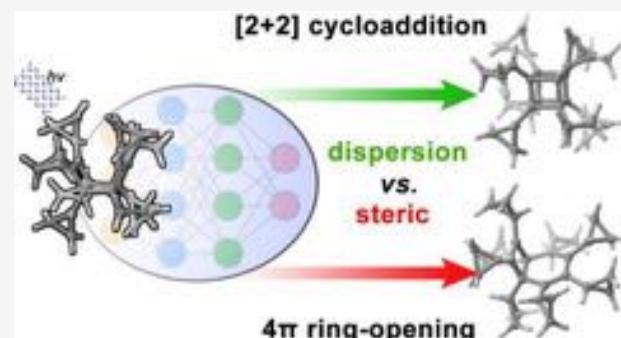


Machine-Learning Photodynamics Simulations Uncover the Role of Substituent Effects on the Photochemical Formation of Cubanes

Jingbai Li, Rachel Stein, Daniel M. Adrián, and Steven A. Lopez*

Cite This: <https://doi.org/10.1021/jacs.1c07725>

Read Online

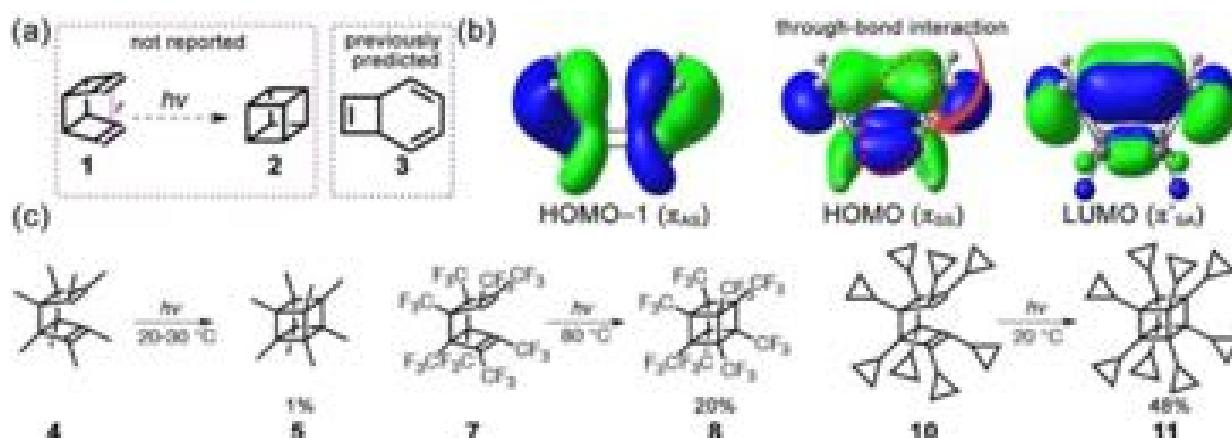

ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Photochemical [2 + 2]-cycloadditions store solar energy in chemical bonds and efficiently access strained organic molecular architectures. Functionalized [3]-ladderdienes undergo [2 + 2]-photocycloadditions to afford cubanes, a class of strained organic molecules. The substituents (e.g., methyl, trifluoromethyl, and cyclopropyl) affect the overall reactivities of these cubane precursors; the yields range from 1 to 48%. However, the origin of these substituent effects on the reactivities and chemoselectivities is not understood. We now integrate single and multireference calculations and machine-learning-accelerated nonadiabatic molecular dynamics (ML-NAMD) to understand how substituents affect the ultrafast dynamics and mechanism of [2 + 2]-photocycloadditions. Steric clashes between substituent groups destabilize the 4π -electrocyclic ring-opening pathway and minimum energy conical intersections by 0.72–1.15 eV and reaction energies by 0.68–2.34 eV. Noncovalent dispersive interactions stabilize the [2 + 2]-photocycloaddition pathway; the conical intersection energies are lower by 0.31–0.85 eV, and the reaction energies are lower by 0.03–0.82 eV. The 2 ps ML-NAMD trajectories reveal that closed-shell repulsions block a 6π -conrotatory electrocyclic ring-opening pathway with increasing steric bulk. Thirty-eight percent of the methyl-substituted [3]-ladderdiene trajectories proceed through the 6π -conrotatory electrocyclic ring-opening, whereas the trifluoromethyl- and cyclopropyl-substituted [3]-ladderdienes prefer the [2 + 2]-photocycloaddition pathways. The predicted cubane yields (H: 0.4% < CH₃: 1% < CF₃: 14% < cPr: 15%) match the experimental trend; these substituents predistort the reactants to resemble the conical intersection geometries leading to cubanes.


INTRODUCTION

Light-driven organic reactions have become increasingly important in natural product synthesis,¹ materials chemistry,² solar thermal storage,^{3,4} and photopharmacology.⁵ The use of light as a green reagent is appealing in industry and academia because it accompanies mild reaction conditions and efficient syntheses. Photochemical reactions are also associated with high atom economy and stereospecific outcomes. The spatiotemporal activation produces complex molecular architectures that often require extensive heating and/or transition metal catalysts or sensitizers.⁶ The [2 + 2]-photocycloaddition is one of the most versatile reactions to synthesize diverse and strained four-membered mono- and bicyclic compounds,^{6,7} including cubanes. Cubane is dense ($\rho = 1.29 \text{ g}\cdot\text{cm}^{-3}$),⁸ strained (161.5 kcal·mol⁻¹),⁹ yet kinetically stable at room temperature^{10,11} and under high pressures.¹² Eaton and Cole published the first synthetic protocol towards cubanes in 1964.¹³ Most recent efforts by Tsanaktsidis achieved pilot-scale production.¹⁴

The intramolecular [2 + 2]-photocycloaddition of [3]-ladderdiene (**1**) sidesteps the current laborious synthesis of cubane (**2**, Figure 1a). The rigidity of **1** enhances overlap between the π -bonds and red-shifts the $\pi\pi^*$ absorbance

spectrum peak compatible with common light sources ($\geq 200 \text{ nm}$). The rigid structural framework of **1** prevents a *cis*–*trans* isomerization, which would block the photocycloaddition pathway. Early computational studies by Gleiter suggested the [2 + 2]-photocycloaddition of **1** is symmetry-forbidden based on classical frontier molecular orbital theory.¹⁵ The strong through-bond interactions in **1** (Figure 1b) raises the in-phase π -orbital (π_{SS}) to the highest occupied molecular orbital (HOMO). The resulting excited-state configuration ($\pi_{SS}\pi^*_{SA}$) breaks the orbital-symmetry ($\pi_{AS}\pi^*_{SA}$) of [2 + 2]-photocycloaddition according to the Woodward–Hoffmann rules.¹⁶ Gleiter also demonstrated that one could achieve the [2 + 2]-photocycloaddition of **1** by shortening the intramolecular π – π distance ($\Delta r = 0.3 \text{ \AA}$) with tethered propyl bridges ($-\text{CH}_2\text{CH}_2\text{CH}_2-$), which lowers the π_{SS} to HOMO–1, thus

Received: July 24, 2021

Figure 1. (a) Theoretical [2 + 2]-photocycloaddition of [3]-ladderdiene (**1**) to cubane (**2**). (b) Frontier molecular orbitals of **1**, computed at ω B97XD/cc-pVTZ//PBE0/cc-pVDZ. (c) Photochemical formation of octamethylcubane (**5**),¹⁷ octa(trifluoromethyl)cubane (**8**),¹⁸ and octacyclopropylcubane (**11**).¹⁹

Figure 2. Excitation energies of tetra- and octa-methyl (CH_3), trifluoromethyl (CF_3), and cyclopropyl (cPr) [3]-ladderdiene, computed with TD- ω B97XD/cc-pVTZ//PBE0/cc-pVDZ. The pink and blue terminals in the 3-dimensional molecular structures denote the substituent groups at the vinyl (R_1) and bridgehead (R_2) carbon atoms, respectively. The suffix notation “ S_1 -FC” refers to the energy of the S_1 -Franck-Condon point.

restoring the requisite orbital-symmetry to allow the [2 + 2]-photocycloaddition.¹⁵

The correlation diagrams for the [2 + 2]-cycloadditions of substituted [3]-ladderdienes (i.e., **4**, **7**, and **10**) are qualitatively similar and point towards a symmetry-forbidden pathway. In contrast, experiments demonstrate that **4**, **7**, and **11** undergo [2 + 2]-photocycloadditions (Figure 1c). We interpret this apparent disagreement as an indication of significant dynamic effects that enable this reaction. Our previous computational study on the photochemistry of **1** showed that a small portion of energetically accessible non-equilibrium structures featured relatively short intramolecular π - π distances and led to productive nonadiabatic molecular dynamics (NAMD) trajectories to cubane.²⁰ These non-equilibrium structures invert the order of the HOMO and HOMO-1 orbitals to make the [2 + 2]-photocycloaddition allowed. However, the vast majority of the NAMD trajectories led to irreversible 4 π -disrotatory electrocyclic ring-opening to bicyclo[4.2.0]octa-2,4,7-triene (**3**, Figure 1a) due to the release of the strain energy.

Experiments show that substituents clearly influence the photodynamics of [3]-ladderdienes; to date, no computational or experimental study has explained how these substituents control the vertical excitation energies, reactivities, or chemoselectivities. The requisite thousands of multiconfigurational electronic structure calculations in a single trajectory are prohibitively expensive for the NAMD simulations for **4**, **7**, and **10**. A 1 ps trajectory with a 0.5 fs time step for **4**, **7**, and **10**

requires 10^{3-4} wall-clock hours. Recently, machine learning (ML) excited-state potentials achieved nanosecond NAMD simulations for organic molecules (e.g., CH_2NH_2^+) with reliable accuracy compared to multireference configuration interactions (MRCI).^{21,22} Our group adapted this methodology and implemented a fully connected neural network (NN) of multiple perception layers to discover the origin of stereoselectivity of a phototorquoselective isomerization of norbornyl cyclohexadienes.²³

We now integrate static single and multireference calculations and machine-learning-accelerated nonadiabatic molecular dynamics (ML-NAMD) techniques to understand how substituents control the reactivities and selectivities of [3]-ladderdienes. This report first describes how substituents alter the excited-state structures and potential energy surfaces (PESs) of competing pathways (i.e., [2 + 2]-photocycloaddition vs 4 π -disrotatory electrocyclic ring-opening). Second, we discuss the origin of varying quantum yields of towards cubanes with ML-NAMD trajectories. Collectively, our findings serve as a guide for the ongoing development of broader control and straightforward syntheses toward cubanes from synthetically accessible [3]-ladderdienes. This work also demonstrates the value of the ML-NAMD method for designing and discovering photochemical mechanistic pathways.

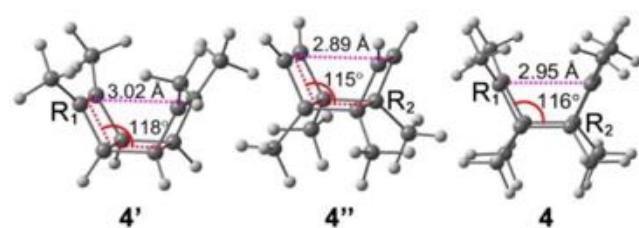
RESULTS AND DISCUSSION

4, 7, and 10 are octa-substituted and feature two substituent sites: vinyl (R_1) and bridgehead (R_2). The substituents at the bridgehead carbons have considerably less conformational freedom than at the alkenyl position. We first sought to understand how the location and steric bulk of the substituents affect the reactivities of the substituted [3]-ladderdienes relative to 1. We compared the tetra-substituted compounds at R_1 (labeled with single prime, e.g., 4') and R_2 (labeled with double prime, e.g., 4'') to investigate their explicit contributions to the substituent effects. We computed the vertical excitation energies, reaction energies, and conical intersection energies for octa- and tetra-substituted [3]-ladderdienes.

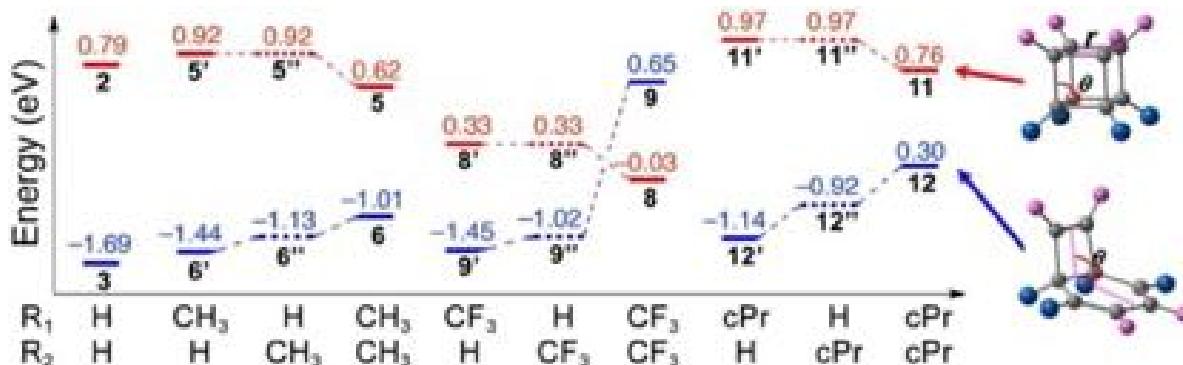
Substituent Effects on the Nature and Energies of Electronic Transitions. Our calculations show that $S_0 \rightarrow S_1$ oscillator strengths of 1, 4, 7, and 10 range from 0.05–0.19 and a HOMO \rightarrow LUMO transition to a $\pi\pi^*$ -state (Figure 1b). The oscillator strengths are 1–5 orders of magnitude lower in the higher singlet excited states (Table S3), indicating considerably lower transition probabilities. Therefore, the subsequent discussions focus on the S_1 -state. Figure 2 summarizes the vertical excitation energies for 10 [3]-ladderdienes to probe the substituent effects.

The Franck–Condon (FC) point energy of 1 is 6.39 eV (1- S_1 -FC, Figure 2). The CH_3 is a relatively weak inductive electron-donor and slightly increases the energy of 4'- S_1 -FC to 6.45 eV at R_1 but decreases the energy of 4''- S_1 -FC to 6.07 eV at R_2 . 4- S_1 -FC (6.33 eV) and 1- S_1 -FC are nearly degenerate; this suggests that the competing effects nearly cancel out with octa- CH_3 -substitution. 7'- S_1 -FC (6.09 eV) is lower than 7''- S_1 -FC (6.71 eV) because the CF_3 is a strong inductive electron-withdrawing group. The opposing effects of tetra-substitution at R_1 and R_2 nearly cancel in octa-substituted 7- S_1 -FC (6.37 eV). The cPr is an electron-donating group as CH_3 , but the $\sigma_{\text{C}-\text{C}}$ -orbitals of the cPr at R_1 increase the antibonding overlap with the $\pi_{\text{C}=\text{C}}$ -orbitals in the HOMO (Figure S4). This effect minimizes the HOMO–LUMO gap, thus reducing the energy of 10'- S_1 -FC to 5.93 eV. The steric clash of the cPr at R_2 decreases the intramolecular π – π distance to 2.89 Å; this geometrical change leads to increased orbital overlap in the LUMO and decreases the energy of 10''- S_1 -FC to 5.88 eV. In line with the previous results, the octa-cPr-substitution combines the effects of tetra-cPr-substitutions that further reduces the vertical excitation energy of 10 to 5.77 eV.

Substituent Effects on Reactant and Product Structures. We defined two parameters, an intramolecular distance, r , and a folding angle, θ , to quantify the geometrical distortions (Figure 3). The parameter r is the distance between the


centroids of the two π -bonds, and θ is the angle between the planes of the four-membered rings. These parameters are $r = 2.98$ Å and $\theta = 118^\circ$ in 1; $r = 1.56$ Å and $\theta = 90^\circ$ in 2; $\theta = 114^\circ$ in 3, optimized with PBE0/cc-pVDZ.

These substituents can substantially perturb the [3]-ladderdiene geometries relative to 1 to minimize closed-shell repulsions. R_1 tetra- CH_3 -substitutions increase the r to 3.02 Å. The CH_3 at R_2 show opposite effects; the r and θ values decrease to 2.89 Å and 115°, maximizing the distance between adjacent substituents (Figure 3). The CH_3 at R_2 bend the [3]-ladderdiene 3° more than the CH_3 at R_1 , introducing additional strain at the bridgehead carbons, and 4'' is 0.46 eV higher than 4' (Table S5). The tetra- CF_3 - and cPr-substitution lead to similar geometrical distortions: the r and θ increase to 2.98–3.02 Å and 120° when substituting R_1 , whereas the r and θ values reduce to 2.86–2.87 Å and 114–116° when substituting R_2 . The energies of 7' and 10' are 0.21 and 0.59 eV lower than 7'' and 10'', respectively (Table S5). Compared to 1, the r and θ parameters in the octa-substituted [3]-ladderdienes, 4, 7, and 10 decreased to 2.89–2.95 Å and 116–118°. The repulsive steric interaction at R_2 is responsible for the substantial geometrical distortions.


The repulsive steric interactions at R_1 increases θ in the 4π -disrotatory electrocyclic ring-opening products to 115–117°, compared to 3 ($\theta = 114^\circ$); the steric clash at R_2 decreases the angle to 106–112°. Figure 4 shows that the substituents at R_1 and R_2 destabilize the bicyclooctatrienes by 0.24–0.55 and 0.56–0.77 eV, respectively. The greater destabilization at R_2 suggests that steric repulsions increase due to the crowded steric environment at the bridgehead carbon. The octa-substitution additively increases the destabilizing tetra-substitution effects at R_1 and R_2 . The reaction energies of 6, 9, and 12 (Figure 4) are 0.68–2.34 eV higher than 1. The octa-substitutions with CF_3 and cPr switch the reaction energies from exergonic to endergonic (0.65 and 0.30 eV), indicating unfavorable 4π -disrotatory electrocyclic ring-opening to 9 and 12.

In the tetra-substituted cubanes, the R_1 and R_2 positions form the same structure resulting in identical energies. The intramolecular π – π distance in 5' and 11' are 0.01–0.02 Å longer than 2 due to the steric repulsion between the substituents. Figure 4 shows that the CH_3 and cPr increase the reaction energies of the tetra-substituted cubanes, 5' and 11' by 0.13 and 0.18 eV compared to 2, respectively. The cubane framework of the octa- CH_3 - and cPr-substituted structures are nearly identical to those that are tetra-substituted, but the energies of 5 and 11 decrease to 0.62 and 0.76 eV, respectively. To understand the origin of these more favorable reaction energies, we computed the non-covalent interaction plots for 5 and 11 (Figure 5).

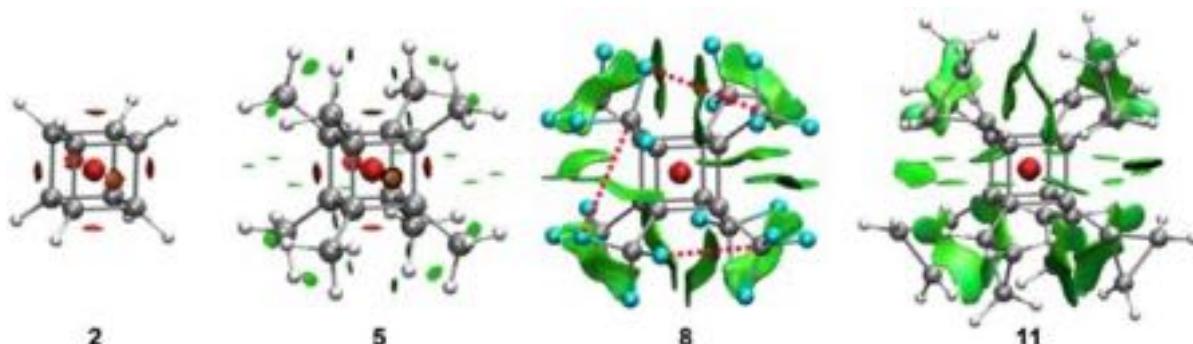
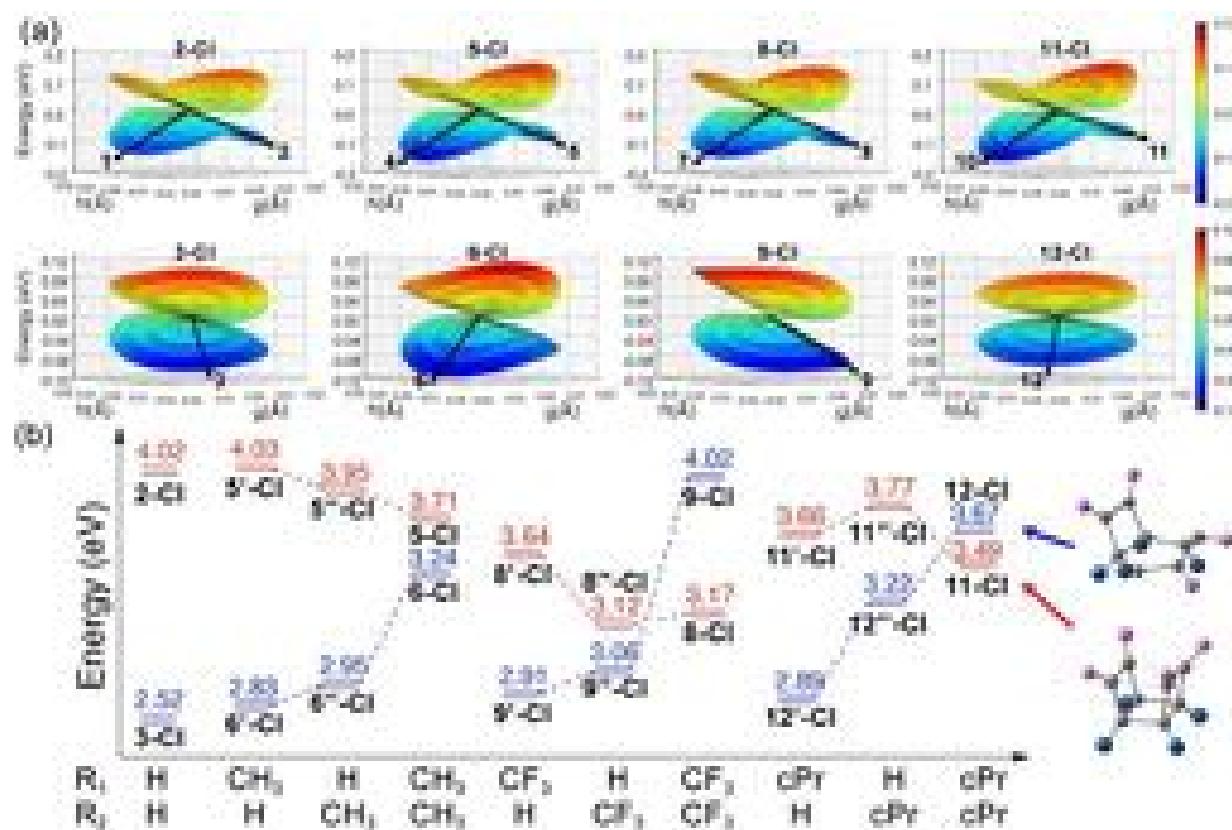

The NCI plots of 2 and 5 shows notably increased dispersive noncovalent intersections (green areas) between the CH_3 groups (Figure 5). The interacting areas become larger between the cPr groups in 11 (Figure 5). The decrease in the energies of 5 and 11 results from these attractive dispersion interactions, which have recently been reported in molecules functionalized with bulky charge-neutral groups.^{24,25} The CF_3 has a Lewis acidic carbon center and can participate in a through-space $n_{\text{F}} \rightarrow \sigma^*_{\text{C}-\text{F}}$ dispersive interaction with the electronegative fluorine on the adjacent group in 8' and 8. The C–F distances in 8' and 8 range from 3.30–3.48 and 3.14–3.18 Å, which falls into the range of the noncovalent $n_{\text{F}} \rightarrow \sigma^*_{\text{C}-\text{F}}$ interaction,²⁶ shown in Figure 5. Our calculations also

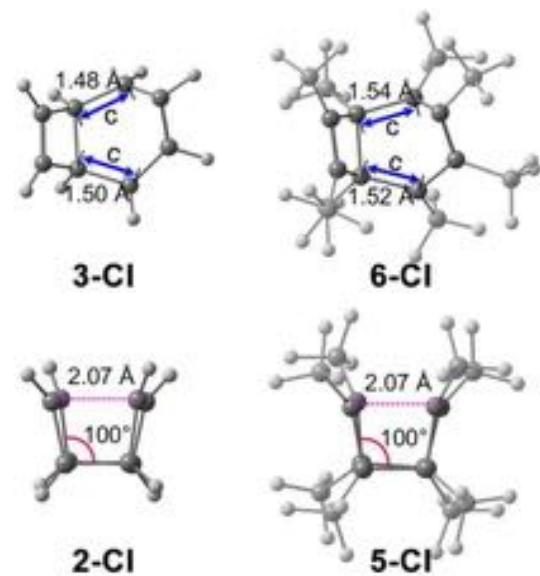
Figure 3. Intramolecular π – π distance r (pink) and folding angle θ (red) show geometric distortions caused by the CH_3 -substitutions at the vinyl (R_1) and bridgehead (R_2) position.

Figure 4. $[2 + 2]$ -Photocycloaddition (red) and 4π -electrocyclic ring-opening (blue) reaction energies of tetra- and octa-methyl (CH_3), trifluoromethyl (CF_3), and cyclopropyl (cPr) [3]-ladderdiene, computed with $\omega\text{B97XD}/\text{cc-pVTZ}/\text{PBE0}/\text{cc-pVQZ}$. The dotted energy levels illustrate the energies of R_2 tetra-substituted cubanes and bicyclooctatrienes relative to R_1 tetra-substituted [3]-ladderdienes. The structural motif of cubane (5, 8, and 11) and bicyclooctatriene (6, 9, and 12) are shown on the right. The pink dotted lines and red curves in the 3-dimensional molecular structures mark the intramolecular $\pi-\pi$ distance r and folding angle θ in the cubanes and bicyclooctatrienes.

Figure 5. Noncovalent interaction plots of octa-substituted cubanes, computed at $\omega\text{B97XD}/\text{cc-pVTZ}/\text{PBE0}/\text{cc-pVQZ}$. Green surfaces render the van der Waals interactions; red surfaces render the steric clashes. The red dotted line in 8 highlights the directions of $n_F \rightarrow \sigma^*_{C-F}$ interaction. The isovalue is 0.7 in 2 and 5 and 0.5 in 8 and 11.


suggest a through-space $n_F \rightarrow \sigma^*_{C-C}$ hyperconjugations in the newly formed σ_{C-C} bond that provides secondary cubane stabilization (Figure S6). These synergistic effects substantially lower the reaction energies of 8' and 8 by 0.66 and 0.82 eV, respectively (Figure 4). These findings suggest that the dispersive interactions are additive and stabilize the cubanes as steric bulk increases. The reaction energy of 8 is negative, notably flipping the thermodynamic preference toward $[2 + 2]$ -photocycloaddition.

Substituent Effects on Conical Intersections. The S_0 conical intersections (CIs) of 1 determine the relaxation directions in the $[2 + 2]$ -photocycloaddition and 4π -disrotatory electrocyclic ring-opening pathways.²⁰ The S_0 PES lifts the energetic degeneracy on the branching plane spanning over the gradient difference vector g and the nonadiabatic coupling vector h (Figure S9). Figure 6a illustrates the branching planes of the $[2 + 2]$ -photocycloaddition and 4π -disrotatory electrocyclic ring-opening CIs. Although substituents affect the CI energies (Figure 6b), the PES topologies are virtually identical. The relaxation pathway bifurcates at the $[2 + 2]$ -photocycloaddition CI to the reactant and product; the 4π -electrocyclic ring-opening CIs are sloped and only proceed towards the product.

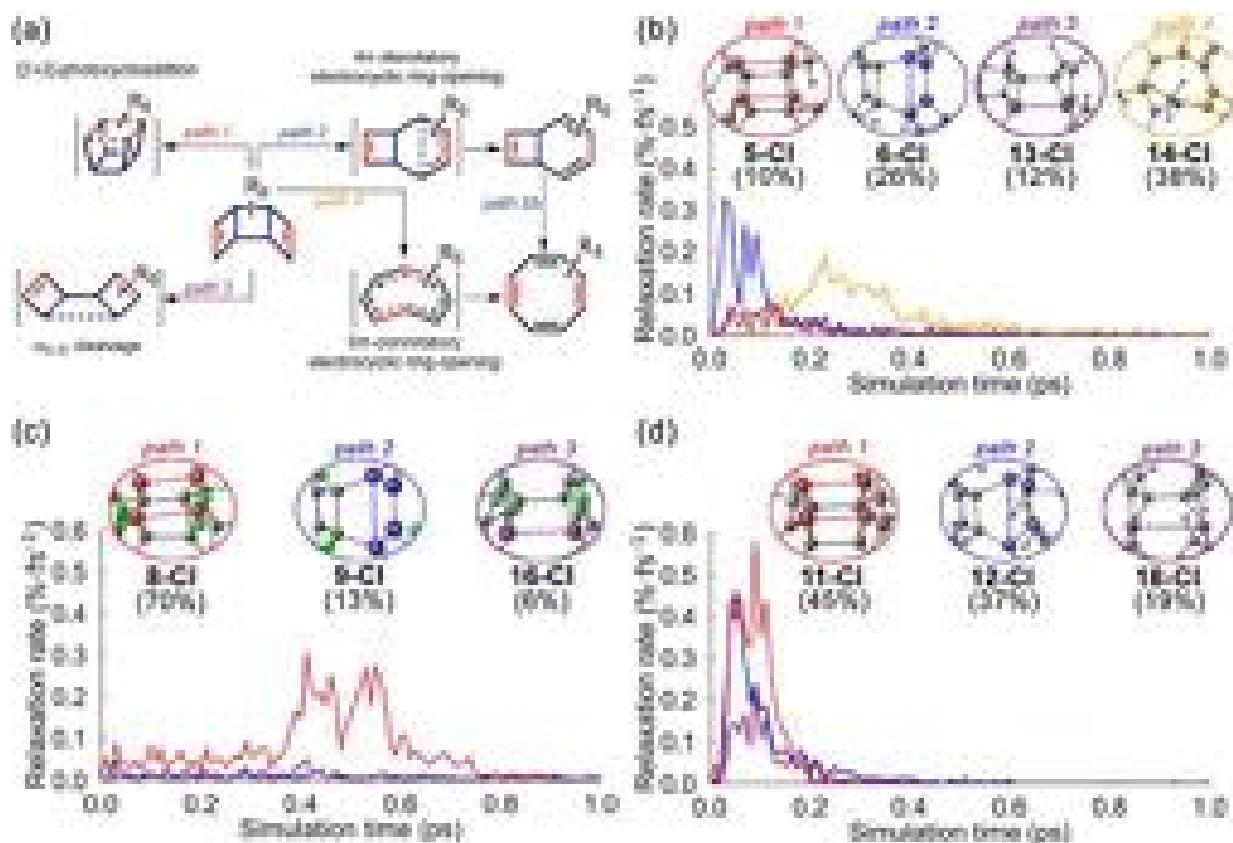

The 4π -disrotatory electrocyclic ring-opening of 1 is energetically more favored than the $[2 + 2]$ -photocycloaddition; 3-CI is 1.50 eV lower than 2-CI (Figure 6b). The tetra-substitutions at R_1 increase the energies of the 4π -disrotatory

electrocyclic ring-opening CIs by 0.31–0.39; the tetra-substitutions at R_2 raise the CI energies by 0.43–0.70 eV. The octa-substitutions demonstrate that the effect is additive and further destabilizes the CIs by 0.72–1.50 eV. The substituents disfavor the 4π -electrocyclic ring-opening CIs because closed-shell steric repulsions weaken the σ_{C-C} -bonds of the cyclohexadiene ring (Table S6). Figure 7 shows the CH_3 elongates the σ_{C-C} -bond length c by 0.06 Å from 3-CI ($c = 1.48$ –1.50 Å) to 6-CI ($c = 1.52$ –1.54 Å). The CF_3 and cPr show similar effects; the σ_{C-C} -bonds length, c , increases by 0.03–0.09 Å (Table S6).

The tetra- CH_3 -substituted $[2 + 2]$ -photocycloaddition CIs slightly increase the intramolecular $\pi-\pi$ distance r to 2.09 and 2.08 Å in 5'-CI (R_1) and 5''-CI (R_1), respectively. The octa- CH_3 -substitution has a similar r in 5-CI (2.07 Å) to 2-CI (Figure 7). The energies of 5'-CI (4.03 eV) and 5''-CI (3.95 eV) approach that of 2-CI (4.02 eV); the energy of 5-CI is 3.71 eV (Figure 6b). These energies are in line with more attractive dispersion interactions in the octa- CH_3 -substitution. The CF_3 has stronger dispersion interactions that lower the CI energies by 0.38–0.90 eV, while the intramolecular $\pi-\pi$ distances are 2.12 Å in 8'-CI, 2.07 Å in 8''-CI, and 2.09 Å in 8-CI. The CI energies decrease as the r values decrease; these resemble the $[2 + 2]$ -photocycloaddition and may promote σ_{C-C} -bond formation. In the tetra- and octa-cPr-substitutions, r values in 11'-CI (2.06 Å), 11''-CI (2.07 Å), and 11-CI (2.07 Å) are similar to that of 2-CI. Their energies are lower than

Figure 6. (a) Branching planes and (b) conical intersection energies of tetra- and octa-methyl (CH_3), trifluoromethyl (CF_3), and cyclopropyl (cPr) [3]-ladderdiene, computed with CASPT2(8,7)/ANO-S-VDZP+ANO-S-MB(R)//CASSCF(8,7)/ANO-S-VDZP+ANO-S-MB(R).

Figure 7. S_1/S_0 conical intersection of unsubstituted and octa- CH_3 -substituted [3]-ladderdienes, optimized with CASSCF(8,7)/ANO-S-VDZP+ANO-S-MB(R). The blue arrows denote the $\sigma_{\text{C}-\text{C}}$ -bond distance c .


that of **2-Cl** by 0.25–0.53 eV (Figure 6b) because of higher attractive dispersive interactions in the CIs (e.g., CH_3 and CF_3). These static calculations suggest that the substituent effects favor cubane formation because attractive dispersion interactions lower the energies of the [2 + 2]-photo-

cycloaddition CIs and the repulsive steric interactions disfavor the 4 π -disrotatory electrocyclic ring-opening pathway and CIs.

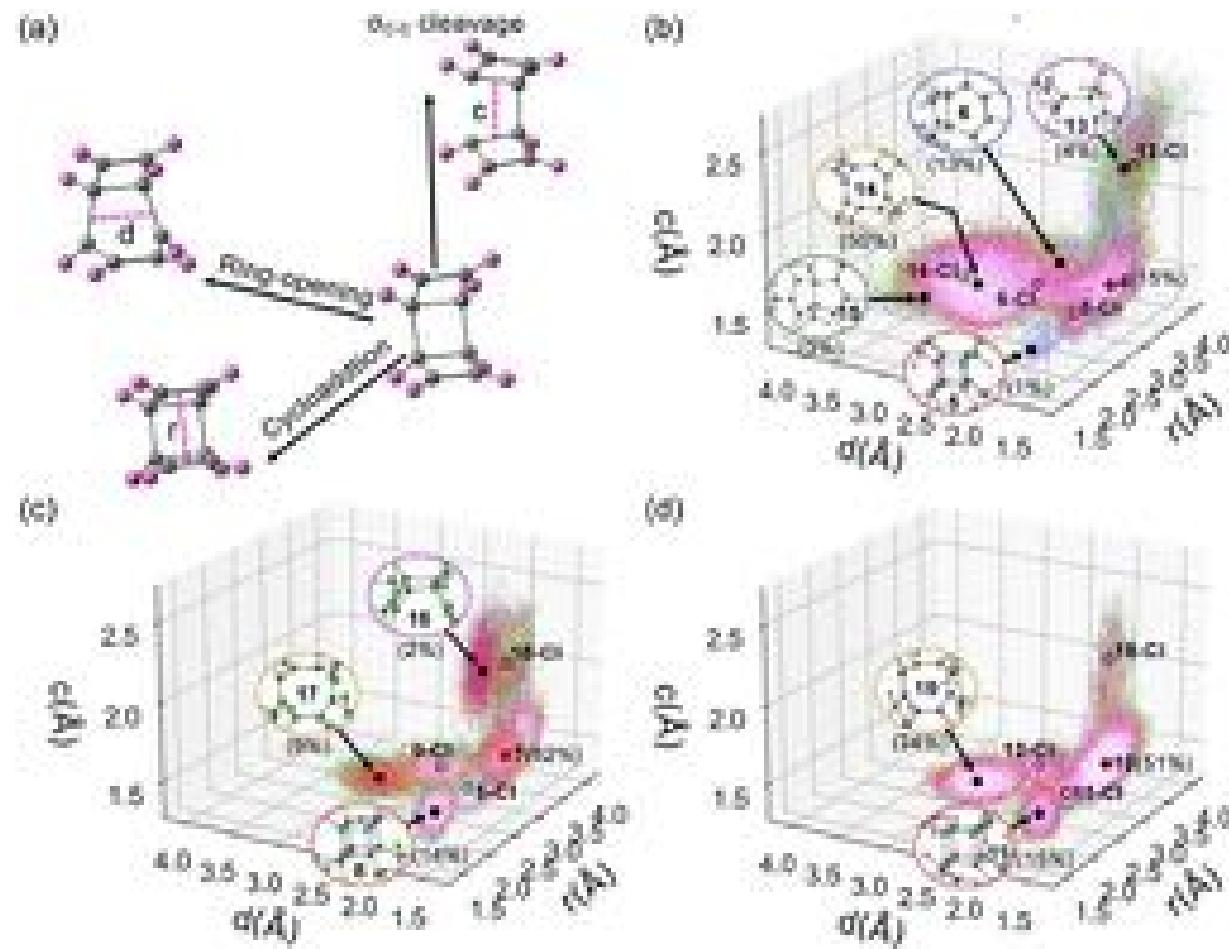
Substituent Effects on Nonadiabatic Molecular Dynamics. We performed ML-NAMD simulations to evaluate the role of the substituent effects on the photodynamics of [3]-ladderdienes. The ML-NAMD simulations employ the NN potential for on-the-fly prediction of energies and gradients. The NN overfitted the nonadiabatic coupling vectors (NACVs); thus, we used the Zhu–Nakamura theory to compute the surface hopping probability based on energies and forces.²⁷ We refer readers to Supporting Information, Section S5 for more information about the NACV fitting results and Section S6 for calibrations of the Zhu–Nakamura theory for our simulations.

The trajectories are propagated from the S_1 –FC points for 2 ps with 0.5 fs time steps. The technical details of the NAMD simulations and NN training are available in Computational Methods and Supporting Information. The yield prediction showed significant dependence on the number of trajectories when it is less than 1000 (Figure S15). To obtain converged yields, we collected 3835, 3259, and 3122 trajectories for **4**, **7**, and **10**. At the end of 2 ps simulation, 86 and 89% of the trajectories of **4** and **7** and all trajectories of **10** reached the ground-state in 2 ps. The remaining trajectories of **4** and **7** stayed on the S_1 at the end of the 2 ps simulation due to the disagreement of NN committee. The following discussions use the finished trajectories to study the substituent effects on the excited-state dynamics of **4**, **7**, and **10**.

We computed the $\text{S}_1 \rightarrow \text{S}_0$ relaxation rate in each reaction pathway to understand the substituent effects on the excited-state dynamics of [3]-ladderdienes. Figure 8a shows four S_1

Figure 8. (a) Four S_1/S_0 conical intersections in the S_1 relaxation pathways of the substituted [3]-ladderdienes. NN simulated relaxation rates of (b) CH_3 , (c) CF_3 , and (d) cPr substituted [3]-ladderdiene. The relaxation rate unit is defined as the percentage of trajectories passing through the surface hopping in each pathway per femtosecond. The rate curves of the $[2 + 2]$ -photocycloaddition, 4π -disrotatory electrocyclic ring-opening, $\sigma_{\text{C}-\text{C}}$ cleavage, and 6π -conrotatory electrocyclic ring-opening are red, blue, purple, and orange, respectively. The inset legends are snapshots of surface hopping structures. The area under the relaxation rate curve determines the reaction selectivity, shown in the parentheses.

relaxation pathways we observed among the trajectories of 4, corresponding to the $[2 + 2]$ -photocycloaddition (path 1), 4π -disrotatory electrocyclic ring-opening (path 2), $\sigma_{\text{C}-\text{C}}$ cleavage (path 3), and 6π -conrotatory electrocyclic ring-opening (path 4). As we will discuss later, the 4π -disrotatory electrocyclic ring-opening product can undergo a thermal 6π -disrotatory ring-opening (path 2b). In contrast, the 6π -conrotatory electrocyclic ring-opening occurs directly in the excited state, which initially involves a 4π -disrotatory electrocyclic ring-opening process.


The 4π -disrotatory electrocyclic ring-opening is the fastest relaxation from $4\text{-S}_1\text{-FC}$, where 26% of the trajectories hop to the ground state via 6-CI (Figure 8b), showing an S_1 excited-state lifetime, $t_{1/2}$ of 82 fs. Thirty-eight percent of the trajectories move to the crossing region of the 6π -conrotatory electrocyclic ring-opening with a longer half-life of 296 fs (14-CI in Figure 8b). The remaining trajectories undergo the $[2 + 2]$ -photocycloaddition (5-CI in Figure 8b, 10%, $t_{1/2} = 125$ fs) and $\sigma_{\text{C}-\text{C}}$ cleavage (13-CI in Figure 8b, 12%, $t_{1/2} = 158$ fs). The percentage of trajectories of 4 proceeding to the $[2 + 2]$ -photocycloaddition pathway is 10 times larger than that of 1 (0.9%), suggesting that the CH_3 substantially increases the selectivity of $[2 + 2]$ -photocycloaddition. However, the substituent effects on the ring-opening selectivity are negligible (64% in 4 vs. 69% in 1).

The 6π -conrotatory electrocyclic ring-opening pathway is not observed in the ML-NAMD simulations of 7 and 10 (Figure 8c and 8d). It suggests that the ring-opening pathways

are blocked, which is consistent with the higher energies of 9-CI and 12-CI than that of 6-CI (Figure 6b) due to the steric repulsion between substituent groups. The ring-opening reactions are mainly attributed to the 4π -disrotatory electrocyclic ring-opening, and the selectivity in 7 and 10 decreased to 13 and 37%, respectively. The $[2 + 2]$ -photocycloaddition of 7 increases to 70% (Figure 8c) and the half-life (462 fs) is shorter than the 4π -disrotatory electrocyclic ring-opening reaction (491 fs). We interpret this result to mean that CF_3 facilitates the $[2 + 2]$ -photocycloaddition indirectly by decreasing the selectivity of 6π -conrotatory electrocyclic ring-opening. Figure 8d shows the $[2 + 2]$ -photocycloaddition selectivity of 10 is 45% via 11-CI. Compared to the CF_3 , the cPr reduces the half-life of the $[2 + 2]$ -photocycloaddition to 92 fs, which is competitive to the 4π -disrotatory electrocyclic ring-opening reaction ($t_{1/2} = 88$ fs, 12-CI in Figure 8d).

The S_1 relaxation pathway to the S_0 PES through a state-crossing spawns diverse subchannels to products. To quantify the substituent effects on the quantum yields of the products, we monitor the product distributions after the trajectories land on the S_0 surface. We defined three geometrical parameters to track the products of 4, 7, and 10 (Figure 9a).

Figure 9b shows the trajectories of 4 beginning from the $S_1\text{-FC}$ region (average structures at $r = 2.94$ Å, $d = 1.60$ Å, $c = 1.58$ Å). The trajectories spread over the three coordinates leading to six products. The major product is 14 (50%) and is accessed via two channels: (1) a 6π -conrotatory electrocyclic ring-opening (33%, path 4 in Figure 8a) or (2) a 4π -disrotatory

Figure 9. (a) Three geometrical parameters describe the reaction space of the substituted [3]-ladderdienes. The pink terminals denote the substituent groups. Plots of NN trajectories of (b) CH₃, (c) CF₃, and (d) cPr substituted [3]-ladderdiene. Each plot contains 400 randomly sampled trajectories. The averaged starting points, surface hopping points, and products are marked with red dots, black circles, and black dots. The inset legends illustrate the snapshot of the last trajectory point as the product with predicted quantum yields.

electrocyclic and 6π -disrotatory electrocyclic cascade reaction (17%, path 2 and 2b in Figure 8a). The 6π -conrotatory electrocyclic ring-opening can also promote the cascade reaction to **15** (3%). The bicyclic structure of **15** is a head-to-tail addition of the π -bonds (Figure S10). Considering the structural similarities, we expected **15** to be intermediate to octamethylsemibullvalene and other experimentally observed side products (Figure S10).¹⁷ There is no trajectory reverting to **4** after the 4π -disrotatory electrocyclic ring-opening. It agrees with the single-path branching plane of **6**-CI (Figure 6a). The $\sigma_{\text{C}-\text{C}}$ cleavage pathway bifurcates to **4** (7%) and **13** (4%). The biradical intermediate **13** connects two cyclobutanyl rings through a C–C bond; thus, the averaged distance c is elongated to 2.32 Å. The cyclobutanyl ring rotation of **13** possibly leads to the rearrangement of **4** or isomerization to the *anti*-configuration of **4** (Figure S10). The [2 + 2]-photocycloaddition shows 8% of the trajectories return to **4**, 1% of the trajectories produce **5**, which agrees with the experiments.¹⁷ The resulting cubane formation ratio is 0.13. It suggests the CH₃ induces a limited effect shifting the reaction to **5**, although it increases the selectivity of [2 + 2]-photocycloaddition.

The trajectories of **7** show an averaged starting point at $r = 2.88$ Å, $d = 1.61$ Å, $c = 1.58$ Å (Figure 9c). In contrast to the CH₃, the CF₃ introduces stronger intramolecular closed-shell

repulsions between the fluorines that disfavor the 6π -conrotatory electrocyclic ring-opening pathways. The ring-opening pathways prefer to proceed to **17** in 9% through a 4π -disrotatory and 6π -disrotatory electrocyclic ring-opening cascade reaction. The ratio between the yield of **17** and the percentage of the trajectories undergoing the ring-opening process (13%, **9**-CI in Figure 8c) decreases to 0.70. It suggests that steric repulsions in the ring-opening of **7** perturb the PES to favor the reversion reaction. The intramolecular π – π distance in **17** ($r = 2.80$ and $d = 2.85$ Å) is notably shorter than that in **14** ($r = 3.08$ and $d = 3.23$ Å), because the CF₃ compress the core to minimize the steric repulsion. The $\sigma_{\text{C}-\text{C}}$ cleavage shows reformation to **7** (4%) and rearrangement to **16** (2%). The [2 + 2]-photocycloaddition pathway displays that 55% of the trajectories return to **7** and 14% of the trajectories move to **8**. The cubane formation ratio thus increases to 0.20 because the CF₃ exhibits a stronger dispersive driving force to form cubanes than CH₃. (Figure 5).

The substitution with cPr shifts the trajectory origin point to $r = 2.88$ Å, $d = 1.62$ Å, $c = 1.58$ Å (Figure 9d). In the 4π -disrotatory electrocyclic ring-opening pathway, 34% of the trajectories produce **19** and 3% of the trajectories reform **10**. The conversion ratio is 0.91, indicating that the cPr lowers the preference of the 4π -disrotatory electrocyclic ring-opening. The cPr also restrain the intramolecular π – π distance in **19** to

$r = 2.76 \text{ \AA}$ and $d = 2.90 \text{ \AA}$. In the $\sigma_{\text{C-C}}$ cleavage pathway, 19% of the trajectories all revert to **10**. It suggests the steric repulsions of the cPr further reduces the side reaction channels of **10**. In the $[2 + 2]$ -photocycloaddition pathway, 15% of the trajectories produce **11**, and 30% of the trajectories return to **10**. The cubane formation ratio increases to 0.34, consistent with CF_3 ; attractive dispersive interactions slant the potential energy surface to favor $[2 + 2]$ -cycloaddition.

The trajectories of **4**, **7**, and **10** predict the yield of cubane following the trend of $\text{H} < \text{CH}_3 < \text{CF}_3 < \text{cPr}$. Thus, our results suggest that (1) the steric effects of a bulky group increase the preference of $[2 + 2]$ -photocycloaddition by bringing down the ring-opening process and (2) the attractive dispersion interactions stabilize the cubane skeleton, which drives the $[2 + 2]$ -photocycloaddition reaction toward cubanes.

CONCLUDING REMARKS

The origin of the chemoselectivities was previously unknown because the experimental resolution of excited-state molecular structures on the subpicosecond time scale has not yet been realized. One picosecond multiconfigurational NAMD simulations are still prohibitively costly, but our ML-NAMD technique has enabled the photodynamics simulations for these octa-substituted $[3]$ -ladderdienes for the first time. We have integrated the static single and multireference calculations and ML-NAMD simulations to understand how substituents control the competing reaction pathways of $[3]$ -ladderdienes. Our static calculations show that intramolecular repulsive steric clashes distort the geometries and raise the conical intersection energies by 0.72–1.15 eV and reaction energies by 0.68–2.34 eV in the 4π -disrotatory electrocyclic ring-opening pathways. The attractive dispersion interactions lower the energies of the $[2 + 2]$ -photocycloaddition conical intersections by 0.31–0.85 eV and cubanes by 0.03–0.82 eV.

We enumerated the bifurcated photochemical pathways and validated the role of the substituents on the chemoselectivities of **4**, **7**, and **10** ML-NAMD simulations. The ML-NAMD results show that the 4π -disrotatory electrocyclic ring-opening has the shortest S_1 half-life in **4** whereas the $[2 + 2]$ -photocycloaddition is faster in **7** and **10**. The 6π -conrotatory electrocyclic ring-opening (38%), $\sigma_{\text{C-C}}$ cleavage (12%), and 4π -disrotatory electrocyclic ring-opening (26%) of **4** significantly reduced the selectivity of the $[2 + 2]$ -photocycloaddition (10%). In **7** and **10**, the steric effects of CF_3 and cPr groups completely block the 6π -conrotatory electrocyclic ring-opening pathways; 70% and 45% of the trajectories proceed to the $[2 + 2]$ -photocycloaddition pathway, respectively. The conversion ratio of $[2 + 2]$ -photocycloaddition to cubane increased from 0.13 in **4** to 0.20 in **7** and 0.34 in **10**. The predicted cubane yields increase in the order of $\text{H} (0.4\%) < \text{CH}_3 (1\%) < \text{CF}_3 (14\%) < \text{cPr} (15\%)$, agreeing with the experimental observations. We demonstrate that bulky substituents lower the cubane energy and or raise the energies of the electrocyclic ring-opening products. These effects directly and or indirectly increase the cubane yields. This finding provides a solid theoretical basis for the ongoing experimental development of substituent-assisted $[2 + 2]$ -photocycloaddition of $[3]$ -ladderdiene toward cubanes. Our method has shown $>10^5$ -fold acceleration of prohibitively expensive multiconfigurational calculations for simulating complex photoreactions and the capability of exploring undersampled training data and unseen reaction pathways from a minimal prior knowledge.

COMPUTATIONAL METHODS

Electronic Structure Calculations. The electronic structure calculations of the reactants and products use the (time-dependent) density functional theory (DFT) methods implemented in ORCA 4.2.0.²⁸ The geometry optimization is performed with the PBE0 functional^{29,30} and cc-pVDZ basis set.³¹ Frequency calculations confirm the local minimum with no imaginary frequencies. The excitation and electronic energies calculations utilize the range-separate ω B97XD functional³² and cc-pVTZ basis set.³¹ The DFT calculations are accelerated with the Resolution of Identity (RI) approximation using the RIJCOSX method for electron integration.³³ The noncovalent interaction plots are generated using NCIPILOT4.³⁴

The conical intersection optimization and NN potential training data calculations use the complete active space self-consistent field (CASSCF) theory implemented in OpenMolcas 19.11.³⁵ The active space includes 8 electrons and 7 orbitals (4 electrons from two σ - and two σ^* -orbital of the bridge C–C bond and 4 electrons from two π - and one π^* -orbital of the vinyl bond. The highest out-of-phase π^* -orbital is removed to ensure consistent state ordering to CASPT2 level.²⁰ To reduce the computational cost, we describe the 8 carbon atoms in the $[3]$ -ladderdiene core with the ANO-S-VDZP basis set.^{36–39} The other atoms in the substituent groups use the ANO-S-MB basis set,^{36–39} denoted as ANO-S-VDZP+ANO-S-MB(R), where R means for the substituent groups. The orbital optimization averages the first 5 states. Note that the reactant geometries are reoptimized to compute the relative energy of the conical intersection. The energies of the reactant and conical intersections are corrected by the complete active space second-order perturbation theory (CASPT2) with 0.2 hartree energy shift to avoid intruder state.^{40,41} The NN training data calculations use the 5-states averaged CASSCF(8,7)/ ANO-S-VDZP+ANO-S-MB(R) method.

Machine Learning Methods. We built the feedforward neural network potential using the multiple perception layers of the TensorFlow/Keras API for Python. The NN potential is implemented in an open resource code, Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics (PyRAI²MD).²³ The NN potential takes inverse distance as input and predicts the energies and forces for nonadiabatic molecular dynamics. To solve the permutationally invariant issue of inverse distance, the NN permutes the atom index in training data following the molecular symmetry before training. A similar approach was introduced by Hanson et al. to obtain a permutationally invariant descriptor, randomly sorted Coulomb matrices.⁴² The atom permutations help reduce the size and computational cost of training data. Full details of atom permutations are provided in the Supporting Information, Section S1. The predicted potential energy and its first-order derivatives are used to train energies and forces together. The loss function weights the energies and forces in a ratio of 5:1. The optimal NN hyperparameter is optimized using grid-search. The validation means absolute energy errors are 0.040–0.046, 0.032–0.034, and 0.037–0.039 eV for R = CH_3 , CF_3 , and cPr, respectively, satisfying the standard of chemical accuracy (0.043 eV). Details of NN construction, optimization, training, and validation errors are available in the Supporting Information, Section S1.

The training set contains 9303, 6659, and 7697 data points for R = CH_3 , CF_3 , and cPr, respectively. The training data generation includes an initial set and adaptive sampling.^{21,23,43} In the first step, an initial set is prepared by geometrical interpolations from the optimized reactant, conical interaction, and product of the $[2 + 2]$ -photocycloaddition reaction. Next, we apply the geometrical distortions sampled from the molecular vibrations in the Wigner distribution at the zero-point energy level to the interpolated geometries, which further expands the visited configurations space. The second step trains prior NN potentials using the initial set. It runs 125 trajectories to search out-of-sampled structures by querying a committee of two independently trained NN potentials, determined by the standard deviations of the predicted energies and forces. Finally, the collected structures are recomputed with CASSCF calculation and merged into the initial set. The new NN potentials continue to search

undersampled structures in the next iteration until the configuration space is adequately sampled. More information on the training data generation is available in the Supporting Information, *Section S1*.

Nonadiabatic Molecular Dynamics Simulations. The NAMD simulations propagate the trajectories from the S_1 –FC points. The initial conditions (nuclear positions and momenta) are sampled using the Wigner distribution at the zero-point energy level. The simulation time is 2 ps, and the time step is 0.5 fs. The trajectories are in the microcanonical ensemble (NVE). We choose the Zhu–Nakamura theory of surface hopping (ZNSH) to compute the surface hopping probability.²⁷ The ZNSH does not require nonadiabatic coupling and showed consistent performance to Tully's fewest switches surface hopping (FSSH) in our previous study.²³ The energy threshold of ZNSH is 4.0 eV for 4, 7, and 10. The details of calibration of the energy threshold of ZNSH are available in the Supporting Information, *Section S6*. The ML-NAMD method is implemented in PyRAI²MD.²³

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/jacs.1c07725>.

Cartesian coordinates of the optimized geometries (ZIP)

Optimized geometries and structural parameters, frontier molecular orbitals, TD-DFT excitation energies, active spaces, conical intersection branching planes, electronic energies, Cartesian coordinates, neural network architectures and training details, training data generation and adaptive sampling, definition of atom permutations training set, and ML-NAMD trajectory data (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Steven A. Lopez — Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States; orcid.org/0000-0002-8418-3638; Email: s.lopez@northeastern.edu

Authors

Jingbai Li — Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States; orcid.org/0000-0003-4743-0318

Rachel Stein — Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States

Daniel M. Adrián — Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States

Complete contact information is available at: <https://pubs.acs.org/10.1021/jacs.1c07725>

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

J.L. and S.A.L. acknowledge the Office of Naval Research (N00014-18-1-2659) for funding. R.S., D.A., and S.A.L. acknowledge the National Science Foundation (NSF-1940307 and NSF DBI-2031778) for funding this research. J.L., R.S., D.A., and S.A.L. appreciate the assistance from the Northeastern Research Computing Team, access to the

computing resources of the Discovery cluster, and to the Massachusetts Life Science Center (Award no. G00006360).

■ REFERENCES

- (1) Karkas, M. D.; Porco, J. A., Jr.; Stephenson, C. R. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. *Chem. Rev.* **2016**, *116* (17), 9683–747.
- (2) Cambie, D.; Bottecchia, C.; Straathof, N. J.; Hessel, V.; Noel, T. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. *Chem. Rev.* **2016**, *116* (17), 10276–341.
- (3) Calbo, J.; Weston, C. E.; White, A. J.; Rzepa, H. S.; Contreras-Garcia, J.; Fuchter, M. J. Tuning Azoheteroarene Photoswitch Performance through Heteroaryl Design. *J. Am. Chem. Soc.* **2017**, *139* (3), 1261–1274.
- (4) Saydjari, A. K.; Weis, P.; Wu, S. Spanning the Solar Spectrum: Azopolymer Solar Thermal Fuels for Simultaneous UV and Visible Light Storage. *Adv. Energy Mater.* **2017**, *7* (3), 1601622.
- (5) Hull, K.; Morstein, J.; Trauner, D. In Vivo Photopharmacology. *Chem. Rev.* **2018**, *118* (21), 10710–10747.
- (6) Poplata, S.; Troster, A.; Zou, Y. Q.; Bach, T. Recent Advances in the Synthesis of Cyclobutanes by Olefin [2 + 2] Photocycloaddition Reactions. *Chem. Rev.* **2016**, *116* (17), 9748–815.
- (7) Boswell, B. R.; Mansson, C. M. F.; Cox, J. M.; Jin, Z.; Romaniuk, J. A. H.; Lindquist, K. P.; Cegelski, L.; Xia, Y.; Lopez, S. A.; Burns, N. Z. Mechanochemical synthesis of an elusive fluorinated polyacetylene. *Nat. Chem.* **2021**, *13* (1), 41–46.
- (8) Eaton, P. E. Cubanes: Starting Materials for the Chemistry of the 1990s and the New Century. *Angew. Chem., Int. Ed. Engl.* **1992**, *31* (11), 1421–1436.
- (9) Biegasiewicz, K. F.; Griffiths, J. R.; Savage, G. P.; Tsanaktsidis, J.; Priefer, R. Cubane: 50 years later. *Chem. Rev.* **2015**, *115* (14), 6719–45.
- (10) Li, Z.; Anderson, S. L. Pyrolysis Chemistry of Cubane and Methylcubane: The Effect of Methyl Substitution on Stability and Product Branching. *J. Phys. Chem. A* **2003**, *107* (8), 1162–1174.
- (11) Martin, H.-D.; Urbanek, T.; Pföhler, P.; Walsh, R. The pyrolysis of cubane; an example of a thermally induced hot molecule reaction. *J. Chem. Soc., Chem. Commun.* **1985**, No. 14, 964–965.
- (12) Huang, H. T.; Zhu, L.; Ward, M. D.; Chaloux, B. L.; Hrubiak, R.; Epshteyn, A.; Badding, J. V.; Strobel, T. A. Surprising Stability of Cubane under Extreme Pressure. *J. Phys. Chem. Lett.* **2018**, *9* (8), 2031–2037.
- (13) Eaton, P. E.; Cole, T. W. The Cubane System. *J. Am. Chem. Soc.* **1964**, *86* (5), 962–964.
- (14) Falkiner, M. J.; Littler, S. W.; McRae, K. J.; Savage, G. P.; Tsanaktsidis, J. Pilot-Scale Production of Dimethyl 1,4-Cubanedi-carboxylate. *Org. Process Res. Dev.* **2013**, *17* (12), 1503–1509.
- (15) Gleiter, R.; Pfeifer, K.-H.; Koch, W. Propella[34] prismane and its congeners: A MO-theoretical study. *J. Comput. Chem.* **1995**, *16* (1), 31–36.
- (16) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry. *Angew. Chem., Int. Ed. Engl.* **1969**, *8* (11), 781–853.
- (17) Gleiter, R.; Brand, S. Photochemistry of Bridged and Unbridged Octaalkyl-Substituted syn-Tricyclo[4.2.0.0_{2,5}]octa-3,7-diene Derivatives. *Chem. - Eur. J.* **1998**, *4* (12), 2532–2538.
- (18) Pelosi, L. F.; Miller, W. T. Syntheses from perfluoro-2-butyne. 2. Perfluoroctamethylcubane, perfluoroctamethylcuneane, and perfluoroctamethylcyclooctatetraene. *J. Am. Chem. Soc.* **1976**, *98* (14), 4311–4312.
- (19) de Meijere, A.; Redlich, S.; Frank, D.; Magull, J.; Hofmeister, A.; Menzel, H.; Konig, B.; Svoboda, J. Octacyclopropylcubane and some of its isomers. *Angew. Chem., Int. Ed.* **2007**, *46* (24), 4574–6.
- (20) Li, J.; Lopez, S. A. Multiconfigurational Calculations and Nonadiabatic Molecular Dynamics Explain Tricyclooctadiene Photochemical Chemosselectivity. *J. Phys. Chem. A* **2020**, *124* (38), 7623–7632.
- (21) Westermayr, J.; Gastegger, M.; Menger, M.; Mai, S.; Gonzalez, L.; Marquetand, P. Machine learning enables long time scale