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ABSTRACT

We present a new method for estimating the stochastic intensity of a doubly stochastic Poisson process.
Statistical and theoretical analyses of traffic traces show that these processes are appropriate models of
high intensity traffic arriving at an array of service systems. The statistical estimation of the underlying
latent stochastic intensity process driving the traffic model involves a rather complicated nonlinear filtering
problem. We develop a novel simulation method, using deep neural networks to approximate the path
measures induced by the stochastic intensity process, for solving this nonlinear filtering problem. Our
simulation studies demonstrate that the method is quite accurate on both in-sample estimation and on an
out-of-sample performance prediction task for an infinite server queue.

1 INTRODUCTION

This paper introduces a simulation-based method for estimating the stochastic intensity process of a doubly
stochastic Poisson process (DSPP), using sample path observations of the DSPP over a fixed time horizon
and under the assumption of a stochastic differential equation (SDE) model of the intensity. DSPPs are
widely acknowledged as an appropriate model of traffic arriving at a variety of service systems, including
hospitals and call centers. Specifically, multiple statistical analyses (Jongbloed and Koole 2001; Avramidis,
Deslauriers, and L’Ecuyer 2004; Avramidis and L’Ecuyer 2005; Maman 2007; Kim and Whitt 2014)
show that the (estimated) index of dispersion (i.e., the ratio of the variance to the mean) of the arrival
counts typically exceeds 1 at reasonable operational time-scales; for Poisson processes the index equals
1. Furthermore, the arrival intensity appears time-varying and there are temporal correlations between
traffic counts across non-overlapping time intervals. These conditions strongly indicate that the traffic
process is not a Poisson process with deterministic intensity. However, at smaller time-scales (on the
order of inter-arrival times) it is not possible to reject the null hypothesis that the arrival counts over a
fixed time interval are Poisson distributed (Kim and Whitt 2014). DSPPs can model the overdispersion,
temporal correlations and time-varying nature of the intensity while remaining reasonably tractable to use
for performance prediction and control/optimization tasks. A rigorous definition of DSPPs is provided in
the next section.

The expansive definition of DSPPs allows for many models of the stochastic intensity process. A
simple model advocated for modeling call center traffic in Whitt (1999) assumes that the uncertainty in the
arrival rates is determined by a single random variable that determines the daily ‘busyness’ level. However,
as noted in Zhang et al. (2014), the static nature of the intensity model implies it cannot account for the
temporal correlation structure observed in many traffic traces. Zhang et al. (2014), in turn, suggest the use
of a ‘dynamic’ (sic) intensity model. In the context of high intensity call center traffic they show, through a
combination of theoretical and empirical analysis, that a Cox-Ingersoll-Ross (CIR) diffusion is appropriate.
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Recall that the CIR process is defined as the solution to the SDE

dZ(t) = (B — Z(t))dt + nB*/Z({)dW (t), ¥t > 0 1)

where (W (t) : ¢ > 0) is a standard Brownian motion process, («, 3,7) are positive constants that constitute
the parameters of the model. Specifically, Zhang et al. (2014) present empirical evidence that the empirical
distribution of the standardized arrival counts roughly follows a standard normal distribution, in time
intervals where the mean arrival counts are ‘large’ . This empirical observation is supported by a rigorous
central limit theorem (CLT) that holds for all o € (0, 1). Following Zhang et al. (2014), we assume that
the stochastic intensity process is well-modeled by an SDE (though not necessarily (1)).

In practice, the stochastic intensity is /atent (i.e., unobserved) and must be estimated from traffic traces.
As noted in Cheng (2017), this estimation problem is challenging. In fact, it entails the solution of a
nonlinear filtering problem where the underlying stochastic intensity process can be viewed as the ‘signal,’
and the arrival process is a noisy ‘observation’ of the intensity. The solution of the nonlinear filtering
problem depends crucially on the computation of the pathwise Kallianpur-Striebel formula (see Van Handel
(2007), Ch. 1)), which is remarkably complicated. More crucially, the computation of the filter assumes
complete knowledge of the latent intensity model. In our setting, while a structure of the model might be
assumed, model parameters are unknown and must be estimated themselves.

We present a computational method that simultaneously estimates the intensity model and solves the
nonlinear filtering problem. We model the unknown drift and diffusion functions of this SDE using deep
neural networks (DNNs), which are trained by maximizing a tight lower bound on the marginal log-likelihood
of the traffic process. This is an instance of a so-called deep latent model (DLM); examples of such models
includes variational autoencoders (VAEs) and generative adversarial networks (GANs) used to synthesize
video and image samples (so-called ‘deep fakes’) in the artificial intelligence (Al) literature (Goodfellow
et al. 2016, Ch.20). To the best of our knowledge, this method has not been developed in the context of
continuously observed stochastic processes where DNN training can be rather complicated. Recent work
in (Tzen and Raginsky 2019a; Tzen and Raginsky 2019b) considers a more restrictive class of problems
where the latent signal process is a diffusion over the interval [0, 1] and the objective is to estimate the
terminal marginal distribution using observations of a random variable dependent on the terminal marginal
(latent) random variable.

In the subsequent sections we first present an overview of DSPPs in Section 2, followed by an extensive
description of the statistical estimation problem and variational autoencoders in Section 3 and 4. We present
our method in Section 5, where we derive the lower bound referenced above and the DNN training procedure
we have developed, based on the theory of stochastic flows by Kunita (1984). Finally, in Section 6 we
present simulation results that demonstrate the efficacy of our method. Specifically, we present results on
a) in-sample estimation of the stochastic intensity process itself, and on b) out-of-sample ‘run-through’
experiments for predicting performance metrics in an infinite server queue. Section 7 concludes with a
summary and some commentary on future work.

2 DOUBLY STOCHASTIC POISSON PROCESSES

Let (X (t) : t > 0) be a non-decreasing Z -valued point process, (X |Z) represent the process conditioned
on the stochastic process (Z(t) : t > 0), and Poi(A) represent a Poisson process with integrated intensity
function (A(¢) : t > 0). Formally, a DSPP is defined as:

Definition 1 Let (Z(t) : t > 0) be a non-negative stochastic process such that with probability one ¢ — Z ()
is locally integrable. Then, (X (¢) : ¢ > 0) is a DSPP driven by (Z(t) : t > 0) if (X|Z) ~ Poi(Z), where
Z is the integrated process defined as Z(s,t) := fst Z(r)dr for any s < t.
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That is, for any set of points {tg,t1,...,tq} C (0,00), where 0 < top < t; < --- < tg < o0, the finite
dimensional distributions of (X|Z) satisfy

P(X (to) = ko, X (t1) = k1,..., X (ta) = ka|Zo:t,}) 2)
_exp(—Z(0,t0))(Z(0, to)™ dl—[l exp(—Z(ts, ti1))(Z(ti, tigr)) ket —Fi
B ko! pal (Kit1 — ki)t ’

where Zp.; = (Z(s) : 0 < s < t). Formally, the path measure induced by (X (¢) : ¢ > 0) is defined as
[ Poi(Z)dP(Z), where P(-) is the path measure induced by the stochastic process (Z(t) : t > 0)), so
that the finite dimensional distribution of X (¢) (at any fixed ¢ > 0) satisfies

P (X (to) = ko, ..., X (ta) = ka) = /IP’(X(tO) = ko, X (t1) = k1, ..., X (ta) = ka|Zo:t,})dP(Zou,)-
3

Note that we are deliberately being less than rigorous in our description of this path measure so as to avoid
a heavier notational burden that distracts from the primary message of this paper.

3 THE STATISTICAL ESTIMATION PROBLEM

In the setting of a stochastic differential equation (SDE) model of the intensity, the estimation problem
amounts to estimating the drift and diffusion coefficients. Suppose the drift and diffusion coefficients are
parameterized by 6. To understand the complexity of the problem, consider the following formal argument
for deriving the maximum (log-)likelihood estimator (MLE) of the marginal distribution of X (¢),

log P (X (t) = k) = log / P(X(t) = k| Zo:t)dPs(Zoxt), @

where Py is the path measure corresponding to the parameters 6. Observe that computing the MLE requires
differentiating with respect to ¢ under this path measure. There are potentially two ways of doing this.
First, suppose we are able to compute the distribution of Z(0, t) as a function of the parameters 6. Then, the
gradient of the log-likelihood can be computed using the score function. However, while the distribution
of Z could be computed with some effort for some instances (such as the CIR model (1)), this is unlikely
to be true for arbitrary stochastic processes. On the other hand, suppose the path measure P, has a Radon-
Nikodym density with respect to a reference path measure mp; that is, there exists a real-valued potential
function ®(Zy.7;0) such that dPy/dmo(Zo.r) x exp (P(Zp.1;0)), then the gradient can be computed by
differentiating the potential function. In general, however, we are confronted by the question of the choice of
an appropriate reference measure. Note that measures in infinite dimensional spaces have a strong tendency
towards either singularity or equivalence, complicating this choice; for instance, standard Brownian motion
is not a feasible reference measure for the CIR process. While this issue can be resolved in specific cases,
we would like a method that works for arbitrary choices of the stochastic intensity process.

While the reference measure might not be known, we can introduce another measure into (4) that also
has a density with respect to the reference measure, making it equivalent to F. Observe that the conditional
measure P(Zy| X (t) = k) is the “optimal” choice in the sense that we have

dPy(Zp.t)
dP(Zo| X (t) = k)

= /log <IP’(X(t) = k‘ZO:t)dP(;(ii(XZE;;): k‘)) dP(Zo.| X (t) = k), (6)

log P(X(t) = ) = log [ PX(t) = H|Z) AP(Zo4 X (1) = k) )
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where the second equality follows from the fact that the term inside the log is precisely P(X(¢) = k)
(and therefore a constant with respect to the conditional measure). This formal calculation shows that
computing the MLE of the count process amounts to solving a complex nonlinear filtering problem to
compute the conditional measure, where the unobserved stochastic intensity function should be viewed as
a ‘signal’ and the (conditionally) Poisson counts are noisy ‘observations’ of the signal More precisely,
the Doob-Meyer decomposition of the DSPP (X (¢) : ¢ > 0) implies X (¢ fo s)ds + n(t), where
(Z(t) : t > 0) is the stochastic intensity process and (7(t) : ¢t > 0) is a mar‘ungale (see (Segall and Kailath
1975) as well). However, solving this filtering problem is remarkably hard. Observe that the density
dP(-| X (t) = k)/dPy(-) is the pathwise Kallianpur-Striebel formula (Van Handel 2007, Ch. 1). Solving this
nonlinear filtering problem, however, is no easier than the ‘direct differentiation’ methods for computing
the MLE noted in the previous paragraph.

Revisiting the computation in (5), suppose we now introduce an arbitrary (but equivalent) measure
Py i (parameterized by ¢ and k). Then, Jensen’s inequality implies that

dPy(Zo:t)

logP(X (t) = k) > /log (P(X(t) = k|Zo:t)m

) APy 1(Zo:t)- (7

While this is a lower bound, observe that the inequality can be tightened by maximizing it over both
0 and ¢. The objective, however, is highly non-concave in these parameters and consequently we can
only guarantee the computation of a local optimum. Furthermore, the choice of parameterization will,
in general, imply that the class of measures being optimized over may not include the ‘true’ measures,
resulting in an approximation to the filtering distribution. Therefore, this procedure of optimizing over
path measures is an example of approximate inference, used extensively in the machine learning literature
for approximately solving high dimensional and large sample statistical inference problems, particularly
with Bayesian models. In the next section, we briefly review approximate inference in a general setting.

4 APPROXIMATE INFERENCE

Consider an ensemble of n observations Y, := {Y1,Ys,...,Y,}, where each Y; € A, an arbitrary
topological space, and represents the available dataset. Each Y; induces a distribution P; that lies in some
space of measures P. The inference problem is to estimate a distribution over the sequence of unknown data
generating distributions { Py, P», ..., P,} given the observations Y. In the Bayesian inference setting,
we assume the existence of a sequence of ‘prior’ distributions {II1,II,..., II,} €e P x---x P =: Q),, P.
Subsequently, Y; € Y, is assumed to follow a generative model defined in the following hierarchical
manner: (i) Generate P; ~ II; i € {1,2,...n}; then (ii) sample Y; ~ P;. Now, using Bayes rule, observe
that for any subset B C @),, P the ‘posterior’ distribution satisfies

Jp I1izy dIL(P) P (Y5)
sz:l dHl z) z( z)

Observe that we have assumed Y, forms an independent ensemble; we will continue with this assumption
in the remainder of the paper. In most of the high (or possibly infinite) dimensional settings computing this
posterior distribution is intractable and consequently the problem of computing and performing statistical
inference with the posterior is challenging. To address the intractability of the posterior, various sampling
and optimization based methods have been proposed. We now describe a variational approach to do
approximate inference that belongs to the latter category. In this framework, we first fix a class of measures
Q, € @,, P and then compute an approximation to the posterior (8) in the family O,, by optimizing a
lower bound to the ‘model evidence’ P(Y,,) := [ [[i"; dIL;(P;)P;(Y;). Observe that for any sequence of

I,(B|Y,) =

®)
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measures {Q;}1<i<n € Qp, Jensen’s inequality implies that

[, dQi(P)

log P(Y,,) > / Ed@(mloggﬂ(m - / Ein(R)bg [1, diL,(P)

=3 [Ea los v - T2 (R o)

=1

in the machine learning literature the right hand side (RHS) in (9) is popularly known as evidence lower
bound (ELBO). Observe that (7) precisely corresponds to a single random variable in the sum on the RHS
of (9), where the measure (; corresponds to Pg j, and 1I; corresponds to the measure Pr. In the variational
framework, for a given sequence of prior distributions {IIy,IIs,...,II,} the ELBO is maximized over
the distribution in Q,, using stochastic gradient descent methods to find the best {Q;}1<i<p in Q. In
particular, observe that the ELBO can be rewritten as

ELBO = —KL (H dQ;(Py)||dIL, (P1, P; .. .Pn|Yn)> +log P(Y,),
=1

where KL represents the Kullback-Leibler divergence. Therefore, the optimizer of ELBO is an approximation
to the posterior distribution as defined in (8).

Deep latent models (DLMs) (Goodfellow et al. 2016, Ch. 19, 20) specialize this general presentation to
the setting where the probability measures are parameterized by deep neural networks (DNNs). Variational
autoencoders (VAEs) (Kingma and Welling 2019) are an example of DLMs in the multivariate setting where
the sequence of prior distributions are known only up to the parameters of an appropriately chosen DNN
modeling these parameters. In the VAE literature this sequence of prior distributions are also known as
decoders. The approximating measures Q,,, entitled encoders in the VAE literature, are also parameterized
using DNNs. Given the ensemble Y,,, the DNN parameters of both the encoder and decoder are estimated
using stochastic gradient descent (SGD). Our current setting, of course, is far more complicated than the
VAE setting since the DNNs model the drift and diffusion coefficients of SDEs leading to a complicated
training procedure, as we will see.

5 DLMs FOR DSPPs

We assume access to n independent and identically distributed (i.i.d.) observations of a stochastic process
{X(t),t <T}. In many service systems, such as hospitals and call centers, traffic counts are collected at
fixed, regular intervals; for instance, in many large call centers, this is typically at intervals of length 30
seconds to 1 minute. As noted before, it has been observed (Zhang et al. 2014) that a DSPP with CIR-type
ergodic diffusion process driving the intensity is an appropriate model of the traffic counts at operational
time-scales (typically of the order of 10 minutes). The time interval [0, 7] in our model represents this
operational time-scale.

For clarity of exposition, we will describe our method under two specific conditions: (i) the traffic
counts are observed at the time epochs 7'/2 and T; and (ii) a single sample n = 1. These can be extended
to more observation instants and samples at the expense of a more burdensome notation, but our method
will not change. We model the unknown stochastic intensity process by the SDE

dZ(t) =b(Z(t),t;0)dt +n\/Z(t)dW (t), t<T (10)
where {IWW(t),t > 0} is the standard Brownian motion, b(-,¢;0) : Cp[0,T] x [0,T] — R is the drift and

14/ () with n > 0 is the diffusion coefficient. C3[0,7’] denotes the space of all continuous and bounded
function on the interval [0,7’]. Here, the unknown drift function is modeled using a DNN parameterized
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Figure 1: An illustration of the deep latent modeling framework.

by 6, and to avoid getting bogged down in technical detail, we assume the existence of a strong solution
to (10). For technical reasons we will, for now, assume that the diffusion coefficient is known. We denote
the measure induced by the solution of this SDE as Py(-); this corresponds to the ‘prior’ measure in the
previous section. The independent increments property implies that the joint distribution of the arrival
count random vector Y] := (X (%) , X (T)), conditional on the intensity process Zy.r, can be expressed

as:

IP)(}/1 = (k17k2)|Z03T) = kl' (k‘g - k‘l)

5.1 A DLM for the Stochastic Intensity Process

By definition, the variational family Q must consist of measures that are absolutely continuous with respect
to the ‘prior’ measure Py. In our current setting, Q is the class of equivalent measures induced by the
solutions of SDEs that have the same diffusion coefficient as (10). To be precise, consider the SDE

dZ(t) = bp(Z(t),t : ¢)dt +n\/Z(t)dW (t), fort < T, (12)

where for each k € {0,1,...} the drift function by(-,; ¢) is modeled using a DNN with parameter ¢.
We denote the measure induced by the solution of this SDE as Q4. Figure 1 illustrates the use of deep
latent models in defining measures P and (), and consequently ELBO. Next, we derive the ELBO for the
observation random vector Y. The proof omitted for space reasons, follows from Girsanov’s theorem.

Theorem 1 Define uy(Z(t),t;0,¢) = (n\/Z(t)) 'bp(Z(t),t;¢) — b(Z(t),t;6) and suppose that uy
satisfies a strong Novikov’s condition, E [e < fo lup(Z(t),t;0 ¢)|2dt>] < 400 V8, ¢. Then,
¢
/ up(Z(s),s;0,¢)ds + W(t) (13)
0

is a Brownian motion w.r.t. Qg , dZ(t) = b(Z(t),t;0)dt + nvV/'Z(t)dW;, and

1 T
logIP’(Yl = (k‘l, k‘z)) > EQ¢ [logIP’(Yl = (k‘l, ]{2)|Z0;T) - 2/ ’UJ%(Z(S), 8;9, ¢)d8:| := ELBO. (14)
0

Notice that we must assume that Novikov’s condition holds for all possible parameterizations of the
functions b and b. This is a strong condition that is satisfied for the class of DNNs that we work with in
this paper, since the output of the DNN is bounded by definition. However, more analysis is required on
sufficient conditions for DNNs to satisfy Novikov’s condition.
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5.2 TRAINING THE DLM

Our objective is to train the neural networks b(Z(t),t;6) and ug(Z(t),t; 0, ¢) by maximizing the ELBO.
We fix ug(Z(t),t;0,¢) to be a deterministic neural network defined as w(k,t; 3) with parameters f.
Combined with (13), this additional restriction imposed on uy(Z(t),t; 6, ¢) ensures that the process W,
has independent increments. In the variational inference literature (Blei et al. 2017), this assumption
is also known as the mean-field approximation, that is each partition of the unknown latent variable is
independent of the other. A similar assumption on the latent process was used in (Tzen and Raginsky
2019a), where the authors call it a path-space analog of the mean-field approximation. Now substituting
up(Z(t),t;6,¢) = a(k,t; 8) in (13) and from the observation dZ(t) = b(Z(t),t;0)dt + nV/Z(t)dW,, it
follows that we can simulate the SDE using W(t) instead of W (t); that is,

dZ(t) = b(Z(t),t:0)dt + /Z )k, t; B)dt + /Z(t)dW () and Z(0) = 0. (15)

We denote the measure induced by the above SDE as Qg ¢. For simplicity we fix n = 1.

We use stochastic gradient descent (SGD) to maximize the objective in (14) to learn the unknown
neural network parameters 6 and /. In order to use SGD, we first need to generate sample paths of the
latent process Z(t) (15), which we do using the Euler-Maruyama discretization method. We partition
the time interval [0,7] in N equal sub-intervals, denoted as {tg,t1,...t5 }, with to = 0 and ¢t = T, set
Z(to) = Z(0), and simulate {Z(t,,,) }o<m<n using the recursive equation

Z(thrl) = Z(tm) + b(Z(tm)atmae)( m+1 —tm + \/ k tm,ﬁ m+1 —tm + \% Z(tm)AWm

where {AW,,, := W (ty41) — W(tm)}oe,on are N ii.d.standard Gaussians.

In order to use SGD we also need to compute the gradient of the objective function (9) with respect to
the parameters ¢ and 3. Notice that the expectation in ELBO is with respect to the measure induced by SDE
in (15) denoted as )3 9. Observe that the only source of randomness in generating Z (t) is from the Brownian
motion W (t), which does not depend on either 3 or 6. Therefore we interchange the differential operator
with respect to the parameters and the expectation in (14). To make the dependence of Z(t) on [ and 6
explicit, we write Z(t) as Z59(t). In particular for given values of parameters 6 and 3_; (all components

of parameter 3 except 37) observe that %JE [log P(Y: = (kq, kg)\ZOB:’YQ) 3 0 w?(k, s; B)ds] =

k1 0
9 1 e o7 Z8:0(t)dt <f2 AL )dt) e fT ZP ) <fT ZB0(t )dt)
[aﬂﬂ Og( ! (ko — ko )! >

) T
_(W/o ﬂ2(k,5;5)d5:|, (16)

where we use the likelihood expression from (11). Also note that, to avoid any confusion, we have omitted
subscript Qg ¢ from E[-] above. Now applying straightforward product differentiation rule and subsequently

interchanging the integral and

ko—k1

367 ,BJ , would result into an expression requiring us to compute the derivative

of the process Z%(t) with respect to 37. To compute the derivative process, it follows from Kunita (1984),
Theorem 3.1) that under certain regularity condition on the drift and diffusion coefficient of the process
ZB9(t) (15) the derivative process %Zﬁ’a(t) is the solution of the following SDE

aZB’H(t)_ t 8b(Z5’9(s),3;9)8Z6’9(3) u(k, s; B) 825’9(3) Oug
op _/0< o7y op T ayzeags om T VE g )

t B0 8,90
[ (G ) na 220
0

JZP0(s) 0p P

602

Authorized licensed use limited to: Purdue University. Downloaded on December 03,2021 at 23:25:35 UTC from IEEE Xplore. Restrictions apply.



Wang, Jaiswal, and Honnappa

We simulate the derivative process above using the Euler-Maruyama method in a similar manner as we
did for Z59(t). Lastly, we use a similar procedure to generate the derivative of the latent process Z%9(t)
with respect to a component of § for given values of the other parameters. We omit this for space reasons.

6 NUMERICAL EXPERIMENTS

We conducted a number of simple experiments to demonstrate both the in- and out-of-sample performance
of the DLM. We start by describing the setting for the experiments. The code is written in Matlab with
the Deep Learning Toolbox. The computation and space complexity of this method can be found in Tzen
and Raginsky (2019a). In our specific case, the time complexity for each iteration of the gradient update
is O(N((k+n)T(b)+T(a))), where k and n are number of parameters in 3 and 6, respectively, T'(f)
is the time complexity for computing f, and /N is the number of time steps in the time discretization.

6.1 Setting

Observe that training the neural network by maximizing the ELBO entails solving a stochastic optimization
problem in (9). We use a sample average approximation (SAA) of (9) for which we simulate m independent
sample paths of (Z(¢) : t € [0,T]):

%ZZ [log( P(X'(T/2) = k§, X'(T) = k| Z].1) —;/()Tﬂ2(k,s;ﬂ)ds]. 17

i=1 j=1

We integrate the SDEs using Euler-Maruyama discretization noted in the previous section. The architecture
of the neural networks is

o b(Z(t),t;0): R> — R is a feedforward neural network with 20 fully connected layers of size 10.
The activation function is chosen as tanh. The inputs are time epoch and the current intensity.

o (k,t;8) : R2 — R is also a feedforward neural network with 20 fully connected layers of size
10. The activation function is chosen as tanh. The inputs are time epoch and the state at time 7.

Notice that unlike Li et al. (2020), we do not require any specific architecture on the Neural network. One
can always tune the hyperparameters to find as good or even better architecture.
We assume that the true latent intensity process is a standard CIR process:

dZ(t) = 0.3(80 — Z(t))dt + n\/Z(£)dW (¢ (18)

where Z(0) = 5 and n € [0, 1] is the ‘noise magnitude’ of the model. Observe that if » = 0, the intensity
process is the solution of an ordinary differential equation, and the arrival process is a NHPP. We set the
simulation horizon to be 7' = 4, and uniformly partition the interval [0, 7] into the grid P = {t1,t2, .., tasr}
with ¢4 — ¢, = 1/15, t; = 0 and ¢t5; = 4. The training data consists of n = 200 sample paths of the
DSPP generated using the theoretical model (18). This data is further divided into ‘mini-batches’ of size
10 and then fed into the Adam solver (Kingma and Ba 2014). We run the code for 35 epochs (350 gradient
updates in total). The learning rate for b(Z(t),t;0) and a(k,t; 3) : R> — R are both set to be 0.01.

We compare our method against the piece-wise linear maximum likelihood estimate (MLE) of the
intensity assuming the traffic model is an NHPP, developed in Zheng and Glynn (2017). This estimator is
quite robust when the objective is to predict a mean performance metric. While it can be very inaccurate in
predicting higher moments, betraying the fact that the MLE is computed assuming no correlation structure in
the count process, we believe the relative simplicity and the fact that the computation of mean performance
metrics are frequently the focus of performance analysis make it a useful reference. As noted before, our
experiment will use arrival counts at time 7'/2 and 7', and therefore it suffices to consider a two piece
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linear estimator in this experiment by maximizing the likelihood function,
. 1 . 3 . . , T
Laz) =230 (X [7 2w+ oo - xiay) [

0

n T
=1

Z(t)dt | — /T Z(t)dt,
0

which follows from display (2) in Zheng and Glynn (2017).

6.2 Estimating the Intensity Process

Our first experiment focuses on the estimation of the ‘true’ latent intensity model (18) when 1 = 1. Figure
2(a) shows the results of an in-sample estimation of the average intensity (computed using 200 training
samples of the ‘true’ model). Observe that both our method (‘predicted’) and the piece-wise linear model
estimate the mean intensity process quite accurately. Figure 2(b) shows that the estimated mean integrated
intensity, too, is almost identical to the ‘true’ model in either model. This is unsurprising: recall that the
Poisson count distribution in the ELBO (14) is a function of the integrated intensity, and this plays a crucial
role in constraining the estimation problem.

ou 10U

50

a0 b = B 100 F Z

Z
8
f Z‘ dt

20 74 R 50

0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
Time Time

(a) Intensity Process (b) Integrated Intensity Process

Figure 2: Learning result for Model (18).

6.3 Performance Prediction in an Infinite Server Queue.

In the second experiment, we focus on an out-of-sample performance prediction task for an infinite server
queue. Specifically, we conduct ‘run-through’ experiments where traffic generated from a DSPP using
estimated intensity processes is used as an input to a simulation of an infinite server queue. We start with
a Gt/M /oo queue, where traffic is generated using the theoretical model (18), and the deep latent and
piece-wise linear models estimated in the previous section.

We generate 500 sample paths of the number of occupied servers over [0, 7] with service rate pu = 2.
Observe from Table 1 that the estimated DLM gives a reasonable inference of both the mean and variance
of the number of occupied servers at % and T'. Note that the variance is roughly in the ballpark of the
variance of the ‘true’ model as estimated from the test dataset. On the other hand, the piece-wise linear
model, underestimates the variance quite significantly.

Table 1: Simulation of the number of occupied servers for a G;/M /oo queue.

. Test DLM PL
Number of Occupied Servers 7 T 7 T 7 T
Mean=+CI 30.73£0.68 | 72.97+£1.33 31.18£0.75 | 71.75£1.51 31.88+£0.60 | 73.14£1.05
Variance 61.2 229.93 73.25 296.2 47.54 143.76
CI 54.26 69.56 | 203.87 261.36 | 64.94 83.26 | 262.62 336.68 | 42.16 54.04 | 127.47 163.41

Next, we repeat the previous experiment on a G;/G /oo system, with Erlang distributed service times,
parameterized by A = 6 and k = 3 (implying the mean service time remains %). The simulation is
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summarized in Table 2. Again, the DLM model makes acceptable predictions. We note that while the
DLM model tends to predict higher variance, and the estimates tend to have a larger confidence interval,
we conjecture that the accuracy of the predictions can be improved with a more appropriate choice of
neural network size and more Monte Carlo samples in the SAA approximation to the ELBO (recall we
have used m = 5 throughout).

Table 2: Simulation of the number of occupied servers for a G;/G /oo queue.

. Test DLM PL
Number of Occupied Servers T T T T 7 T
Mean=CI 37.344+0.67 | 85.5£1.39 37.57+0.72 | 84.36%1.51 38.184+0.57 | 87.35+1.04
Variance 58.89 253.57 68.05 298.73 42.47 140.33
CI 52.21 66.94 | 224.83 288.23 | 60.33 77.35 | 338.73 264.22 | 37.65 48.27 | 124.42 159.51

6.4 Impact of the Noise Factor

The previous experiments demonstrate that the DLM model is robust on both mean and variance prediction
tasks. To further explore this, in this experiment we demonstrate how the DLM predictions change when
the ‘noise factor’ 7 in (18) increases from O to 1; here, 7 = 0 (formally) corresponds to a deterministic
intensity and n > 0 to increasing levels of stochasticity in the intensity model. We conducted the same
‘run-through’ experiment from the previous section on a G¢/M /oo queue, albeit with different estimated
traffic models under the different n factors. While this is might appear surprising, recall that the mean
number of occupied servers under the ‘annealed’ measure (i.e., averaged over the stochastic intensity) of
an infinite server queue with DSPP traffic depends only the mean intensity function. The PL estimate,
even though it is based on the ‘quenched’ (i.e., conditioned on the intensity) measure, accurately estimates
the mean intensity when averaged over the individual sample paths. For larger 1, we observe that the
DLM makes reasonable predictions on the mean number of occupied servers. On the other hand, Figure
3b shows that when 7 increases the DLM model significantly outperforms the piece-wise linear model in
predicting the variance of the number of occupied servers. This is due to the fact that the DLM estimates
the annealed measure of the traffic model, while the PL. model only estimates the quenched measure.

ou T T T T T T T 1

. . . 4 : .
?(estﬁda{a —F—test data
- ~predictsd = I - predicted
55 o 1
piece-wise linear | | piece-wise linear

mean

N
/J
|

04 os -(':['f\ o7 es 0s 1 0 01 02 03 04 05 06 07 08 09 1
7 (noise magnitude) 7 (noise magnitude)

(a) Mean (b) Variance

Figure 3: Statistical inference on the number of occupied servers as a function of the noise factor.

6.5 Estimating a Nonhomogeneous Poisson Intensity

We demonstrate the robustness of our method on estimating the intensity of a NHPP, with deterministic
intensity. Consider an intensity function that is the solution of the ordinary differential equation (ODE)
Z(t) = a(b— Z(t)) with a = 0.3 and b = 80. Let d be the number of time intervals (or ‘pieces’) in
the regressors, representing the number of degrees of freedom. We compare our method, using intensity
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process dZ(t) = a(b — Z(t))dt + d~Y/2\/Z(t)dW (t), with the piecewise linear estimator (Zheng and
Glynn 2017) and the nonparametric ‘Gaussianization machine’ method from Cai et al. (2019) (‘GRP’
in the table below). GRP uses a variance stabilizing transformation of the Poisson counts and Gaussian
process regression on the transformed variables. Table 3 shows that our method is significantly better than
GRP even with 50 degrees of freedom.

Table 3: Traffic count prediction for NHPP.

Mean Variance
d Test Predicted Piecewise Linear GRP Test Predicted Piecewise Linear GRP ;
2 | 146.46 | 146.73+1.09 149.30+1.10 116.514+5.79 | 146.46 [ 138?:66.11;7.51] [140.19518.19830.65] 3.8 *413;1 zgi £10° ]
10 | 146.46 | 145.93+1.11 148.32+1.10 128.45+4.07 | 146.46 [142.16670'19;2.90] [141.14529'15:1_30] (1.91 *211053 *2143: £10%]
20 | 146.46 | 146.25+1.07 146.874+1.04 140.934+3.18 | 146.46 [131.1528.13638.60] [126.13%2.;241.91] [1.16 if&*ji(:* 109]
50 | 146.46 | 146.87+1.06 150.16+1.11 146.031+2.26 | 146.46 [129.15‘:)6'10666.02] [143.12611'15;3.59] [5873?25513.06]

6.6 Estimating the Diffusion Coefficient

We presented our method under the assumption that the diffusion coefficient is known. However, Zhang
et al. (2014) argue that the model in (1) is appropriate for modeling the stochastic arrival intensity in a
range of service systems. Estimating this model necessitates consideration of the situation where both the
diffusion and drift function are unknown. In this section we present numerical results showing that our
method can work even in this situation. We assume that 6 = 80, n = 1 and o = % in the theoretical/true
model. Table 4 below summarizes the results of the experiment.

We model the diffusion function by another neural network o(Z(t),t;0) with the same structure as
b(Z(t),t;0). Notice that the only difference in the training framework is that, following the definitions in

Section 4, we mustuse o (Z(t), t; 0)uy(Z(t), t;0,¢) = b(Z(t), t; ) —b(Z(t), t; 0) todefine uy, (Z(t), t; 0, ¢).

Table 4: Traffic count prediction for DSPP with learnt diffusion coefficient.

Test DLM PL
Traffic Counts -7 T T2 T 72 T

MeanLCI 04034235 | 24694552 | 93.142.17 240134699 | 97.071083 | 248424135
Variance 285.91 1569.52 2436 2518.06 90.62 237.01

I 253.50 324.99 | 1391.62 1784.6 | 215.68 276.50 | 2232.61 2862.2 | 80.35 103.01 | 210.15 269.41

7 Conclusions and Commentary

This paper presents a versatile computational method for estimating the stationary, ergodic stochastic
intensity of a DSPP. We demonstrate our method by in-sample estimation of the intensity and out-of-sample
run-through simulation experiments, both of which demonstrate accuracy of our method. We believe that
the method presented in this paper demonstrates how machine learning can help enhance simulation and
modeling, in the spirit of the observation made by Peter W. Glynn in his Titans of Simulation keynote
lecture at the Winter Simulation Conference in 2019 (Glynn 2019). In future work we intend to extend
our method to jump Markov intensities and self-exciting traffic models (such as the Hawkes process). In
on-going work we are developing large sample statistical analyses of DLMs on general measure spaces
(including asymptotic consistency and central limit theorems), and will be presented in future papers.
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