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1 | INTRODUCTION

Abstract

Reconnaissance teams collect perishable data after each disaster to learn about
building performance. However, often these large image sets are not adequately
curated, nor do they have sufficient metadata (e.g., GPS), hindering any chance
to identify images from the same building when collected by different reconnais-
sance teams. In this study, Siamese convolutional neural networks (S-CNN) are
implemented and repurposed to establish a building search capability suitable
for post-disaster imagery. This method can automatically rank and retrieve cor-
responding building images in response to a single query using an image. In
the demonstration, we utilize real-world images collected from 174 reinforced-
concrete buildings affected by the 2016 Southern Taiwan and the 2017 Pohang
(South Korea) earthquake events. A quantitative performance evaluation is con-
ducted by examining two metrics introduced for this application: Similarity Score
(SS) and Similarity Rank (SR).

nentially. In 2016, the National Science Foundation (NSF)
established a shared-use large facility known as the Nat-

Structural reconnaissance teams are deployed after each
natural disaster to gather a vast quantity of scientific data
in the form of images. These perishable data are meant
to support vital researches focused on identifying gaps in
construction and design practices and advancing improve-
ments in building codes (American Concrete Institute,
2017; Monical, 2020). The investment in gathering recon-
naissance data after natural disasters is growing expo-
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ural Hazards Engineering Research Infrastructure (here-
after, NHERI) that is dedicated to research in hazards and
resilience. The NHERI network has two facilities explic-
itly designed to support such data collection: (i) the RAPID
facility at the University of Washington (Designsafe-CI,
2016), and (ii) a data repository, DesignSafe-CI, at the Uni-
versity of Texas, Austin (DesignSafe, 2016). Several sim-
ilar data repositories do exist, for instance, through the
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Earthquake Engineering Research Institute (EERI), Can-
terbury Earthquake Digital Archive, QuakeCore (in New
Zealand), DataCenterHub (at Purdue University), and the
Pacific Earthquake Engineering Research Center (PEER,
at the University of California, Berkeley) (Datacenterhub,
2014; EERI, 2009; PEER, 2013; QuakeCoRE, 2016; UC
CEISMIC, 2012).

Despite the massive investments made to acquire and
host these data, current repositories and manual search
procedures are inadequate for effectively organizing
these data for domain use and efficiently conducting
scientific research. They are voluminous with a wide
variety of unstructured and complex images. Since they
are frequently reformatted or resized before publication or
distribution, geotagging or time-mapping the images with
metadata (EXIF) information is often not available or is
incorrect (e.g., GPS data). Consequently, the usability of
these data is significantly diminished since a large portion
of the images remains uncurated.

Several vision-based post-disaster evaluation methods
have been developed and published over the last few years.
Some of these capabilities are embedded within our auto-
mated reconnaissance image organizer (ARIO), an online
tool for automatically generating reconnaissance reports
with pre-trained classifiers. The capability of ARIO has
been demonstrated on a post-disaster dataset in the last
decade (Yeum et al., 2018, 2019). A rapid post-event assess-
ment technique was also developed, with which building
facades may be rapidly inspected using a large volume of
aerial images collected from UAVs (Choi et al., 2018). A
streamlined lifecycle visual inspection of landmark build-
ings was achieved by automating data collection proce-
dures through the open-source visual data crowdsourced
from citizens (Choi & Dyke, 2020). The capability of com-
paring pre- and post-disaster building damage has been
demonstrated by exploiting Google Streetview imagery
(Lenjani, et al., 2020a, 2020b). Recently, a complemen-
tary technique that automatically generates an inspector’s
indoor path was developed using a video footage captured
during a reconnaissance mission (X. Liu et al., 2020).

The majority of recent vision-based analytics and algo-
rithms dealing with post-disaster imagery are based on
image recognition. Post-disaster inspection of a reinforced
concrete (RC) bridge has been proposed, which per-
forms image classification, object detection, and seman-
tic segmentation, with hyperparameter selection based
on Bayesian optimization (Liang, 2019). An efficient edge
computing method was achieved by pruning convolutional
neural networks (CNNs) and Taylor expansion for use in
a robotic inspection of an infrastructure (Wu et al., 2019).
Deep learning-based damage detection approaches using
Faster R-CNN were introduced for post-disaster reconnais-
sance (Mondal et al., 2020; Ren et al., 2015). Several build-
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Gl
ing recognition systems have been proposed in the last
decade (Kokare et al., 2003; Li et al., 2014). A deep learning-
based image retrieval method was proposed to search var-
ious building scenes and its performance was evaluated
with mean Average Precision (mAP) (Gordo et al., 2016).
However, such approaches may be further strengthened if
there is a capability to identify each of the individual build-
ings (Igbal & Aggarwall, 1999). None of the past studies has
developed a method for rapidly retrieving and connecting
different images of the same building from a large pool of
unorganized post-disaster images. This gap exists because
it is infeasible to use a pre-designed category structure for
identifying images of the same building. For example, a
classifier may be trained to identify several buildings-of-
interest by using a predefined set of classes in a multiclass
structure (e.g., building A, building B, and building C).
However, if there arises a new building(s)-of-interest, this
classifier would not be able to identify the new buildings
immediately, and to do so the predefined set of classes
would necessitate a redefinition of the classes to include
the new building and retraining. The classifier infers a
function from labeled training data consisting of a set of
example of categories (Mohri et al., 2018). Thus, existing
image classification approaches do not perform this func-
tion of organizing and gathering the images of buildings.

To address this challenge, we have developed an
approach that, when given a query image of the building-
of-interest, will rapidly search throughout the entire con-
tents of a given database for images of the same building.
The approach is to filter the database to extract a ranked set
of images that are potential matches for the query image,
called building overview images (BOVs). Each of these
BOVs is compared with the query image to compute a sim-
ilarity metric based purely on visual contents. BOVs are
the images that capture an overall view of an entire build-
ing from different viewpoints and locations (Yeum et al.,
2019). In typical building reconnaissance missions, BOVs
are often the first set of images captured of a building dur-
ing an initial post-event survey and are immediately fol-
lowed by additional images captured at a closer distance to
the building for a detailed study (e.g., building components
or indoor damage). In most cases, the images from a recon-
naissance mission are organized by building, thus storing
BOVs and the detailed images of a building in the same
location. In other words, BOVs can be used as a visual tag,
allowing users to search for the same building images from
an uncurated image database. Identifying the stored loca-
tions of BOVs in a database also increases the likelihood of
finding additional images associated with the query build-
ing. Furthermore, BOVs provide unique visual information
about individual buildings that can be used to differentiate
them from others. Thus, BOVs are a key enabler to achieve
an automated building search capability by extracting and
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incorporating visual features present on the BOVs. The
one-shot learning capability of S-CNNss is ideally suited to
retrieve similar images using just a small quantity of BOVs
to train classifiers (Qi et al., 2016; Vinyals et al., 2016).

In this paper, we develop the capability to search the
entire contents of a given database for images of the same
building as a user’s query BOV image. The input to such
a system is the query image, and the output is a ranked
set of retrieved images containing images of the buildings
that are most similar to the query image. This approach
is capable of generating a sorted set of images based on a
similarity metric, which allows a user to view and choose
among them. This capability will enable the rapid integra-
tion of multiple datasets of the same building even when
collected at different times by different reconnaissance
teams. This capability directly supports scientific research
by expanding the image data available to study the per-
formance of a given building under one of more events.
We implement this task-oriented image retrieval system
using S-CNN that combines feature extraction and met-
ric learning into a single framework (Bromley et al., 1994;
Gordo et al., 2016; Hadsell et al., 2006; Koch et al., 2015).
By training on pairs of BOVs, which include both pairs of
the same and pairs of different buildings, the S-CNN can
automatically rank building images corresponding to the
query image. By establishing this powerful search capa-
bility, researchers, engineers, and scientists can efficiently
utilize the vast amounts of data being collected at great
expense, and rapidly transform visual data into knowledge
about our built environment. This novel approach would
be best suited for data searches in large databases. Quanti-
tative performance evaluation of the machine is originally
designed for this domain application and is conducted by
examining the values for: (1) similarity score (hereafter, SS)
among true-matches and false-matches, (2) similarity rank
(hereafter, SR) distribution of true-matches with 251 differ-
ent queries, (3) SR performance per 30 different test build-
ings, and (4) the probability that at least one true-match
exists within the SR of the top 10 using our method. Addi-
tionally, the performance of the model is evaluated by con-
sidering a binary classification metric by considering both
SS and SR as thresholds.

2 | TECHNICAL APPROACH

The method developed herein is intended to provide the
power to search across an image database to gather images
from the query building. We assume databases contain a
wide variety of scenes collected from many different build-
ings in the form of images (e.g., building overview, indoors,
outdoor scenes, columns, walls, etc.), and that a large num-
ber of these images remain unlabeled and unclassified. The
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technique automatically ranks the BOVs for a correspond-
ing building query using a similar searching capability to
identify images from the same building.

An overview of the approach is illustrated in Figure 1.
Implementation of the approach has four steps: Step 1, the
user query as the input; Step 2, BOV classification to extract
all BOV images from the database; Step 3, similarity score
computation (SS); and Step 4, BOV retrieval based on sim-
ilarity rank (hereafter, SR). In the user query step, we char-
acterize the contents of the query image provided by the
user with a single vector denoted u. This step exploits con-
volutional layers trained with a contrastive loss function
based on S-CNNs (Bromley et al., 1994; Hadsell et al., 2006;
Koch et al., 2015). To perform image retrieval, BOVs are
first extracted from the reconnaissance database using our
robust BOV classifier. A second vector v;, which character-
izes each BOV using the same trained convolutional lay-
ers, is then compared to the vector u that is obtained from
the user query image. These two vectors are then used to
compute their visual similarity, denoted by f(u, v;), yield-
ing SS; iteratively for each BOV found within the database.
Note that Steps 2 and 3 are not necessarily conducted every
time. When the user plans to test multiple query build-
ings, the BOVs and corresponding v vector are stored in the
database and reused without repeating these steps. Finally,
BOVs from the database are ranked by SS, allowing users
to access images of the query building from the database,
assuming that such images do exist.

Before the details of each step are discussed in the fol-
lowing subsection, we emphasize that the proposed image
retrieval model does not have to be trained using images
from the reconnaissance database being searched. The
image retrieval model can be applied to any existing recon-
naissance image database. This strategy is possible since
the model extracts general building features to assess the
visual similarity between a query BOV and all other BOVs,
rather than searching for the query building that the model
has already seen. Thus, the model is not trained to extract
specific features that can characterize individual buildings
in the training dataset, which is the approach commonly
used in developing image classification models. This is the
key difference between conventional CNNs and S-CNNs
which allows this technique to achieve a high level of
generalization.

2.1 | User query

In developing the approach, we use BOVs as the query
image because it contains visual features that can uniquely
determine the individual building. The method is intended
for the query image to be the one captured by another
reconnaissance team and it can be taken either pre-event



* L WILEY [

o
£
®
7
@
o
o
A
Q.
;
<
o

Twin Network 1

__________________

CHOI ET AL.

Identical building image collection

§S:0.86 SS:0.72

S: 0.9

|
| - :
A A
o fvi o
c
Q “Twin Network 2. @ SR#1  SR#2  SR#3
[] ! [~ )
§ = ...lﬁrf_ é
sl | LRI
E | S| U
Reconnaissance BOV Similarity score BOV retrieval with
database classification (SS) computation similarity rank (SR)
FIGURE 1 Overview of the building search method: Step 1: User query; Step 2: BOV classification; Step 3: Similarity score (SS)

computation; and Step 4: BOV retrieval with similarity rank (SR)

FIGURE 2

Samples of building overview images (BOVs)

or post-disaster. BOVs of severely damaged buildings that
are unrecognizable would not be suitable in this work.
Sample BOV images are shown in Figure 2. Herein, BOVs
are defined as images that contain the complete external
appearance of the building, usually from a distance, and
include one entire side view or a front view of the build-
ing and have at least 70% of the building being visible in
the image even though partial obstructions may exist. For
example, images that contain the entire building facade, a
canonical view of the building or one complete side of the
building are possible examples (Yeum et al., 2019). BOVs
are an essential and common type of scene used in recon-
naissance data collection because they are typically used
to identify the building that is under investigation before
any other images containing specific damage information
or structural details are captured. Thus, such an image can

act as a visual tag to identify and link the same building
across the database.

3 | BOV CLASSIFICATION

Reconnaissance data collected for evaluating the perfor-
mance of our infrastructure generally includes complex,
unordered, and unstructured scenes. These teams need to
gather a large volume of perishable data in a short period
of time in a way that does not interrupt recovery efforts
or harm the residents of that region. The visual data
collected focuses on buildings and building components
and include specific damage to columns and beams such
as shear cracks, buckling, and spalling. Additionally,
important metadata such as drawings, GPS devices, or
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measurements (e.g., a column with a measuring tape) may
be captured in the form of an image. Furthermore, the
data may also contain a significant amount of irrelevant
(e.g., people, random objects, vehicles) or even corrupted
(e.g., blurred, noisy, dirt on the camera lens) images. In
our previous work, a multiclass classifier was trained
and successfully demonstrated our automated approach
for classifying and documenting such post-earthquake
reconnaissance images (Yeum et al., 2019). Field engineers
were consulted in the development of appropriate visual
data categories, including BOVs, along with an associated
hierarchical structure to support the domain research
needs (Yeum et al., 2018). Deep CNN algorithms were
implemented to extract robust features of key visual
contents in the images. The tool has been quite successful
in classifying the images into pre-designed categories, of
which BOV classification is one of its functions.

In this step, we extract BOVs from the database using
the pre-trained image classifier developed in the previous
study. Unlike the other classes in the schema, BOVs con-
tain the visual characteristics of each individual building as
a single image. Thus, with this classifier, all BOVs may be
automatically extracted from the database for ready com-
parison with a query BOV, to be described in the following
steps.

4 | SIMILARITY SCORE COMPUTATION
In the last decade, CNNs have enabled remarkable
progress in the computer vision field and the associated
use of large-scale databases for supporting vision-based
applications (Adeli, 2020; Krizhevsky et al., 2012; LeCun
et al., 1990). A CNN typically has one or more convolu-
tional layers with tunable weights and pooling layers to
extract features that are invariant to small scale, rotation
and translation transformations, and fully-connected
layers that interpret these features to classify image or
object categories. Generally, a training phase is used where
the goal is to learn a large number of CNN parameters in
the convolutional and fully connected layer to minimize
the loss to estimate true labels of a large number of
training images. One solves this minimization problem
through a variant of stochastic gradient descent. In data
augmentation, raw images are resized and square-cropped
to be transformed into the input size of the CNN, typically
a square with low resolution. Furthermore, additional
image augmentations are added to reduce model over-
fitting. The augmentations used herein include random
rotations of +10 degrees, zoom of +20% (zoom out/in),
brightness changes of +20%, contrast changes of +20%,
and saturation changes of +10%. After passing through the
entire dataset, a batch is assigned using randomly ordered
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images (i.e., jittering) at each epoch. Several deep learning
algorithms proposed recently have demonstrated excellent
performance for particular applications (Alam et al., 2020;
Pereira et al., 2020; Rafiei & Adeli, 2017). Their accuracy
varies depending on how one configures the network
architecture with input data. Researchers have been incre-
mentally introducing new layer structures and network
configurations to improve performance. The performance
of state-of-the-art CNNs is often evaluated using one or
more of the existing benchmark datasets (e.g., ImageNet,
PASCAL). Thus, it has become common for these state-of-
the-art CNNs to be applied in a wide variety of disciplines,
where the parameters of the network are fine-tuned prior
to usage. This approach is adopted because these networks
are often quite effective for practical use even when applied
to new datasets. Optimal network architectures for a cer-
tain image type remain a topic of research and are under
development in many domains of application. However,
CNNs are generally able to provide excellent performance
for an object category classification and detection when
dealing with natural images (Russakovsky et al., 2015).

Among the several possible implementations of CNNs,
we focus on the class of CNNs known as the S-CNN to build
an image search tool. Because the BOV retrieval task is not
a classification problem, each building cannot be trained
as a separate class. As a result, the S-CNN is used, which
maps images to a learnable feature space (in this study,
images mapped to this space are represented as a vector).
For this study, the network learns to map same-building
image pairs close to each other in the feature space while
different building image pairs are mapped far from each
other. After the query image and the rest of the BOV images
in the database are mapped to the feature space, the image
pairs are ranked according to the SS, which is computed as
follows:

1

§Si=fu,v) = T+ u=oll €y

where u is the query image vector, v; is the ith BOV image
vector in a database computed using a trained S-CNN,
and |lu —v;|| is the L2-norm of the difference between
the two vectors (otherwise known as the Euclidian dis-
tance between two vectors). As a result, each SS has a
range between 1 and 0. Image pairs with SS values close
to 1 indicate a highly similar pair, while image pairs with
SS values close to 0 indicate a highly dissimilar pair. The
metric SS is used as the metric to simplify model per-
formance analysis as it can be linearly derived from the
L2-norm while conveniently having finite bounds from
0 to 1, whereas the L2-norm can have bounds from 0
to infinity. The key underlying assumption that enables
the training of S-CNNs for this study is that a pair of
BOVs captured from the same building but from different
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FIGURE 3 The architecture of a Siamese neural network

(S-CNN) used in this research; contrastive loss function is used in
S-CNN

viewpoints sharing common visual features that make
them distinguishable from other buildings. The ground
truth training set, known here as the “similarity ground-
truth dataset,” contains labeled images of the same build-
ings. The weights in the network are trained on randomly
generated pairs from this dataset. The relevant capabili-
ties of S-CNNs are that they: (1) learn to score visual rel-
evance by mapping same building image pairs to close to
each other, and different building image pairs far apart
from each other in the feature space; and (2) learn from
an extremely limited quantity of data, which is called one-
shot learning. The S-CNN is not a brand-new concept, as
it is widely used in various applications (e.g., facial re-
identification (Chopra et al., 2005; Wang et al., 2016; Zhang
et al., 2016), medical imagery (Y. Liu et al., 2017)). Here,
for building identification, the S-CNN is assessed in terms
of its ability to quantify the visual similarity between the
input, the user query image, and each of the images in a
database. Those pairings found to have the highest simi-
larity to the query image that can be retrieved using this
similarity score.

The details of the similarity learning network and our
training schema are provided here. S-CNN consists of twin
networks with shared weights (weight values and structure
of each network are identical to each other) that take dis-
tinct inputs and output a vector in the learnable feature
space. The vectors are then fed into a contrastive loss func-
tion rather than a classification loss function, as shown in
Figure 3. The contrastive loss function contains dual terms,
where the loss criteria for similar-pairs and dissimilar-
pairs are different when optimizing the weights of the twin
networks (Koch et al., 2015).

The S-CNN architecture is presented in detail in Hadsell
et al. (2006). The parameters between the twin networks
are identical and share the same weights, but each net-
work accepts different image inputs, which are denoted I,
and I,. The twin networks consist of a sequence of iden-
tical convolutional layers, where the nodes in the final
convolutional layer are flattened into a single vector and
followed by two fully-connected layers. T represents the
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tunable convolutional and fully-connected weights in the
twin networks used to map input images I; and I, to a
feature space, shown as T'(I;) and T(I,) in Figure 3. After-
wards, the resulting two vectors are fed into the contrastive
loss function in Equation (2), which then optimizes the
hidden vector T. The first fully-connected layer has 4096
nodes and is followed by the last fully-connected layer,
which has 10 nodes and its output is used to compute the
SS. Note the output feature space dimensions match with
the number of nodes of the last dense layer, that is, it is 10.
We empirically selected 10 output nodes after several trials
using various output node sizes for optimal performance.
The contrastive loss function takes the following form:

(1-Y) %DZ + Y%{max (0,m — D)’ 2)

where D is defined as the L2-norm (e.g., Euclidean dis-
tance) between the two output vectors computed for the
corresponding image pair using the twin networks. The
L2-norm between the feature vectors of the two images is
computed as follows:

D=|ITU)-TW)I = | X (TU), ~TI),)" 3
k=1

where the subscript k indicates the kth element in
vectors T(I;) and T(I,), and n is the number of output
nodes (10 in this study). Thus, a large D indicates that
the image pairs are very dissimilar, and when D is small,
the image pairs are quite similar. In Equation (2), Y is 0
when both images in the pair are sampled from the same
building, and 1 when each image in the pair has been sam-
pled from different buildings. Thus, when Y is 0 (images
are from the same building), the 2nd term in Equation (2)
disappears and the loss function penalizes dissimilarity D
between the image pair, and optimization brings the image
pair closer to each other in the feature space. On the other
hand, when Y is 1 (images are from different buildings), the
1st term in Equation (2) disappears and the loss function
penalizes the negative dissimilarity (which can be under-
stood as similarity) capped to a maximum value of the mar-
gin, m for training stability. Thus, optimization for this case
pushes the image pair further away from each other from
the feature space. The margin is in place to optimize the
network by eliminating the case of abnormally high value
of D among those that are labeled as “dissimilar pair.” Dis-
similar pairs with a value of visual similarity that is beyond
this margin will not contribute to the loss. In essence, the
network deems that dissimilar pairs with D greater than
the margin are sufficiently far apart and do not need to be
optimized. The optimal value for parameter m is usually
dependent on the dimensionality of the network’s output
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vector which can be empirically derived through manual
performance validation or automatically determined dur-
ing training (Sun et al., 2014). Once the distance between
dissimilar pairs is sufficiently broad (i.e., greater than the
margin), that pair is ignored so that other dissimilar pairs
with distances lower than the margin can contribute to
the model training. The networks are optimized with the
contrastive loss function using a similarity ground-truth
dataset that can contain many similar and dissimilar pairs,
which indicate two images from a single building and two
different buildings, respectively.

The key to the successful training of the networks lies
in setting the similarity ground-truth dataset. Here, many
pairs from past reconnaissance field missions are prepared
and used as ground-truth data, as discussed in Section 3.
We assume that the visual similarity (score) between a pair
of BOVs captured from a single building is a function of the
relevant features. However, an inherent challenge to define
the similarity metric is that the BOVs may contain entirely
different sides of a single building some of which may
not be visually similar although they are from the same
building. To overcome this challenge, we further filter the
training dataset in which similarity is defined by exam-
ples provided by simply matching handcrafted features
between images instead of learning-based features (Chher-
awala et al., 2013). Specifically, we first group all BOVs
for a given building. Then we extract the scale-invariant
feature transform (SIFT) features with cross-matching to
choose the two most similar images. We annotate those
two images as a similar pair, generating a feature map to
identify patterns by groupings of pixels of the image (Peker,
2011). In other words, not all BOVs captured from the same
building are defined as similar pairs, rather only image
pairs of the same building that share a certain number of
these SIFT features are assigned to be similar pairs. For
image pairs taken from the same building that do not share
enough SIFT features, they are not assigned as dissimi-
lar pairs but are simply removed from training. Dissimilar
pairs are only annotated when BOVs are taken from dif-
ferent buildings. Thus, only annotated similar and dissim-
ilar pairs are involved in the training process, and pairs of
BOVs captured from the same building but without insuf-
ficient visual overlap are ignored. While SIFT is used in
this paper, other feature detection algorithms (Bay et al.,
2008; Leutenegger et al., 2011; Matas et al., 2004; Rosten &
Drummond, 2005) could alternatively be used for filtering
similar image pairs. The details of such cases are demon-
strated with BOV examples and discussed in the following
section.

As pre-processing for training, we apply several aug-
mentation methods to the BOVs, including: (1) setting a
possible minimum size of the square window to crop only
the portion of the BOV image containing the building (this
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step directly supports minimizing errors caused by image
ratio and resizing) and (2) using RGB color channels rather
than greyscale images to allow for color to be considered in
the matching process.

5 | BOV RETRIEVAL WITH SIMILARITY
RANK

Using the trained twin networks, the SS is computed for
each BOV in the database and the query image. The SS is
computed as the logistic of the Euclidean distance, D, and
falls within the range between 0 (least similar) and 1 (most
similar). Then, BOVs are ranked based on the SS and the
corresponding ranking values are used to develop SR.

The ideal scenario is that the BOVs captured from the
query building have higher SS and lower SR (higher rank)
values than their values from the other buildings. How-
ever, the actual implementation and its evaluation should
be different; not all BOVs from a query building share com-
mon visual features with a single query image, as men-
tioned in the previous subsection. Furthermore, producing
good SR values for all those images might not be a neces-
sary condition to judge the performance of the application
that needs this search capability. The application requires
at least one of the BOV images be ranked high so that a
researcher can immediately recognize the identical query
building from the ranked BOVs. This process is quite sub-
jective in generalizing what values are considered high and
low as it may vary depending on the user’s preferences as
well as the size of the database used. Certainly, the perfor-
mance of image retrieval will vary depending on the size
of the database, quality of the images, and consistency in
data collection procedures.

To generalize the method, we thus evaluate both the
SS and SR values designated as true-match so that one
can estimate its performance. Here, when the BOVs in
the database are retrieved after a user query, we denote the
BOVs corresponding to the user query as true-matches and
all the other BOVs as false-matches. Thus, our final goal is
to provide at least one true-match image to the user, that
is, one image which was captured from the same build-
ing as the query image. Ideally, the method should assign
BOVs that are a true-match high SS and low SR values (high
ranking). In the following section, we demonstrate that our
method can provide search and retrieval capabilities to link
different data sets from the same building, which will sup-
port research in infrastructure performance.

6 | PERFORMANCE EVALUATION

We demonstrate and evaluate the similarity-based build-
ing search method using real-world examples considering
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RC buildings captured in past earthquake reconnaissance
missions. We select images of RC buildings in this per-
formance evaluation study because: (1) RC buildings are
the most prevalent type of buildings around the world;
(2) a large number of images is available because a sig-
nificant portion of reconnaissance databases focuses on
RC buildings; and (3) many types of structural damage
can be observed in RC buildings that practitioners and
researchers may be interested in for further investiga-
tion (Datacenterhub, 2014; DesignSafe, 2016; EERI, 2009;
PEER, 2013; QuakeCoRE, 2016; UC CEISMIC, 2012).

For this evaluation, we train S-CNN model to measure
the visual similarity of BOVs using two reconnaissance
image datasets, which were collected by several reconnais-
sance teams with different cameras and different camera
settings: the 2016 Southern Taiwan earthquake and the
2017 Pohang earthquake, South Korea. Both datasets focus
on the performance of RC buildings and include a vari-
ety of images and several BOVs for some of the build-
ings. We then conduct a quantitative evaluation of the per-
formance of the similarity-based building search method
by examining the values for: SS among true-matches and
false-matches, SR distribution of true-matches, SR of true-
matches per building, and the probability that at least
one true-match exists within the SR of the top 10 using
our method. Additionally, the performance of the model
is evaluated considering a binary classification metric by
changing the thresholds for either SS or SR.

7 | BOV DATASET

An extensive post-event reconnaissance image collection
was developed by Yeum et al. (2018, 2019) for use in
researches related to reconnaissance image classification
and organization (Yeum et al., 2018, 2019). The database
includes over 100,000 color images collected by structural
engineering teams after natural disasters such as earth-
quakes, hurricanes, and tornados, then archived in various
databases (e.g., Purdue University’s datacenterhub.org,
Canterbury Earthquake Digital Archive, and Earthquake
Engineering Research Institute’s reconnaissance archive)
(Datacenterhub, 2014; EERI, 2009; UC CEISMIC, 2012).
To investigate similarity classification, we focus on recent
events and data from RC buildings including, the 2016
Southern Taiwan earthquake, with a total of 14,102 images,
and the 2017 Pohang earthquake, South Korea, with a
total of 4101 images (NCREE, 2016; Sim et al., 2017). Both
datasets contain a variety of typical structural scenes such
as building components (e.g., wall, columns, or beams),
damage type (e.g., cracking, spalling, or collapse), and
image location (e.g., building interior or exterior). Use-
ful metadata are also commonly collected in the form of
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images during a reconnaissance mission (e.g., images of
GPS devices, drawings, watches, or measurements).

The BOV dataset used in this evaluation is a subset of
these two reconnaissance image collections. The step of
BOV classification is well demonstrated and proved with
the larger dataset in the authors’ previous work, thus we
do not demonstrate the performance of BOV classification
in detail (Yeum et al., 2019). The resulting BOV dataset con-
sists of 1332 BOVs of 151 RC buildings. Of these, 953 BOVs
are from 97 buildings visited by field teams after the 2016
Southern Taiwan earthquake, and 379 BOVs are from 54
buildings visited by field teams after the 2017 Pohang earth-
quake, South Korea. The number of BOVs for each build-
ing varies considerably, ranging from 2 to upwards of 24
images. All of these BOVs were collected with commercial
DSRL cameras of which resolutions range from 10 to 24
megapixels. Each building in the database was reviewed
and found that the buildings have a distinct characteristic
such as color, shape, size, the number of stories or window
arrangements. These distinct characteristics allow S-CNN
to extract building features sets to evaluate the similarity
of the buildings. BOVs contain a partial or entire building
exterior view as well as different viewpoints. BOVs from
the same building can contain many perspectives and dif-
ferent sides of the building.

8 | MODEL TRAINING

We combine two datasets, the 2016 Southern Taiwan earth-
quake and the 2017 Pohang earthquake, South Korea, and
split it into training and testing sets where buildings from
both datasets are intermixed into either set instead of train-
ing on one dataset and then testing on the other dataset.
While cross-validation is known to provide an unbiased
estimate of prediction error, it is also known that its vari-
ance may be very large (Breiman, 1996). When a model
is trained using images from just one isolated region, the
network is likely to extract and learn features about the
regional building styles. Intermixing datasets helps gener-
alizing the model and enhancing its robustness by avoiding
the network trained with the regional building styles from
one isolated dataset.

For training the model that determines the SS, we set
aside around 80% of the total data by buildings: 1081 BOVs
of 121 buildings. We initially create BOV pairs using cross-
matching among all of the 1081 BOVs, yielding a total of
583,740 pairs after excluding self- and commutative-pairs
(e.g., (1081 x 1081 - 1081)/2). Here, we highlight that the
images used for training and testing were captured from
entirely different buildings, thus these sets do not share
any images. Specifically, images from one building are
either only in the training dataset or only in the testing
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FIGURE 4 Samples of (a) similar pair, (b) different pair, and (c) dissimilar pair
TABLE 1 Composition of train and test dataset
Train Test Total
No. of building 121 30 151
No. of BOV 1081 251 1332
No. of pairs 583740 31375 -
Similar pairs Different pairs Dissimilar pairs True-matches False-matches
2544 574887 6304 1477 29898

dataset and are never split between the training and testing
datasets. To designate similar and dissimilar pairs, we first
exclude any BOV pairs that contain two images captured
from a single building but contain two entirely different
facades, named here as different pairs. The number of SIFT
feature matching is used to distinguish between similar
and different pairs. The definitions of each category criteria
are as follows: (1) similar pair: BOV pairs that are captured
from the same building with similar viewpoints and shar-
ing common visual features; (2) different pair: BOV pairs
that are captured from the same building but contain dif-
ferent regions (or sides) of the building. The visual appear-
ance of the buildings in these pairs does not overlap much;
and (3) dissimilar pair: pair that is captured from two dis-
tinct buildings. Sample images for these pairs are present
in Figure 4. We used “vl_ubcmatch” in the VLFEAT open-
source computer vision library to match descriptors from
SIFT features from a pair of images (Vedaldi & Fulkerson,
2010). If the number of matched features is greater than
10, we assign the pairs as similar pairs, otherwise they are
assigned as different pairs. Finally, while any different pairs
are disregarded, similar and dissimilar pairs are used to
train the model. This is because pairs defined as different
pairs are overall weak in visual similarity, but this does not
mean that the buildings in those images are dissimilar. The
relevant number of pairs available and used for this train-
ing are shown in Table 1.

For training, we implement S-CNN as introduced in the
previous section, using the MobileNetV2 (Sandler et al.,
2018) architecture with image input size 224 x 244 X 3.
Each BOV is cropped with a possible minimum square

from image center point to have a uniform aspect ratio and
to ignore irrelevant background scenes. Because we are
looking for the same building, the RGB color channels are
used rather than using a greyscale version of the original
image. To monitor the performance during the training,
we track both training and validation loss for each epoch.
We determine an epoch of 200 empirically to have train-
ing termination criterion using Adam optimization algo-
rithm (Kingma & Ba, 2015) with a batch size of 32 and
learning rate of 5 X 10~*. A margin of value 2 was used. A
Linux workstation with i9-7920X CPU clocked at 4.3 GH,
64 GB memory, GTX 1080Ti GPU with 11 GB of video mem-
ory and 64-bit operating system is used to run NVIDIA
CUDA-enabled PyTorch (a Python package) to train the
model. The total training time with the given specifica-
tions of the workstation takes 40 to 45 minutes on average.
Model training results are shown in Figure 5.

9 | PERFORMANCE EVALUATION
USING A SIMILARITY SCORE AND
SIMILARITY RANK

The performance of the method is quantitatively mea-
sured using a task-oriented evaluation metric specifically
designed in this study. While we aim to achieve true-
matches that are highly ranked among the large volume
of BOVs, the decision as to whether or not the retrieval
is effective does also depend on assuming a reasonable
amount of effort on the part of the user. We focus this evalu-
ation on the two most direct and simple criteria available:
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The model training result of both training and

similarity score (SS) and similarity rank (SR) of the true-
matches among the all BOVs in a retrieval. The detailed
results for the performance evaluation are given in this sec-
tion considering SS, SR, and a binary classification metric
(e.g., precision-recall curves) over the continuum of vary-
ing both SS and SR.

For this quantitative analysis, we use a test dataset of
251 BOVs from 30 buildings (see Table 1). For each test,
each BOV is used as the “query BOV” and the remain-
ing 250 BOVs are regarded as “retrieval BOVs.” Then the
next BOV is used as the “query BOV” and so on. In the test
dataset, the total number of BOVs per building varies con-
siderably, ranging from 2 to upwards of 24 images. Each
“retrieval BOV” is individually compared with the query
BOV in the machine, and then a SS is assigned. The SS falls
in the range from 0 (least similar) to 1 (most similar). Our
goal is to predict higher SS values for true-matches. This
process is repeated for each BOV. Cross-matches between
251 BOVs yield total of 31,375 matches to compare after
eliminating self- and commutative-matches (e.g., (251 X
251 - 251)/2). Here this includes 1,477 true-matches and
29,898 false-matches across the 30 test buildings, as shown
in Table 1.

One direct way to evaluate the performance is to look
for a different result for the SS value based on our observa-
tions of the true- and false-matches; here different pairs are
included in true-matches as the data for the test is regarded
as a raw data. The distribution of SS values for all of the
31,375 possible matches is shown in Figure 6. The number
of true- and false-matches is normalized by dividing with
the total number of each case. Note that the values do not
fall into distinct clusters, and a few of the true matches
actually have quite low SS values. The performance of
our machine is found to be reasonable in distinguishing
true-matches from false-matches. In the test, the average
SS from true-matches (mean: 0.60, median: 0.61, and stan-
dard deviation: 0.28), blue-colored bars, are much higher
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than the ones from false-matches (mean: 0.37, median 0.34,
and standard deviation: 0.127), orange-colored. The values
of mean, median, and standard deviation change slightly
with multiple trials although it is observed that those val-
ues of true-matches are always higher than false-matches.
Next, we analyze SR (rankings). With 250 retrieval BOVs
per query in our test, the SR is assigned to each “retrieval
BOV” and has a range from 1 (highest rank) to 250 (low-
est rank). We set criteria for success as yielding at least one
true-match that is ranked within the top 10. For evaluating
the method, we focus on the sole true-match that is high-
est ranked among all frue-matches in the retrieval, named
first-true-match here. We are not concerned yet with all of
the true-matches. This is because each building has differ-
ent number of BOVs and, on the application side, ranking
one BOV from true-matches (first-true-match) in a higher
rank is more important than the inclusion of all true-
matches within the higher rank. The SR distribution of
first-true-matches is shown for all 251 tests in Figure 7. The
average SS score for the first-true-match is also shown in
Figure 7. Among the 251 tests, 215 first-true-matches have
an SR within the top 10. Their average SS value is 0.83.
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FIGURE 8 SR of first-true-matches per building where we
identify the corresponding building across the 30 test buildings
when each BOV is used as a query; the SR of first-true-match within
top 10 for the query, bars with blue-, orange-, and gray-colored is
dominant for most of the buildings

Surprisingly, 116 first-true-matches have an SR value of 1
(with an average SS value of 0.90). These results indicate
that a BOV of the same building as the “query BOV” within
the top 10 retrieved BOVs with a probability of 85.6% (sum
of the number of cases from 1st to 10th divided by 251). This
result tells us that users need only look at the top 10 BOVs
automatically ranked from our system to successfully.
The performance may also vary for each building.
Figure 8 provides the SR values of the first-true-matches
per building, where we identify the corresponding build-
ing across all 30 test buildings. As mentioned earlier, each
building has a different number of possible true-matches,
that is, a different number of matches exists for each build-
ing in the entire data set, and thus the bars are different
sizes. To generate a single bar in this plot, each BOV is used
as a query, and the SR value for all of the true-matches is
examined. For example, suppose that one BOV from build-
ing #1 is used as a “query BOV.” If the first-true-match
retrieved has an SR of 1, then this case is the blue-colored
portion of the bar in Figure 8. The same procedure is fol-
lowed for all 251 tests. The SR values of first-true-matches
within the top 1, 2-5, and 6-10 for the query are present
at the bars with blue-, orange-, and gray-coloring, respec-
tively, and they are dominant for most of the buildings (see
the portions of blue, orange and gray compared with the
one with yellow). There are two unfavorable cases, notice-
able for buildings #10 and #11 for which all results are low
ranked, shown as yellow-colored bars. Upon investigation,
we observed that these cases have very few BOVs (less than
3) showing different facades of the building that are not
visually similar. This makes sense that they are “differ-
ent pairs” defined in the previous section, which are not

59 WILEY-2

included in the training. Figures 9a, b, and ¢ show sam-
ple BOVs match results with SS and SR values for sim-
ilar, different, and dissimilar pairs. The performance on
these three different pairs is demonstrated with an iden-
tical query BOV in the first row in Figure 9. Note that from
our observations of the available datasets, collecting fewer
than three BOVs per building is quite an unusual scenario
in a real-world reconnaissance mission. In general, recon-
naissance teams capture multiple BOVs for each facade of
a building. This study concludes that for 28 out of 30 test
buildings our trained network produces satisfactory results
with at least one true-match existing with an SR value in
the top 10, with the exception of the two cases mentioned
previously.

We found that the number of BOVs for a given build-
ing is one of the major parameters affecting the perfor-
mance of this method. Obviously, the odds for obtaining
a true-match increases when more BOVs corresponding to
the “query BOV” exist among the “retrieval BOVs.” Thus,
to estimate the minimum number of BOVs that should be
collected by a building reconnaissance team, we track the
performance while varying the number of corresponding
BOVs from 1 to 23. Here, 2 and 24 are the minimum and
maximum number of BOVs among test dataset. Figure 10
shows the probability that at least one true-match exists.
The blue dotted line represents the top 10 SR values using
our method and the orange line indicates its theoretical
probability when any 10 BOVs are randomly selected BOVs
among the total 250 “retrieval BOVs.” To calculate this
theoretical probability of detecting at least one true-match
(POD) with a random selection of 10 BOVs, we adopt the
hypergeometric distribution, with probability mass func-
tion represented in Equation (3) (Rice, 2006):

= (/€)oo

where N and n stand for the number of retrievals of BOVs
available in the entire data set and the number of randomly
selected BOVs, respectively, K represents the number of
true-matches desired in the top n selected BOVs and k is
the number of BOVs corresponding to the query building
(BOV). While the value of k may take on values between
from 1 to 23 for different buildings in our dataset, other
parameters are fixed for our testing dataset with N = 250
and n = 10. In combinatorics, based on Vandermonde’s
identity, the following relationship in Equation (5) holds:

YPX =k=1 ©)
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FIGURE 10 The probability that at least one true-match exists
within either: (1) the top 10 SR values from our experiment; or (2)
any 10 BOVs randomly selected using hypergeometric distribution

Thus, POD can be found by subtracting no detection
probability (k = 0) from 1 in Equation (6):

POD = 1-P(X = 0) (6)

In this comparison, our method is shown to consistently
and considerably outperform random selection even in the
case where only one corresponding BOV is available. In
our test with 30 buildings, the probability of finding a BOV
ranked in the first ten outcomes is at least 80% when a
total of 251 BOVs are used to retrieve and the correspond-
ing datasets include over five BOVs per building. Thus,
a guideline suggested to potential users for the proposed
system is that the buildings having more than five BOV
images can be likely detected by a single query BOV image
when they observe the top 10 ranked images. When the
user thinks that the number of corresponding BOVs is less
than five in the dataset, the POD value can be increased by
increasing the number of n, which is the number of ranked
BOVs observed by users.

(b) (©)

Sample BOVs match results with SS and SR values from (a) similar, (b) different, and (c) dissimilar pairs

10 | PERFORMANCE EVALUATION
BASED ON PRECISION AND RECALL

Evaluating the model with widely used metrics such
as precision and recall in binary classification will sup-
port its performance and capability. However, the model
does not directly provide binary classification results; our
similarity-based model is to measure visual similarity via
SS and SR. For example, when each query is regarded as a
single trial of a test, the performance would highly depend
on the user’s preference and the quantity and quality of
the database in which the user can choose values of SS
and SR appropriate for defining true or false classification.
Here, we define solid criteria in setting ground-truth label-
ing (true or false) and decision threshold (positive or neg-
ative). To develop intuition about these values, we inves-
tigate precision and recall of the similarity-based image
retrieval depending on a threshold of SS (SSt) and the top n
BOVs considerations (n7). The metrics for computing pre-
cision and recall are defined as follows:

* True Positive (TP): A case that any true-match has an
SS equal to or higher than SSt (positive decision) and at
least one true-match exists within top n in the retrieval
(true label);

* False Positive (FP): A case that any true-match has an SS
of equal to or higher than (SSt) (positive decision) and at
any true-match does not exist within nr in the retrieval
(false label);

* True Negative (TN): A case that any true-match has an
SSless than (SSt) (negative decision) and any true-match
does not exist within the top ny in the retrieval (false
label);
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* False Negative (FN): A case that any true-match has an
SS less than (SSt) (negative decision) and at least one
true-match exists within the top nt in the retrieval (true
label).

These values are computed based on 251 trials in the test
dataset. Figure 11a demonstrates the precision and recall
depending on the SSt and nt. For instance, when SS = 0.8
and SR = 10, the precision would be described with the
phrase: among a total of 251 trials, the proportion of the
cases containing at least one true-match within the top 10
among the cases containing any true-match having an SS of
above 0.8. The corresponding phrase for recall is: among
total 251 trials, the proportion of the cases containing at
least one true-match having an SS of above 0.8 among the
cases at least one true-match within the top 10.

We summarize the results in Figure 11b using the
precision-recall curves when nr is 1, 5, 10, 15 and 20. The
result shows that, for higher ny, more retrieved images are
considered as a true classification. It is noticeable that both
precision and recall can be achieved nearly “1” when SR is
ramping up. This result makes sense in that as more data
are reviewed by users, the chance to detect the BOV cor-
responding to query building increases. This also demon-
strates that observing more BOVs is the way of increasing
POD mentioned in Section 3.3. By increasing the numbers
of BOVs in the database, the precision and recall curves
could be going down in the anti-diagonal direction because
the number of false-positive detection is increased in pro-
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portion to the size of the database. Thus, this graph shows
that users could use this graph to balance the trade-off
between accuracy (detecting at least one BOV correspond-
ing to the query building) and usability (the number of
ranked BOVs observed).

11 | CONCLUSION

In this paper, we have developed a method to search a
building reconnaissance dataset by using a building image
as the input to the query. The approach aims to reorga-
nize the large volume of images in terms of visual simi-
larity to the query image, achieving this goal by leveraging
and adapting recent advances in deep learning research,
specifically Siamese CNNs. Building overview images are
automatically extracted from a database, and then are com-
pared to a query image using our method. The technique is
demonstrated using data collected from two recent recon-
naissance missions, the 2016 Southern Taiwan earthquake
(1226 BOVs from 117 buildings) and the 2017 Pohang earth-
quake, South Korea (379 BOVs from 54 buildings). A quan-
titative evaluation is conducted via various metrics devel-
oped for this application. The results demonstrate that our
similarity-based, identical building search approach can be
used effectively to search for RC buildings by measuring
visual similarity between their overview images, thereby
serving as the basis for retrieving relevant images from
another dataset.

The evaluation also demonstrates that our trained model
distinguishes true-matches from false-matches success-
fully, with the SS obtained with true-matches (mean: 0.60
and median: 0.61) being much higher than those obtained
with false-matches (mean: 0.37 and median 0.34). Also, this
study shows that our trained network produces satisfac-
tory results for 28 out of 30 test buildings with at least one
true-match identified with an SR value in the top 10. A key
contribution of this work is to develop and validate the
building search capability using a post-event database of
RC buildings containing real-world images collected from
recent natural disasters. We expect that this technique
provides an engineer with tools that will reduce efforts,
improve consistency, and accelerate decisions after a major
disaster. In our future work, we will deploy this capability
available online for public users; we will also include use-
ful functions such as retrieving nearby images along with
the searched BOV to provide relevant data to support fur-
ther investigation.
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