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ABSTRACT: Photoswitches are molecules that undergo a reversible, structural isomerization after exposure to certain wavelengths
of light. The dynamic control offered by molecular photoswitches is favorable for materials chemistry, photopharmacology, and
catalysis applications. Ideal photoswitches absorb visible light and have long-lived metastable isomers. We used high-throughput
virtual screening to predict the absorption maxima (λmax) of the E-isomer and half-life (t1/2) of the Z-isomer. However, computing
the photophysical and kinetic stabilities with density functional theory of each entry of a virtual molecular library containing
thousands or millions of molecules is prohibitively time-consuming. We applied active search, a machine-learning technique, to
intelligently search a chemical search space of 255 991 photoswitches based on 29 known azoarenes and their derivatives. We
iteratively trained the active search algorithm on whether a candidate absorbed visible light (λmax > 450 nm). Active search was found
to triple the discovery rate compared to random search. Further, we projected 1962 photoswitches to 2D using the Uniform
Manifold Approximation and Projection algorithm and found that λmax depends on the core, which is tunable by substituents. We
then incorporated a second stage of screening to predict the stabilities of the Z-isomers for the top candidates of each core. We
identified four ideal photoswitches that concurrently satisfy the following criteria: λmax > 450 nm and t1/2 > 2 h.These candidates had
λmax and t1/2 range from 465 to 531 nm and hours to days, respectively.

■ INTRODUCTION
Light is an ideal external stimulus to promote organic reactions.
Photoswitches are a class of molecules that absorb light and
reversibly interconvert between their thermodynamically stable
and metastable forms to create photostationary states.
Azobenzenes are a class of well-studied photoswitches that
undergo efficient isomerization from their thermodynamically
stable form (i.e., E) to their metastable form (i.e., Z) using
ultraviolet light (314 nm).1 The Z → E isomerization is
promoted with 365 nm light.1 This relatively high-energy light
(e.g., ultraviolet) may promote undesired side reactions that
compete with the isomerization pathway (e.g., electrocyclic ring-
closing reactions). UV light can also promote [2 + 2]-
dimerizations that alter the structure and function of nucleotides
and has a limited (epidermal depth, 0.1 mm) tissue penetration
depth,2 thus limiting the therapeutic potential of photoswitches
in photopharmacology.3 The Z-isomer of azobenzene has a

thermal half-life (t1/2) of 2 days.4 Photoswitches ideally suited
for photopharmacology applications feature long absorption
wavelengths and long t1/2; unfortunately, the simultaneous
optimization of these parameters is challenging and has been
empirically observed to compete. Functionalizing the phenyl
rings has been shown to shift the λmax of azobenzene-based
photoswitches into the visible range. Konrad et al.5 recently
demonstrated that functionalizing the phenyl rings with
halogens at the ortho positions led to a substantial red shift to

Received: August 6, 2021
Published: November 9, 2021

Articlepubs.acs.org/jcim

© 2021 American Chemical Society
5524

https://doi.org/10.1021/acs.jcim.1c00954
J. Chem. Inf. Model. 2021, 61, 5524−5534

D
ow

nl
oa

de
d 

vi
a 

N
O

R
TH

EA
ST

ER
N

 U
N

IV
 o

n 
D

ec
em

be
r 4

, 2
02

1 
at

 0
3:

19
:3

4 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.1c00954&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jcisd8/61/11?ref=pdf
https://pubs.acs.org/toc/jcisd8/61/11?ref=pdf
https://pubs.acs.org/toc/jcisd8/61/11?ref=pdf
https://pubs.acs.org/toc/jcisd8/61/11?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00954?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf


410 nm. This functionalization strategy also increased the t1/2 to
16 h. Another strategy involves replacing one or both phenyl
rings with heteroaryl ring(s), thus creating a more general class
of photoswitches, azoarenes. Azoarenes are substantially more
diverse than azobenzenes, and multiple examples show λmax
values in the visible range and t1/2 exceeding 1.5 h. Figure 1
highlights some of the most promising synthesized azoarenes
with respect to λmax and t1/2.

5−11

While this relatively new class of azoarene photoswitches is
attractive, the complete enumeration of the chemical space
approaches 106. Density functional theory (DFT) calculations
are used to predict structures and photophysical properties at a
relatively low computational cost.12,13 Thus, DFT has been
previously used in high-throughput virtual screening
(HTVS)14−17 for virtual libraries containing 500−500 000
molecules. The vastness of the chemical space cannot be
understated; conservative estimates suggest that at least 1023

organic molecules are theoretically possible.18 This figure can be
narrowed to roughly 106 for azoarenes by focusing on those
already experimentally realized. Abreha et al.19 recently

published a suite of HTVS tools and the Virtual Excited State
Reference for the Discovery of Electronic Materials Database
(the VERDEmaterials DB). The VERDEmaterials DB is unique
because it was the first open-access database to include excited
state structures (S0, S1, and T1), photophysical, and redox
properties. Further, Adrion et al.20 published the EZ-TS code,
which predicts thermal Z→ E activation barriers efficiently and
accurately.
Even with high-performance computing and efficient

quantum chemistry codes, computing the photophysical
properties and stabilities of 106 photoswitches is a substantial
undertaking. Previous machine-learning (ML) techniques have
involved photoswitch property prediction with experimental
data. Ju et al.21 developed a ML algorithm to predict emission
wavelengths and quantum yield without quantum chemical data.
They used 4300 experimental samples to train and found
comparable results between their ML algorithm and TD-DFT
calculations. Thawani et al.22 curated a data set of photoswitches
with azobenzene and azoarene derivatives. They also included

Figure 1. Fourteen azoarene photoswitches used to generate cores for a new molecular library.

Scheme 1. Multipronged Iterative Procedure Used to Update the Active Search Algorithm with DFT Results
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experimental data and trained a ML algorithm to predict the
transition wavelengths of E- and Z-isomers.
We have employed the machine-learning algorithm “active

search”23 to intelligently search the vast chemical space
(255 991 candidates) of azoarene photoswitches. Active search
(AS) was created to discover as many target molecules as
possible while balancing computational resources. AS uses the
data observed at any given point throughout a search and
adaptively makes decisions based on the latest observations.
We now combine these existing tools (the VERDE materials

DB,19 EZ-TS,20 and active search23) to automatically identify
top photoswitch candidates featuring visible-light λmax and long
t1/2. The prediction accuracy of our predictive model improves
as we frequently query from quantum chemical calculations.
After completing the active search iterations, we visualize our
results with Uniform Manifold Approximation and Projection
(UMAP). The combination of DFT, AS, and UMAP has never
been employed to search the chemical space of photoswitches.
Scheme 1 shows an illustration of the iterative processes used to
identify ideal photoswitches
Phase 1: An initial screen of 50−100 molecules is processed

through an automated computational workflow developed by
Abreha et al.19 RDKit24 is used to generate 3-D coordinates from
a simplified molecular-input line-entry system (SMILES)25

string, followed by a low-mode conformational search where
each conformer (four in total) is minimized with the Universal
Force Field.26 The lowest energy conformer is determined
through semiempirical optimizations and a single-point energy
calculation. The lowest energy structure is optimized withM06/
6-31+G(d,p)27−,29 and IEFPCMMeCN,30 and a vibrational
analysis confirms the stationary point as the true minimum if
it has only positive frequencies. The λmax is calculated with a
single-point energy calculation using ωB97XD/6-31+G(d,p)//
M06/6-31+G(d,p).27,31 Figure 2 shows the automated work-
flow of quantum chemical calculations used to compute the
excitation energies and corresponding λmax for selected
molecules from our virtual library.
Phase 2: An in-house Python script assigns a “core ID” (1−

29) to each computed structure. Cores are determined using a
substructure analysis included in RDKit.True orFalse labels
are assigned to each smiles string based on the predetermined
threshold, λmax > 450 nm.
Phase 3: A machine-learning model is trained on the set of

labeled molecules to guide the search algorithm. First, we
generate the Morgan fingerprint32 of each molecule and
compute the Tanimoto similarity coefficient33 between each
pair of molecules.We then build a k-nearest neighbors (k-NN)34

predictive model that computes the probability of a given
unlabeled molecule having a positive label, given the data we
have observed thus far. This k-NN model is then utilized by the
search algorithm. The Morgan fingerprints and Tanimoto

similarity coefficients only need to be computed once, while the
k-NN is updated with newly labeled data at each iteration.
Phase 4: The active search algorithm builds the set of 50

recommendations, selecting among all unlabeledmolecules (i.e.,
the chemical space). These recommendations are then sent to
Phase 1 to be computed and labeled. This procedure repeats for
a total of 40 iterations, sampling 1962 molecules from the space.
We include a more detailed description of our methods in the
following section.

■ METHODS
We adapted the active search method, which has shown
impressive performance in molecular discovery in previous
studies.35−39 Themethod was first introduced by Garnett et al.23

and extended to the batch setting by Jiang et al.39 Formally,
suppose we have a large set of elements xi? = { }, among which
there is a small subset 9 ?⊂ of valuable elements that we wish
to search for (i.e., molecules exhibiting a desired property). We
do not know which members of ? belong to 9 a priori, but
whether a specific element x belongs to9 can be determined by
querying an oracle, requesting for the binary label
y x1 9= { ∈ }, where 1{·} is the indicator function. In this
work, the binary label denotes whether a molecule exceeds the
λmax threshold of 450 nm. Further, we assume that at each
iteration of the search, b elements are inspected simultaneously,
requiring that queries to the oracle be made in batches of size b.
This models experimental settings in which multiple experi-
ments may be run in parallel to maximize throughput,
contrasting with the fully sequential setting where queries are
made one after another; here, b = 50. The goal is to design a
sequence of queries limited by a predetermined budget, such
that the number of target elements uncovered by querying the
oracle is maximized. As such, we naturally define the utility of a
given set of observations x y( , )i i+ = { } to be the total number
of targets found:

u y( )
y

i
i

+
+

∑=
∈

We aim to determine the sequence of queries that maximizes
our definition of utility in the expected case using Bayesian
decision theory. This framework first requires a classification
model that computes the posterior probability that an unlabeled
point x belongs to9, given the elements we have inspected thus
far in+, y xPr( 1 , )+= | . The active search method is model-
agnostic and does not make any further assumptions about this
predictive model. In the next section, we describe the k-nearest
neighbors model we use for this classification task.
We denote T = tb to be the total number of queries allowed to

be made given our budget, where t is the number of search

Figure 2. Quantum chemical workflow for computing the λmax for all molecules selected by AS in this study.
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iterations. We further denote by i+ the observations collected at
the end of iteration i. At iteration i + 1 ≤ t, the best batch of
queries (of size b) we can make, denoted as Xi+1, maximizes the
expected value of the utility of the data set at termination t+ :

X u Xarg max ( ) ,i
X

t i1 ( + += [ | ]+

Jiang et al.39 analyzed and provided further interpretation for
this expected utility. Specifically, it decomposes into the sum of
the expected number of positives in the current batch and the
expected number of positives found in the future, assuming
optimal behavior.39 The second term in this sum is large relative
to the first when the remaining budget is large; as such, the
objective naturally balances between exploration and exploita-
tion. This quantity only coincides with the expected number of
molecules in the current batch at the very last iteration where the
greedy batch is optimal (the second term is zero). Eq 3 in Jiang
et al.39 has more discussion on this objective function.
Although this objective can be derived using the standard

procedure of backward induction,40 it involves t− i nested steps
of sampling over unknown labels of candidate queries and
maximizing the future expected utility. This computation is
prohibitively expensive for horizons t − i ≥ 3, rendering the
optimal query infeasible to calculate in practice.
We adopt the sequential simulation strategy proposed by Jiang

et al.39 as an efficient approximation to the optimal batch of
queries. First, the strategy builds on the efficient nonmyopic
search algorithm ENS38 in the sequential setting where only one
query is made at each iteration. ENS itself approximates the

optimal sequential strategy by assuming that all future queries
after the current iteration are made at the same time. Jiang et
al.38 demonstrated that ENS actively explores the search space
when the remaining budget is large, recommends increasingly
promising molecules as the search progresses, and achieves
significant improvements in performance over greedy strategies.
Our sequential simulation active search algorithm under the
batch setting builds its recommendations by iteratively adding
elements to an initially empty set using the ENS algorithm until
the desired size (b = 50) is reached. As a new element is added,
we assume that this element will return a negative label (i.e., the
element is assumed to lack the desired property). Jiang et al.39

demonstrated that by taking on this pessimistic view, the
algorithm encourages the elements within the same batch to be
diverse, which helps explore the search space more effectively.
During batch construction, as each point is assumed to be
negative, the probabilities of the neighbor points are lowered,
effectively causing future points in the same batch to be “pushed
away” from the current one. Please see Section 5.2 in Jiang et
al.39 for further discussion and theoretical motivation for this
interpretation (this policy also greedily maximizes the
probability that at least one batch member is positive). The
authors further showed that the algorithm significantly out-
performed popular baselines in the machine -learning literature
such as the greedy and the upper confidence bound (UCB)
policy.
Finally, we aim to distribute our queries equally across the 29

cores. Our sequential simulation strategy may be naturally
modified in service of this goal as follows. As a new element is

Figure 3. Twenty-nine cores explored in this study.
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added to the running batch in the iterative procedure described
above, we temporarily remove other candidates having the same
core ID as the newest batch member from the search space.
When no candidate remains, we add all removedmolecules back
to our search space. This simple procedure effectively forces
each batch of queries to be constructed to span the available
cores equally.
As previously described, our active search algorithm requires a

probabilistic model that computes the probability that an
unlabeled element has a positive label (i.e., exhibiting the desired
property), given the current set of observations we have made so
far. We first generate the Morgan fingerprint32 of each molecule
in our search space and compute the Tanimoto similarity
coefficient33 between each pair of elements x and x′, denoted as
t(x, x′). We then implement a k-nearest neighbor (k-NN)34

predictive model, which computes the probability of an
uninspected molecule being an active compound as

y x
t x x y

t x x
Pr( 1 , )

( , )

1 ( , )
x x

x x

NN( )

NN( )
+

γ
= | =

+ ∑ ′ ′
+ ∑ ′

′∈

′∈

whereNN(x) is the labeled subset of the k nearest neighbors of x
inX. γ is a parameter of themodel that acts as a “pseudocount” to
define the prior probabilities for molecules that do not have any
labeled neighbor; we set γ = 0.1. This k-NN performs well in
previous work,23,35,36,38,39 as well as in our experiment; please
refer to the accompanying Supporting Information for more
details regarding the performance of the model. It can further be
rapidly updated in light of new observations, allowing for
efficient lookahead computations that are central in active
search.
Data Set Generation.We aimed to curate a chemical space

of novel azoarene photoswitches that could provide insight into
molecular design. We searched the literature and designed 29
bisdiazoarene cores (Figure 3) to apply the trained algorithm.
The substituents were added in a combinatorial fashion, at
positions that would be easily synthesized. This was done with
an in-house molecule generation script that takes in a SMILES
string and uses RDKit to substitute denoted positions. Each of
these has at least one functionalization site substituted with
functional groups (i.e., terminals).
The cores were selected based on a literature search of

previously synthesized azoarenes; 1−29 range from symmetric
bisazoarenes to azoheteroarenes, and known functionalization
strategies inspire the substitution sites. Figure 4 describes these
positions for a smaller subset of cores.

Figure 4. Schematic representation of the substitution patterns of azoheteroarene cores. (a) Subset of 4 cores from the 29. (b) Red circles indicate
positions substituted asymmetrically with terminal groups from Figure 2. H, OH, SH, OCH3, OCF3, CH3, CF3, NO2, F, Cl, or CN, and X represent
endocyclic heteroatoms (oxygen, nitrogen, or sulfur). The 11 substituents are functional groups that range from electron-withdrawing (e.g., NO2) to
electron-donating (e.g., OH).

Figure 5.Distribution of the λmax values of the photoswitch training set.

Figure 6. Box plot of the random search compared to the active search.
For the random search, molecules are sampled for each core, resulting
in a total of 87 molecules. Active search calculations entail 1962
computed azoarenes. The bin size is 50 nm. The median is denoted by
the horizontal line within each box, and the average for each bin is
denoted by the white squares. Outliers are shown as black circles.
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The cores were substituted asymmetrically to systematically
enumerate the chemical space. After applying this approach to
each of the 29 cores, we created a virtual molecular library of
255 991 azoheteroarene photoswitches.

■ RESULTS AND DISCUSSION
We used a data set of 1436 azoarenes that were previously
computed (λmax) using the method described in Figure 2. These
azoarenes were generated with a different substitution policy
than previously described, and a detailed description can be
found in the Supporting Information. Out of 1436, 981
azoarenes had vertical excitation energies that corresponded to
λmax > 450 nm.We initially ran two iterations of the active search
with 100 molecules each. These two AS iterations selected
molecules from the chemical space of 255 991 molecules.
However, we realized that the algorithm would exploit a single-
core structure, and the time required to perform 100 calculations
for each iteration was expensive. We then decided to create a
core restriction policy where the algorithmwould equally sample
all cores. We retrained the algorithm with the 198 molecules

previously selected. Of the 198, 20 molecules absorbed >450
nm. We also decreased the batch size to 50 molecules per batch
to decrease the turnaround time for the quantum chemical
calculations. A histogram of the λmax of these 198 azoarenes is
shown in Figure 5.
Figure 5 shows that the λmax ranges from 301 to 541 nm for the

selected 198 azoarenes. To train the AS algorithm, we assigned
each candidate a label of True or False, depending on
whether the following expression is satisfied, λmax > 450 nm.
Sixty-two of the 198 azoarenes were assigned True, and 136
were assigned False.
We then iteratively applied the algorithm 40 times on our new

molecular data set. Each molecular batch featured 50 AS-
suggested candidates that would enter our computational
workflow. The first 20 iterations used an “equidistributed”
policy, which equally sampled molecules belonging to each core
family of the 29. Since the AS selected 50 molecules for each
iteration, we sampled the 29 cores by constraining the algorithm
to select at least one molecule per core. The remaining 21 slots
for each batch were selected in a similar fashion where no more
than two molecules were selected for each core. The remaining
iterations (21−40) used a “targeted” policy that only selected
molecules from a subset of 15 cores that had previously selected
derivatives where λmax > 450 nm. Cores that did not show
derivatives that fit the criteria were excluded from the subset.

Figure 7. Hit rate of the first 20 iterations of the search with the reset
policy. The orange dotted line indicates the hit rate for the random
search of 87 molecules which was 13%. A linear regression gave the
following equation describing the correlation between the hit rate and
batch number: %HR = 0.82(batch) + 15.26; R2 = 0.57.

Figure 8. Subset of cores searched for the second half of iterations from 21 to 40. Cores represented yielded at least one substitutedmolecule that had a
λmax exceeding 450 nm.

Figure 9. Hit rate of the second 20 iterations of the search policy with
15 cores.
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After each iteration, we added a binary label to each molecule
based on whether λmax > 450 nm. Figure 3 summarizes this
iterative procedure. We compared the AS strategy to the
performance of a random search strategy by sampling three
molecules selected at random from each of the 29 cores. Figure 6
shows the distribution of the λmax values from AS and the
random search.
Figure 6 describes the effect of applying AS. The random

search showed that 11 out of the 87 molecules (13%) had λmax >
450 nm. The active search increases the number of molecules
that are selected with λmax > 450 nm. The overall increase in
average can be seen for bins (501, 551] and (551, 602] where the
random search was unable to select any molecules in the latter
bin. Figure 7 shows how the proportion of hits change with
respect to the first 20 iterations using the equidistributed policy.
We define the hit rate as the percentage of molecules with a λmax
> 450 nm from the current batch.
The dotted orange line indicates a random search hit rate of

13%. The black data points indicate the hit rate as the active
search is iteratively applied. The equidistributed search shows a
range of hit rates from 12% to 35% (batch 3 and 18,
respectively). The slope is +0.82; the hit rate is improved
relative to the random search in nearly all iterations. We then
turned our attention to the targeted AS policy to maximize the

number of hits corresponding to the subset of cores with
molecules that had a λmax > 450 nm, shown in Figure 8.
For iterations 21−40, the AS algorithm selected three

derivatives corresponding to each of the 15 cores for a total of
45 selected molecules. To keep the batch size consistent at 50,
AS chooses 5 more from the top-ranked derivatives of the 15
core subset. Figure 9 shows the hit rate for iterations 21−40 with
the targeted policy.
In the targeted policy, the hit rate varied from 44% to 56%; the

average hit rate was 49%. Unlike the equidistributed policy,
Figure 9 does not show an increase in the hit rate as a function of
the batch number. The relatively high hit rate led to the rapid
discovery of 485 candidates with λmax > 450 nm in batches 21−
40.
Overall, we identified a total of 717 photoswitches with λmax >

450 nm after the 40 batches (1962 molecules) of AS-assisted
virtual screening. The resulting hit rate is 37%, corresponding to
a tripling of the 13% hit rate from the random search. A two-
sample z-test rejects the null hypothesis that the two strategies
result in equal hit rates with overwhelming confidence, yielding a
p-value of 5 × 10−6.
We represented the complex molecular data with a Uniform

Manifold Approximation (UMAP)41 to visualize the molecular
motifs responsible for candidates with λmax > 450 nm. Thawani

Figure 10. (a) Projection of 1962 azoarene photoswitches suggested by active search using UMAP, computed with a 2048-bit Morgan fingerprint
(radius 2), 10 nearest neighbors, a minimum distance of 0.1, and the Tanimoto similarity. (b) Range of λmax of 1962 azoarene photoswitches by core
ID. Lines within each box represent the median, while the box represents the interquartile range that includes 50% of values near the median. Tails of
each box show the high and low excitation energies of each core ID. Black diamonds represent outliers.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00954
J. Chem. Inf. Model. 2021, 61, 5524−5534

5530

https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?fig=fig10&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00954?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


et al.22 previously applied the UMAP algorithm to understand
the implications in their choice of molecular representation.
They explored the different clusters formed by a Morgan
fingerprint-based representation and an RDKit fragment-based
representation. They found that the Morgan fingerprint-based
representation created more meaningful clusters when com-
pared to the fragment-based representation, which also confirms
our use of Morgan fingerprints. We aimed to apply UMAP to
explore the relationship between the core structure and the λmax
absorbance. Each of the 1962 structures was plotted based on
the Tanimoto similarity33 in Figure 10. The clusters are grouped
based on structural similarity and color-coded based on
computed λmax results.
Figure 10a shows the UMAP results with each azoarene

candidate overlaid with the color corresponding to the λmax. The
data points shown in gray correspond to the ultraviolet range of
the electromagnetic spectrum (λmax < 400 nm). Cores 1−5, 17,
24, and 25 formed distinct clusters, indicated by the solid lines in
the UMAP projection. These cores also had considerably more
derivatives with a λmax in the visible range, suggesting that these

cores have especially tunable λmax values and should be explored
experimentally in the future.
We examined the influence of substituents on each core by

plotting the distribution of λmax. Figure 10b shows the range of
λmax for 1 962 azoarenes. Spacings within each box represent the
degree of dispersion and skewness within the data. Cores with
larger boxes indicate a higher variation in absorbance due to the
substitution pattern.We compared unsubstituted cores 1−5, 17,
24, and 25 to the derivative with the highest λmax. These values
are summarized in Table S2 of the Supporting Information. 1
showed the highest λmax at 514 nmwith a range of 139 nm. 2 had
the largest λmax value of 602 nm and featured an impressive range
of 213 nm within the corresponding derivatives. This suggests
that the family of derivatives corresponding to 2 has the most
tunable λmax. 3, 4, and 5 had their highest absorbing derivatives
at 584, 560, and 503 nm, with similar ranges at 193, 186, and 166
nm, respectively. 24 and 25 had their largest λmax values at 524
and 531 nm, respectively. Their derivatives had ranges of 121
and 148 nm, respectively.

Figure 11. Structures of the 29 highest absorbing azoarene photoswitches for each core. Molecules are labeled by their core ID (in bold), their λmax in
nanometers, and the corresponding oscillator strength and activation barrier in kcal mol−1.
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The ideal t1/2 of photoswitches depends on the desired
application. The t1/2 and λmax are typically in competition
because the π-delocalization effects that generally red-shift the
λmax also decrease the t1/2 by lowering the transition state
energies. However, longer t1/2 values are generally desirable; we
chose those candidates with t1/2 > 2 h as “hits”. Determining t1/2
values requires the computation of Z→ E thermal isomerization
transition structures, which reveal the activation free energies.
Adrion et al.20 recently benchmarked 140 model chemistries to
predict azoarene isomerization barriers and published the open-
access code, EZ-TS. We thus applied EZ-TS to compute the t1/2
of the Z-isomers of core derivatives with the longest λmax,
identified with the active search. Figure 11 illustrates the
candidate from each family of cores subjected to transition state
calculations with PBE0-D3/6-31+G(d,p) to optimize the
transition states.42 This was reported to give activation free
energies that approach chemical accuracy. Scheme 2 shows theZ
→ E isomerization transition state.
The λmax for these top 29 candidates ranges from 382 to 602

nm. The range of activation free energies is 8.1−30.0 kcal mol−1.
We plotted the activation free energies (ΔG‡) against the λmax
for these 29 candidates to determine if there was a relationship
between these values (Figure 12).

Figure 12 shows no linear relationship between the λmax and
activation free energy (R2 of 0.0002). However, we divided the
plot into four quadrants to highlight those candidates that meet
both, one, or none of the λmax and t1/2 optimization criteria.
Quadrants A and B containmolecules that have λmax > 450 nmor
2.6 eV. Quadrants A and C are populated with molecules with an
activation free energy less than 23.0 kcal mol−1. Quadrants C
and D contain molecules that absorb UV light or have λmax
greater than 450 nm. Quadrants B and D have molecules with an

activation free energy greater than 23.0 kcal mol−1. The ideal
candidates fall in Quadrant B that satisfy both criteria;
Quadrants A and D are partially optimized; Quadrant C has
candidates that do not meet any of the requirements. Molecules
8′, 10′, 15′, and 25′ have a high λmax value of 478, 465, 479, and
531 nm, respectively. They also have high activation free
energies of 24.5, 23.0, 30.0, and 26.5 kcal mol−1, respectively.
Figure 12 shows the λmax and activation free energies of the
highest absorbing molecules for each core. The activation free
energies represent the energy required for the Z-isomer to revert
back to the E-isomer. The larger the activation free energy, the
more stable the Z-isomer.43 Depending on application, tuning
the half-life of the Z-isomer is highly desirable. Core structures
presented in Figure 12 can be used to influencemolecular design
for applications that may require long-lived Z-isomers in order
to activate therapeutic properties, for example, targeted protein
degradation.44 By providing a set of starting structures with long-
lived Z half-lives, we can increase the number of therapeutic
modalities that incorporate photoswitches for site specific
treatment.

■ CONCLUSION AND FUTURE WORK
We created a molecular data set of 255 991 azoarenes to find
photoswitches with high λmax values and high activation energies
for therapeutic applications. We leveraged quantum mechanical
calculations to sample just 1% of the search space and computed
2117 DFT calculations in total over 40 iterations. The iterative
process of applying AS to photoswitch screening was highly
effective and tripled the discovery rate of novel photoswitches
compared to a random search. The AS algorithm identified 717
photoswitches with high λmax values ranging from 451 to 602
nm. We also conducted a second layer of screening to identify
photoswitches with long. We computed the activation free
energies of 29 photoswitches for the molecules with the largest
λmax by core identified by the active search. As with previous
studies, we found no general correlation between the activation
free energies and λmax values. However, we identified four
azoarene photoswitches with high λmax values and high
activation free energies. We are currently applying the AS
technique to identify long-lived Z-isomers and will report these
findings in due course. There are also other avenues that could
be explored related to representing molecular data in machine
learning applications. Specifically, RDKit fragments could
replace Morgan fingerprints when training. New 3D fingerprints
would also be useful to implement when predicting the half-lives
in order to better understand structure−property relationships.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954.

Scheme 2. Illustration of the Z → E Thermal Isomerization Transition Structure

Figure 12. Activation free energy against the λmax of 29 azoarene
photoswitches selected by the active search. Their core ID indexes the
data points. Quadrant B is where both criteria for an ideal photoswitch
(λmax > 450 nm and ΔG‡ > 23 kcal mol−1) have been satisfied.
Quadrants A and D are where one criterion has been satisfied, and
Quadrant C is where none of the criteria have been satisfied.
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A description of the data and code we release with the
submission and detailed search results in each iteration of
our procedure (PDF)

■ AUTHOR INFORMATION
Corresponding Author
Steven A. Lopez − Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts
02115, United States; orcid.org/0000-0002-8418-3638;
Email: s.lopez@northeastern.edu

Authors
Fatemah Mukadum − Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts
02115, United States

Quan Nguyen − Department of Computer Science and
Engineering, Washington University in St. Louis, St. Louis,
Missouri 63130, United States

Daniel M. Adrion − Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts
02115, United States

Gabriel Appleby − Department of Computer Science, Tufts
University, Medford, Massachusetts 02155, United States

Rui Chen − Department of Computer Science, Tufts University,
Medford, Massachusetts 02155, United States

Haley Dang − Department of Chemistry and Chemical Biology,
Northeastern University, Boston, Massachusetts 02115, United
States

Remco Chang − Department of Computer Science, Tufts
University, Medford, Massachusetts 02155, United States

Roman Garnett − Department of Computer Science and
Engineering, Washington University in St. Louis, St. Louis,
Missouri 63130, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.1c00954

Notes
The authors declare no competing financial interest.
We release all data and software used in this work, as detailed in
our Supporting Information. Specifically, our data are hosted at
https://figshare.com/articles/figure/Efficient_discovery_of_
visible_light-activated_azoarene_photoswitches_with_long_
half-lives_using_active_search_and_quantum_chemical_
calculations/15093933, while code implementations of the
scripts and algorithms described in our work are hosted at
https://github.com/KrisNguyen135/photoswitch.

■ ACKNOWLEDGMENTS
All authors acknowledge the National Science Foundation
(NSF-OAC-1940307) for funding this research. Q.N. and R.G.
additionally acknowledge support under award number NSF
IIS-1845434. F.M. and S.L. appreciate the assistance from the
Northeastern Research Computing Team and access to the
computing resources of the Discovery cluster. F.M. and S. L. also
acknowledge the Massachusetts Life Science Center
(G00006360) for providing computational resources to make
this research possible.

■ REFERENCES
(1) Griffiths, J. Photochemistry of Azobenzene and its Derivatives.
Chem. Soc. Rev. 1972, 1, 481−493.
(2) Lawrence, K. P.; Douki, T.; Sarkany, R. P.; Acker, S.; Herzog, B.;
Young, A. R. The UV/Visible Radiation Boundary Region (385405

nm) Damages Skin Cells and Induces “Dark” Cyclobutane Pyrimidine
Dimers in Human Skin in vivo. Sci. Rep. 2018, 8, 1−12.
(3) Jia, S.; Sletten, E. M. Spatiotemporal Control of Biology: Synthetic
Photochemistry Toolbox with Far-Red and Near-Infrared Light. ACS
Chem. Biol. 2021,.
(4) Broichhagen, J.; Frank, J. A.; Trauner, D. A Roadmap to Success in
Photopharmacology. Acc. Chem. Res. 2015, 48, 1947−1960. PMID:
26103428.
(5) Konrad, D. B.; Savasci, G.; Allmendinger, L.; Trauner, D.;
Ochsenfeld, C.; Ali, A. M. Computational Design and Synthesis of a
Deeply Red-Shifted and Bistable Azobenzene. J. Am. Chem. Soc. 2020,
142, 6538−6547.
(6) Stricker, L.; Böckmann, M.; Kirse, T. M.; Doltsinis, N. L.; Ravoo,
B. J. Arylazopyrazole Photoswitches in Aqueous Solution: Substituent
Effects, Photophysical Properties, and Host−Guest Chemistry. Chem. -
Eur. J. 2018, 24, 8639−8647.
(7) Huddleston, P. R.; Volkov, V. V.; Perry, C. C. The Structural and
Electronic Properties of 3, 3′-Azothiophene Photo-switching Systems.
Phys. Chem. Chem. Phys. 2019, 21, 1344−1353.
(8) Weston, C. E.; Richardson, R. D.; Haycock, P. R.; White, A. J.;
Fuchter, M. J. Arylazopyrazoles: Azoheteroarene Photoswitches
Offering Quantitative Isomerization and Long Thermal Half-Lives. J.
Am. Chem. Soc. 2014, 136, 11878−11881.
(9) Calbo, J.; Weston, C. E.; White, A. J.; Rzepa, H. S.; Contreras-
García, J.; Fuchter, M. J. Tuning Azoheteroarene Photoswitch
Performance Through Heteroaryl Design. J. Am. Chem. Soc. 2017,
139, 1261−1274.
(10) Slavov, C.; Yang, C.; Heindl, A. H.; Wegner, H. A.; Dreuw, A.;
Wachtveitl, J. Thiophenylazobenzene: An Alternative Photoisomeriza-
tion Controlled by Lone-Pair ···π Interaction. Angew. Chem., Int. Ed.
2020, 59, 380−387.
(11) Okumura, S.; Lin, C.-H.; Takeda, Y.; Minakata, S. Oxidative
Dimerization of (Hetero)aromatic Amines Utilizing t-BuOI Leading to
(Hetero)aromatic Azo Compounds: Scope and Mechanistic Studies. J.
Org. Chem. 2013, 78, 12090−12105.
(12) Abburu, S.; Venkatraman, V.; Alsberg, B. K. TD-DFT Based
Fine-Tuning of Molecular Excitation Energies Using Evolutionary
Algorithms. RSC Adv. 2016, 6, 3661−3670.
(13) Luo, Y.-W.; Chou, C.-H.; Lin, P.-C.; Chiang, C.-M. Photo-
chemical Synthesis of Azoarenes From Aryl Azides on Cu(100): A
Mechanism Unraveled. J. Phys. Chem. C 2019, 123, 12195−12202.
(14) Chansen, W.; Yu, J.-S. K.; Kungwan, N. A TD-DFT Molecular
Screening for Fluorescence Probe Based on Excited-State Intra-
molecular Proton Transfer of 2-Hydroxychalcone Derivatives. J.
Photochem. Photobiol., A 2021, 410, 113165.
(15) Lopez, S. A.; Sanchez-Lengeling, B.; de Goes Soares, J.; Aspuru-
Guzik, A. Design Principles and Top Non-Fullerene Acceptor
Candidates for Organic Photovoltaics. Joule 2017, 1, 857−870.
(16) Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T. D.;
Duvenaud, D.; Maclaurin, D.; Blood-Forsythe, M. A.; Chae, H. S.;
Einzinger, M.; Ha, D.-G.; Wu, T.; Markopoulos, G.; Jeon, S.; Kang, H.;
Miyazaki, H.; Numata, M.; Kim, S.; Huang, W.; Hong, S. I.; Baldo, M.;
Adams, R. P.; Aspuru-Guzik, A. Design of Efficient Molecular Organic
Light-Emitting Diodes by a High-Throughput Virtual Screening and
Experimental Approach. Nat. Mater. 2016, 15, 1120−1127.
(17) Kim, S.; Noh, J.; Gu, G. H.; Aspuru-Guzik, A.; Jung, Y.
Generative Adversarial Networks for Crystal Structure Prediction. ACS
Cent. Sci. 2020, 6, 1412−1420.
(18) Blum, L. C.; Reymond, J.-L. 970 Million Druglike Small
Molecules for Virtual Screening in the Chemical Universe Database
GDB-13. J. Am. Chem. Soc. 2009, 131, 8732−8733.
(19) Abreha, B. G.; Agarwal, S.; Foster, I.; Blaiszik, B.; Lopez, S. A.
Virtual Excited State Reference for the Discovery of Electronic
Materials Database: An Open-Access Resource for Ground and Excited
State Properties of Organic Molecules. J. Phys. Chem. Lett. 2019, 10,
6835−6841.
(20) Adrion, D. M.; Kaliakin, D. S.; Neal, P.; Lopez, S. A.
Benchmarking of Density Functionals for Z-Azoarene Half-Lives via

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00954
J. Chem. Inf. Model. 2021, 61, 5524−5534

5533

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00954/suppl_file/ci1c00954_si_001.pdf
https://orcid.org/0000-0002-8418-3638
mailto:s.lopez@northeastern.edu
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00954?ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00954/suppl_file/ci1c00954_si_001.pdf
https://figshare.com/articles/figure/Efficient_discovery_of_visible_light-activated_azoarene_photoswitches_with_long_half-lives_using_active_search_and_quantum_chemical_calculations/15093933
https://figshare.com/articles/figure/Efficient_discovery_of_visible_light-activated_azoarene_photoswitches_with_long_half-lives_using_active_search_and_quantum_chemical_calculations/15093933
https://figshare.com/articles/figure/Efficient_discovery_of_visible_light-activated_azoarene_photoswitches_with_long_half-lives_using_active_search_and_quantum_chemical_calculations/15093933
https://figshare.com/articles/figure/Efficient_discovery_of_visible_light-activated_azoarene_photoswitches_with_long_half-lives_using_active_search_and_quantum_chemical_calculations/15093933
https://github.com/KrisNguyen135/photoswitch
https://doi.org/10.1039/cs9720100481
https://doi.org/10.1038/s41598-018-30738-6
https://doi.org/10.1038/s41598-018-30738-6
https://doi.org/10.1038/s41598-018-30738-6
https://doi.org/10.1021/acschembio.1c00518?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acschembio.1c00518?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.5b00129?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.5b00129?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.9b10430?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.9b10430?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/chem.201800587
https://doi.org/10.1002/chem.201800587
https://doi.org/10.1039/C8CP06059B
https://doi.org/10.1039/C8CP06059B
https://doi.org/10.1021/ja505444d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja505444d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.6b11626?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.6b11626?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/anie.201909739
https://doi.org/10.1002/anie.201909739
https://doi.org/10.1021/jo402120w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jo402120w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jo402120w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C5RA22800J
https://doi.org/10.1039/C5RA22800J
https://doi.org/10.1039/C5RA22800J
https://doi.org/10.1021/acs.jpcc.8b12373?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.8b12373?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.8b12373?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jphotochem.2021.113165
https://doi.org/10.1016/j.jphotochem.2021.113165
https://doi.org/10.1016/j.jphotochem.2021.113165
https://doi.org/10.1016/j.joule.2017.10.006
https://doi.org/10.1016/j.joule.2017.10.006
https://doi.org/10.1038/nmat4717
https://doi.org/10.1038/nmat4717
https://doi.org/10.1038/nmat4717
https://doi.org/10.1021/acscentsci.0c00426?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja902302h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja902302h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja902302h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b02577?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b02577?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b02577?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.1c01695?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00954?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Automated Transition State Search. J. Phys. Chem. A 2021, 125, 6474−
6485. PMID: 34260236.
(21) Ju, C.-W.; Bai, H.; Li, B.; Liu, R. Machine Learning Enables
Highly Accurate Predictions of Photophysical Properties of Organic
Fluorescent Materials: Emission Wavelengths and Quantum Yields. J.
Chem. Inf. Model. 2021, 61, 1053−1065.
(22) Thawani, A. R.; Griffiths, R.-R.; Jamasb, A.; Bourached, A.; Jones,
P.; McCorkindale, W.; Aldrick, A. A.; Lee, A. A. The Photoswitch
Dataset: A Molecular Machine Learning Benchmark for the Advancement
of Synthetic Chemistry; arXiv preprint arXiv:2008.03226 [physics.chem-
ph]; 2020.
(23) Garnett, R.; Krishnamurthy, Y.; Xiong, X.; Schneider, J.; Mann,
R. Bayesian Optimal Active Search and Surveying. Proceedings of the
29th International Conference on Machine Learning, 2012.
(24) Landrum, G. RDKit: Open-Source Cheminformatics Software;
Open-source software, 2016.
(25) Weininger, D. SMILES, a Chemical Language and Information
System. 1. Introduction to Methodology and Encoding Rules. J. Chem.
Inf. Model. 1988, 28, 31−36.
(26) Rappé, A. K.; Casewit, C. J.; Colwell, K.; Goddard, W. A., III;
Skiff, W. M. UFF, a Full Periodic Table Force Field for Molecular
Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc.
1992, 114, 10024−10035.
(27) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals
for Main Group Thermochemistry, Thermochemical Kinetics, Non-
covalent Interactions, Excited States, and Transition Elements: Two
New Functionals and Systematic Testing of Four M06-Class Func-
tionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215−
241.
(28) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon,
M. S.; DeFrees, D. J.; Pople, J. A. Self-Consistent Molecular Orbital
Methods. XXIII. A Polarization-Type Basis Set for Second-Row
Elements. J. Chem. Phys. 1982, 77, 3654−3665.
(29) Ditchfield, R.; Hehre, W.; Pople, J. Self-Consistent Molecular
Orbital Methods. VI. Energy Optimized Gaussian Atomic Orbitals. J.
Chem. Phys. 1970, 52, 5001−5007.
(30) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical
Continuum Solvation Models. Chem. Rev. 2005, 105, 2999−3094.
(31) Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid
Density Functionals with Damped Atom−Atom Dispersion Correc-
tions. Phys. Chem. Chem. Phys. 2008, 10, 6615−6620.
(32) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J.
Chem. Inf. Model. 2010, 50, 742−754.
(33) Willett, P.; Barnard, J. M.; Downs, G. M. Chemical Similarity
Searching. J. Chem. Inf. Comput. Sci. 1998, 38, 983−996.
(34) Fix, E.; Hodges, J. L. Discriminatory Analysis. Nonparametric
Discrimination: Consistency Properties. International Statistical Re-
view/Revue Internationale de Statistique 1989, 57, 238−247.
(35) Garnett, R.; Gärtner, T.; Vogt, M.; Bajorath, J. Introducing the
‘Active Search’Method for Iterative Virtual Screening. J. Comput.-Aided
Mol. Des. 2015, 29, 305−314.
(36) Jiang, S.; Malkomes, G.; Moseley, B.; Garnett, R. Efficient
Nonmyopic Active Search with Applications in Drug and Materials
Discovery. Machine Learning for Molecules and Materials Workshop at
NeurIPS; 2018.
(37) Graff, D. E.; Shakhnovich, E. I.; Coley, C. W. Accelerating High-
Throughput Virtual Screening Through Molecular Pool-Based Active
Learning. Chem. Sci. 2021, 12, 7866.
(38) Jiang, S.; Malkomes, G.; Converse, G.; Shofner, A.; Moseley, B.;
Garnett, R. Efficient Nonmyopic Active Search. Proceedings of the 34th
International Conference on Machine Learning; 2017; pp 1714−1723.
(39) Jiang, S.; Malkomes, G.; Abbott, M.; Moseley, B.; Garnett, R.
Efficient Nonmyopic Batch Active Search. Adv. Neural Inf. Process. Syst.
2018, 31, 1099−1109.
(40) Bertsekas, D. P. Dynamic Programming and Optimal Control;
Athena Scientific: Belmont, MA, 1995; Vol. 1.
(41) McInnes, L.; Healy, J.; Saul, N.; Großberger, L. UMAP: Uniform
Manifold Approximation and Projection. J. Open Source Softw. 2018, 3,
861.

(42) Adamo, C.; Barone, V. Toward Reliable Density Functional
Methods without Adjustable Parameters: The PBE0 Model. J. Chem.
Phys. 1999, 110, 6158−6170.
(43) Knie, C.; Utecht,M.; Zhao, F.; Kulla, H.; Kovalenko, S.; Brouwer,
A. M.; Saalfrank, P.; Hecht, S.; Bléger, D. ortho-Fluoroazobenzenes:
Visible Light Switches with Very Long-Lived Z Isomers. Chem. - Eur. J.
2014, 20, 16492−16501.
(44) Reynders, M.; Trauner, D. In Targeted Protein Degradation:
Methods and Protocols; Cacace, A. M., Hickey, C. M., Békés, M., Eds.;
Springer US: New York, 2021; pp 315−329.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00954
J. Chem. Inf. Model. 2021, 61, 5524−5534

5534

https://doi.org/10.1021/acs.jpca.1c01695?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c01203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c01203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c01203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci00057a005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci00057a005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00051a040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00051a040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s00214-007-0310-x
https://doi.org/10.1007/s00214-007-0310-x
https://doi.org/10.1007/s00214-007-0310-x
https://doi.org/10.1007/s00214-007-0310-x
https://doi.org/10.1007/s00214-007-0310-x
https://doi.org/10.1063/1.444267
https://doi.org/10.1063/1.444267
https://doi.org/10.1063/1.444267
https://doi.org/10.1063/1.1672736
https://doi.org/10.1063/1.1672736
https://doi.org/10.1021/cr9904009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr9904009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/b810189b
https://doi.org/10.1039/b810189b
https://doi.org/10.1039/b810189b
https://doi.org/10.1021/ci100050t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci9800211?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci9800211?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.2307/1403797
https://doi.org/10.2307/1403797
https://doi.org/10.1007/s10822-015-9832-9
https://doi.org/10.1007/s10822-015-9832-9
https://doi.org/10.1039/D0SC06805E
https://doi.org/10.1039/D0SC06805E
https://doi.org/10.1039/D0SC06805E
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1063/1.478522
https://doi.org/10.1063/1.478522
https://doi.org/10.1002/chem.201404649
https://doi.org/10.1002/chem.201404649
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00954?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

