Operations Research Letters 49 (2021) 338-344

journal homepage: www.elsevier.com/locate/orl

Contents lists available at ScienceDirect

Operations Research Letters

Operations
Research
Letters

A many-server functional strong law for a non-stationary loss model N

Prakash Chakraborty *!, Harsha Honnappa >*

2 Department of Statistics, Purdue University, West Lafayette IN, USA
b School of Industrial Engineering, Purdue University, West Lafayette IN, USA

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 23 December 2019

Received in revised form 4 October 2020
Accepted 8 March 2021

Available online 20 March 2021

Keywords:
Fluid limit
Many-server
Loss model
Non-stationary

The purpose of this note is to show that it is possible to establish a many-server functional strong
law of large numbers (FSLLN) for the fraction of occupied servers (i.e., the scaled number-in-
system) without explicitly tracking through a measure valued process either the age or the residual
service times of the jobs in a non-Markovian, non-stationary loss model. This considerable analytical
simplification is achieved by exploiting a semimartingale representation. The fluid limit is shown to
be the unique solution of a Volterra integral equation.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

This note establishes a functional strong law of large num-
bers (FSLLN) for a non-Markovian, non-stationary M;/G/n/n loss
model in the many-server limit as n — oc. Stationary loss models
have been studied extensively, with the Erlang-B formula being a
cornerstone consequence of this literature. Non-stationary mod-
els, on the other hand, are much harder to analyze, and closed
form expressions are almost impossible to derive. Stochastic pro-
cess approximations are therefore crucial for performance anal-
ysis of loss models. There is a significant body of work focused
on establishing fluid approximations in many-server settings,
though the methods are non-trivial. In the formative paper [8],
the elapsed waiting time (or ‘age’) of the jobs in the system
are tracked, using which it is possible to obtain a martingale
representation of the number-in-system process that yields the
desired FSLLN for a G/GI/n/oo queue. In contrast, [22] develops a
method where the residual service times of jobs in the G/GI/n/oco
queue are tracked, in which case it is possible to establish the
fluid limit without recourse to a martingale representation. Of
course, while the latter approach in essence assumes that the
service times are known at the time of arrival, as commented on
in [22] the approach offers significant analytical simplification.

The purpose of this note is to show that it is possible to
establish a many-server FSLLN for the fraction of occupied servers
(i.e., the scaled number-in-system) in a M;/G/n/n loss model,
without explicitly tracking through a measure-valued process
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either the age or the residual service times of the jobs. We
capitalize on the fact that this process is the sum of a pure jump
bounded semimartingale and a bounded finite variation process.
Indeed, we show that in the many server limit the fraction of oc-
cupied servers converges to the solution of a non-linear Volterra
integral equation by exploiting the fact that the semimartin-
gale is uniformly zero and the bounded finite variation process
converges to a deterministic function. This semimartingale repre-
sentation is natural and allows us to avoid tracking the residual
service times. Our proofs are also considerably simpler and easier
to follow. Consequently, we anticipate that our analysis will be
intuitive and useful for a broad range of applications. For instance,
as a consequence of our main result, we present a fluid limit for
the fraction of arrivals that are blocked. This result can be used as
a proxy for the blocking probability in the many-server limit. A
crucial motivation for this paper is the need to develop ‘transitory
fluid’ traffic models; i.e., systems where a finite volume of jobs
(in a continuum) enter a system over time. Queueing models fed
by this type of traffic have been studied in [2,5,7] - however
all of these consider discrete-event models of traffic. Transitory
fluid traffic models have not been studied in the literature, and
would be of considerable use in the modeling of capacitated
energy storage systems and high-speed computer networks. As
an auxiliary result, therefore, we also establish a FSLLN for the
integrated fraction of occupied servers. This process is a non-
decreasing stochastic fluid with a maximum rate of increase. This
type of model can be used to model the energy production from
a solar array, for instance.

While our proof of the main result is not complicated, some
commentary is in order. We consider a sequence of M;/G/n/n
models with nonstationary Poisson traffic with deterministic in-
tensity (A"(t) : t > 0) where A"(-) = nA(-) and stationary
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general service times with finite first moment. We assume that
the traffic and service processes are statistically independent of
each other for every n > 1. Thus, the number of servers (i.e., the
system capacity) is in scale with the arrival intensity. Using the
fact that the fraction of occupied servers in the nth system can
be represented as a stochastic integral with respect to a ran-
dom counting measure, we extract the desired semimartingale
representation. In Theorem 3.4 we show that the fraction of
occupied servers converges to a deterministic limit. Identifying
the limit function itself turns out to be a little tricky, owing to
the fact that the fraction of occupied servers is the solution of
a discontinuous stochastic integral equation. In order to identify
the limit, we smooth the representation of the process by using a
mollifier of the discontinuity. This allows us to identify the limit
function as the solution of a specific non-linear Volterra integral
equation. Finally, to establish uniqueness of the limit, we exploit
the fact that the first time that the limit function hits the level 1
(i.e., the system fluid level is full) is unique, from which it follows
recursively that the first (and subsequent) times the limit leaves
the fully occupied level and/or (re)enters state 1 are unique.

Related literature. There is a significant body of work estab-
lishing many-server fluid limits for stationary and non-stationary
models, both with and without abandonment, starting with the
seminal work in [6]; see [20] for a recent survey. Our work
is related to the development of proof techniques for many-
server limits, and to work on approximations to nonstationary
loss models. As noted before, Kaspi and Ramanan established a
fluid limit for the number-in-system process in the formative
paper [8], using a martingale representation of extracted using
the elapsed waiting time or age of the jobs in the system. [17]
on the other hand established a fluid (and diffusion) limit for the
number-in-system process of a stationary G/GI/n queue by using
a representation of the number in system process that is similar
to the system equations of a G/GI/oo queue. By establishing
a link between the equations, [17] was able to prove both a
FSLLN and a functional central limit theorem (FCLT). Our ap-
proach is similar, in the sense that we exploit a random measure
representation of the number-in-system process akin to system
state representations in infinite server queues. Note that since
we focus on nonstationary loss models, our representation is
different from that of [17]. While the analysis of models without
abandonment are most relevant to our setting, [22] analyzed the
number in system process of a G/GI/n + GI queue by tracking
the residual service times. In the nonstationary setting, in a
series of papers [10-12] Liu and Whitt proved a fluid limit for
a G¢/GI/n 4+ GI queue that experiences alternating periods of
overload and underload, by tracking the age of the jobs in the
system a la [8]. More broadly, there has been a growing body of
work on nonstationary loss models and various approximations,
particularly for computing blocking probabilities [13-15,20,21].
Our results complement these works by providing fluid limits
that characterize the fraction of arrivals that encounter a blocked
system.

2. Preliminaries

In this section we present some preliminary results that will
be useful later on.

2.1. Right continuous functions

Let D = D[0, T] denote the space of right continuous func-
tions on [0, T] that have left limits. For a function f € D and
To C [0,T], let ws(To) = sup{lf(t) —f(s)|:s,t eTp}. and for
§ € (0,7) let we(8) = infppj<s MaXo<i<yp wy(lti-1, ti)),
where P runs over the set of all partitions of [0, T], in the sense
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that a generic P is defined as P = {O =to,...,tp = T},
and ||P|| denotes the mesh or norm of the partition P: ||P| =
maxi<i<|p |ti — ti—1] . It can be shown that a function f lies in D
if and only if lim; o w}(&) = 0. The proof of this result and related
discussion can be found in [3, Ch. 14]. The Skorohod distance
between two functions f and g in D is defined by

ds(f, g) = inf { & > 0 : 3 strictly increasing function
A:[0,T]— [0,T], and

sup [A(t) —t| <e,
tel0,T]

sup [f(A(t)) —g(t)l < e}.
te[0,T]

The topology induced on D by the Skorohod distance is the
Skorohod topology.

Theorem 2.1. A set A C DI[0, T] has compact closure in the
Skorohod topology if and only if supscs supycpo 1 If ()l < oo, and
lims g Supfea w}(rﬁ) =0.

Remark 2.2. It can be shown that D is not a complete space
with respect to the Skorohod distance ds but there exists a
topologically equivalent metric dy with respect to which D is
complete.

2.2. Counting measure

Let (£2, F, F = (Ft)i=0, P) be a filtered probability space. Let
(N¢)=o be a point process given by a sequence (T )y>0 of jump
times, that is N¢ := Y _._, 1yr,<;. Suppose in addition the n jump
time or arrival T, has a corresponding random variable Z, taking
values in some measurable space (E, £). Then (Ty, Z,)s>1 is called
an E-marked point process. For each A € &, let the counting
process N;(A) be given by N;(A) = 221 1z,em 1i1,<t), and the
corresponding counting measure p(dt x dz) by p(w, (0, t] x A) =
N¢(w, A). This means that for functions H : 2 x [0, 00) X R —~ R

t o)
/ f H(w, u, )p(e, du x dx) = H(e, Ti(@), Zi(o)iw=-
0 JR i=1

(1)

For a point process (N;)>o, its intensity with respect to a given
filtration (F; )= is given by A; = limgs o P(N(t4-8t)—N(t)|F;), t >
0. If (Zy)n>1 and (Ty)s>1 are independent, and (Z,)n>1 are inde-
pendent and identically distributed (iid) from a distribution with
density v, then it is easy to see that the intensity of the marked
point process N:(A) for some A € £ is given by A:(A) = Av(A).
We now say that p(dt x dz) admits the intensity kernel 1;v(dz).
Let P(F) denote the predictable o-field on £2 x (0, co). Then for
any mapping H : £2 x (0, 00) x E — R, measurable with respect
to P(F) ® & satisfies the following projection result (cf. [4, T3
Theorem, pp 235])

E |:/OO /H(s,z)p(ds X dz):| =E [/w/H(s,z)Asv(dz)ds] . (2)
o JE o JE

Thus defining the compensated measure q(ds x dz) = p(ds x dz)—
Asv(dz)ds, we have for every H as in (2) that [Ot J; H(s, 2)q(ds x dz)
is a (P, F;) local martingale.

A final note: we denote convergence in probability by —p>,
conb\l&e)rgence uniformly on compact intervals and in probability

by —.
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3. Model and results
3.1. Description of model

We now introduce our model along with a useful representa-
tion of our main quantity of interest.

Assumption 3.1. Consider a M;/G/n/n loss model; namely, a
queueing model with

i. a non-homogeneous Poisson arrival process A" with rate
ni, where X is locally integrable;
ii. general service times sampled iid from a distribution F
with density v; and,
iii. n servers and zero buffer.

Let R = (R;)i>1 be the marked process where R; = (T, S;), T
are the arrival time epochs corresponding to the arrival process
A", and S; denotes the corresponding service time sampled iid
from F. We assume that relevant random variables for every n sit
in a common filtered probability space (2, 7, F = (Ft)i=0, P).
Let pR(du, dx) denote the counting measure associated with the
process R. Recall from (1), p¥(du, dx) is a random measure on
[0, 00) x RT such that for functions W : 2 x [0,00) X R > R
we have:

[ [ o uopau, b0 = Y- Wees T, S@)i-o. 3
0 JR i=1

Moreover since A:(A) = A;v(A), p} is a random measure with

intensity pR(du, dx) = ni,v(x)dudx. Denote p® to be the compen-
sated random measure:

pf = —pt. (4)

Remark 3.2. We explain the need for Poisson arrival processes
in our considerations. In the sequel we would need finiteness
of the second moment of stochastic integrals of bounded pre-
dictable processes with respect to the compensated measure, that

2
is E(fo Sz W(u, x)pi(du, dx)) < oo for a bounded predictable

process W. This is well established when pf results from Poisson
arrivals. However, we note that this is the only crucial require-
ment and all the results stated in this article hold true for any
arrival process satisfying this second moment condition.

3.2. Fraction of occupied servers

Let p/' denote the fraction of occupied servers at time t. Ob-
serve that the number of busy servers at time t is the cumulative
sum of arrivals at times u, u € [0, t] satisfying:

(i) the number of occupied servers at time u is less than n.
(ii) the corresponding service requirement exceeds t — u.

Consequently we have:

_l oo
~n Z Lo < Visi=e-mi Tim=o) (5)

i=1
Using (3), the right hand side of (5) can be expressed as a
stochastic integral with respect to the counting measure pR:

t
p?=/ an(t,u,X)pR(du, dx),
0 R

1
1, n
n

{py—

(6)

where W,y(t, u, x)
process.

<11 Yu<ylx>t—uy, is a predictable
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Remark 3.3. Note that p" has paths of finite variation on com-
pacts. Indeed, the process p" is piecewise constant with jumps
corresponding to arrivals according to A" only if the current state
p™ is less than one. This means that the total variation of p"
is bounded by that of A" which is a non-homogeneous Poisson
process and hence is of finite variation. In addition, p" is adapted
and cadlag, and consequently by [16, Theorem 26] p" is a pure
jump quadratic semimartingale.

We now state a functional fluid limit for p" as n tends to
infinity.

Theorem 3.4. Let the conditions in Assumption 3.1 hold. Then for
any T > 0 we have:

(7)

lim sup |pf — p| = 0, almost surely,
100 t[0,T]

where p is the solution to a non-linear Volterra integral equation:

t
pr = / l{pux”ﬁ(t —u)rydu  fort >0 and py=0. (8)
0

Proof. Recall that the counting measure p® possesses a com-
pensator pf. Now, observe that from (5) and (4) the fraction of
occupied servers p" has the following decomposition:

//Wtux)p*dudx //Wtuxpcdudx)
/ /W (t,u, x)p* (du, dx) + / l{pu<1}F(t—u)kudu
0

X!+

where pR is given by (4) and X" is another bounded cadlag
semimartingale. Indeed, X" is the difference of a bounded cadlag
semimartingale p" and the bounded finite variation process y".
In fact, we have sup, sup, |X"| < 1+ foT Aydu, where the second
quantity is finite because of our assumption that A is locally inte-
grable according to Assumption 3.1. In addition we have almost
surely lims o sup, wyq(8) = 0, where w;(8) infy, wi[t;, tiyq).
This follows from the facts that w’ ,(8§) = 0 (almost surely p" has
finitely many jumps in [0, T] and is constant in between), and the
fact that for all n one must have lims o sup, w,n(8) = 0. In order
to obtain this last assertion observe that |y — y'| <2 fst Aydu <
2w (|s — t]) where A(t) = fot Aydu is continuous on [0, T] and
hence also uniformly continuous.

We thus have that {X"},>; has compact closure in the Skoro-
hod topology. In other words we have obtained tightness.

Next, fix t and obtain (cf. [1, Theorem 2.3.7]):

|://W tuxp*dudx)]</ /pcdudx

1
fkdu< -A— 0.
n Jo n

Consequently for each t € [0,T], X[ 2 0. Thus for any

(t1,ts, ..., tq) € [0, T]% the finite dimensional vectors (th]a o,

Xr) LN (0,...,0) as a consequence of the Cramer-Wold de-

vice [3, Theorem 7.7]. Recalling the tightness condition we have
thus obtained that X" converges in distribution to the constant
zero function and hence also in probability. Since the limiting
function is non-random, the convergence is also in probability
under the uniform topology. Thus we have: X" 22 0.

Observe that we have

t
P =X 4y = XD +f 1y F(t — wrydu. (9)
0



P. Chakraborty and H. Honnappa

For every w € £2, p" by definition belongs to the Skorohod space
D[0, T]. Furthermore there exists £2; C £2 such that P(£2;) = 1
and for every w € $£2; the sequence {p"(w)}n>1 has compact
closure in the Skorohod topology because (i) sup, sup; |,ot”] <1
and (ii) limsyo sup, w;n(cS) = 0, where wy(8) = infy wx[t;, tiz1),
and wy is the modulus of continuity of x in [t;, ti;1). Note that
item (ii) is true almost surely because almost surely p will have
finitely many jumps in the time horizon [0, T].

Consider any w € £24. The above considerations thus show that
for every subsequence n; of the naturals, p"™ has a convergent
subsequence which converges to an element of D. That is, there
exists a subsequence {my} C {n,} such that

o™ — p, in the Skorohod topology. (10)

Henceforth, we try to identify p. To that attempt, we give a
slightly different representation of p". Observe that the set {p]_ <
1} is identical to the set {pf_ <1-— %}. This is because p" only
takes values in {% :i=1, ..., n}. This gives us the opportunity to
replace the indicator 1 gy in (9) by a smooth approximation.
In particular consider a sequence of smooth functions 1¢ : R —

[0, 1] for d € (0, 1) such that
1, forx<1-—-=

0 forx>1-— 5.
In addition let 19 : R — [0, 1] for d € (0, 1) be defined as:
1 forx<1-d

0 forx>1-—d.

Using this notation we can replace 1 gy in (9) by 1%(,03_) as
both the quantities are the same. Thus our alteEnate representa-
tion of p" is given by: pf = X' + fot 17 (p]_)F(t — u)r,du. Fix
any arbitrary t € [0, T]. SiPce L'[0, t] is a separable Banach space
with dual L*°[0, t] and 1™ (p™k) is bounded in L*°[0, t], there is
a subsequence {ly} C {my}, where m is as in (10) such that

t
lim
k—o00 Jo

t
h(u)1 (o Ydu = / h(u)w(u)du (11)
0
for every h € Ll[O,_t]. In particular, let us consider the function h
given by: h(u) = F(t — u)A,. Observe that our assumption on A
ensures that this specific h lies in L'[0, t]. We thus have:

t 1 _ t _
lim [ 1% (o )F(t — u)h, / w(u)F(t — u)rudu,
k—o00 0 0
Recall that X" —% 0. Consequently there exists a subsequence
{re} € {Ix}, (which we conveniently choose to be a subset of {I})
such that ||X*||; —> 0, for every w € £2,, where 2, C £

satisfies P(£2,) = 1. For this sequence {ry} we thus obtain:

)

Due to (10) we must then have: p; fo (WF(t — u)rydu.
Observe that the above representation guarantees that p is con-
tinuous and the convergence stated in (10) is in the uniform
topology for each w € £2,. Consequently fix ¢ > 0 and choose
N large enough such that for all k > N we have r, > 2 and

lo™ — pllr < %. Then it is readily checked that 1°(p,—) <

1
1% (p¢) < 1y, <1). Consider any h > 0 such that h € L'[0, T].
Let us multiply each side of the above equation by h and integrate.

t oy _
lim (x[’<+f 1% (oK IF(t — u)hy
k—00 0

. ly
lim p.*
k— 00

/ w(u)F(t — u)r,du.
0
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We thus obtain:

t t t
f h(u) (py )du < / ()1 (o] )du < / B, 1yt
0 0 0

Note that limdwl‘i(x) = limgyo 19(x) = 1x<1j. Consequently
taking k — oo (this is okay as we need k > N = N(¢)) and
then ¢ | 0 we have by the dominated convergence theorem and
(11) that:

t t t
/ h(u)1,,_<1ydu 5/ w(u)h(u)du 5/ h(u)1y,,_<yydu.
0 0 0

We now take h = F(t — -)A and thus we conclude that p, =
fo 1, -1)F(t — u)x,du. Observe that our considerations above
hold for any t € [0, T] and hence (8) holds true for any t €
[0,T]. O

Remark 3.5. Our considerations so far as stated in Assump-
tion 3.1 are constrained on systems which start empty, that is,
pg = 0, for all n. However this is easily relaxed as stated in the
following corollary which holds under the following assumption

Assumption 3.6. Let the conditions under Assumption 3.1 hold.
In addition let the initial fraction of occupied servers pf satisfy
the following asymptotic result:

lim |p0 — r0| =0, almost surely,

n—oo

where ro € (0, 1]. Moreover, assume that the remaining service
times for each of these occupied servers are iid drawn from a
distribution G.

Remark 3.7. Assumption 3.6 can be extended to include more
general initial distributions. In particular, one may consider the
empirical distribution G" of the remaining service times of the
initial customers pg along with an assumption on its almost sure
uniform convergence:

lim sup |G"(t) — G(t)| =0, almost surely.

n—oo t

Note that under this setup the remaining service times need not
be independent or identically distributed. There are a number of
classic results in probability theory establishing Glivenko—Cantelli
type strong law results that imply this condition under different
hypotheses. For instance, in the case where the remaining service
times of the initial jobs are independent, but non-identically dis-
tributed [ 18] immediately implies the desired result. On the other
hand, if the remaining service times form an ordered statistic
(thereby introducing a weak form of dependence between them)
then [19] provides a Glivenko-Cantelli theorem corresponding to
this case.

Corollary 3.8. Let the conditions in Assumption 3.6 hold. Then for
any T > 0 we have:

lim sup |pf —p| =0,

=00 te[0,T]

almost surely, (12)

where p is the solution to a non-linear Volterra integral equation:
t
o= poé(t)—i—/ 1, -nF(t—ur,du fort >0 and po = ro.
0
(13)

Proof. Let the initial number of occupied servers be N7, so that

Py =
be (S;

1% t
ol = EZ 10, +/ /Wn(t, u, x)pR(du, dx).
i o Jr

NI . L .
70. Let the remaining service times for these N} many jobs
)< <i<NI- Then p[' can be represented as:
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Observing that Nj goes to infinity since ry > 0, we can represent
this as follows‘

21{50>r / /Wn (t, u, x)pR(du, dx).

We have already analyzed the second quantity on the right hand
side in Theorem 3.4. Now using Assumption 3.6 we have that the
first quantity converges almost surely. In particular, we have:

NI

Zi:oo 1(s°>r} -
lim T’Pg — poG(t)

n—o00
0

0, almost surely.

This completes the proof. O

Remark 3.9. Under the conditions of Remark 3.7 the fluid limit
stays the same as in (12) but now G is the almost sure uniform
limit of G™.

3.3. Existence and uniqueness of fluid limit

In this subsection we prove the existence and uniqueness of
the fluid limits p and ©.

Theorem 3.10. For all ry € [0, 1] there exists a unique solution to
the non-linear Volterra equation given by (13).

Proof. Existence of a solution is well known and its proof is
very similar to what we have presented in the proof to Theo-
rem 3.4. Namely, we mollify the discontinuous coefficient 1;._y,
by a smooth version, use existence results for smooth coeffi-
cients and then show that the limit satisfies (13). See [9] for
the existence result in a more general setup, and for a more
general definition of solution to nonlinear Volterra equations with
discontinuous coefficient. Now we will show that for all T > 0,
(13) has a unique solution for t € [0, T]. We first show that p
given by:

t
ot = poG(t) +f 1, <y F(t — u)Aydu,
0

takes values in [0, 1]. The fact that p is positive is immediate by
the positivity of po, F, G and A. Suppose there exists a ty € [0, T]
such that py, > 1. Since G is non- increasing and fo 1 <1 F(t —

u)\,du is continuous as a function of t, the jumps of p if any are
negative. Thus there must exist an sp < to such that p;; = 1 and
ps > 1 for s € (sg, to]. Consequently we must have:

_ to _
P, = PoG(to) +/ 1y, <1yF(to — u)rydu
0

_ S0 _
= poG(to) + / l{pu7<1]F(t0 — A, du.
0
However, since G and F are non-increasing, we have:

i} 50 i} _
poG(to) +/ 15, <yF(to — u)rydu < poG(so)
0

So _
“l‘/ 15, <yF(so — w)Aydu = Psy =1
0

Thus we obtain the contradiction that p;, < 1. Having obtained
that p takes values in [0, 1] it is easy to obtain the following
hitting times to 1 and exit times from 1 for a solution p. We
denote:

if po < 1then og =0, else op = inf{t > 0: poG(t) < 1}

t
7 =inf{t >0: poé(t)+/ F(t — u)r,du = 1},
0
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_ 2
01:inf{t>r1 :poG(t)+/ F(t —u)dydu < 1}.
0

Here t; denotes the first hitting time from below for a solution
p and o7 (0p) denotes the first exit time from 1 when the initial
condition pg < 1 (pp = 1). The next set of hitting and exit times
are defined similarly. For k > 2 denote:

= inf[t > oy_1: poGl(t) +/ F(t — u)Aydu = 1} ,
Ikt

where Iy = U oi-1, ) U [0%—1, ).

and

ok = inf:t > Ty poG(t) + / F(t — wr,du < 1} ,
e (14)
U?;][O—i—l, 7).

In addition the specific solution p can now be actually
represented as

where J, =

pr = pollt) + / Bt — uphdu, (15)

Je

where J; = U2, [0i_1, 7;) N [0, t]. Let us justify the above repre-
sentation rigorously. Consider first the case when G is continuous.
This yields that p must also be continuous. Now observe that
the interval [0, 1) is open in [0, 1] and as such the pre-image of
[0, 1) with respect to p: p~1[0,1) = {t € [0,00): p; € [0, 1)},
is an open set of [0, co). Consequently this pre-image can be
represented as countable union of open intervals in [0, co):

P10, 1) = U2, L, (16)

where L’s are open intervals in [0, co). If G however is not
continuous, the fact that it is right continuous and non-decreasing
guarantees, as we have already mentioned before, that G has at
most countably many jumps of negative size. The addition of
this complexity does not complicate the pre-image too much. We
just have at most countably many L;’s in (16) replaced by left-
closed right-open intervals, that is: p~1[0, 1) = e 1Lk, where
each Ly is either an open or a left-closed right- open interval of
[0, 00). In our considerations above we have denoted J; to be:
Je= n[o, t].

Note that for the purposes of obtaining the solution from J;
using Eq. (15) we may replace the open intervals in {L; }¢>1 by left-
closed right-open intervals without affecting the solution because
the solution would be continuous at the left limit point of the
said interval. We have thus obtained a one-one correspondence
between solutions of (13) and the corresponding intervals L, =
[ok_1, T) through relation (15). Now suppose (13) admits two
solutions p' and p2. By the one-one correspondence established
these two solutions will differ only if they admit two different
countable collection of intervals {L}}i>1 and {L2}i>1. Let I
min{k : L} # L2} If | = 1, deriving a contradiction is straight-
forward. Indeed, if pg < 1, then it is immediate that the solution
would be unique until the first time it hits 1, and consequently
oo = 0 and 7y are unique. Similarly, if po = 1, 0p = inf{t > 0 :
poG(t) < 1}, which is unique and by translation one can obtain a
new equation on [0y, 00) as follows: y; = poG(s + 0p) + f F(s—

u)Aydu, which also admits a unique solution until it hits 1. Thus
in both cases, the first interval L; is determined by F, G and A, and
hence unique. The argument for the latter case can be modified
and applied to derive a contradiction when | > 1. In this case
o1_1 is given by (14) with J_; = UZ!L, and is hence unique.
We therefore translate our equatlon to o 1, 00) to obtain like
before: y; = poG(s + o1_1) + H(s) + f F(s — u)Aydu, where

H(s) = j} F(s—u)A,du. Again, this admlts a unique solution until
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the first time it hits 1, and hence L, is also unique. This provides
our required contradiction. O

3.4. Related processes

3.4.1. Integrated fraction of occupied servers

Let ®" denote the integrated fraction of occupied servers,
that is, for t > 0: © = [ pl'du. Observe that t — O]
fot(l — p)du is the cumulative idleness (in the sense that this
counts the time instants when any server is idle) since p] = 1
only if all the servers are occupied. Indeed, the fluid limit in (18)
below provides a relation between the mean service times, arrival
intensity and the integrated process.

It is readily seen that ®" has an integral representation with
respect to the counting measure pf:

1 — t
O =~ iy lenSiA(t=T) = fo /R Va(t, u, x)p"(du, dx),
i=1

(17)

where V,(t, u,x) = %l{pg_d)l{ud}(x A (t — u)). Similar to Theo-
rem 3.4 we now have the following fluid limit for the integrated
process O".

Theorem 3.11. Let the conditions in Assumption 3.6 hold. Then for
any T > 0 we have:

lim sup |(~)t" — ®¢| =0, almost surely,
n—00 te[0,T]

where © for t > 0 is given by ©®; = fot pudu, and where p is given
by (13).

Remark 3.12. Observe that (13) implies that @ has the alternate
more explicit expression:

t t
O, = pO/ E[S° A t]du +/ 1(p,_ <1E[S A (6 — u)]Aydu,  (18)
0 0

where SO is distributed as G, while S is distributed as F. This is
readily obtained by integrating the right hand side of (13).

Proof. By Corollary 3.8 we have that limy_, « SUp;[o,11l0f (@) —
o= 0, for all @ € £2; such that 2; C £ and P(2) = 1.
Consequently fix w € £2; and ¢ > 0 to obtain N(w) large enough

such that |pf(a)) — ,ot| < ; for all n > N(w). Thus we have

‘fof pidu — [ pudu‘ < '] = pu| du < &, for all n > N(w). This
completes the proof.

Alternate explicit proof. From (17) we have the following decom-
position

t t
@f:f /Vn(t,u,x)p':(du, dx)-l—f an(t, u, x)pX(du, dx)
0 R 0 R

t
- / / Valt. u, x)pR(du, dx)
0 R

t
+/ /1{p37<”1(u<t}(></\(t—u))v(x)kudxdu
0 Jr

t

-

+/ T 1 EIX A (= u)lagdu
0

:th,n_i_ytl.n’

/ Va(t, u, x)pS(du, dx)
R
t
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where X" is a semimartingale bounded above by ®" (since y '
is positive) and in turn by T (since we are in a finite time horizon
T and |p"| < 1).

Also, notice that ®" is a continuous function and since p" < 1,
its modulus of continuity satisfies: wen(38) := supj;_¢| s |f; pydul
< & In addition, the modulus of continuity of y!" satisfy:
w,10(8) < SUPjs_<s ZfS[ E[X] Ay du < 2w »+(8), where A* is given
by A*(t) = fot E[X]A,du, which is uniformly continuous on [0, T].
As a consequence of all this we have: lims o sup, wy1.n(8) = 0.
Observe that the [2-norm of the semimartingale X" satisfies:

t
E(X[I’")Z —E [/ V2(u, x)pR(du, dx)]
0

t
lzf /(X/\(t—u))zpf(du, dx)
n“ Jo Jr

1o [t 1.
“E[X%] | Audu < —E[X?]A—>0.
n 0 n

IA

p
=

Consequently for each t € [0, T], Xt]‘” 0. Thus the finite
dimensional vectors (X.\", ..., X}") -2, (0,...,0). Recalling the
tightness condition we have thus obtained that X" converges
in distribution to the constant zero function and hence also in
probability. Since the limiting function is continuous, the conver-

. . . ucp
gence is also in the uniform topology. Thus we have: X" —>
0. By our previous considerations since p" =5 p we have
yin 25 1 where y! is given by ! = fot 1, <nEIX A (t —
u)]A,du. We have thus obtained ®" i y1. A similar trick as
employed in the previous section guarantees almost sure con-
vergence. This is because for any subsequence there is a further
subsequence such that the convergence of X" and y'" happen
almost surely. In addition, there exists an §23 C £2 with P(§23) =
1 such that for every o € £23, the sequence {®"(w)};>1 is tight.
Similar calculations as employed in the previous section now
yield: ©®"—y! almost surely, with uniform convergence over
[0,T]. O

The following regarding the integrated process is an easy
corollary of Theorem 3.10.

Corollary 3.13. There exists a unique solution ® to (18), where p
is given by (13).

3.4.2. Blocked arrivals

Blocking probabilities and congestion measurement are the
most important measures of performance in loss models. Com-
puting these quantities in non-stationary models is rather hard
to do, however, requiring approximations [14,21]. In this section
we briefly note how the fluid approximations established in this
paper can be utilized.

The following calculation provides a way of approximating
blocking probabilities using the functional strong law obtained in
Theorem 3.4. Following (5), we define the stochastic process,

1 [o]
=D M TisisrogTmen ¥ £ € 10,1,

i=1

o (19)
Observe that p" is formally equivalent to p" in (5), but uses the
FSLLN limit p. from (7) in lieu of p" on the right hand side of (5).
Now, using the thinning property of Poisson processes it follows
that for each t € [0, T], np! must be distributed as a Poisson
random variable with mean

t [e] t
/ f 1y, <y v(x)nA,dxdu = n/ 1y <1y F(t — uAydu = npy.
0 Jt—u 0
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12 T T T T T T

20
R

(Scaled) State

(a) Convergence of p™ to p for

system.

an initially empty (b) Comparison of the
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Estimated n=10000 =———
Estimated n=1000 - - -

Simulated n=10000
Simulated n=1000

Blocking Probability

35

estimated and simulated

blocking probabilities.

Fig. 1. p" has been simulated for n = 20 and n = 200 with service times drawn from Lognormal(—0.5, 1) while the intensity of arrivals is sinusoidal with

Au

-3

Therefore, as a consequence of Theorem 3.4, we claim that np[ é
Poi(np;), where Poi(1) is a Poisson random variable with mean
1. Of course the approximation made above is formal and only
a careful second order functional central limit analysis of p"
would allow a rigorous justification of the approximation. This
is outside the scope of the current paper. However, for prac-
tical purposes the blocking probabilities can be roughly esti-

Poi(np) _

mated as P (o} =1) ~ P . Fig. 1(b) compares

the simulated blocking probabilities for the setting described
in the caption. Observe that for large enough n, the estimated
blocking probability is remarkably close to the simulated blocking
probability (averaged over 100 simulated sample paths).

4. Conclusions

The results in this note complement extant results establish-
ing many-server fluid limits, by considering the nonstationary,
non-Markovian loss model setting, and by using a bespoke semi-
martingale representation of the fraction of occupied servers.
The primary result shows that the fraction of occupied servers
converges to the unique solution of a Volterra integral equation.
As a consequence of our main result, we also establish a fluid
limit to the integrated number of occupied servers and the frac-
tion of arriving jobs that are blocked on arrival. We anticipate
our results, proofs of which are quite simple, should be broadly
useful. In future work we anticipate extending the analysis to
include functional central limit theorems. However, the analysis
is much harder than the fluid limit results in this note and merit
a separate paper.
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