):

M, (t) := sup{OSmSn : ivi sent}. (5)

i=1

2.2. Functional Strong Approximations

In this section, we list the main results proven in the sequel. Strong approximation results are usually stated in
terms of versions of the random variables we wish to approximate. In our case, we require versions of the ran-
dom arrival times T}, the indicators of turning up (;, and the service times V;. In order to avoid repetition, we do
not mention this crucial requirement in the following theorem statements. However, the same version suffices
for each theorem below. Let us also note that is often customary in the literature to assume that the underlying
probability space is rich enough to support the random variables and the approximating stochastic processes.
Our first result provides a strong embedding for the arrival process. Its proof follows from the forthcoming
Proposition 8.

Theorem 1. There exists a Brownian motion B, a Brownian bridge B>™" such that if H,, be defined as

H(1) = {an(t) + \/;1_( Bt(’;(t'; + \/FT—P)BGU))/ under Assum. 1,
np(G(t) + r4(G)) + Vﬁ(pBl(’;r(’t’; + mBG(t))/ under Assum. 2,
then
sup |A,(t) — H, ()| = O (n'*\logn).

te[0, o0)

Remark 5. It is useful to contrast Theorem 1 with the setting in Whitt [38]. In the latter, traffic is modeled through
a sequence of time-changed stochastic counting processes {A"(t) := (N o A")(t)}, where N is a stationary stochastic
counting process that satisfies an FCLT and A" is a posited cumulative arrival rate function that is assumed to be
such that A, (t) :=n"V/ 2(A”(nt) nt) satisfies A, (t) — A(t) uniformly on compact sets of [0, 0) as n — oo, for some
deterministic limit function A. Whitt [38, theorem 3.1] shows that the scaled traffic process A, () =nV 2(A”(nt) nt)
converges to a limit B + A, where B is a Brownian motion. A vital advantage of such a traffic model is that the stochastic-
ity and the nonstationarities /time dependencies are completely separated from each other in the limit.
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On the other hand, we do not see such a clean separation in H, immediately. However, suppose that
Assumption 2 holds with G(t) = t on [0,1], and 1n/2(G"(t) - t) — G(t) uniformly on compact sets of [0,c0) as
n — co. Then, using the fact that BY"" = DB, —tB] for a standard Brownian motion process B", and (Oksendal
[34, theorem 8.5.2]) it follows that

%(Hn(t) - npt) = \/in_p(np(G(t) + rn(G)) + \/ﬁ(szr(g ++p(1—-p)B G(t)) _ npt)

VRG] PO 4 + VBT =)

£ JAP(G(t) =)+ yPO(1) + (yp + T =p) /0 G @B — VpG(t)By,
= VPG(t) + VpOQ) + (VP + 1 - p)B; — \PtZ.

where B is a standard Brownian motion process. Theorem 1 immediately shows that, for the arrival process A, ()
at fixed t € [0,1], (np) (A, (t) — npt) = VPG(t) + (\p+ (I =p))B; + Z as n — oo, where Z is a Gaussian random
variable with mean O(,/p) and standard deviation /pt. This is reminiscent of the limit in Whitt [38, theorem 3.1]
and shows that our framework can recover a separation of the macroscopic time dependencies and the meso-
scopic stochasticity. The setting in Whitt [38] is important because it forms the basis for a whole series of works
around nonstationary queueing models (see the survey in Whitt [39]). We also note that a more rigorous weak
limit analysis for a specific choice of G is presented in Glynn and Honnappa [15].

Our next major result proves strong embeddings for the workload process. In particular, for the cumulative
load to the system, we have the following result, which follows from the forthcoming Propositions 9 and 10.

Theorem 2. Along with the Brownian motion B and Brownian bridge B™" as considered in Theorem 1, there exists a
Brownian motion B such that if R, be defined as

Ru(t) = \/EGBpG(t) + pH, ()
then
sup |W,(t) — R, (t)| 20 (n1/4\/10g n).
te[0, c0)
Let ¢ be the reflection map functional given by ¢(f)(t) := f(t) — inf, <, f(11). Then the total remaining workload at time t can
be expressed as p(W,, — c, - id)(t), and this satisfies
sup |p(W,, — ¢, -id)(t) — p(R, — ¢, - id)(£)| E O (n/*\flog n),

tel0, o)
where id : x +— x is the identity map.

Finally, Theorems 1 and 2 are used to prove a strong embedding for the queue length process, Q,, that in-
cludes both any customer in service and all waiting customers. Recall that the queue length Q,(t) at time ¢ is the
difference between the number of arrivals and the number of job completions before time t. Denoting by D,(t)
the amount of time the queue stays busy until time ¢, the queue length can be expressed as

Qu(t) = Au(t) = Mi(Dy (1)) (6)
Finally, the idle time process of the server is given by
Ly(t) := £ — Dy(t). @)

The following theorem is a consequence of Proposition 11.

Theorem 3. Let B, B be the Brownian motions BP", the Brownian bridge processes as considered in Theorems 1 and 2. Let

cut o
Xn(t) = Hn(t) - ? + '\/EﬁBEn(t),

where

Cut +inf (pG(s) - C"S), under Assum. 1,
| np st nu

EiB) =1t ' G s
—+pru(G) + inf (pG(s) - ——), under Assum. 2.
ny s<t nu
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Then the queue length Q,(t) satisfies
sup |Qu(t) — p(X,)(t) Z O (n"/*ylogn),

te[0, )

if ¢, = O(nP) for some p > 0 and lim inf, ¢, > 0. Else we have

sup |Qu() — ¢(X,)(H)]E O (nt/*y/logc,).

te[0, c0)

Remark 6. Observe that the queue length spends more time near zero as the server efficiency becomes super
polynomial in #, resulting in a greater approximation error.

Remark 7. Theorems 2 and 3 show that the scaled workload process Z, := ¢(W,, — ¢, - id)/n and the scaled queue
length process Q,/n are both closely approximated by nonstationary reflected Brownian motion (RBM) processes
on a sample path basis. These theorems also imply the results in Honnappa et al. [21, 22] and Bet et al. [3], where
functional strong laws and central limit theorems were proved for the scaled processes when p = 1.

3. Strong Embeddings: A Primer
Let X1, Xo, ... beiid. random variables from a distribution with mean zero and variance one. Let S, = >, X; de-
note the n'" partial sum. Then the classical central limit theorem states that

P(j% < y) — O(y) asn — oo, 8)
where @ is the central normal CDF. Equation (8) states that the distribution of S,,//n approaches that of a stan-
dard normal as n — co. A stochastic process analog of (8) was proved in Donsker [9]. Let the stochastic process
{S,.(t);t €]0,1]} be constructed as follows for each n € N:

%(S[nt] + Xjuan + (nt = [”f]))~ )

Then {S,(t),t €[0,1]} converges in distribution to {B(f),t € [0,1]} as n — co, where B is a standard Brownian
motion. More precisely,

Su(t) =

1(Sy) S h(B), (10)

for every continuous functional /1 : C(0,1) — R. Heuristically, Equations (9) and (10) imply that for n large enough
Stut) + Xput+11(nt — [nt]) is close in distribution to y/nB;. Using the scaling property of Brownian motion and observ-
ing that X[,,;,1] is negligible compared with S;,,; (for large 1), we can concur that S is approximately close to By for
allke{1,...,n}. Abound on the difference of the two was provided in Strassen [36], who showed the existence of
a probability space containing versions of all associated random variables and processes such that

- B a.s.
751‘ L 0, as k — oo. (11)
yn loglog n

Equation (11) can be restated in the following form:

Sn(t) = =Bt .4
supiﬁt - 0. (12)

o<t<t y/loglogn

A close associate of the partial sums S,, are the empirical distribution functions corresponding to a sample of iid
random variables. Consider for simplicity a random sample Uj, Uy, ... of ii.d. U[0,1] random variables. The em-
pirical CDF is then given by

1 n
Fn(t) = %Z 1{U,§t}/ te [0/ 1]
i=1

Observe that the random quantities 1y, are i.i.d. with mean t and variance t(1 —f). After proper scaling, and
considering our previous discussion, we expect the empirical process o, given by

() = Vi(Fult) — ),
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to be close to a normal random variable with variance #(1 — ). We also expect a convergence result akin to (10) in
the process level. Recall that the standard Brownian bridge B" is a stochastic process that may be defined as

B =B, —tBy, t€[0,1],

for a Brownian motion B, because B'" is a Gaussian process and Var(B*) = #(1 — ), B®" is a possible candidate for
the stochastic process approximating the empirical process. Indeed this was proved to be true in a result analo-
gous to equation (12) in Brillinger [4], who showed the existence of a probability space containing versions of all
associated random variables and processes such that

1/4
sup |a, () — B2 O((loﬂ) (logn log logn)l/4 . (13)
0<t<1 n
This result immediately implies the analogue to (10), that is, {a,(f),t€[0,1]} converges in distribution to
{Br,te[0,1]}.

Equations (12) and (13) are insightful and provide a rate of convergence of the partial sums and the
empirical processes. However, these are not the best rates of convergence one can achieve. It was shown by
Komlés-Major-Tusnady in Komlos et al. [27] that when X; is allowed to have a finite moment generating function
in a neighborhood of zero:

sup |Sk — Bx| = O(log n). (14)

1<k<n
A similar rate is enjoyed by the empirical processes of uniforms. These two results are stated in Theorems 4
and 5, along with the novel construction (also known as the Hungarian method) of X/s and U/’s from the
Brownian motion and Brownian bridge, respectively. A new and different approach in proving such embedding
results has been provided in Chatterjee [5] for the simple symmetric random walk. We will use the terminology
strong embedding for coupling an arbitrary random variable W with a Gaussian random variable Z so that W - Z
has exponentially decaying tails at the appropriate scale. Theorems 4 and 5 thus provide strong embeddings to
the partial sums S,, and the empirical processes «,. As alluded to in the Introduction, we will apply these results
to obtain strong embeddings for the performance metrics of a RS(G,p)/G/1 queue.

3.1. Strong Embedding of the Random Walk
We present the KMT theorem for the strong embedding of the random walk. Proof ideas and construction can be
found in the online appendix.

Theorem 4. Let F be a distribution function with mean 0 and variance 1. In addition, suppose the moment generating func-
tion corresponding to F, R(t) = E(e*X), X ~ F, exists in a neighborhood of zero. Then, given a Brownian motion B, and using
it, one can construct a sequence of random variables X1,Xs, ... that are independent and identically distributed to F. Fur-
thermore, the partial sums of X;s are strongly coupled to the Brownian motion B in the following sense. For every n € N and
x>0,

n
ZXi_Bn

i=1

P( sup > Clogn + x) <Ke ™, (15)

1<k<n

where C, K, and A are positive constants depending only on F.

3.2. Strong Embedding of the Empirical Process
We present the strong embedding result for the empirical process. Proof ideas and construction can be found in
the online appendix.

Theorem 5. There exists a probability space with independent U[O,1] random wvariables Uy, Uy, ... and a sequence of
Brownian bridges B, BYY, ... such that for alln > 1 and x € R,

P( sup Vn

s€l0,1]

y(s) = By (5)

> Clogn + x) <Ke™ (16)

for some constants C, K, and A. Here the empirical process oy, is given by

au(s) = Vn(Fy(s) = )
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and

1 n
Fn(s) = _Z 1{U,»§s}-
ni=s

Remark 8. The constants C, K, and A in Theorem 5 can be chosen as C = 100, K = 10, and A =1/50. See Csérgo
and Révész [7, theorem 4.4.1] for more details.

Remark 9. The KMT construction relies on the generation of a sample of n uniforms Uj, ..., U, from a Brownian
bridge BP™ Tt can be seen from the construction that having obtained {Uj, ..., U,}, one is unable to obtain anoth-
er U, 41 such that the new set {Uj, ..., U1} satisfies (16) with the same Brownian bridge. Instead it would be nec-
essary to redo the construction. This necessitates the need for a different Brownian bridge B®"" for every n.

4. Control of Time-Changed Brownian Motion

Our analyses in subsequent sections provide strong embedding results for several queue length characteristics to
corresponding diffusion approximations. In order to achieve those results, we need a strong control over the dif-
ference between a Brownian motion evaluated at several n-level stochastic quantities and their corresponding
fluid limits as 1 goes to infinity (e.g., the empirical distribution of arrival epochs against the true arrival distribu-
tion). In this section, we present general results on bounding the difference between Brownian motion evaluated
at some stochastic jump process and its fluid limit. Proposition 3 is rather general and might be of independent
interest. We start by stating an assumption on the fluid limit.

Assumption 4. For each n>1, let &,,:[0,00) - R be a bounded Lipschitz continuous function; that is, there exists
ce, > 0 such that

1€n(8) = En(B)l < g ls — £,
foralls,t €[0,00).

We also impose regularity conditions on the stochastic jump process along which our Brownian motion will
be evaluated. These are collected in the following assumption.

Assumption 5. Let {T,},»; be a sequence of nondecreasing positive numbers. Let B, := {E,(s);s € [0,L,]} be a stochastic
pure jump process defined on a common probability space (QQ, F,P) for every n > 1, such that almost surely the number of
its jumps in [0, L,] is bounded above by kn™ for some fixed positive constants k and m. In addition, assume that

limsup sup {|Z,(s)|} < co.
n s€[0,Ly]

Denote D = lim sup, sup, [E,(s)|.

In order to obtain a nonasymptotic probabilistic bound on the difference |Bz, ) — B, (s)|, where &, and E,, are in-

troduced in Assumptions 4 and 5, respectively, we impose further conditions on the distribution of |2, — &,|. In
particular, we require a DKW-style inequality (Dvoretzky et al. [10]) for the tail distribution of |5, — &,|.

Assumption 6. For every n > 1, let &, and E,, be as considered in Assumptions 4 and 5. Let there be constants k,
k1, k2, k3, and 0 < y < 4 such that the following inequality holds for every ¢ > 0:

P( sup |En(s) = £x() > € +ko logn

Vo2 y
< kle—kﬂl' &% Nksn? €
s€[0, L]

In addition, denote a,, by

1 1/2
b= .0 -E,0)) . 1
¢ \/E(tes[‘;fn” (H)-¢ ()I) (17)

In Propositions 1 and 2, we will show that the Assumptions 4—6 are satisfied for the arrival process given in (2)
and the truncated renewal process given in (5). In order to prove these two lemmas, we first recall a few facts on
subexponential random variables.

Lemma 1. Let Xy, ..., X, be i.i.d. copies of a random variable with mean y such that there exist parameters (v, m) satisfying

E[\®0] < forall |A] < % (18)
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Then the following holds true:

@) 2
_n? 14
n 2e72? for0<t<—,
P(ZXi—ny Znt)< 2 (19)
i=1 2e for t > ol
(ii)
i V2
k 2¢2? for0<t<—,
P(sup D X —ku Znt)s , M (20
O<k<n l'i=1 et fort >—
Proof.

(i) The result follows from the usual considerations for subexponential random variables (Wainwright [37,
section 2.1.3]). The main ingredient is a Chernoff-type approach to obtain

n Azt x—np)
P(Z;Xz —nu > Tlt) < %

n/\zvz)

< exp(—nAt + (21)

Optimization of the right-hand side followed by a premultiplication by 2 to obtain the two-sided tail bound
yields the desired result (19).

(ii) Observe that My = ZLXZ- — ku is a martingale. In addition, x — ¢* is a convex function. Consequently M is

submartingale. Thus, applying Doob’s martingale inequality, we obtain

k
P| sup > X;—ku > nt) = P( sup =R > eA"t)

0<k<n i=1 0<k<n
E(eMzL\x,—ku))

= e)\nt

4

thus reducing our considerations to (21). The same arguments carry forward and we obtain (20). O

Assumption (18) in Lemma 1 holds for every random variable X with a finite moment generating function in a
neighborhood of zero. This is a consequence of the following lemma.

Lemma 2. Let X be a random variable with mean p, whose moment generating function exists in a neighborhood of zero.
Then we have

E['*XM] < N2 for all |A] < %, (22)
where v = \[2Var(X) and m is given by the condition
E[e*"XH1] < 4 for all |A| < %
Proof. Observe that the moment generating function of X satisfies
E[¢"¥*M] < E(l +AX - p) + %2 (X - y)zeMX_“').

Noticing EX = y and by Cauchy-Schwarz inequality, we have

- A? i —
E[e"X1] < 1+7\/E(X—‘u) VE[e2X-4]]
E[82A|X—y|]

<1+ A*Var(X) 1
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Hence, for all A satisfying E[¢*X~#] < 4, we have
E[e"%] <1+ A*Var(X).
However, 1+ A*Var(X) < ¢""V*® and consequently,
E[e/\(X—y)] < e/\ZVar(X).
This yields (22). O

Proposition 1. Let Assumption 1 hold with G being the uniform distribution function on [0,1]. Let A, denote the corre-
sponding arrival process in (2). Then Assumptions 4—6 hold with

éwﬁwtmda@:Ad)

[0,1],

and L,, = 1 for all n.
Proof. Note that &, is bounded and Lipschitz with cg, = p. Next, notice that A, has at most # jumps in [0,1]. In

addition,
A
sup { ) } <1
s€l0,1]
It remains to prove a DKW type inequality for the difference |M — pt|. To that effect, observe that

@ _ V(- P)”Fz(f
n n / (1_

nFH (s)

W ZX +p(p (s)—s)

where X; = \/% are i.i.d. random variables with mean zero and variance one. Consequently, we have
p(i=p

A,1,1(s) > s) < P(\/p(l p) sup Z X;

0<ks<n 1t
From the standard DKW inequality for empirical distributions (Dvoretzky et al. [10]), the second term has the
standard exponentially decreasing bound given by

P
s€[0,1]

For the first term, observe that the X;’s have a finite moment generating function E[e
ing to Lemmas 1 and 2, we obtain

+ p(Fn(s) - s)

P( sup +P(p|F (s)—s| > ) (23)

s€l0,1]

- s‘ > ;) < 2671 @), (24)

AXi] for all A. Hence, appeal-

ne?

< Qe Bp, (25)

k ne
P| su Xi| > ——
(OSkEL 2 ’ Np(l—p))

Consequently, there exist constants k; and k, such that
Au(s
P| sup Auls) _ ps
sefo, 11| 1

_ 2
> e) < ke o

Proposition 2. Let Assumption 3 hold and M,, be given by (5). Then for any sequence of nondecreasing positive reals L,
Assumptions 4-6 hold with

M,(t)
n

&) = (—p) Al and E,(t) = , forte€[0,L,].

Proof. Note that &, is bounded and Lipschitz with cs, = ﬂ. Next notice that M,, has at most # jumps in [0, L,,]. In addition
n( )| -

suj
[0 Ln
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L

H) A1|. Observe that for any L, positive,

It remains to prove a DKW-style inequality for the difference |M+(t) -

M, (t t M, (t t t
sup A—(C—”—)Al < su A—C—”—‘+ sup 1—(C—"—)/\1'
ostsr, | 1 ny T T nH
n Sn
‘N(Cnt)_% 1 7_[.1'
< sup +—+ ,
o<t<ny n n ¢

—ctn

where N(t) =inf{m >0: > ", V; > t}. By a change of variable, the first term on the right-hand side has a simpler

representation on which we have

Ns—s| 1 [%2-
sup - < sup N S|+—+|” y|’ (26)
ost<L, | M

np

ML(t)—(c”t)w

b MM K

. v .
where N, = inf:m >0: >0, j > t1. From Horvath [23, lemma] and observing that N (% +) = n, we notice that

sup |N(s)—s| < sup |U(s) —s|, (27)
O<s<5n+ 0<s<n
<5<
_ V;
where U(s) = Zz[s:]1 m In addition,
sup |U(s) —s| < sup |Sx —k| +1, (28)
0<s<n 0<k<n

where §; = Zle % Combining Equations (26), (27), and (28), we obtain for all € > 0
0<t<L,

n nu
Observe that Vs have a finite moment generating function in a neighborhood of zero. Hence, appealing to
Lemmas 1 and 2, we have for all € >0

2 ~ en
25+E)§P(sup |Sk—k|>7)+P(

0<k<n

Sy ep
o #' > 7)- (29)

P(Osip Sk — k| > nze) < 2 exp(—kyne? Akyne),

for some constants k, and k. Similarly, Lemmas 1 and 2 also imply for all € >0

Sn

P

pl > %) < 2 exp(—kyne? A kine).

Consequently, we have constants k;, k;, and k3 such that for all € > 0,
p| sup [Mt) _ (W)Al
0<t<L,

n nu
In the following lemma, we obtain an upper bound on the expected value of @, as denoted in (17). This result
will be used in Lemma 5.

2 e
ZE"'% Sk1€ kone Ak3l’l€. O

Lemma 3. Let Assumptions 4—6 hold. Then there exists a constant C" such that

Bla,] < ¢’ Y108 (30)

n)’/4 '

Proof. Because &, is bounded, without loss of generality, let us assume

sup {|€,(5)], |En(s)[} < D.

s€[0, L]
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As a consequence notice

1/2
ay = 7( sggjlun(t) én(t)l) < VD.

Thus, we have

E[an]z‘/o Pla, > t]dt = / [ sup |E,(t) — &, (1) > 282 |dt

tel0, L,]
2D
" 2V2 /

sup [E.(t) - E,(0)] > s
te[0, Ly]

where the last step is obtained by a change of variable. Now breaking the integral into parts and using
Assumption 6, we obtain

o 28" 2D
E A it (D) > d
2\/_ / \/' logn\/' (tes[éllz |20 (t) = Eal®)] S) s

(31)

log n

2Dk
—>— sup |E,(t) —
\/_ n 2\/_/ /s+k logn (tE[O IZ !

logn

logn 2Dk~ o2 nfart?
S— k +—= —ke‘2”5A3”'sds
AT zvzfo 1
< - kO lOgT’l + 1 /mkl —kZZAk3\/—nV/2 _3/4d <C VlOng
T2 no 42w/t Jy it
for some constant C’, where the penultimate step is obtained by a change of variable (17”s? — z) and then use of
the fact that the integral / mexp(—4kzz Ak3\zn?/?)z73/4dz is bounded yields our desired result (30). [

log

En(B > ko s|ds

Assumption 7. Let &, and E,, be as considered in Assumptions 4 and 5. Let a standard Brownian motion B be defined on
the same probability space (Q, F, P). Then let f. be the Gaussian process defined on [0,L,] by

fe =B~ Bz,

In addition, let P denote the conditional probability on (Q,F,P) given E,. Thus, the conditional expectation
E[Z] = E[Z|E.(s);s € [0,Ly]]. Denote y, := E[sup;¢q 1,1/ -

The key ingredient to find probabilistic bounds forf as alluded to previously is the Borell-Tsirelson-
Ibragimov-Sudakov (Borell-TIS) inequality included later for completeness. As a first step, we find the
conditional expectation of sup f given E,. This is obtained in the following lemma.

Lemma 4. Let Assumptions 4, 5, and 7 hold. Then there exist constants M and C such that

<M[/ \/ 9“ " de+Ca” logn] (32)

Proof. The canonical metric for f in (Q, 7, P) is given by
. X on12
dis, ) = (EI(F,-F.71) (33)

Let D denote the diameter of [0, L,] with respect to the canonical metric, that is,

sup f

te[O Ly]

D= sup ﬁ(s,t).
s,t€[0, L]

Let N(e) be the metric entropy defined by the smallest number of balls of diameter ¢ (with respect to the canoni-

cal metric d) that cover [0,L,]. Then from Adler and Taylor [1, theorem 1.3.3], there exists a universal constant M
such that

sup ﬁ

te[O Ly

<M/D/2 logN(e)) (34)
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It can be easily shown that the canonical metric d as defined in (33) satisfies

(5% = [1€4(5) = Eul8)| + 1£a(8) = En(B) = 2(E(8) A E() + Bn(8) AB () = £4(5) ABn(E) = E(H) AEn(5))]-

If the numbers &,(s), 2,(s), &,(t), Ex(t) are arranged in ascending order from the vector (dq,ds,ds,ds), then it can
be shown that

d(s,t) = \(ds — ds) + (dy — dy). (35)

This implies, for s and ¢ such that E,(s) = E,(t),

d(s, 1) = V|E,(5) = E.(D] < vee\Is — 1.

In addition, note that D /2 = SUP se(0,1,] d(s, £)/2 < (supyo 1 [En(t) — én(t)l)l/z/\/i Q.-

In order to obtain an upper bound to N(e), recall as mentioned earlier, d(s,t) < \Ce, VIs — t| whenever
E.(s) = Ex(f). Because E, has at most kn™ points of discontinuity, there are at most (kn™ + 1) intervals where &, is
constant. Let these intervals be Ry, ..., Rim. Then N(¢) can be bounded above as follows:

kn™

N(E)SZ

R;1 ¥ R L,
Ce, 52} Z Ct >+ (kn" +1) =cg, —+ (kn" +1). (36)
i=0

Thus, using (36) we get from (34):

sup f,

tel0, L,]

<M / \/log Ceuln | pm 1)dé 37)

Observe that log(x + y) <log(x + 1) + log(y) for x > 0 and y > 1. Consequently, we obtain

/ ' \/log (C‘z# +kn" + 1) de < / n\/log (C‘Z# + 1) +log(kn™ +1)de
0 0
< / ' log (Cé;# + 1)de + ap/log(kn™ +1),
0

where in the last step, we used the fact that \/x+y < yx+ \y. From (37) and (38), we obtain that there exists a

constant C such that
<M(/ W{ 9” Loy d£+Can logn] O

Having obtained the conditional expectation of sup f, we next obtain the unconditional expectation of sup f.
This is achieved in the following result and is a crucial ingredient in the proof of Proposition 3.

(38)

sup f

te[O Ly

Lemma 5. Let Assumptions 4—7 hold. Then there exists constant C such that

vlog(L, v n)

ny/4

Vn=E[ sup f,[<C

te[0, Ly]

Proof. Using integration by parts and denoting cg, L, by L;, the first term in (32) yields

a, T/ ’ 2
/ ‘flog +1 de—amﬂog +1 / L@+ &) +€)
Jlog ”+1
— i flo (L:7+1)+\/—L—’/m B (39)
"\ %8 a; ! log(%‘ﬂ) Ve =1
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where the last step is obtained by a change of variable (y/log(L;,/¢? + 1) — t). It is readily checked that

2 ’
<e 2, /1 +90 fort > \ /log(L—g+ 1).
L?"l an
Consequently, we obtain from (39):
\,lo +1 e<0c 1}lo +1 +w/L’+a2/ e P24t (40)
/ g ! g log(L;, /a%+1)

Now, (40) can be represented using the standard normal distribution function as follows:

/ log + 1 Qi /log + 1 + 2n(L;, + a2) A flog n + 1]] (41)

Thus, from (32) and (41), we obtain
< M(axn1 flog + 1 ++21(L;, + a2) 1 ,log( + 1)]] + Cay,+/logn. (42)

Having completed the first step in our attempt to bound y,, we now proceed to obtain an upper bound to the
right-hand side of (42). The expectation of the first term:

Ela,logT, /a2 7 )] = /0 mp[a,ﬂ /log(ié’+ 1) > x]dx
= /S}ZP((X,1 > g‘l(x))dx,
0

where g is the function g(y) = y+/log(L;, /y* + 1) restricted to the domain [0, s¢] and s, is the point of global maxima
of 3, thereby making g invertible. In addition, it is readily checked by comparing values of 3’ that
s¢ < +/L;,/(e —1). Following these steps, we thus obtain

Sg Sg 10g(%’+ 1) - %
E[anyJlog(L, /a2 + 1)] = / P(ay > )¢/ (Dt = / P(a, > 1) :
0 0 llog(—; )

k ]ogn
o \flog +1 dif+/l P(a, > t)\/log( +1) (43)
ogn
The first term on the right-hand side in (43) can be bounded above using (41) as follows:
kologn
/ 10g + 1 dt
2 277
<ko logn log 471 L +1 \/ZN(L;I +k? 4(10g271) ) log L 5+ L[]
n k*(log n)* n k2(log n)

It is readily checked by using the standard upper bound for normal tail probability that there exists a constant C’
such that the right-hand side is bounded above by Cin77/4\/log(L; v 1), and thus we have

o128 , Tog (L,
/° w/log(%+l dt<C Vog(mvn . (44)

1-@

E[ sup ft 1-0

tel0, L, ]

1-9
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In order to bound the second term in (43), let us perform a change of variable manipulation, namely replace n’t*
by e7*. We now obtain from Assumption 6:

s Sg—k[) AL - s L
P, > 1) log Liq dt— / ket a2 ool Sy q) gt
]ogn (t+k0 05 )
Sg—k[)lOg”
< / kle—kz‘h’l] t4/\2k3l’lyf2 log( + 1) dt
0

k 00
< 47lﬁlmexp (—4k213_Z A2kzn?/2e73/2 — Z)\/log (n/2L;ex2 + 1)dz

< 4:%/ exp (—4kze_Z A2kzn?2e73/2 — Z)\/glogn +log (L. e*/? +1)dz.

Consequently, we have

’

Sg L
/ P(a, > 1) 1og(—;+1)dt
Kolo8™ t
- ’ ,2/2
klvlog(L vn / exp( ke A 2eg? 262 — 4) \/Mlog@ne”)d,z. (45)

4w 2 log(L, vn)

It is readily checked that the integral on the right is finite, and thus we have

S, 1 L/
f P(a, > t)w/log + 1 dt <y YO8 YT Og( vn), (46)
ogn

for some generic constant C}. Using (44) and (46) in (43), we now obtain

E[a,+/log(L, /a2 +1)] < Cé('k)i(f/ﬁvm), (47)

where C; =C] + Cj;. For the second term in (42), we use the bound on the normal tail probability, namely,
1—®(t) < e™/2/tV2m. Thus, we have

[ L, ay

The right-hand side can be bounded above by (log(L!, + a?))™"/2 < (logT{)™"/? and the bound for E[a,] achieved
in Lemma 3. Consequently, combining (30), (42), and (47), we have thus obtained

1-9

log ((Cg,,Ln) v n)

nv/4

supﬁ <C

te[0, Ln]

for some constant C. O

We finally arrive at the main result of this section; in Proposition 3, we state a general nonasymptotic probabil-
istic bound on the difference between a time-changed Brownian motion evaluated on a stochastic jump process
and its fluid limit.

Proposition 3. Let Assumptions 4-7 hold. Then there exist a constant C such that for alln > 1 and x > 0:
log ((c;an) v n) 2

P| sup |Bz, —Be,sl>C - +x|<2e ¥, (48)
5€[0, L] n

where v}, = sup o ;1 ElIEa(s) = £4(5)]-
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Proof. Observe that we have

E[ﬁ ] E[B et B: ORE ZBEn(t)B:n(t)]
= [En(t) + En(t) — 2E,(t) ABn(t)]

= [1Ea(t) = Eu (D] (49)
This implies
sup E[f;]= sup ElIE.(t) - &, (0] = v2. (50)
tel0, L, ] tel0, L, ]

Recall y, := E[sup,q 1 fi]- Then by the Borell-TIS inequality (Adler and Taylor [1, theorem 2.1.1]), we have

( sup |ft|>x+yn)<2exp( xj) (51)

tel0,L,] n
Now invoking Lemma 5, we obtain our desired result (48). O

Finally, we will require the following proposition for proving strong embeddings under Assumption 2. Con-
sider the following regularity condition.

Assumption 8. For every n > 1, let &M &.00,T]+— R satisfy

sup [E"(s) - &(s) ( ) (52)
se[Olz’J ’ \/_

In addition, let £ and & both be Lipschitz continuous with the Lipschitz coefficient of ™ growing at most polynomially
inn.

Proposition 4. Let Assumption 8 hold and B",n > 1 be any sequence of Brownian motions defined on a probability space
(Q, F,P). Then there exists constants C, K, and A such that for all n > 1 and x > 0:

( sup |Bé(,,)( ) —Bgyl>C 1/% +x| < Ke Ve,

s€[0,T]

Proof. The key ingredient of the proof is again the Borel-TIS inequality. First, let us reuse the same notations as
before; let f, be the Gaussian process defined on [0, T] by

fs =B, () Bgs)-
As before, the canonical metric for f in (Q, F,P) is given by (33) and let D denote the diameter of [0, T] with re-
spect to the canonical metric, that is,

D= sup d(s, ).

s,t€[0,T]

Let N(¢) be the metric entropy defined by the smallest number of balls of diameter ¢ (with respect to the canoni-
cal metric d) that covers [0, T]. Then from Adler and Taylor [1, theorem 1.3.3], there exists a universal constant M
such that

E supft

tel0, T]

<M / D/Z(log N(e))l/ “de. (53)
0

It can be easily shown that the canonical metric d as defined in (33) satisfies
d(sp? = [1€7(s) = &()| + £ (1) = EB] = 2EP () A&(t) + M) A&() = EP(S) A&() = EP(E) AEGS))].

If the numbers &(s), 5(")(5), &(1), 5(")(1?) are arranged in ascending order form the vector (d1,d»,d3,ds), then it can be
shown that

d(s,t) = \(ds — ds) + (dy — dy). (54)

This implies that we have

A(s, 1) < \IE() — £(0)] + E7(s) - EG)1.
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Consequently, from Assumption 8, we have

A 1
In addition, (54) also implies

d(s, 1) < IEO(E) = E(s)] + () — £
Using the Lipschitz continuity of &M and &, we obtain that
d (s, ) g
s,tE[O Vs "
where [, grows polynomially in n. This implies d(s, t) <I,\]s—t| for all s,t€[0,T]. Thus, {s€[0,T]:|s—xo| <

¢?/I3} is contained in the e~ball around xo. The length of this ball is thus at least 2¢%/I}. Hence, the number of
e—balls that cover [0, T] is at most T2 /2¢2. This leads to an upper bound for N(¢), namely

(56)

2
N(e) < ;lz (57)

D2 12
<M / log (58)

It is readily checked using integration by parts that

Thus, using (57), we get from (53),

sup f,

tel0, T]

, D ATR\ P21
sup f,| < M|=|log A”+/ de|.
te[0, T) ! 2 D2 0 /long—’f

A change of variable /log(T/2/¢?) — t in the integral on the right-hand side yields

2t (45 R

The standard upper bound to the normal tail probability now gives

E| sup ft <M
tel0, T]

1-9

. 4T\ D 1
E| sup f,|<M log +— (59)
reto, 71 p*) 2. log 2T 2, VT |
Observe that because I, > 1 and D < 2, we have
! = < \/11 = (60)
20, VT 0
J2log2sT Vies
In addition, because x log x > -1 for all x > 0,
D 2
% lo (4Tl ) 1\/D log(4T/2) - D logD2 <= \/D log(4T2) + 1. (61)

Using Inequalities (60) and (61) in the right-hand side of (59), we get

sup ftl < M(1 D log(4TR) +1 +o D_1 ) (62)

te[O T] logT
Finally, using (55) and (56) in (62), we obtain

A Vlogn
sup f, =O( nl/g4 )

tel0, T
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Observe that

sup E[|f2l] = sup [€7(s) — &(s)] = (Jﬁ)

s€l0, T s€l0, T]

Then by the Borell-TIS inequality (Adler and Taylor [1, theorem 2.1.1]), there exists constants C, K, and A such

that
>C—F— Vlog

Yz < Ke™ MV, O

+Xx

sup ‘B .. — B}
sE[O 1] £ £

5. A Strong Embedding for the Arrival Process

In this section, we derive a strong embedding for the arrival process. The following proposition is an extension
of Theorem 4 when the length of the random walk is provided by a time-varying, not necessarily determinstic,
function.

Proposition 5. Let Xi,..., X, be i.i.d. samples from a distribution that admits existence of a moment generating function
in a neighborhood of zero. Let u and o denote the mean and standard deviation, respectively, of this distrbution. Let J, :
[0,00) = {1,...,n} be any process. Then there exists a standard Brownian motion B and a version of Xa,...,X,, along
with constants Cq, Ky, and Ay such that for all x > 0, we have

]Vl(t) 1
\/_Z(X ) — 0Buo| > Cr—2 OB 1 | < Kye MV,

Vi

P| sup

te[0, o0)

Proof. From Theorem 4, we have that there exists a standard Brownian motion B, a version of X3, ..., X,, along
with constants C, K, and A (depending on the distribution of V) such that for all x > 0, we have

St

i=1

P <Ke™, (63)

sup
0<k<n

>Clogn+x

where Zi-;l is defined to be the null sum for k = 0. Because A, takes values in {1,...,n}, we may replace the su-
premum in the left-hand side of (63) by a supremum over k taking values in {A,(t),f € [0,00)}. Consider another
version B of the standard Brownian motion B such that

VinBy, £B.
Then from (63) there exist constants C;, K, and A such that for all x > 0 the desired strong-embedding holds
1 Jn(t) 1 g
P Sup (X !/l) O'BAn(t) > Cl +xl < Kle—/\p{\/ﬁ. O
tel0,00) | V1= i Vi

The following proposition is a consequence of Theorem 5 and holds for any general distribution as opposed to
the uniform distributional assumption made in Theorem 5.

Proposition 6. Let Assumption 1 hold with p = 1, that is, let us consider the Ay /G/1 model as explained in Remark 1.
Then for every n > 1, there exists a Brownian bridge {Bb*";t € [0,1]} and a version of Ty,..., T, along with constants C,,
K, and A, such that for all x > 0, we have

(Sup |\/_ (Gu(t) —G(t)) - B'(’;(t’; >Czloﬂ+x < Kye™ ¥V, (64)

v

Proof. We will first consider the random variables {G(T;) :i=1,...,n}. Observe that the G(T;)s are independent
and identically distributed as U[0,1] random variables. Consider the corresponding empirical distribution func-
tion F,, given by

te[0, o0)

1 n
Fu(t) = - D Liom)<s- (65)
i=1
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Then by a little modification of (15), there exist a Brownian bridge B (observe by Remark 9, the Brownian
bridge under consideration depends on 1) and constants C,, K5, and A, such that

logn

P sup [Vi(F,(t) —t)— B> C, +x| < Kpe 122V, (66)
tel0,1] \/_
Let the inverse distribution function G~! be defined as
G7(t) ;== sup{x e R: G(x) < t}. (67)
Observe that, because of our definition of G}, we have
G(x) <t iff x<G(t). (68)
Applying relation (68) in (65), and using (1), we obtain
1& _
Fu(t) = £Z 1ir,.<c1y = Ga(GT (1) (69)
i=1
Inserting (69) in (66) yields
sup [V(Ga(G1(5) = £) = BY| > Gy 1987 | | < KooV (70)
te[O 1] \/E

In addition, observe that for any s; < s, such that G(s1) = G(s»), we have foralli=1,...,n:
P[T; € (s1,52]] = 0.
This implies that, although G™1(G(s)) > s, we still have
1i1,<c1 Gy = 1yT,<s) almost surely (a.s.)

Consequently, we obtain
_ 1 1Z
Gn(GH(G(s))) = EZ Lir<c ey = ;Z 1i1,<} = Ga(s) as. (71)
i=1 i=1

We use this property in (70). Notice that
{G(s) : s € [0,00)} c [0,1].

Thus, we have the following inequality between the suprema of the same function over these two sets:

sup [VA(G(G™1(0) 1)~ B = sup V(G (G (G(o)) - G) - B | 72)
Inserting (71) in (72)t,€£/\;(1_]thus get s€[0, c0)
sup [Vi(G(G™(1) — ) = BY™| = sup |Vi(Gu(s) - G(s)) - B3| as. 73)

te[0,1] s€[0, o)

Looking at the complement probability in the left-hand side of (70), we obtain as a result of (73):

1 - KpehVi < P( sup [Vi(Ga(G1(5) = £) — B[ < C, 1087 | x)

te[0,1] ! \/_
logn

<P sup [Vi(Ga(s) - G(s)) - BX| < C,—2—+x|.
(sem,‘;) ” T

This yields our desired result (64). O

Remark 10. Observe that the constants C,, Ky, and A, in (66) do not depend on G and that the same constants satisfy
(64). Thus, owing to Remark 8, we have that C; = 100, K, = 10, and A, = 1/50 satisfy (64).

We now adapt the statement of Proposition 6 under Assumption 2.
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Corollary 1. Let Assumption 2 hold. Then for every n > 1, there exists a Brownian bridge {Bbr'" ;£ € (0,11} and a version of
T1,..., Ty such that for all x > O, the same constants C,, Ky, and A, as in Proposition 6 satisfy

logn+x

Vi

< Kze_Azx\m.

n n ~br,n
\/E(Gﬁ, )(£) — G (F) — BGW(”) > G

P( sup

te[0, )

Proof. Observe from Remark 10 for every k > 1, there exists a Brownian bridge B°*" such that for all x > 0, the
same constants C,, K, and A, as in Proposition 6 satisfy

1
P( sup \/E(G,(qk)(t) - G(k)(t)) - B](D;r(’klfél) >Cy —(i}gﬁn +x| < Kpem ¥V,
tel0, o)
In particular, for k = n and writing B*"*" as BZT:S’(t), we have
~br, logn _
p (tes[t)llzo) W(fo)(t) - G(”)(t)) —Bamw|> Cz% +x| < Kpe V1

In the sequel, we will require control over Brownian motion evaluated at the fluid-scaled arrival process A,/n
and the corresponding fluid limit. This is achieved for U[0,1] distributed time epochs in the following
proposition.

Proposition 7. Let Ty,...,T, be i.i.d. samples from the U[O,1] distribution. Let A, be the arrival process with dropouts
given by

nFy(t)

An(t) = Z Ci/
i=1

where F,, is the empirical distribution function corresponding to the sample T1,...T,, and C; are i.i.d. Ber(p). Let B be a
Brownian motion. Then, there exist constants Cs, K3, and A3 such that for alln > 1 and x > 0:

logn
P sup BAn(s) _Bps > C31£§L+x < K3e*A3x2\/ﬁ_
sef0,1]' " n

Proof. The proof follows from the DKW-type inequality established for the Brownian motion in Proposition 3,
the conditions for which are satisfied in Proposition 1. Consequently, we obtain there exists constants Cs, K3, and
Az such that

v 2
P| sup (B, = Bps >C3%+x <2e %, (74)
se[0,1]' " n
where
A
o2 = sup E —"(S)—ps : (75)
s€[0,1] n

In order to bound 02, we first apply the Cauchy-Schwarz inequality to get

N A 2

Observe A, (s) has the Bin(n, ps) distribution, which implies

E

~ 2 ~
E(A"(S) _ps) _VarlAu(o) _psi=ps) o
n n n
Combining (76) and (77), we obtain from (75):
Au(s) ps(1—ps) _ 1
of,= su E(’ - s)s su —_— = (78)
56[0,}:;] n P SE[O,pl] n 2y/n
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Using Inequality (78) in (74), we now have our desired strong embedding result:
il >
P| sup > C3 o8 " +x| <27 \/ﬁ,
s€[0,1]

/4
which holds foralln >1andx>0. O

BAH(S) - BPS

n

We now extend our result in Proposition 7 to generally distributed time epochs. This is the subject of the fol-
lowing corollary.

Corollary 2. Let Assumption 1 holds. Let B be a Brownian motion. Then for every n > 1 and x > 0, the same constants Cj,
K3, and A3 as in Proposition 7 satisfy

P| sup
te[0, o0)

Proof. The proof of this result is similar to the reasonings we adopted in Proposition 6. Consequently, let us
again consider the random variables {G(T;) : i =1,...,n}. Observe that the G(T;)s are independent and identically
distributed as U[0, 1] random variables. Consider the corresponding distribution function F, given by

1 n
Fu(t)=- Z LG(r)<ty-

Let A, () = 270¢;. In addition, recall the definition of G L(t) in (67). Using (69), we obtain

Vlogn
>C31—g+x SK3€_/\3XZW.
nl/4

Bawo = Bygo

n

sup )Bps Bj,w|= sup |Bps - BAV:(G An(GTLE) [+ 79)
s€l0,1] " s€l0,1]
In a spirit similar to what is used to obtain (73), we have from the analogue to (71):
sup |Bps BAn(G 1| = sup |Baw — Bygs)| a-s (80)
sel0,1] sel0,00) " "

Our desired result now follows from Proposition 7. Observe Proposition 7 guarantees existence of constants Cs,
Kj;, and A3 such that, for all n > 1 and x > 0, we have

Vlogn
P sup [Bi,, - By > c3?—i+x < Kz Vi, 81)
se[0,1]' " n

We now complete our proof by looking at the complement probability in (81) and using (79), we have

N
1- ng‘)bxz‘/ﬁ <P| sup |Bium — Bps| < C3(1)—/g4n tXx
sel0,1]' " n (82)
vlogn
=P| sup BAn(G 1) ~ Bps| < C3 (1);01 il
s€l0,1] n

Now using (80) in (82), we obtain

Base = Byges) Y

1—Kze ™™V <P sup
s€[0, o)

<c, Vl"g”) (83)

which yields our desired result. O

Remark 11. Observe that the constants Cs, K3, and A5 in Corollary 2 do not depend on the particular distribution G.
Corollaries 1 and 2 provide approximations in terms of G™. In order to further simplify our approximation processes, we
require the following lemma.

Lemma 6. Let Assumption 2 hold. Then for any q > 0 and any sequence of Brownian motions B", there exist constants Cy,
Ky, and Ay such that for all n > 1 and x > 0:

logn

V 2
(t s[gp |ch<”)(t) qG(t)‘ >Cy—7— 1/ + x| < Kge™M* Vi
€
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Proof. We apply Proposition 4. Take T =1, EW(s) = gG™(G71(s)), &(s) = gs, and observe that continuity of G
implies

sup [£7(s) - &(s)| = sup q|G"(G'(s)) —s| = sup qIG"(G ' (G(5)) - G(s)l-

s€l0,1] s€l0,1] s€[0, )
Notice G(G1(G(s))) = G(s) for all s. Thus, we have

sup [£7(s) = £(s) = sup [G"(GT(G(s))) = G(GTH(G(E))I < sup |G™(s) = Gs)!.

sel0,1] s€[0, c0) s€[0, o0)
From (3), we now obtain that

sup [E"(s) - &(s)| = O(L)
Sup |£7(s) = (o) N
The Lipschitz continuity of & is obvious, whereas Lipschitz continuity of €™ follows from that of G and G™'. In
addition, from a similar property for G, the Lipschitz coefficient of ™ grows at most polynomially in 7. Thus,
we have constants Cy4, Ky, and A4 such that

vlogn

P sup IBqG(”)(G_l(s)) - qul > C4W +x|< K4€_A4x2‘m. (84)

te[0,1]

Because G is strictly increasing in [0, ), we have G™(G(s)) = s for s € [0, o0). Consequently, we have

sup |Bygmc1s) = Besl = sup [Bygi1(csy) — Bacs)l = sup [Bygngs) — Baes)l-

s€l0,1] s€[0, ) s€[0, )
This provides our desired result from (84). O
We can now extend Corollary 2 courtesy Lemma 6.

Corollary 3. Suppose Assumption 2 holds and B is a Brownian motion. Then there exist constants Cs, Ks, and A5 such that
foralln>1and x > 0, we have

Vlogn
P sup BA,,(t) - BpG(t)| > C517/g4+ x| < K5€_/\5x2‘/%.
te[0, o0) " n

Proof. From Corollary 2 and observing Remark 11, we have

P( sup /log

n a2
+ x| < Kze™* Vi
te[0, o)

B/\y,_(t) - ch(n)(t)| > C3

n

/4

From Lemma 6 with g = p, we have constants C}, K} and A} such that
, ylogn
P( sup )ch(yz)(t) - BpG(t)‘ > C4 _nlg -+ x

A2
i < Ky eV,
te0, 00)

Combining these, we have our desired result. O
Corollary 1 can be extended using the following result that again is a consequence of Lemma 6.

Corollary 4. Let Assumption 2 holds. Then for any sequence of Brownian bridges Bbr’n, there exist constants Ce, Kq, and
Ag such that for all n > 1 and x > 0, we have

- - vlogn
P( sup |Btg(§,1)1(t) - B]ér(':; > Ce nl—i +x | < Kge XV,
te[0, o)

~b: ,
Proof. Using the fact that the Brownian bridge B~ " can be represented as
=bryn D

B Epr -ty
for a Brownian motion B”, we have that

~br,n ~brn
P( sup [Bging = Bgyl > 22) = P( sup [BGu) = Bl > Z)
te[0, o) te[0, c0)

+P( sup |G™Y - G(t)|| BY| > z) Vz>0. (85)
te[0, o)



Chakraborty and Honnappa: Strong Embeddings for Transitory Queueing Models
24 Mathematics of Operations Research, Articles in Advance, pp. 1-34, © 2021 INFORMS

From Lemma 6, with g = 1, there exist constants C;, K{ and A} such that for z = (C{\/logn/n'/* + x), we have

P( sup [Bugy — Bl > z) < Kj e Mwi, (86)

te[0, o0)

Recall notation r,(G) introduced in (3). Because z > x, we have
P sup |G (t)~ G(t)| |Bl] >z) (lB”l > ) (| "> )
(te[o,i’o) ! mG) =\ (G)
Because 7,(G) = O(#) and P(|B}| > 1) < 2¢7/2, we now have

X2 ”
P( sup |G"(t) - G(t)| |Bj| > Z) < 2¢ i < 267N, (87)
t€[0, 00)

for some constant A}'. Using (86) and (87) in (85), we obtain that there exist constants Cg, K¢, and A, such that

P sup
te[0, o)

We now arrive at our main result for this section, namely a strong embedding for the arrival process A,.

~br,n ~brn \/log n
BG(")(t) BG(L‘) C —FFt+X

< Kge s Vi,

Proposition 8. Let Assumption 1 or 2 hold. Then there exists a Brownian motion B, a Brownian bridge B*" such that if
H, be defined as

FL () = VipG(t) + PB]ér(S +vp(=p)Bsw, under Assum. 1,
- \/;l_p(G(t) +1(G)) + PBgr(':; + \/P(l - P)BG(t)/ under Assum. 2,

then there exists a version of T, ..., Ty, a version of Cy, . ..,C,, along with constants C;, K7, and Ay such that for all n > 1

and x > 0:
P sup
te[0, )

Proof. Step 1. Assumption 1: From Proposition 5, there exists a Brownian motion B along with constants C 1, K 1,
and A; such that for all 7 > 1 and x > 0, we have

< Kye Vi,

+Xx

An(t) ylogn
\/E -A (f)‘ Cr—— i/

nGn(t)
G&p > ¢, 1081 +x]<K s (88)

su -B
[Mi) Vi & N R YT

From Proposition 6, there exists a Brownian bridge Bbrn along with constants C », Ky, and A, such that for all n > 1
and x > 0,we have

P| sup \/E(Gn(t)—G(t)) Bgr(f) >Cr—o logn + x| < RpeAaxvi, (89)
te[0, c0) \/_
Observe that the arrival process A, given by (2) may be decomposed as follows:
At
) = VR P1A1(0) + (1) + VBT = i)+ ) 90
where
1 nGy(t) (C p) A
Arn(t) = l :
' Vi IZ;' NI For
Ax(t) = V(Go(D) - G(t)) B
and

Asu(t) = Be,) — Bep-
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From Corollary 2, there exist constants Cs, K5 and A5 such that for all 7 > 1 and x > 0:

(sup Asn(t)] > G5 V08T,

/4 < Rae™ Vi, 91)
te[0, o)

Using the bounds (88), (89), and (91) in Decomposition (90), we now obtain existence of constants Cy, K, and A7

such that foralln > 1 and x > 0:
An(t) ‘ Viogn
P| sup —H, ()| > =2
(tE[O,oo) \/72 " nl/4

Step 2. Assumption 2: From Proposition 5, there exists a Brownian motion B along with constants C 1, Ky, and ;\1

such that for all # > 1 and x > 0, we have
"Gu ()
&p > ¢, on +x] <Ky, (92)

[te[O o0) ‘/_ zzll Vp(l—=p) Bero Vi

From Corollary 1, there exists a Brownian bridge Bbrn along with constants C,, K, and A, such that for all n > 1
and x > 0, we have

< Kye Vi,

+X

P sup [Va(GI(H) - G(t) - Bz | > Cp o 1081 | 1) < ke heVi. (93)
te[0, c0) \/_
Observe that the arrival process A,, given by (2) may be decomposed as follows:
At
\/(_) V(1 = p)A1u(t) + pAzu(t) + Vp(1 = p)As () + pAsu(t) + pAs u(t) + (H (t) - \/_prn(G)) (94)
where o
_ 1 ! ‘ (Cz P) A
Ay, n(t) = T ; m— fo)(t)’
Aoult) = VRGP (6 = G(1)) - B,
Az u(t) = ( G ~ BG(t))/
A4, n(t) Bbl;nr)l(t) B]ér(:;/
and

As,n(t) = V(G () - G(1).

From Corollary 2 and Lemma 6, there exist constants C 5, K3 and A5 such that for all 7 > 1 and x > 0:

V1o A2
sup |Az n(t)| > Cs 1/%1;1 + x| < Kze s~ \Z (95)
tE[O o)
Next from Corollary 4, there exist constants 64, K4 and 5\4 such that for all n > 1 and x > 0, we have
To s
sup [Agn(t)] > C4Y 1/%1” +x| < Ryeha0Va, (96)
tE[O o)
Ultimately note that according to Assumption 2, we have
sup |As ()] = sup Va(G™(t) — G(t) = Vnr,(G) < oo. 97)
te[0, o) te[0, o0)

Using the Bounds (92), (93), (95), (96), and (97) in Decomposition (94), we now obtain existence of constants C,
K7, and A7 such that forall n > 1 and x > 0:

P( sup A"—()—H (t)‘ > Cy- logn
te[0, )

a2
<K7€ /\73(\/%. |

+Xx

N /4
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6. A Strong Embedding for the Workload Process

In this section, we derive a strong embedding for the workload process, as well as the total remaining workload.

Proposition 9. Let Assumptions 1 or 2 and 3 hold. Then there exist Brownian motions B and B and a Brownian bridge B®"
such that if R,, be defined as

Rn(t) = UBpG(t) + #Hn(t)/

where H,, has been defined in Proposition 8, then there exists a version of T1,..., Ty, a version of V1,...,V,, a version of
Cis - .., Cy along with constants Cg, Kg, and Ag such that for alln > 1 and x > 0:

W (t) R(t)’ cg‘/ ogn

P i nl/4

a2
sup +x| < Kge MV,

te[0, c0)

Proof. From Proposition 5, there exists a Brownian motion B along with constants C 1, K1, and A4 such that for all
n>1and x > 0, we have

1 An(t) Vi — A 1 N ~
P| sup |—= ( B _ Bao| > Cq 98", x|< Rye v, (98)
t€[0, o) V5 o " Vn
Observe that the workload process W,, given by (4) may be decomposed as follows:
W(t .
®_ oW1, () + uWo, u(f) + W3 () + Ry (£), (99)
\n
where
1 A0y, -
W) =2 33
An(t) &
Wa,u(t) = —H,(1),
2,n(t) N n()
and

W3, () = Bauw = Byce)-
From Proposition 8, there exist constants C 1, K1 and ;\1 such that forall n > 1 and x > 0:

logn
1/4

EH

P| sup Wy, (5> Cs +x| < Kpe Ve, (100)

te[0, o)

From Corollary 2, there exists constants C 5, K5 and A 3 such that forall n > 1 and x > 0:

Mo .
P| sup [Ws ,(t)] > Cs 1/%171 + x| < RgehaVi, (101)
te[0, o0)

Using the Bounds (98), (100), and (101) in Decomposition (99), we now obtain existence of constants Cg, Ks, and
Ag such that foralln > 1 and x > 0:

<Kg e AN

+Xx

Wi(t) ogn
. -Ry(0] > G VB

te[0, o)

P( sup
The following result helps in extending strong embedding of processes to strong embedding of their Skorohod

reflections defined in the sequel.

Lemma 7. Let f and g be real-valued functions defined on [0, 00). Assume f and g satisfy the following property:

sup [f()~g(£) <. (102)

te[0, o0)
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Then we have the following:

sup
te[0, o0)

inf f(u)— 1nf g(u)

0<u<t

<. (103)

Proof. Observe that (103) is immediate if the following holds for every ¢ > 0:

sup

1nf f(u)— 1nf g(u)
te[0, co) 105

<S+e. (104)

Let us prove (104) through contradiction. First, assume the contrary, namely, there exists ¢, € [0, o) such that

>0+e.

inf f(u)— mf g(u)

0<u<ty

Consequently, assume without loss of generality:

inf f(u)< 1nf g(u) 6+ ¢). (105)

0<u<ty

Observe there exist points t{, t5 such that

f(#) < 0<in<ft f(u)+¢e,and g(85) < 0<in<ft g(u) +e. (106)
From (102) and (106), we obtain
) -0 <f(t)) < mf f(u) + €. (107)

Finally, from (105) and (107), we obtain
§(t) < inf g(u),

which contradicts the definition of infimum and is not true. Hence our Assumption (105) is wrong, and we must
have

inf f(u)> 1nf g(u) 6+ ¢). (108)

0<u<ty
Interchanging f and g in (108) allows us to conclude (104), and hence (103) as well. O
We now arrive at a strong embedding of the total remaining workload.

Proposition 10. Let ¢ be the reflection map functional given by
O(F)(E) =)~ inf f(u).

Then, under the same assumptions and notations as in Proposition 9, there exist constants Co, Ko, and Ag such that for all
n>1andx>0:

>C9 g

=y <KeA""‘/E

+Xx

P( sup \/_qf)(W w— Cp - id)(f) — gb(R _T )(t)

te[0, )

where id : x — x denotes the identity function, and c, is a positive constant denoting the server efficiency rate.

Proof. Observe from Proposition 9, we have

) YO NI
1 - KoV < [ sup |V R < ¢ (1’;54” +x) (109)
tel0, o) \/;l_ n
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From Lemma 7, we have

W, (t) vlogn
P| su -R (t)’ Cg+—F—+x
(te[O,Izo) \n nt/t
- n 1

=P| sup M—(Rn(t)—%) <Cg%+x

te[0, 00) \n Vn n

_ . N

<P| sup | inf W) = cutt _ inf (R, (1) — cnlt < Cg# + x| (110)

€0, 00) [ 02Ut A O<ust \n nt/

Combining Equations (109) and (110), and recalling the definition of ¢, we obtain

1-Koe ™V < p sup
te[0, o0)

\/—<P(W —c,-id)(t) - ¢(R _ o )(t)' ng/l?in‘ x)/

for some constants Co, Ko, and Ag. O

7. A Strong Embedding for the Queue Length Process
In this section, we obtain a strong approximation to the queue length process. Control of the truncated renewal
process M,, (recall relation 5) would lead to a strong approximation of the queue length.

Lemma 8. Let Assumption 3 holds and Z,,(t) be given by

Zn(t) = Cn(i _AM)
u n
Then there exist constants Cyg, Kyo, and Aqg such that for alln > 1 and x > 0:
Zut) o logn hoxyi
P sup BMn(f) > Cp—=—+x| < Kype~ Aox (111)
(tE[O,oo) \/— \/ﬁ
Proof. Notice Z,(t) can be further decomposed as
Mrz(t) V _ 1 M, (t)
Zt)= >, —* Vi) _ (Z Vi—cp ) (112)
i=1

Henceforth, the two terms in (112) will be approximated. Using the definition of M,(t), the second term in (112)
can be bounded as follows:

1/l < Voww+an

- H

—Cy

Hence for any constant C > 0, we obtain

M, (t)

logn (V,r . )
su H>C——+x|<P|=>Clogn+xyn, foralli=1,...,n
(te[OI:o)\/_U Vn ] H &

= (P(V1 > Culog n + yx\/ﬁ))n.

Using Chebyshev’s inequality, we obtain

M (t)

—Cput

n
logn gle%) E[¢V1] —Axyi
>C \/ﬁ + X] < (Ecmz]",%"wp\z_l eCoulog n+dpxyn < Ke ’ (113)

P| su
(te[O,Ijo) \/_M

for some constants K and A, where the last step is obtained by choosing ¢ sufficiently small.



Chakraborty and Honnappa: Strong Embeddings for Transitory Queueing Models
Mathematics of Operations Research, Articles in Advance, pp. 1-34, © 2021 INFORMS 29

In order to approximate the first term in (112), observe that from Proposition 5, there exist constants Cy, Kj,
and A such that

Ma(t)

% Zl (V p) UBM,,(:)

n _
>C1 g +x|<Kje )\pc\/ﬁ/

Vi

P[ sup

te[0, o0)
P 1 M0, - Vi-p) o C1 logn
teO oo) \/_ i=1 H H \/ﬁ

Using (113) and (114), our desired Inequality (111) is obtained. O

which implies

< Kye eV, (114)

BMy, Mpn (t)

We now approximate the Brownian motion evaluated at M,, appearing in Lemma 8.

Lemma 9. Let Assumption 3 holds. Then there exist constants Cy1, Ky1, and Ayq. such that for alln > 1 and x > 0:

log( =y n)

a2
>Cnp +x| < Kje Anx \/7_1

P| sup

Bm,o/n = Bty a1
0<t<L,

/4

Proof. It suffices to check the conditions in Proposition 3, which are satisfied by Proposition 2. Combining
Equations (26), (27), and (28), we obtain

-k -
E| sup m—%t/\1H<sup°<k<"l | 42 ES—nl

s€[0, L]

n nu n n nu

Using the fact that E (sup,_., ISk — k|) < CE|S,, — n|, we obtain

M, (t) ot
n

C

E Al T

sup
SE[OI LYI]

This yields our desired result. O

Remark 12. Notice from definition, M, (t) equals n for all t > S,,/c,,. Hence, control of BMn(i) for t € [0, o) reduces to

a control of BMn(t) for t €[0,S,/c,]. However Lemma 9 leads a control of BMu(t) over t € [O L,] for a predetermined

and fixed sequence L,. Hence, we need S, /c, to be in an interval [0, L, ] w1th exponentially high probability (i.e.,

the complement event has exponentially decreasing probability). This is achieved in the following lemma.

Lemma 10. Let S, = V1 +... + V.. Then for every 1 > O, there exists 6 > 0 such that

P(i—” > L,,) < exp(—(6c,Ly, —nn)).

Proof.

Sn Eets (E[etvl])"
_r _(6CHLVZ_V”])
for some 6 small enough such that Ee®"1 <. O

From Lemma 9 and Remark 12, we obtain the following result, which controls Bu,« for all ¢ positive.

Lemma 11. Let Assumption 3 holds. Then for all n > 1 and x > 0:

/1og( oLy vn)

g2
Z< L, <Kje Aux ‘/Z
1/4

Cn

P sup BM,Z(t)/n_B(‘”f)/\l > Cqq +Xx

te[0, o)

Finally, we arrive at the main result for this section, namely a strong embedding for the queue length Q,,.
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Proposition 11. Let Assumptions 1 or 2 and 3 hold. Let E,, be given by

b
pG(t) — C—f, under Assum. 1,
ny

E, () = ot (115)
p(G(t) + rn(G)) - ;p, under Assum. 2.

Recall H, defined in Proposition 8 and define the process Y, as follows:
nt
¥, = (H - W) + Bt

Then there exists a version of T1,..., Ty, a version of Vi,...,Vy, a version of C;, ..., C, along with constants Cia, Kq2, A12
and C independent of n, such that for alln > 1 and x > 0:

[ sup |90 (70| > Co LB 4 ] < Kppeme Vi 17 4 o7,
te[0, c0) \/_
if c, = O(n™) for some m > 0 and liminf, ¢, > 0, else
logcy
p| sup Qu(®) o0 > Cra N cig/;: + x| < Kppe~ Vi ax 4 p=nC
te[0, o) \/ﬁ
Proof. Observe that from (6) the diffusion-scaled queue length Qu/+/n can be further decomposed as
Qv (540,

Vi i

where the idle time process I, has been defined in (7), Y, is given by

and 4 » has been defined in Proposition 8. By the Skorohod reflection theorem, we have that

Cn .
\/_Tyln(t) == lsl’glzf Yu(s), (117)

and the busy time process is given by
D,(t)=t+ @ir}tf Yu(s).

The diffusion-scaled queue length process is now given by the Skorohod reflection of Y;:

Qu(h)
\/_

Thus, a strong embedding of Q,/+/n would follow from a strong embedding of Y,,. Notice that we already have a
strong embedding of the arrival process courtesy of Proposition 8, namely there exist constants C;, K7, and A7,
such that foralln > 1 and x > 0:
A, N I
©_ Hn(t)' > lo8n

P| su
(tem}i’o) Vi Vi
Thus, to complete the strong embedding of Y,,, we need to approximate Z, given by
2,0y 220 MDD
¢ Cn

Observe that the busy time process D,(f) is nondecreasing and takes values in [0, S, /c,], where S, = > ; V;. Con-

= P(Yy)(t). (118)

< Ky 7V, (119)

sequently from Lemma 8, there exist constants Cq, K1, and A; such that forall #n > 1 and x > 0:

o[ sup |20
te[0, o)

5,98 ) < ke (120)

\n

o
— — Bumyouiy
n

\n
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Let
~ ~ Cut o
Yau(t) = Hy + = Buuou)- (121)
’\/EIL,[ # n

Using (119) and (120) in (116), we thus have constants éz, K5, and A, such that foralln > 1 and x > 0:

< Rpe vV, (122)

- ~, logn
P| sup [Yiu(t)-Y.()|>C2 +x
(tE[0,00) \/ﬁ

From the converse of Lemma 7, there exist constants Cs3, K5, and A3 such that for all 7 > 1 and x > 0:

mfy (S)_me (s) >C31 B 1 x| < RaehorV,
n

P( sup

tel0, oo)

Recalling Expression (7) and using (117), we have for every n > 1 and x > 0:

logn

c - . .
P| su " Dyu(t)) +inf Y ,u(s)| > C3—2— + x| < Kge "3 Vr,
(te[o,lzo) Vg " s<t " \n
Consequently, for every n > 1 and x > 0:
t logn
P| sup |—D,(t) - (——+—1an (s)) >C3—+x <Kse~ Asam, (123)
(te[O,IZo) ny np o nss

Recall E,, given by (115). From the expression of Y, in (121) and recalling H, from Proposition 8, we have

Yulh) ¢
P| sup —E,(t)|> ¢
(tE[O,oo) \/ﬁ !
b
<p PPy W -pBag|, 9 Bu, o,/
<P| sup + su ZMDuO)n ] (124)
te[0, o) \/E telo, oo) \/_ [0 o) | Vn

\ne Vnpe
<P sup |Bbr nl >—I|+P sup |BG(t)| +P sup |BM,,(D,,(t)) | >—-]
(te[O,m) o 3p t€[0, o) 3\/ t€[0, co) M7 e 3

Observe that both G(t) and M,,(D,(t))/n are less than one. Using the tail probability for the supremum of the stan-

dard Brownian bridge on [0, 1], we have
2
@) <2 exp(zﬁ). (125)

Bbr n
3p 9p?

G(t)

P( sup

te[0, o0)

Using the tail probability for the supremum of the Brownian motion on [0, 1], we have

P( sup [Bey|> Vie )y / " e’ (126)
o > —F/—|= —,
t€[0, ) 3Vp(1=p)|  Waessypam V27

and
\/7—’1_11 e 00 e—S /2
P| sup |Bum,p, > S4/ . (127)
(tem,go B> V) <a [T C
Using (125), (126), and (127) in (124), we have that there exist constants k; and k, such that
l771@) i 2
P|( sup —Eq(t)] > e| < kyexp(—kane”).
(tE[O, o) \/ﬁ ! )
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From the converse of Lemma 7, there exist constants 121 and lAcz, such that

P(tes[:i};) lsrslth\n/(;) - isrglth”(S) > e) < IAclexp(—lAcznez).
Now, using (123) and (128), we have
P|( sup C—"D"—(t) (C"t nfEn(s)) > Cg, logn +2¢
tefo,00) 1 T H ny <t n
<P| sup C—"D”—(t)— (C—"i —1an (s)) > C3logn +¢
felo,e0) | 111\ st n
1 ~ O SN N
+ P| sup —1r1fY a(s) —inf E,(s)| > €| < Kze ™™ + kiexp(—kane?).
te[0, o) \/_ sst

Because [xA1l -y al| < |x —y| we have from (129) constants ks, ks, and ks such that

u ny

P sup
te[0, o0)

(C;;D”(t))/\ 1- (C”t+ 1nfEn(s))/\ 1

From Proposition 2, we have constants 126 and 127 such that

D D, (t A
P| sup M, (Dy() (C" n )) > + i - Sn <L,|< k6e_k7’“2.
te[0, ) n nou n Cn
Combining (130) and (131), we have constants ko, k1, ko, and k3 such that
M, (Dy(t t lo S P S
P( sup My (Du(t)) _ (C" +i nfEn(s))/\l > k0i+ 21 < L, | < kqekenet Akane
te[0, o) n nyss< n
Now, from Proposition 3, we obtain constants Ca4, K4, and A4 such that
log(c’r’lL” v 1) .
— a 75’ PR a7
P{t 65[311;)0) Bu,os0) B(C"t-ﬂnf«t Eus)|~ /4 n | < Kgem M0V
Let Y, be given by

V() = (H (t) -

We now obtain from (121) and (132) existence of constants C 5, K5, and A 5 such that

P{ sup |V, (t) = You(t) > Cs

te[0, o0)

1 ~
> C3 ogn +el< k e—k4n£2/\k5n£'
n

ny

Cnt B
\/ﬁy +y (Cttinfoq En(s))"

log(% v )

/4

Hence, from (122), we have constants Ce, Kg, and Ag such that

P| sup |Y, ()= Y. () > Cs
te[0, o0)

’1LVI
log(ch v 1)

nl/4

+Xx

+Xx

& < LnJ < 1256_;‘53(2\/%.

Cn

i < Ln] < IA<6€7;\6WXAXZ.

Cn

Recalling (118), we now obtain that there exist constants C 7, K7, and ;\7 such that

(CH n o\ n)

Qu(t)

i —p(Y)(0)] >

P
tEO oo)

Observe that for any two sets A and B, we have that P(A) < P(A|B) + P(B°). Thus, using Lemma 10, we have

Qu(®)
P
[tes[O ) \/_

Finally choosing L, = n yields the desired result.

- p(YV)(b)| >

ny
nl/4

\ llog(cg—ﬁ" v 1)

O

nl/4

+X

+Xx

Cn

S_” < Ln] < 12767;\7\/;13(/\;52.

< I"<7e—5\7\/ﬁchz +e—(§an,,—n/1).

(128)

(129)

(130)

(131)

(132)
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8. Commentary and Conclusions

From a philosophy of science perspective, one can consider the bulk of the nonstationary queueing model litera-
ture as phenomenological (Frigg and Hartmann [12]) in nature, that is, accurately reflecting empirical evidence but
not necessarily first principles. For instance, as noted in Remark 5 (see Whitt [39] as well), a widely used nonsta-
tionary traffic model uses a composition construction, where a cumulative intensity function that captures the
time-varying effects is posited. However, these models are not necessarily a first principles explanation of how
customers choose to arrive at a service system. This distinction between phenomenological and mechanistic
modeling is not crucial from a performance analysis/prediction perspective, but it can be important from a
system design or optimization and control perspective. For instance, in Armony et al. [2], Green and Savin [16],
Hassin and Mendel [18], and Kim et al. [25], the problem of designing an optimal appointment schedule to a sin-
gle server queueing system is studied. In this instance, the standard composition nonstationary traffic models
(Whitt [39]) are not appropriate. In Armony et al. [2], in particular, the authors use a transitory model and use its
corresponding diffusion limit to solve for an asymptotically optimal schedule. Models of rational arrival behav-
ior have also received significant interest in the literature (Glazer and Hassin [13], Hassin [17], Honnappa and
Jain [20], Jain et al. [24]). However, standard traffic models are, in general, awkward to use for computing Nash
equilibrium strategies, which are more naturally modeled through a finite pool model as done in Honnappa and
Jain [20] and Jain et al. [24]. The RS(G, p)/G/1 model provides a mechanistic, flexible description of queueing be-
havior and can be used in a broad range of optimization/control and game theoretic models.

The RS(G,p)/G/1 model generalizes the A(;/G/1 model that has been studied in the literature. However, com-
puting performance metrics for the discrete event RS(G,p)/G/1 queueing model is quite difficult, because of the
complicated time dependencies in the model. The strong embeddings (and FSATs) proved in this paper provide
error bounds from tractable diffusion approximations. Furthermore, these results can be specialized to yield pri-
or diffusion limits obtained via weak convergence in Honnappa et al. [21, 22] and Bet et al. [3]. We anticipate that
our FSAT results will be immensely useful for optimization and control problems involving queueing systems.

There are several avenues for further exploration. First, our most general conditions on the traffic model in
Assumption 2 allows the arrival epoch distribution to depend on the population size, allowing for the possibility
that an increase in the population will change customer behavior because there is an increase in demand for serv-
ices. We currently assume that the dropout probability is stationary. A more general model would allow for
time-dependent/nonstationary dropout probabilities. It seems possible to extend the current FSETs and FSATs
to this setting. More complicated is establishing analogous results for a multiserver queue. In Honnappa et al.
[22], diffusion limits were established for a fixed multiserver queue in the large population asymptotic limit, rely-
ing on the fact that in the large sample limit, the regulator process is identical to the single server case. In our cur-
rent paper, however, the FSETs (which are for finite 72) are much harder to prove, because we can no longer use
the asymptotic simplification. This issue is compounded when the servers are not identical, and we will investi-
gate these results in future papers. A further avenue for investigation is how to prove FSETs in a scaling regime
that is analogous to the many-server heavy-traffic (MSHT) scaling. In this case, we anticipate that the diffusion
approximation should be some type of a nonstationary Halfin-Whitt diffusion process, but we have not been
able to prove the FSET, and it appears we might require some new mathematical innovations to achieve this
result.

References
[1] Adler R], Taylor JE (2009) Random Fields and Geometry (Springer Science & Business Media, Berlin).
[2] Armony M, Atar R, Honnappa H (2019) Asymptotically optimal appointment schedules. Math. Oper. Res. 44(4):1345-1380.
[3] Bet G, van der Hofstad R, van Leeuwaarden ]S (2019) Heavy-traffic analysis through uniform acceleration of queues with diminishing
populations. Math. Oper. Res. 44(3):821-864.
[4] Brillinger DR (1969) An asymptotic representation of the sample distribution function. Bull. Amer. Math. Soc. (New Series) 75(3):545-547.
[5] Chatterjee S (2012) A new approach to strong embeddings. Probability Theory Related Fields 152(1-2):231-264.
[6] Chen H, Yao DD (2013) Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization, vol. 46 (Springer Science & Busi-
ness Media, Berlin).
[7] Csorgo M, Révész P (2014) Strong Approximations in Probability and Statistics (Academic Press, New York).
[8] Cudina M, Ramanan K (2011) Asymptotically optimal controls for time-inhomogeneous networks. SIAM J. Control Optim. 49(2):611-645.
[9] Donsker MD (1951) An invariance principle for certain probability limit theorems. Memoirs Amer. Math. Soc. 6:12.
[10] Dvoretzky A, Kiefer ], Wolfowitz ], et al (1956) Asymptotic minimax character of the sample distribution function and of the classical
multinomial estimator. Ann. Math. Statist. 27(3):642—669.
[11] Ethier SN, Kurtz TG (2009) Markov Processes: Characterization and Convergence, vol. 282 (John Wiley & Sons, Hoboken, NJ).
[12] Frigg R, Hartmann S (2018) Models in science. Accessed 25 September, 2021, https://plato.stanford.edu/archives/sum2018/entries/
models-science.
[13] Glazer A, Hassin R (1983) m/1: On the equilibrium distribution of customer arrivals. Eur. J. Oper. Res. 13(2):146-150.


https://plato.stanford.edu/archives/sum2018/entries/models-science
https://plato.stanford.edu/archives/sum2018/entries/models-science

Chakraborty and Honnappa: Strong Embeddings for Transitory Queueing Models
34 Mathematics of Operations Research, Articles in Advance, pp. 1-34, © 2021 INFORMS

[14] Glynn PW (1998) Strong Approximations in Queueing Theory. Asymptotic Methods in Probability and Statistics (Elsevier, New York).

[15] Glynn PW, Honnappa H (2017) On Gaussian limits and large deviations for queues fed by high intensity randomly scattered traffic. Pre-
print, submitted August, https://arxiv.org/abs/1708.05584.

[16] Green LV, Savin S (2008) Reducing delays for medical appointments: A queueing approach. Oper. Res. 56(6):1526-1538.

[17] Hassin R (2016) Rational Queueing (Chapman and Hall/CRC).

[18] Hassin R, Mendel S (2008) Scheduling arrivals to queues: A single-server model with no-shows. Management Sci. 54(3):565-572.

[19] Honnappa H (2017) Rare events of transitory queues. ]. Appl. Probabilities 54(3):943-962.

[20] Honnappa H, Jain R (2015) Strategic arrivals into queueing networks: The network concert queueing game. Oper. Res. 63(1):247-259.

[21] Honnappa H, Jain R, Ward AR (2014) On transitory queueing. Preprint, submitted XX, https://arxiv.org/abs/1412.2321.

[22] Honnappa H, Jain R, Ward AR (2015) A queueing model with independent arrivals, and its fluid and diffusion limits. Queueing Systems
80(1-2):71-103.

[23] Horvath L (1984) Strong approximation of renewal processes. Stochastic Processing Appl. 18(1):127-138.

[24] Jain R, Juneja S, Shimkin N (2011) The concert queueing game: To wait or to be late. Discrete Event Dynamic Systems 21(1):103-138.

[25] Kim SH, Whitt W, Cha WC (2018) A data-driven model of an appointment-generated arrival process at an outpatient clinic. INFORMS ].
Comput. 30(1):181-199.

[26] Ko YM, Pender ] (2018) Strong approximations for time-varying infinite-server queues with non-renewal arrival and service processes.
Stochastic Models 34(2):186-206.

[27] Komlés J, Major P, Tusnady G (1975) An approximation of partial sums of independent rv’-s, and the sample df. i. Z. Wahrscheinlichkeits-
theor. Verwandte Geb. 32(1-2):111-131.

[28] Louchard G (1994) Large finite population queueing systems. The single-server model. Stochastic Processing Appl. 53(1):117-145.

[29] Mandelbaum A, Massey WA (1995) Strong approximations for time-dependent queues. Math. Oper. Res. 20(1):33-64.

[30] Mandelbaum A, Pats G (1995) State-dependent queues: Approximations and applications. Stochastic Networks 71:239-282.

[31] Mandelbaum A, Ramanan K (2010) Directional derivatives of oblique reflection maps. Math. Oper. Res. 35(3):527-558.

[32] Mandelbaum A, Massey WA, Reiman MI (1998) Strong approximations for Markovian service networks. Queueing Systems
30(1-2):149-201.

[33] Newell C (2013) Applications of Queueing Theory, vol. 4 (Springer Science & Business Media, Berlin).

[34] Oksendal B (2013) Stochastic Differential Equations: An Introduction with Applications (Springer Science & Business Media, Berlin).

[35] Rosenkrantz WA (1980) On the accuracy of kingman'’s heavy traffic approximation in the theory of queues. Probability Theory Related
Fields 51(1):115-121.

[36] Strassen V (1964) An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 3(3):
211-226.

[37] Wainwright MJ (2019) High-Dimensional Statistics: A Non-Asymptotic Viewpoint, vol. 48 (Cambridge University Press, Cambridge, UK).

[38] Whitt W (2016) Heavy-traffic limits for a single-server queue leading up to a critical point. Oper. Res. Lett. 44(6):796-800.

[39] Whitt W (2018) Time-varying queues. Queueing Models Service Management 1(2):79-164.


https://arxiv.org/abs/1708.05584
https://arxiv.org/abs/1412.2321

	s1
	s1A
	s1B
	s1C
	s1D
	s2
	s2A
	s2B
	s3
	s3A
	s3B
	s4
	s5
	s6
	s7
	s8

