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Operator and entanglement growth in nonthermalizing systems: Many-body localization
and the random singlet phase
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We characterize the growth and spreading of operators and entanglement in two paradigmatic nonthermalizing
phases—the many-body localized (MBL) phase and the random singlet phase (RSP)—using the entanglement
contour and multipartite operator entanglement measures. The entanglement contour characterizes the spacetime
spreading of entanglement and reveals logarithmically growing entanglement light cones in the MBL and RSP
phases, sharply contrasting the linear light cones of clean, thermalizing systems. The operator entanglement
characterizes scrambling, i.e., the delocalization of information. We find slow scrambling behavior in the MBL
phase; the late-time value of the tripartite mutual information scales linearly with system size, but is submaximal.
The tripartite logarithmic negativity is also negative and nonzero, but smaller in magnitude, revealing an
intriguing distinction between classical and quantum information scrambling in the MBL phase. This is in
contrast with the RSP, which, as a noninteracting model, is nonscrambling.

DOI: 10.1103/PhysRevB.104.214202

I. INTRODUCTION

Generically, interacting quantum systems pushed out of
equilibrium with some finite energy density rapidly reach
equilibrium and become describable (locally) by a thermal
ensemble. This can be understood as a process of information
delocalization in which the local details of the initial state
are spread out, or scrambled, across all degrees of freedom,
becoming inaccessible to local measurements.

While most works on quantum chaos and thermalization
have focused on systems that obey the eigenstate thermaliza-
tion hypothesis (ETH) [1,2] and rapidly scramble information,
recent studies of disordered systems have found signatures of
slow scrambling in out-of-time-ordered correlators (OTOCs)
[3–11], revealing rich dynamical structure in systems that do
not reach thermal equilibrium, or do so exponentially slowly.
To better understand slowly scrambling behavior, we ana-
lyze the many-body localized (MBL) phase and the random
singlet phase (RSP) in two distinct steps: (i) We compute
the entanglement contour, which serves as a well-behaved
entanglement density function [12], following a global quench
to characterize entanglement spreading in spacetime. This
reveals emergent entanglement light cones distinct from the
light cones found in OTOCs. (ii) We compute the tripartite
mutual information of the time-evolution operator. This char-
acterizes the extent to which initially localized information
delocalizes (scrambles) across the entire system. Two systems
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with the same entanglement light cone structure may have
different behaviors of the operator entanglement. The oper-
ator entanglement being nontrivial implies that entanglement
is being produced, complexified, and delocalized rather than
simply spread around the system coherently. We now review
the definitions of these two main actors.

Entanglement contour—The entanglement contour has
been shown to provide an intuitive picture of the extent to
which each degree of freedom in a given subsystem is entan-
gled with the subsystem’s complement. A natural proposal1

for generic many-body systems is to partition the subsystem,
A, into subsets {Ai} [14–17]

sA(Ai ) ≡ 1
2 [S(Ai|A1 ∪ · · · ∪ Ai−1) + S(Ai|Ai+1 ∪ · · · ∪ An)],

(1)

where S(A|B) is the conditional entropy

S(A|B) ≡ S(A ∪ B) − S(B), (2)

and S(A) is the von-Neumann entanglement entropy associ-
ated with (the reduced density matrix of) the subsystem A.
When we take the continuum limit or consider the contour on
a single lattice site, we often use the notation sA(x), where
x denotes the spatial position of Ai. The entanglement con-
tour can be viewed as a well-behaved entanglement density
function:

∑
i sA(Ai ) = S(A) or

∫
A dx sA(x) = S(A). In other

words, the entanglement contour can be viewed as a spatially

1Though not uniquely defined, this definition has been shown to
give results nearly identical to those of other proposals specific to
free systems [13]. Moreover, it has been argued to be unique once an
additional physical requirement is imposed [14].
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TABLE I. Summary of the results of the paper and other known results about the entanglement contour sA(x, t ) and tripartite operator
entanglement (TOMI and TOLN) in various classes of systems. The behavior of the entanglement entropy SA(t ) for a subregion (an interval)
A after global quench is also presented. Here, c is the central charge, ε is the UV cutoff, and β is the effective temperature of the quench
determined by the energy injected to the system. We use the free-fermion CFT as an example of a system with nontrivial entanglement
spreading but no scrambling, holographic CFTs as examples of maximal scramblers, and Anderson localized systems as nonscramblers with
no entanglement spreading.

System Half-space SA(t ) after global quench
Half-space sA(x, t ) after global

quench TOMI/TOLN (t → ∞)

Free-fermion CFT 1
12 ln[ β

πε
sinh( 2πt

β
)] taking the

thermodynamic limit, otherwise
there will be revivals [18,19]

{
0, |x| < 2t,
cπ
12β

coth( πx
β

), |x| > 2t

[12,16,20]. This describes a linear
light cone.

I3 = E3 = 0 [21,22], i.e., no
scrambling.

Holographic CFT c
12 ln[ β

πε
sinh( 2πt

β
)] taking the

thermodynamic limit, otherwise
there will be revivals [23,24]

{
0, |x| < 2t,
cπ
12β

coth( πx
β

), |x| > 2t [16].

This describes a linear light cone.

I3 = −2SA [21], E3 = −2S(1/2)
A [22].

These are thermal entropies and are
of the largest magnitude possible,

i.e., maximal scrambling.
RSP Quasi-power-law growth at early

times (Fig. 5) and ln (ln(t )) at very
late times [25]

A logarithmic light cone emerges
with contour velocity vc (Fig. 4).

I3 and E3 saturate to a constant
value, with no length dependence
implying no scrambling for large

system sizes.
MBL Logarithmic growth and saturation

to subthermal volume-law in finite
systems [26–28].

A logarithmic light cone emerges
with contour velocity vc (Fig. 1).

I3 and E3 both saturate to
macroscopic negative values that
scale with the size of region A at
exponentially long times with the

saturation value of I3 scaling
linearly with A and E3 potentially
sublinearly. Neither are maximal

(Fig. 2).
Anderson localization Rapid saturation to area-law

entanglement [26,27].
Information is localized, i.e., no

spreading.
I3, E3 ∼ 0, i.e., no scrambling.

resolved version of the entanglement entropy S(A), and, when
applied to time-dependent states, it provides a quasilocal pic-
ture of how entanglement entropy spreads in a system.

Operator entanglement—To define the operator entangle-
ment [29], we first map the time evolution operator, U (t ),
to a state in a doubled Hilbert space, H1 ⊗ H̄2, under the
channel-state duality [30,31]. Explicitly, the time evolution
operator may be expanded in its energy eigenbasis as

U (t ) = e−iHt
∑

i

|i〉 〈i| . (3)

We can then dualize the bra vector to define the state

|U (t )〉 = N e−iH1t
∑

i

|i〉1 |i∗〉2 , (4)

where we take the CPT conjugate, and N is a normaliza-
tion factor. The Hamiltonian acts only on the first copy of
the Hilbert space. We then compute entanglement measures
within this state. Throughout this paper, we let A be a subsys-
tem in the “input” Hilbert space, H1, and B,C be subsystems
in the “output” Hilbert space, H2, with B ∪ C = H2. Using
this partitioning, we can compute the bipartite operator mutual
information (BOMI) using the standard definition of mutual
information in terms of operator entanglement entropies,

I (A, B) = S(A) + S(B) − S(A ∪ B), (5)

and tripartite operator mutual information (TOMI) by a taking
linear combination of BOMIs,

I3(A, B,C) = I (A, B) + I (A,C) − I (A, B ∪ C). (6)

The TOMI is symmetric about the three regions and diagnoses
the extent to which information is delocalized in the quantum
channel [32]. Specifically, the negative values of I3 indicate
quantum information spreading.

One disadvantage of the mutual information is that it is sen-
sitive to both quantum and classical correlations. To isolate the
quantum information that is scrambled, we compute bipartite
operator logarithmic negativity (BOLN), i.e., the logarithmic
negativity, E (A, B) ≡ ln(|ρTB

AB|1), in the operator state. In anal-
ogy to TOMI, we also study the tripartite operator logarithmic
negativity (TOLN),

E (A : B,C) = E (A, B) + E (A,C) − E (A, B ∪ C). (7)

The TOLN characterizes the amount of purely quantum infor-
mation scrambled by the quantum channel. In the MBL phase,
we find this to have qualitatively different behavior than
the TOMI.

Summary of results

Before proceeding to the details of our analysis, we present
Table I, which summarizes our results and contrasts them
with previously known results for representative classes of
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FIG. 1. The entanglement contour after a global quench into
HLIOM averaged over 40 disorder realizations, normalized by ln 2,
and smoothed out to remove pixelation. The quench was performed
from random product states on 14 sites using a disorder strength of
J0 = 100. The contour depicted describes the seven leftmost sites.
The level sets make the logarithmic entanglement light cone clear
(modulo the edge effects occurring at sites 1 and 2).

quantum systems. The upshot is that we find logarithmic light
cones for the MBL (Fig. 1) and RSP (Fig. 4) phases. These
sharply contrast the linear entanglement light cones observed
in, e.g., free theories and CFTs.

Moreover, we find that the exponentially late-time values
for the TOMI in the MBL phase are negative and scale linearly
with the size of region A but do not saturate the fundamental
bounds that are saturated in, e.g., random unitary circuits
and holographic conformal field theories [21,22]. The late-
time values of TOLN are also negative and nonzero, though
they are smaller in magnitude than the associated TOMI
values (Fig. 3). This suggests that MBL systems scramble
both classical and quantum information nontrivially, albeit
exponentially slowly. In contrast, we find the RSP to have
trivial TOMI/TOLN, meaning that the RSP channel does not
scramble information even though it does spread in spacetime.
We attribute this to the free-fermion realization of the RSP that
we use.

II. MANY-BODY LOCALIZATION

Many-body localization is perhaps the best known exam-
ple of ergodicity-breaking in many-body quantum systems.
It occurs in interacting systems when an on-site potential is
tuned to be sufficiently spatially disordered. MBL has been
a subject of intense study in recent years. See, for example,
the recent review Ref. [33] and references therein. As the
strength of the on-site disorder is increased relative to the in-
teraction strength, more and more of the system’s high-energy
eigenstates turn from typical volume-law entanglement states
(as the eigenstate thermalization hypothesis would imply) to
short-range entangled area-law states [34]. Once the localiza-
tion transition is passed, all eigenstates of the system become

FIG. 2. TOMI (top) and TOLN (bottom) for the HLIOM for a
system of 12 input and 12 output qubits for various subinterval
sizes. The disorder strength and length scale were chosen so that
the LIOM numerics matched the MBL Heisenberg numerics (Fig. 8)
for the six-qubit chain. Note the logarithmic timescale and the slow
saturation of both quantities, and the larger (negative) magnitude of
TOMI compared to TOLN, indicating a reduced spread of quantum
vs classical information.

FIG. 3. Late-time saturation values of TOMI and TOLN for the
12-qubit MBL chain, calculated using LIOMs. The saturation values
of TOMI fit well to the volume law I3(LA) = ln(2)LA, while the
TOLN values grow more slowly in magnitude with system size,
indicating suppressed delocalization of quantum information.
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area-law entangled, and the system is fully many-body lo-
calized. Before reaching the transition, it is possible to have
a mobility edge, separating area-law states from volume-law
states. In addition to the area-law eigenstates, MBL systems
display a number of interesting features. In the localized
phase, the systems contain an extensive number of emergent
local integrals of motion (LIOMs, sometimes called “l-bits”),
with exponentially decaying spatial support. One can write an
effective Hamiltonian for the MBL system in terms of these
LIOMs [34,35].

MBL systems are also fascinating from a dynamical per-
spective. Generic interacting many-body quantum systems
are thought to be ergodic in the sense that after sufficiently
long time evolution, expectation values of local operators
become exponentially close to their corresponding thermal
expectation values. Thus, memory of the initial state becomes
inaccessible to local measurements, and any subsystem can
be described by a small number of thermodynamic quantities.
MBL systems, on the other hand, do not thermalize. The
conserved LIOMs serve to retain memory of the initial state,
precluding a description of the late-time state by a thermal
ensemble. MBL provides an important counterexample to the
eigenstate thermalization hypothesis (ETH) and motivates us
to further understand when and how closed quantum systems
fail to thermalize. We additionally note that MBL phases and
their nonergodic properties have been directly observed in a
number of experimental settings [36–38].

Despite their lack of energy and particle transport, MBL
systems nevertheless produce nontrivial long-range entangle-
ment in far-from-equilibrium scenarios. For example, if we
quench into an MBL Hamiltonian starting from a product
state, the entanglement entropy grows logarithmically in time
for a time that scales exponentially with the system size
[26,27]. After this time, the saturated entanglement entropy in
finite systems displays a volume-law, though with a smaller
multiplicative coefficient to that of the volume-law for the
thermal state [27]. In some sense, this volume-law indicates
a partial thermalization of finite-size MBL systems [34]. We
are motivated to study this novel entanglement growth more
deeply. In particular, we would like to understand how the en-
tanglement spreads at a local level and if/how the information
becomes delocalized.

To ensure we capture universal features of the MBL phase,
and not artifacts of a particular model, we use the phenomeno-
logical MBL fixed point Hamiltonian constructed from the
local integrals of motion,

HLIOM = −
∑

i

hiσ
z
i −

∑
i< j

J (2)
i j σ z

i σ z
j −

∑
i< j<k

J (3)
i jk σ z

i σ z
j σ

z
k + · · · .

(8)

Here, the Pauli operators σ z
i denote emergent local integrals

of motion, which are exponentially localized in the physical
lattice. For our purposes, we treat them as perfectly local-
ized for the sake of computation. The interaction terms are
defined as

J (2)
i j = Ji j

2
exp(−|i − j|/ξ ), J (3)

i jk = Ji jk

6
exp(−|i − k|/ξ ),

(9)

where Ji j and Ji jk are drawn randomly (from a uniform
distribution [−J0, J0], with J0 = 100 in our case, but other dis-
tributions can be used) and ξ is a dimensionless localization
length (which we pick to be 0.5). We also draw hi from the
same distribution. This model was used to compute the OTOC
in [5,6].

A. Logarithmic entanglement light cone

We study the entanglement contour after a global quench
in order to identify how much entanglement entropy each site
contributes to the overall logarithmic growth. Before turning
to numerics, we motivate an analytical prediction for the form
of the entanglement contour using the language of the emer-
gent LIOMs.

The effective interaction between two “l-bits” separated by
a distance d is given by [39]

Jeff ∼ J exp(−d/ξ ), (10)

where J is a characteristic interaction strength. Using the
effective interaction of the dressed spins, one can obtain an
estimate for the amount of time it takes for two unentangled
l-bits a distance d apart to become entangled. This happens
when Jefft � 1, so

t ∼ 1

J exp(−d/ξ ). (11)

We now consider an MBL system on a chain of total length
L, with a subinterval [0, �]. Picking a point x < � within this
subinterval, we can count the number of l-bits outside of the
interval with which the l-bit at point x is entangled at a par-
ticular time t . This is precisely what the entanglement contour
should describe. The result (up to proportionality constants) is

sA(x, t ) ∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t < e
�−x
ξ

J0
,

1
L

(
ξ ln(J t ) + x − �

)
, e

�−x
ξ

J � t � e
L−x
ξ

J ,

1 − �
L , t > e

L−x
ξ

J .

(12)

The form of a logarithmic light cone is clear; the wave front
of the contour arrives at a time exponential in the distance
from the entangling surface t = 1

J exp( �−x
ξ

). Once this time
has passed, the magnitude of the contour increases linearly,
saturating at a constant value. This agrees with the observation
that entanglement entropy grows logarithmically with time
in MBL, eventually reaching a volume-law in the long-time
limit. Let us now turn to numerics in order to verify (12).

We select a subinterval consisting of the leftmost seven
sites of our 14-site chain, and we compute the entanglement
contour of this interval after the global quench using HLIOM.
We observe a distinct logarithmic light cone in the entan-
glement contour in Fig. 1. A similar logarithmic light cone
has previously been observed in out-of-time-order correlators
(OTOCs) of certain local operators in the MBL phase [7].
These are related but distinct light cones.

The authors of Ref. [7] computed the OTOC as a func-
tion of space and time in the disordered Heisenberg model.
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Defining the butterfly velocity, vB, as

jε ∼ vB log10 t, (13)

where jε is the site at which the wave front of the OTOC has
increased past the threshold value of ε ∈ (0, 1) at time t , they
find that vB depends on both temperature and ε, with a slower
speed of propagation for lower temperatures. In Refs. [4,5],
the authors show that in the MBL LIOM model, the position
of the wavefront (up to additive constants and for some suit-
ably defined cutoff) of the OTOC after disorder averaging is
given by

jLIOM ∝ ξ log10 (t ). (14)

Our numerical checks for the zero-temperature OTOC in-
dicate that the butterfly velocity for the LIOM model with
ξ = 0.5, for the initial all |+〉 product state and for a suitably
defined cutoff of 0.5, is vB = ξ

log10 e ∼ 1.15.
We can analogously define the contour velocity

jc ∼ vε
c log10 t, (15)

where jc is the site that the contour wavefront of value ε × s̃β

has reached. s̃β is the equilibrium entropy density at effective
temperature β which is fixed by the energy of the quench.
Using the cutoff ε = 0.075, and fitting a line to the wavefront
in Fig. 1, we arrive at a contour velocity of vε

c ∼ 1.5 (for
analogous results for the disordered Heisenberg model; see
Fig. 7 in Appendix A). Like the butterfly velocity, this result is
somewhat dependent on the choice of cutoff ε, and it may also
depend on the choice of initial state. It therefore seems that
the contour velocity is larger than the butterfly velocity, but
perhaps only marginally so, unlike the case of CFT, where we
have the very distinct result vc = 2vB. A more comprehensive
numerical study of the entanglement contour after a global
quench in MBL is warranted and could yield a more precise
understanding of the relationship between vB and vc in MBL.
We leave this for future work.

B. Multipartite operator entanglement

Now that we have found that the entanglement spreads
according to an emergent logarithmic light cone, we would
like to understand what sort of entanglement this really is.
Thermalization would necessitate this entanglement to be
multipartite, i.e., the information is delocalized throughout the
light cone.

We find slow scrambling in the tripartite operator mutual
information and tripartite operator logarithmic negativity as
seen in Fig. 2. Like many other observables in MBL, TOMI
and TOLN take an exponentially long time for the quantities
to saturate. While a significant portion of the information in
the input channel is delocalized under time evolution, the
Haar random values of TOMI and TOLN are never reached.2

Intriguingly, it appears that the scrambled quantum informa-
tion (TOLN) may scale differently with system size than the

2See Ref. [40] for a discussion on more quantum systems that
scramble nonmaximally. We also note that bipartite operator en-
tanglement measures have previously been been studied in MBL
systems [26,41].

total information (TOMI). In Fig. 3, we show the saturated
values of TOMI and TOLN as a function of input interval
size for our 12-site chain. While TOMI scales at or near a
volume law (up until half the system size), the magnitude of
TOLN is smaller, suggesting the possibility of subvolume law
scaling, and indicating that the spreading of quantum correla-
tions is suppressed compared to total correlations. By “total”
we are referring to both the quantum and classical (thermal)
correlations to which mutual information is sensitive3 (see,
e.g., Ref. [43]). Appendix A contains smaller scale operator
entanglement results for the disordered Heisenberg model. To
the best of our knowledge, this is a new phenomenon that
might be useful in characterizing the quasithermal, late-time
state. It would be very interesting to further distinguish this
late-time state from conventionally scrambled states. Given
the small scales of our numerics, these signatures of novel
scrambling behavior may be experimentally accessible in
noisy intermediate-scale quantum (NISQ) devices [44] where
protocols for preparation of the thermofield double state (4)
are being developed [45].

III. RANDOM SINGLET PHASE

In this section, we study the dynamics of a disordered
free-fermion model that admits a random singlet phase [46]
as its ground state for sufficiently strongly disordered hop-
ping. The RSP infinite-disorder critical point has a number
of interesting features, including CFT-like logarithmic scaling
of entanglement entropy [47–50], with an effective central
charge equal to ln 2 times the central charge of the clean
theory. The RSP is the fixed point of the strong disorder real-
space renormalization group (SDRG) [51], and it can be seen
in, e.g., the antiferromagnetic random bond Heisenberg model
[46]. It should be noted, however, that the universal features
of the RSP ground state seen at the SDRG fixed point do
not necessarily extend to excited states in interacting models
[52]. Indeed, while the RSP-like critical behavior extends to
the excited states of a noninteracting model like the one we
use here (resulting in a so-called “quantum critical glass”
[53,54]), small interactions can drive these excited states to
an MBL spin-glass phase. Studying the dynamics of an inter-
acting model with a RSP ground state using the entanglement
measures in this paper presents an interesting future problem.
Some work in this direction has recently been done [55], and it
is found that the resulting particle-hole symmetric MBL phase
exhibits entanglement growth behavior whose functional form
depends on interaction strength, unlike conventional MBL.

Additional work has been done to investigate the dynamics
of the random singlet phase. For example, Ref. [25] studied
the late-time growth of entanglement entropy in the RSP
after a global quench using numerical methods and found
it to be doubly logarithmic in time. Other works have stud-
ied entanglement growth in disordered critical phases, e.g.,
Refs. [56,57]. We build upon this work by characterizing the
spread and delocalization of information in the RSP.

3See Ref. [42] for an interesting comparison between mutual infor-
mation and negativity in MBL eigenstates.
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We use a single-band, free-fermion model with dis-
ordered hopping to yield the random singlet phase. The
Hamiltonian is

H =
∑

i

Ji(c
†
i ci+1 + c†

i+1ci ), (16)

where Ji ∈ [0, 1] at each bond is drawn independently from
the known fixed-point distribution P(J ) = 1

δ
J−1+1/δ . The

parameter δ corresponds to disorder strength. δ → 0 cor-
responds to the clean limit, and we approach the infinite
randomness fixed point as δ → ∞. For the purpose of nu-
merics, δ = 2.5 corresponds to sufficiently strong disorder to
yield the desired properties of the random singlet phase, and
this is the value we use in our simulations.

A. RSP entanglement light cone

We now use the contour to investigate finer-grained aspects
of the entanglement entropy growth at long timescales after a
quench into the random singlet phase. For our initial state, we
use the ground state of the Hamiltonian,

H0 =
∑

i

J (c†
i ci+1 + c†

i+1ci ) +
∑

j

m0(−1) jc†
j c j, (17)

which has a gap controlled by the magnitude of m0. Also note
that J is not random in H0. We use m0 = 0.5 for the initial
state of our quench. At t = 0, after preparing the ground state
at half-filling of (17), we begin to time-evolve with (16). We
then compute the entanglement contour at each site, for each
time step thereafter. This constitutes our quantum quench.

The entanglement contour generated by the quantum
quench described above on a 200-site chain can be seen in
Fig. 4. Though the production of entanglement is weaker than
it is in the clean limit, the contour demonstrates nontrivial
spreading. The smallest discernible values of the entangle-
ment contour (0.001) appear to carve out a logarithmic light
cone, consistent with the infinite dynamical critical expo-
nent of the random singlet phase [25]. Between the times
1.75 × 101 and 5.45 × 105, the 0.001 contour fits very well
with the function

x(t ) ∼ vc log10 (t ) + x0, (18)

where we find vc ∼ 3.56 for the contour velocity.
We also include a plot of the early-time entanglement

entropy in Fig. 5 for the above quench configuration. This
early-time entanglement entropy growth fits very well with
the quasiparticle calculation detailed in Appendix D. The late-
time entanglement entropy growth, as computed by summing
the contour over its subinterval, is doubly logarithmic, as
shown in previous works [25]. We omit this result here and
include only the novel, early-time behavior.

B. Multipartite operator entanglement

While the RSP has nontrivial entanglement spreading as
demonstrated in the previous section, we still need to deter-
mine what sort of entanglement is generated. In particular,
is this entanglement multipartite, leading to thermalization of
subsystems at late times? Our expectation is that bipartite en-
tanglement should dominate, since our model is free. Indeed,

FIG. 4. The entanglement contour for sites 150–200 in an open
chain of 200 sites averaged over 5000 disorder realizations and
normalized by ln 2 on a semilog plot. We use m0 = 0.5 and a clean
hopping for our initial state, and quench into the Hamiltonian (16)
with δ = 2.5 and t = 0. We see the emergence of a logarithmic light
cone for the smaller-valued level sets, consistent with the infinite
critical exponent known to occur in the RSP. At very late times (∼108

units of time), we see some deviation from the log light cone in the
upper-right hand corner of the plot, likely as a result of finite-size
effects.

this is what we find when computing the operator entangle-
ment. We include the details of computing the free-fermion
operator entanglement computation in Appendix C. The re-
sulting tripartite operator mutual information and negativity
for a 140-site and a 200-site chain are depicted in Fig. 6.

FIG. 5. The quarter chain entanglement entropy for early times
after a global quench into the random singlet phase for a system
of 200 sites. After an initial linear increase, the entropy grows ap-
proximately as a power law before transitioning to a sublogarithmic
regime at very long times (not depicted). The numerical results (dots)
are averaged over 5000 disorder realizations. The analytic estimate
for the entanglement entropy is displayed as a blue line. We fit using
βeff = 0.1972. The analytic estimates derived from the quasiparticle
picture show excellent agreement with the numerics.
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FIG. 6. The tripartite operator mutual information (solid lines) and negativity (dashed lines) for a 140-site (blue) and a 200-site (orange)
chain, for a half-chain input subsystem. The results were averaged over 1500 disorder realizations with disorder strength δ = 2.5. Both
quantities are very small in magnitude and independent of system size, indicating a lack of scrambling, as expected in a free-fermion system.

While the tripartite mutual information is slightly negative
and appears to saturate at some value that is independent of
the subsystem size, this is merely a finite-size effect, and this
model of the random singlet phase, despite its interesting bi-
partite entanglement dynamics, cannot scramble information,
as it is a free-fermion model. This is further demonstrated by
the very small, positive values of TOLN that are independent
of system size.

IV. DISCUSSION

In summary, we have investigated the nonequilibrium dy-
namics of two distinct nonthermalizing phases: a local integral
of motion model of many-body localization, and (a free-
fermion realization of) the random singlet phase.

Entanglement light-cone behavior—Calculating the entan-
glement contour after a global quench revealed a logarithmic
light cone of entanglement spreading in MBL. This light
cone was similar, but not identical, to the logarithmic light
cone seen for the OTOC [58]. Meanwhile, in the RSP, the
entanglement contour yielded a logarithmic light cone, de-
spite trivial spreading of the OTOC in that system. Each light
cone defines a velocity, and we now comment on how these
may be related or distinguished. Following a global quan-
tum quench, the entanglement contour propagates from the
entangling surfaces. The contour velocity is the speed at
which the wavefront propagates. One must impose some cut-
off value of the contour in order to define the wavefront. On
the other hand, the butterfly velocity corresponds to the speed
at which local operators spread, in contrast to the contour
velocity, which corresponds to the speed at which correlations
spread. The butterfly velocity is defined through the OTOC.
Naturally, the contour velocity and butterfly velocity will be

related. They are, in general, different speeds partially because
the OTOC only time evolves one of the operators in the
correlation function, while the entanglement contour probes
time-evolved states, i.e., all operators are time-evolved. Be-
cause all operators have been given the chance to spread in
time, the contour velocity will typically be higher than the
butterfly velocity. In 2D conformal field theories, it is true
that vc = 2vB. [16]. The proportionality constant appears to
be smaller in the case of the MBL LIOM model, though the
factor of 2 does appear to approximately hold (in logarith-
mic time) for the disordered Heisenberg model (included in
Appendix A). We believe it would be interesting to study the
relationship between vc and vB in more general systems.

Late-time quasiequilibration—To characterize the kind of
entanglement generated by time evolution, we calculated op-
erator mutual information and negativity for both phases. We
found that the many-body localized system demonstrated slow
but nontrivial saturation of tripartite operator mutual informa-
tion and negativity, to values smaller in magnitude than the
Haar-random case. The late-time values of TOLN were even
further suppressed. This indicates a level of weakly scrambled
quasiequilibration in MBL. However, the late-time state is
clearly not fully thermalized because it still retains memory
of the initial LIOMs. We wonder whether this is a different
sort of “thermalized” quasiequilibrium state and whether it
can be characterized by a generalized Gibbs ensemble or a
generalization of the so-called canonical thermal pure quan-
tum (cTPQ) states [59].

In contrast to the MBL phase, we found the RSP to
demonstrate multipartite operator measures that decayed to
zero with increasing disorder, indicating that despite non-
trivial entanglement spreading, the RSP does not delocalize
quantum information. This is unsurprising, as we used a
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free-fermion model for the RSP. Our results indicate a
broad range of behavior of state and operator dynamics ly-
ing between clean, free-particle systems and the maximally
scrambling holographic or Haar-random systems. Other in-
termediate systems that may be worth investigating include
models with quasiperiodic potentials (in particular, the Aubry-
André model [60]), Floquet systems, and random unitary
circuits with measurements.4

As entanglement measures become more experimentally
accessible, the ubiquity of disorder in physical systems could
make slowly scrambling systems an interesting testbed for
quantum information dynamics in the laboratory. Many-body
localization has been realized experimentally in several dif-
ferent settings, including superconducting qubits [67] and
optical lattice systems [68]. Information theoretic measures,
for example the quantum Fisher information [36] and the
second Rényi entanglement entropy [38,69], have become
measurable in the laboratory. As experiments continue to
improve, we hope to see the finer-grained probes of entangle-
ment spreading and scrambling that we have studied measured
experimentally in MBL and other disordered systems.

Note added. During the completion of this work, a paper
appeared that also studies operator entanglement in MBL sys-
tems using an effective Hamiltonian [70]. That Hamiltonian is
distinct from the one we study in Sec. II.
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APPENDIX A: DISORDERED HEISENBERG
MBL RESULTS

Here we present supplementary entanglement contour
and operator entanglement results for the many-body local-
ized disordered Heisenberg model, which has the following
Hamiltonian:

H = J
∑

i

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

) +
∑

i

hiσ
z
i , (A1)

where hi is a random variable from the uniform distribution
[−h, h]. This model is believed to be fully many-body local-
ized for J = 1 and h � 7. As in Ref. [7], we will use h = 16
to ensure a short localization length.

We first present the entanglement contour, in Fig. 7,
which, though demonstrating slightly different features than
the LIOM light cone in Fig. 1, retains the essential logarithmic
light cone, this time with a contour velocity of 1 � vc � 2
if measured along the 0.002 or the 0.004 contours. Here, the
contour velocity appears to depend on the choice of cutoff,

4See, e.g., Refs. [11,61–66] for examples of recent work in this
direction.

FIG. 7. The entanglement contour for the leftmost six-site subin-
terval (divided by ln 2) in the MBL Heisenberg model after
quenching from random product states. The results were averaged
over 400 disorder realizations.

and the overall magnitude of entanglement is lower. This may
be a model-dependent effect.

Next, we present the exact diagonalization results of the
operator mutual information and negativity in the disordered
Heisenberg model. Because we must directly compute and
partially trace over the operator-state density matrix, we are
limited to a system size of six spins. The results for TOMI and
TOLN are depicted in Fig. 8. These results were computed
before the LIOM results, and the dramatic difference in the
scaling of TOMI and TOLN motivated further calculations
using LIOMs.

FIG. 8. TOMI (solid lines) and TOLN (dashed lines) computed
for a six-site random Heisenberg model for input intervals of one,
two, and three sites. As in the case of LIOM calculation, both values
saturate exponentially slowly, and the larger (negative) magnitude
of the TOMI saturation value suggests a suppression of quantum
information spreading.
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APPENDIX B: COMPUTING OPERATOR
ENTANGLEMENT AND NEGATIVITY WITH MBL

INTEGRALS OF MOTION

We will use the LIOM basis to compute operator mutual
information for a MBL system. We start with the following
Hamiltonian:

HLIOM = −
∑

i

hiσ
z
i −

∑
i< j

J (2)
i j σ z

i σ z
j −

∑
i< j<k

J (3)
i jk σ z

i σ z
j σ

z
k ,

(B1)

where we have truncated terms beyond third order. In the
LIOM basis, the time evolution operator for a chain of N
spins is

U =
∑
{s}

e−itHLIOM(s)|s1 · · · sN 〉〈s1 · · · sN |,

HLIOM(s) = −
∑

i

hisi −
∑
i< j

J (2)
i j sis j −

∑
i< j<k

J (3)
i jk sis jsk,

(B2)

where
∑

{s} is a sum over all 2N classical spin configurations.
Since U is already diagonal in the LIOM basis, we can replace
the Pauli operators in the Hamiltonian with classical spin
values. To compute operator entanglement measures we use
the channel-state duality to obtain the U operator state, and
then we take the outer product to get the density matrix of the
doubled Hilbert space state,

ρU =
∑

{s},{s′}
eit[HLIOM(s)−HLIOM(s′ )]|s1 · · · sN 〉〈s′

1 · · · s′
N |, (B3)

where |s1 · · · sN 〉 labels collectively spin configurations in the
input and output Hilbert spaces, for brevity. We can go fur-
ther by subdividing the input and output Hilbert spaces into
intervals A, D and B,C, respectively:

ρU =
∑

{s},{s′}
eit[HLIOM(s)−HLIOM(s′ )]

× |{s}A, {s}B, {s}C, {s}D〉〈{s′}A, {s′}B, {s′}C, {s′}D|.
(B4)

We choose A and B to be of the same size and position in
their respective Hilbert spaces. To obtain a reduced density
matrix for the operator state—for example for A ∪ B—we can
trace out C ∪ D,

ρAB =
∑

{s}A,{s}B,{s′}A,{s′}B

∑
{s}C ,{s}D

× eit[HLIOM(sA,sB,sC ,sD )−HLIOM(s′
A,s′

B,sC ,sD )]

× |{s}A, {s}B〉〈{s′}A, {s′}B|. (B5)

By performing the sums over sC and sD to calculate the matrix
elements of ρAB, we can avoid directly storing and tracing over
a 22N × 22N matrix, and instead deal with, at most, a 2N × 2N

matrix. This is not a dramatic decrease in numerical overhead,
but it allows us to (nearly) double the size of the system in
question when computing operator entanglement measures, as
compared to directly performing the partial trace over the full
operator state density matrix.

APPENDIX C: OPERATOR ENTANGLEMENT AND
NEGATIVITY FOR FREE FERMIONS

In this Appendix, we present a review of how to compute
operator entanglement measures for free-fermion systems us-
ing the correlator method.

1. Operator state for free fermions

We wish to compute the operator mutual information for
the following state:

|Uβ (t )〉 = e− it
2 (H1+H2 ) |TFDβ〉 (C1)

for a free-fermion Hamiltonian with no superconducting
terms

Ĥ =
L∑

i, j=1

Hi, jc
†
i c j . (C2)

We can diagonalize this Hamiltonian with a unitary matrix U ,
so H = UDU †:

Ĥ = c†
i Uik︸ ︷︷ ︸
≡ψ

†
k

Dkl U †
l jc j︸ ︷︷ ︸
≡ψl

= ψ
†
k Dklψl = εkψ

†
k ψk . (C3)

We then write down the thermofield double state with the
fermions in the diagonal basis,

|TFDβ〉 = 1√
Z

∏
k

(∑
ik

e− β

2 εkψ
†
k ψk |ik〉 |i∗k 〉

)

= 1√
Z

∏
k

(1 + e− β

2 εk ψ
†
Akψ

†
Bk ) |0〉 . (C4)

Requiring 〈TFDβ |TFDβ〉 = 1 fixes the normalization factor as
Z = ∏

k (1 + e−βεk ). The normalized thermofield double state
is thus

|TFDβ〉 =
∏

k

(
e

β

2 εk

√
1 + eβεk︸ ︷︷ ︸
≡cos θk

+ 1√
1 + eβεk︸ ︷︷ ︸
≡sin θk

ψ
†
Akψ

†
Bk

)
|0〉 (C5)

and the time-evolved operator state becomes

|U (t )〉 =
∏

k

(cos θk + sin θke−itεk ψ
†
Akψ

†
Bk ) |0〉 . (C6)

Alternate form of the operator state—We now rewrite the
operator state (C6) by using the holes of the B Hilbert space
instead of the particles because this allows us to use the
regular correlation matrix without pairing terms. Let χAk , χBk

be new fermion operators and consider∏
k

(
cos θkχ

†
Bk + sin θke−itεk χ

†
Ak

) |0〉χ

=
∏

k

(
cos θk + sin θke−itεk χ

†
AkχBk

) ∏
q

χ
†
Bq |0〉χ . (C7)

We now define χAk = ψAk , χBk = ψ
†
Bk , and note |0〉ψ ∼∏

q χ
†
Bq |0〉χ because ψBp |0〉ψ ∼ χ

†
Bp

∏
q χ

†
Bq |0〉χ = 0, since

(χ†)2 = 0. The ψ and χ fermions are related by a particle-
hole transformation on HB. The state (C7) is already
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normalized. In terms of the χIk fermions, we have

|U (t )〉 =
∏

k

(cos θkχ
†
Bk + sin θke−itεk χ

†
Ak ) |0〉 , (C8)

where it is understood that |0〉 = |0〉χ .

2. Correlator method

Now we compute the correlation matrix

〈U (t )| χ†
IkχJk′ |U (t )〉 = δkk′ 〈U (t )| χ†

IkχJk |U (t )〉 , (C9)

where we noted that if k �= k′, χ
†
IkχJk′ = −χJk′χ

†
Ik annihilates

|U (t )〉. Suppose that the product over the modes in (C8) is
arranged in increasing order. The matrix element for each
mode k can be computed from

〈U (t )| χ†
IkχJk |U (t )〉 = 〈0|

∏
q>k

(cos θqχBq + sin θqeitεqχAq)

× [(cos θkχBk + sin θkeitεk χAk )χ†
IkχJk

× (cos θkχ
†
Bk + sin θke−itεk χ

†
Ak )]

×
∏
p>k

(cos θpχ
†
Bp + sin θpe−itεpχ

†
Ap) |0〉

(C10)

for the four possible values of (I, J ). The correlation matrix in
this basis is thus

〈U (t )| χ†
IkχJk′ |U (t )〉

= δkk′

(
sin2 θk sin θk cos θkeitεk

sin θk cos θke−itεk cos2 θk

)
. (C11)

The correlation matrix in real space, which we need for the
calculation of the entanglement entropy, is given by

〈U (t )| χ†
IxχJx′ |U (t )〉

=
∑

k

V ∗
xk

(
sin2 θk sin θk cos θkeitεk

sin θk cos θke−itεk cos2 θk

)
V t

kx′ ,

(C12)

where a general position space Hamiltonian can be diagonal-
ized through the unitary matrix as

Ĥ =
∑
x,y

χ†
x Hxyχy =

∑
x,y

χ†
x Vxk︸ ︷︷ ︸
χ

†
k

Dkq︸︷︷︸
εkδkq

V †
qyχy︸ ︷︷ ︸
χq

=
∑

k

εkχ
†
k χk, (C13)

Finally, the Von Neumann entropy is given by

S(t ) = −
∑

n

[ξn(t ) ln ξn(t ) + [1 − ξn(t )] ln (1 − ξn(t ))],

(C14)
where ξk (t ) are the eigenvalues of the correlation matrix trun-
cated to the entries corresponding to degrees of freedom in
our subsystem.

APPENDIX D: QUASIPARTICLES FOR THE RSP

The early-time entanglement entropy growth is depicted in
Fig. 5. Qualitatively, we see an initial linear growth, followed

by what appears to be a power-law growth, which eventually
settles to a very slow, sublogarithmic growth. To obtain an
analytical estimate for the entanglement dynamics, we use the
quasiparticle picture that is applicable to integrable systems
[18,71–73]. The master formula is

S(t ) ∝ t
∫

|v(ε)|t<�

dεv(ε) f (ε) + �

∫
|v(ε)|t>�

dε f (ε), (D1)

where � is the length of the interval, v(ε) is the velocity of
the quasiparticles at energy ε, and f (ε) is the entanglement
production rate of quasiparticles. In other words, f (ε) is the
extent to which each mode contributes to the entanglement
entropy. For this function, we can use the entropy of each
occupied fermionic mode,

f (ε) = −[1 − n(ε)] ln[1 − n(ε)] − n(ε) ln n(ε), (D2)

where n(ε) is the occupation number of each mode after the
quench. We use the Fermi-Dirac distribution

n(ε) = 1

1 + eβe f f ε
, (D3)

which provides an excellent approximation. Here, βe f f is an
effective inverse temperature, determined by the energy of the
initial state.

Using the density of states for the SDRG fixed point, ρ(ε)
[74], we can compute the velocity of the associated quasipar-
ticles

ρ(ε) = ρ0

ε| ln ε|3 → v(ε) = ε| ln ε|3
ρ0

. (D4)

The above density of states is quite unusual, though we have
verified it numerically, reassuring us that we are closely ap-
proximating the infinite disorder fixed point. It displays a
concentration of low-energy “slow” modes between ε = 0
and 1. These may be responsible for the long-time growth
of entanglement entropy. It should be emphasized, however,
that the above density of states comes from the fixed point of
a real-space RG procedure, and is only expected to be valid
asymptotically as ε → 0. Using the standard form for the
semiclassical particle velocity, v(ε) = dε(k)/dk|k(ε), which
we have done, is also not exactly correct, since the eigenstates
of the disordered model are not labeled by momentum k. Dis-
order averaging, however, restores approximate translational
symmetry, and the above form of the quasiparticle velocities
yields results consistent with numerics. Combining the ingre-
dients from (D1)–(D4), we obtain the integral

S(t ) ∝ t

ρ0

[∫
|v(ε)|t<�

dεε| ln ε|3 + �

∫
|v(ε)|t>�

dε

]

×
[

ln(1 + eβε ) − βεeβε

1 + eβε

]
. (D5)

To second order in β, the first integral is

t

ρ0

∫
|v(ε)|t<�

dεε| ln ε|3
(

ln 2 − ε2β2

8
+ O(β4)

)
, (D6)

which is much easier to deal with. To determine the integra-
tion bounds, we solve

v(ε)t = ε| ln ε|3t

ρ0
= � (D7)
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for ε > 0. Because v(ε) does not increase monotoni-
cally with ε, there are multiple branches to the solution:

exp[3W−1( −1
3

3

√
�
t )], exp[3W ( −1

3
3

√
�
t )], and exp[3W ( 1

3
3

√
�
t )],

where Wk (x) is the kth branch of the product log or Lambert
W -function, and W (x) is the principal branch of the product
log function. The first two solutions are only valid (real) for
t > t∗ = e3�

27 , while the third is valid for all t > 0. Thus, t∗
is the time at which the slow modes begin to contribute to

the entanglement growth. This set of slow modes makes the
dynamics of the RSP markedly different from that of free
fermions.

The second term in (D5) can be integrated exactly. Taking
into account, once again, the multiple domains of integration,
and imposing an energy cutoff ε (which also functions as a
velocity cutoff), we obtain a very complicated and unenlight-
ening expression for the entanglement entropy, which we have
used to fit the numerical data in Fig. 5.
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