Z_ MIT
il Open Access Articles

Rapid software prototyping for
heterogeneous and distributed platforms

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Besard, Tim et al. "Rapid software prototyping for heterogeneous
and distributed platforms.” Advances in Engineering Software 132
(June 2019): 29-46

As Published http://dx.doi.org/10.1016/j.advengsoft.2019.02.002

Publisher Elsevier BV

Version Author’s final manuscript

Citable link https://hdl.handle.net/1721.1/124135

Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License

Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/

Mir DSpace@MIT
I I Massachusetts Institute of Technology p

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/124135
http://creativecommons.org/licenses/by-nc-nd/4.0/

Rapid Software Prototyping for
Heterogeneous and Distributed Platforms

Tim Besard”, Valentin Churavy®*, Alan Edelman?®, Bjorn De Sutter®

@ Massachusetts Institute of Technology
bGhent University

Abstract

The software needs of scientists and engineers are growing and their programs are be-
coming more compute-heavy and problem-specific. This has led to an influx of non-expert
programmers, who need to use and program high-performance computing platforms.

With the continued stagnation of single-threaded performance, using hardware accelera-
tors such as GPUs or FPGAs is necessary. Adapting software to these compute platforms is
a difficult task, especially for non-expert programmers, leading to applications being unable
to take advantage of new hardware or requiring extensive rewrites.

We propose a programming model that allows non-experts to benefit from high-performance
computing, while enabling expert programmers to take full advantage of the underlying hard-
ware. In this model, programs are generically typed, the location of the data is encoded in
the type system, and multiple dispatch is used to select functionality based on the type of
the data. This enables rapid prototyping, retargeting and reuse of existing software, while
allowing for hardware specific optimization if required.

Our approach allows development to happen in one source language enabling domain
experts and performance engineers to jointly develop a program, without the overhead,
friction, and challenges associated with developing in multiple programming languages for
the same project.

We demonstrate the viability and the core principles of this programming model in Julia
using realistic examples, showing the potential of this approach for rapid prototyping, and
its applicability for real-life engineering. We focus on usability for non-expert programmers
and demonstrate that the potential of the underlying hardware can be fully exploited.

Keywords: Julia, generic programming, heterogeneous systems, CUDA, distributed
computing

*Corresponding author
Email addresses: tim.besard@ugent.be (Tim Besard), vchuravy@mit.edu (Valentin Churavy),
edelman@mit.edu (Alan Edelman), bjorn.desutter@ugent.be (Bjorn De Sutter)

Preprint submitted to Advances in Engineering Software May 8, 2019

1. Introduction

It is a truth universally acknowledged that efficient programming of high-performance
computing (HPC) systems, be it GPUs or clusters, is difficult and best left to experts. It
is therefore often the case that in domains such as engineering and scientific computing,
software development happens in distinct phases or modes. First, there is rapid prototyping,
then there is performance engineering. Existing approaches to bridge the gap between these
two worlds fail in several ways. For example, some enforce overly rigid frameworks, e.g., by
restricting programmers to predetermined data types or functions. Others combine multiple
languages or dialects thereof for the different phases, and struggle with what is known as
the two-language problem [1]. The failures of existing approaches eventually result in a loss
of productivity and innovation capacity, because the developed solutions all too often are
one-offs, not readily used by others or hard to integrate inside other systems. As a result,
engineers, scientists and other domain experts with large scale problems are still searching
for a solution that lets them innovate quickly, scale initial prototypes to real-world datasets,
and continuously improve, adapt and develop their code, without having to sacrifice either
expressiveness or performance.

Rapid prototyping, fluent collaboration, and speedy innovation require simplicity and
expressiveness (at an abstract level), easy code reuse, extensibility, and composability. This
implies that code should be agnostic to and ideally work with all relevant data-types. It
should hence be developed in terms of abstract or generic types.

Performance engineering requires to some extent similar features. The reason is that
on the one hand performance engineering involves knowledge of and tuning for specific
hardware at hand. This requires the ability to specialize low-level aspects of computations
and communications to fit the hardware. However, while it is often believed that changing
the used hardware type requires changes in the source language or calling libraries, we are
convinced that this notion has hindered the use of hardware accelerators.

On the other hand performance also requires knowledge of the domain and tuning for
the context in which the solution is used. As for the latter, naive system-level performance
engineers waste their energy on teraflops. Sophisticated scientists and engineers know when
they can take a larger time step or search step in their differential equation or optimization
than their software library considers “safe”. This is not cheating or reckless. This is experi-
enced performance engineering. The kind one probably will not find in a textbook. Sparse
linear algebra takes applications far. Structured linear algebra can take applications farther.
New algorithms are imagined all the time, but does one have to rewrite huge parts of code
to even find out whether a new algorithm will show promise?

Any proposed approach must therefore answer the following question: How easy is it to
apply special knowledge to gain performance, be it knowledge from the application domain,
or knowledge about the hardware and system level? In light of this question, this paper
goes past the notion of writing performant code that accomplishes a task perhaps as a “one-
oft”, for oneself or a small team. Rather, we explore the tension between obtaining large
performance from hardware accelerators and the productivity benefits that come from max-
imizing simplicity. In our vision, a code writer should not ask only how much performance

2

he can get, but rather how easily can he get performance, how many people can he share
the reached performance with, is he siloed or is his performance extensible, and will others
and even himself be able to make use of his hard work in even a few short years, or when
his organization buys new hardware next month.

In line with this vision, this paper sets out an approach that tears down the tradi-
tional wall between rapid prototyping and performance engineering. This paper argues and
demonstrates that this is possible with one language, i.e., one co-design of composable and
extensible programming abstractions that implement the necessary separations of concerns
on the one hand, and of compilation tools capable of specialization on the other hand. With
such a design, we can prevent that developed applications and, equally important if not
more, libraries are no longer siloed or one-offs.

A core concept in our approach is that of array abstractions. Arrays are natural language
elements for engineers and scientists. So the use of arrays and abstractions of arrays and of
operations on them (map, reduce, ...) simplifies their lives and improves their expressiveness
and productivity. Arrays can be dense, sparse, triangular, or structured. Arrays can also
be on a CPU, GPU, homogeneously distributed, or heterogeneously distributed. Software
developers typically think of the mathematical structure (dense, ...) and the hardware
structure (CPU, ...) separately. They seem so very different. This paper argues that this
does not need to be the case, and proposes the advantages of remembering that structure
and storage can both be treated as abstractions. As we will demonstrate, this allows us to
melt the distinction between mathematical structure and architectural structure, and hence
enable all necessary forms of performance engineering.

To build our case and demonstrate the viability and advantages of our approach, we build
on Julia [1, 2, 3] and its rich set of array abstractions [4]. We have extended it with a powerful
GPU compiler [5], and combine array abstractions we developed for GPU computing [6] and
distributed computing [7] to enable transparent distributed heterogeneous computing. All
of our work is open-source, and has been contributed to and integrated with the upstream
repositories.

The main contributions of this paper are the following:

e We present a set of array abstractions and implementations thereof in the CuArrays.jl
and Distributed Arrays.jl packages that enable rapid development of solutions for real-
world engineering problems, and at the same time enable the exploitation of heteroge-
neous high-performance hardware.

e We demonstrate the composability of the abstractions and underlying infrastructure,
and show how it facilitates separation of concerns regarding what is computed, where
the underlying data is stored, and how communication happens.

e We discuss portability issues and argue how the proposed abstractions handle them.

e We present a performance evaluation that demonstrates the extent of the composability
and the ease with which the potential of heterogeneous hardware can be exploited.

This paper is structured as follows. First, Section 2 introduces three examples with which
we will later demonstrate the usability of our approach. All three examples are instances
of rapid prototyping and exploration that could build the foundation for a larger project.
Sections 3 and 4 introduce the characteristics of Julia and its array abstractions that help
us achieve our goals of composability and usability.

Section 5 then introduces the two packages CuArrays.jl and DistributedArrays.jl that
implement the aforementioned array abstractions for respectively GPUs and for distributed
environments. Due to the nature of array abstractions in Julia, these two packages trans-
parently compose to provide a solution for distributed heterogeneous computing in Julia.
Section 6 shows how this applies to each of our examples, and Section 7 analyzes the perfor-
mance of these applications. Section 8 then compares our approach to other research and
discusses related work. Finally, Section 9 draws conclusions, summarizes the current status
of our work, and discusses future work.

2. Use Cases

For the purpose of explaining concepts in this paper, we introduce three examples that
are relevant to computer-based engineering techniques: the power method to calculate eigen-
values, gradient descent to minimize a loss function, and the Kronecker product of two ma-
trices. These examples represent different levels of application complexity, and demonstrate
different aspects of our approach. We have implemented the examples in Julia [2], using
high-level, idiomatic code that stays as close as possible to the original mathematical de-
scriptions. To emphasize this, these and other code listings that contain code that would be
written by regular users, e.g., during application prototyping, are put in a green box. Code
that requires more in-depth knowledge of the language is listed in orange, while code that
would only be written by expert programmers, e.g., as part of a library, is shown in a red
box.

2.1. Power Iteration

The power method serves as the first, simplest example. This is an eigenvalue algorithm,
approximating the dominant eigenvalue of a diagonalizable matrix by means of an iterative
algorithm [8]. The associated eigenvalue is then computed using the Rayleigh quotient. The
Julia implementation in Listing 1 mirrors the high-level descriptions of these algorithms
from the corresponding Wikipedia pages, and uses simple operations on arrays, such as the
dot product, matrix-vector multiplication, the Euclidean norm of a vector, and element-wise
division. The parameter p of the domeigen function defines the number of iterations the
method should perform.

Note that like all other listings in this paper, Listing 1 is not pseudo code. It is pretty
printed Julia source code. The ability to write such code, using a Unicode character set, al-
lows engineers to produce very readable source code, at the mathematical level of abstraction
at which they prefer to reason and to express their ideas.

The raison d’etre of this example is to demonstrate an imperative application that only
uses simple, standard array operations, i.e., limited to those defined in the base language
libraries, and that does not require additional external functionality.

4

Listing 1: Power method implementation approximating the dominant eigenvector and eigenvalue of a
matrix.

1 using LinearAlgebra
2 using Random

4 function domeigen(A, p)

5 bo = similar (A, size(A, 1))
6 rand! (bg)
7
8

power tteration
9 by = bo
10 for _ in 1:p

11 bry1 = A * by

12

13 # nmnormalize

14 bk = bk+1 / norm(b;H_l)
15 end

16

17 # Rayleigh quotient
18 A = (A*xbg - bg) / (bg - bg)

19
20 return by, A
21 end

2.2. Prozimal Gradient Descent

Listing 2 implements a more complex example that combines array operations with a
generically typed external library that extends the base language. The array operations now
also include higher-order abstractions that compose with arbitrary user code.

Specifically, the example implements proximal gradient descent to minimize the squared
error loss of a linear regression model. The example uses the ForwardDiff.jl package [9]
to determine the gradient and derivative of the loss function as defined by the user. This
package implements forward-mode automatic differentiation in Julia. Under the hood, it
specializes user code to generate efficient machine code for computing derivatives. The
ability to differentiate arbitrary user code distinguishes this Julia package from others. Many
existing machine learning frameworks either require engineers to pick functions from a fixed
library of functions for which gradients have been defined, while others can compute custom
derivatives but only if the original function had been specified as a computational graph. By
enabling us to differentiate arbitrary imperative code, the ForwardDift.jl package improves
productivity as well as flexibility of machine learning frameworks built on top of this package.

The proximal gradient_descent function takes parameters that are common to many
machine-learning algorithms: w and b for respectively the vector of weights and the bias,
while x and y represent the inputs and outputs that should be learned. The learning rate
parameter 1r is optional and defaults to 0.1. The function is to be called iteratively. The
weights and bias are updated in every iteration until the loss falls below an acceptable
threshold.

Note that both the model and loss functions, of which lines 5 and 9 show examples, are
defined independently from the optimization algorithm in proximal_gradient_descent.
The model and loss functions are passed to the optimization algorithm as arguments, and

5

Listing 2: Implementation of the proximal gradient descent method, minimizing a squared error loss function.

using ForwardDiff: gradient, derivative
using LinearAlgebra

model
linear_regression(w, b, x) = w*x .+ b

loss function
abs2(x) = abs(x72)
mean_squared_error(§, y) = sum(abs2, § .- y) / size(y,2)

© 00Uk WN -

11 # get gradient w.r.t. to ‘w’
12 lossVw(model, loss, w, b, x, y) = gradient(w -> loss(model(w, b, x), y), w)

14 # get derivative w.r.t. to ‘b’
15 lossdb(model, loss, w, b, x, y) = derivative(b -> loss(model(w, b, x), y), b)

17 # optimization algorithm
18 function proximal_gradient_descent (model, loss, w, b, x, y; lr=.1)

19 w -= 1lmul!(lr, lossVw(model, loss, w, b, x, y))
20 b -= 1r * lossOb(model, loss, w, b, x, y)

21 return w, b

22 end

23

24 function main ()
25 # inputs and outputs

26 X =

27 y =

28

29 # initial weights and bias

30 w o=

31 b =

32

33 model = linear_regression

34 loss = mean_squared_error

35 optimize = proximal_gradient_descent

36

37 while current_loss >

38 w, b = optimize(model, loss, w, b, x, y)
39 current_loss = loss(model(w, b, x), y)
40 end

41 end

they are simply passed on to anonymous functions (lambdas) that are themselves fed to
the gradient and derivative functions from the ForwardDiff.jl library on lines 12 and 15.
This generalizes the implementation and makes it possible for the developer to iterate inde-
pendently on each aspect of the implementation (loss, model, and optimization algorithm).

From the compiler’s perspective, the gradient (line 12) and derivative (line 15) func-
tions return dynamically-generated code. The Julia run-time compiler then generates spe-
cialized and statically optimized machine code. The design of the Julia language and its
compiler, described in detail in Section 3, makes it possible to deliver good performance and
enable code generation for accelerators, such as GPUs, that require static code.

The simple code of Listing 2 performs various operations on arrays much like those in
Listing 1, but it also uses abstractions that compose with user code. For example, the loss
function on line 9 calls the standard library operation sum with the user-defined function

6

Listing 3: Declarative implementation of the Kronecker product of two matrices.

1 struct Kronecker{T,N,AT} <: AbstractArray{T,N}

2 A:: AT

3 B::AT

4 function Kronecker (A::AT, B::AT) where

5 {T, N, AT<:AbstractArray{T,N}}
6 new{T,N,AT}(A, B)

7 end

8 end

9

10 Base.size(K::Kronecker) = size(K.A) .x size(K.B)
11

12 function Base.getindex(K::Kronecker, i::Int, j::Int)
13 I,Ix = divrem(i-1, size(B,1))

14 J,Jx = divrem(j-1, size(B,2))

15 K.A[I+1,J+1] * K.B[Ix+1,Jx+1]

16 end

abs2, which is applied to all elements before they are summed. We will later discuss how
this makes it possible to separate the concerns of application code from how the underlying
abstractions are implemented.

The demonstrated composability with an external library, together with the portability
to heterogeneous computing devices, greatly improves the ability to reuse code.

2.3. Kronecker Product

Finally, we describe a scenario where a more advanced user prototypes an algorithm
by means of declarative code instead of an imperative subprogram. Specifically, Listing 3
implements the Kronecker product of two matrices, A ® B, where every element of the first
matrix is multiplied with every element of the second matrix:

[ALB ... ALB

AB=| : ..
AuB ... A,B
[AnBy ... AuBy AuBy ... ApLDBy
f41113p1 ‘e /41113pq ‘e ce e /41n13p1 ‘e /41n13pq
f4n111311 e f4ﬂ01131q e e f4ﬂan1311 e fqn%nlglq
AmiBpt o AmiBpg oo o0 AwnBp . ApaByg]

As opposed to defining an imperative function that constructs an output matrix and
eagerly computes the value for every element, we define a Kronecker type that lazily com-
putes individual values when requested. This is called a structured matrix [10]. It is also

7

Listing 4: Optimized computation of the matrix norm for Kronecker products.

function LinearAlgebra.norm(K::Kronecker, p::Real=2)
A = norm(K.A, p)
B = norm(K.B, p)
return A * B

end

TUk W N

a common pattern in the Julia programming language, which provides many such array as
part of the standard library. This example will demonstrate how our approach is composable
with such infrastructure from the standard library.

Like all arrays, the Kronecker type it is a subtype of the AbstractArray type, which
mandates certain method definitions. One of those methods is the getindex method, which
is used to get the value of an array that corresponds with a certain index. Whereas this
method typically loads from memory, we implement it for the Kronecker type to compute
a single value according to the definition of the Kronecker product.

Expressing computation declaratively using lazy arrays has several advantages: first and
foremost, it saves on memory usage and avoids unnecessary computations. Furthermore,
we can provide optimized implementations of certain methods by using problem-specific
knowledge. For example, in the case of the Kronecker product we know from [11] that for
matrices A and B the norm can be computed as:

|A @ B|| = [|A]l [[B]]

We use this property of the Kronecker product to implement an optimized version of the
norm function in Listing 4. This optimization greatly improves performance, as it prevents
materialization of the Kronecker wrapper while reducing the size of matrices that need to
be processed.

The approach from Listing 3 also composes with other lazy wrappers. For example,
the Julia standard library avoids materializing matrix transpositions by using a Transpose
wrapper that implements the expected indexing semantics. This wrapper type is also part
of the AbstractArray hierarchy. It can hence be used as an input to our Kronecker type
without materializing the wrapper. Other opportunities for composability will be discussed
in Section 6.3.

3. The Julia Perspective

The above examples are written in Julia, a high-level, high-performance dynamic pro-
gramming language originally designed for technical computing [2]. This section explains
how the design of this language and its run-time compiler enables our approach towards
rapid prototyping for heterogeneous platforms.

The Julia programming language features a type system with parametric polymorphism,
multiple dispatch, metaprogramming capabilities, and other high-level features [12]. Many

8

Listing 5: Hlustration of code reuse through dynamic typing.

using LinearAlgebra

function user_code(a, b)
inv(a) * norm(b)

end

user_code(rand(2,2), rand(2,2))

© 00Uk WN -

using SparseArrays
user_code(rand(2,2), sparse(rand(2,2)))

—
= O

user_code (1, 2)

— =
wW N

user_code("", un)
14 # ERROR: mno method matching inv (::String)

of these features encourage code reuse. For example, code can be fully untyped, as shown in
the examples from Section 2. Such dynamically typed code is especially interesting during
prototyping, where specifying types or reasoning about their hierarchy is an undesirable
non-functional aspect.

Dynamically-typed code also makes it possible to reuse that code with differently-typed
values, as long as all functions that are called are applicable for the argument types at hand.
This is demonstrated in Listing 5. When the Julia runtime invokes such code, the Julia
compiler specializes the code based on run-time type information. The generated machine
code is specific to the types and hand, and consequently avoids the performance penalty
of performing operations on boxed values or dispatching dynamically to other methods.
Furthermore, code specialization makes it possible to generate statically-typed machine code,
which is essential for heterogeneous computing devices such as GPUs.

Next to method specialization, multiple dispatch is another cornerstone of the Julia pro-
gramming language. With multiple dispatch, function calls resolve to methods based on the
run-time values of each of their arguments (as opposed to single-dispatch polymorphism as
with C++ where only the run-time value of the first argument influences dispatch). Multiple
dispatch allows programmers to write smaller method definitions with limited responsibili-
ties [12]. This facilitates code reuse, as it enables fine-grained overloading of functionality
when behavior needs to differ, e.g., when defining new types that are part of an existing
type hierarchy.

Incorporating all arguments in dispatch also makes it possible to overload methods that
would be out-of-reach with single dispatch. For example, Listing 6 defines a dual number
type, an extension of real numbers with an epsilon component for the purpose of, e.g.,
automatic differentiation. Using multiple dispatch, we implement methods for algebraic
addition and multiplication that propagate epsilon components by extending respectively
the + and * functions from the standard library on lines 12 to 16. The definition on line 14
is not possible in a single-dispatch language such as Python, where special methods __mul _
and __rmul_ _ exist specifically for the purpose of defining commutative multiplication as
a workaround to overcome the limitations of single-dispatch. Such a workaround does not

9

Listing 6: Ilustration of multiple dispatch facilitating reuse by allowing fine-grained method overloads.

1 struct Dual{N<:Number} <: Number

2 re::N

3 ep::N

4

5 # constructor with default wvalue for epsilon component

6 Dual{N}(re::N, ep::N=zero(N)) where {N} = new{N}(re, ep)
7 end

8

9

10 using Base: *, +

11

12 *(x::Dual, y::Dual) = Dual(x.re * y.re, x.ep*y.re + x.re*y.ep)

Dual(x.re * y, x.ep*y)
Dual(x * y.re, x*y.ep)

13 *(x::Dual, y::Number)
14 *(x::Number, y::Dual)
15

16 +(x::Dual, y::Dual) = Dual(x.re + y.re, x.ep + y.ep)
17
18
19
20 A
21
22 A

Dual.(rand (Float64, 2,2))
rand (Complex{Int}, 2)
B

w

* 0N

generalize, however, and fails to compose with optimized functionality such as matrix-matrix
multiplication as implemented in NumPy. As a result, users would be forced to reimplement
larger pieces of functionality, while complicating reuse of existing functionality. This pattern
is especially common for operators, and the Julia standard library uses multiple dispatch
extensively to implement these methods [2].

With the definitions from Listing 6, functionality from the standard library that relies on
addition and multiplication can be reused, even if it combines dual numbers with other types.
For example, line 22 shows the multiplication of a matrix with floating-point dual numbers
and a matrix with integer complex numbers. The resulting matrix contains elements of
type Dual, with complex floating-point values as real and epsilon components. This is a
very powerful demonstration of code reuse, where the minimal definitions from Listing 6
compose with extensive functionality from the standard library that implements complex
numbers, 2-dimensional arrays, and operations on these types.

4. Abstractions for Array Programming

This section discusses existing standard and higher-order array abstractions commonly
used in Julia. They also form the basis of our approach as presented in later sections.

Many data science and engineering problems are commonly expressed in terms of vector-
ized operations, especially during initial prototyping. This natural, concise representation
makes it easier to iterate over different prototype implementations. They avoid the typical
non-functional boilerplate of scalar processing of data items such as specifying loop bounds,
indexing calculations, etc. For example, the high-level code from Section 2 is written entirely
using array abstractions, resulting in readable high-level code.

10

Listing 7: Example use of the reduce abstraction.

a::Array{Int} = [1 2; 3 4]

1
2
3 reduce (+, a)
4 reduce ((x,y)->2x+y~2, a)

Many high-level languages such as R or Python require the use of array operations in
order to achieve high performance. These operations are then implemented in a low-level,
high-performance language. This illustrates the two-language problem as it exists with
many high-level programming languages. The Julia programming language does not suffer
from this problem, as the language has been co-designed with a JIT-compiler that generates
high-quality machine code. The performance of scalar, loop-based programs is typically on
par with implementations in a low-level language like C. As a result, the array operations
themselves are also implemented in Julia [4], and do not require a low-level language to
achieve high performance. This greatly lowers to barrier to contributing to the Julia project
or any of its packages. Indeed, the number of contributors to the main Julia language
repository is greater than that of the Python reference implementation, despite the latter
being a significantly older and well-known project.

At the same time, the availability of a JIT compiler enables powerful, higher-order ab-
stractions that compose with arbitrary user code. The reduce abstraction is a prime example
of such an abstraction. Listing 7 illustrates how the first argument to the reduce function
can be any transformation function that reduces two scalar values. The JIT compiler special-
izes the implementation of reduce, which only deals with the semantics of the abstraction,
with the transformation function as specified by the user. This can be an operation or
function from the standard library, as on line 3, or a user-specified one as shown on line 4.
Furthermore, the underlying storage is implemented by a separate container type. In the
example this is the standard Array, which is itself specialized on the standard element type
Int. However, it is as easy to use nonstandard types for containers and elements. This is a
clear separation of concerns, facilitating reuse by limiting the responsibility of each aspect
of the overall computation.

The expressiveness and performance of these array abstractions makes it possible to
reuse them outside of prototyping code. Array abstractions on generically typed arrays are
used, e.g., in the ForwardDiff.jl package. The code in the package can be composed with
any concrete array implementation, which makes the package equally suited for use during
prototyping and for reuse as is in optimized production code. In Sections 5 and 6, we will
further focus on portability through the use of different array types.

4.1. The map, reduce, and broadcast abstractions

The map, reduce, and broadcast functions are higher-order abstractions that are essen-
tial to high-level array programming in Julia. They compose with user code that determines
what is computed, while the methods that implement these abstractions determine how and
where that computation will happen. These implementations can be specialized on the type

11

Listing 8: Example use of the map and broadcast abstractions.

1 a = [1 2; 3 4]

2 b = [3 4; 5 6]

3 ¢ = [6 6; 7 8]

4

5 map(x->x+1, a)

6 map (+, a, b)

7 map((x,y,z)->x+y+z, a, b, c)

8

9 broadcast (+, a, 1)

10 broadcast (+, a, [-1; 11)

of the arguments, selecting an implementation that maximizes performance or otherwise
preserves the array type, e.g., to prevent slow memory transfers from or to a heterogeneous
computing device.

At its core, map transforms collections of identical shape and size by applying a function
elementwise over the collections, as shown in Listing 8. The function should accept as many
arguments as the amount of containers passed to map.

The broadcast abstractions generalizes the behavior of map to containers of heteroge-
neous shapes by padding dimensions accordingly. This greatly improves use with objects of
different shape. For example:

A11 N Aln Cl
broadcast(f, A,b,c) = broadcast(f, | : ‘-, S, b |t])
Aml e Amn Cm
f(All,Z% Cl) f(Aln>b7 01)
f(Amh b7 Cm) s f(Amrm ba Cm)

The reduce abstraction reduces a container by applying a binary function along certain
dimensions of an array, e.g., to compute the sum of an array by calling reduce(+, array).
A common pattern is to call reduce after having performed a map. This computation can
be performed with a single call to mapreduce instead, slightly improving performance by
avoiding the intermediate array as returned by the inner map.

Although seemingly simple, these abstractions are very versatile and capable of express-
ing a wide range of computations. Furthermore, the abstractions expose a great deal of
parallelism, and are therefore ideal candidates for parallel programming. This will be dis-
cussed in Section 5.

4.2. Dot Expressions

To improve the usability of broadcast, so-called dot expressions can be used in Julia
to denote elementwise transformations [13]. The Julia parser lowers this syntactic sugar
to invocations of the broadcast function, as illustrated with some examples in Table 1.

12

Table 1: Lowering of different forms of broadcast syntax.

Source code Lowered to
f.(a) broadcast(f,a)
b .= f.(a) broadcast!(f, b, a)
f.(a.4+b).xc broadcast({a,b,c) — f(a+b)x*c,a,b,c)

Elementwise assignments call the broadcast! function, which performs in-place assignment
to avoid allocating an output container.

Dot expressions that contain multiple elementwise applications are syntactically fused
together and result in a single application of the broadcast abstraction [13]. Semantically,
the parser generates a new anonymous function that contains the scalar operations from
each dot expression, as shown in Table 1. This not only reduces the number of invocations
of the broadcast machinery, but also enables the compiler to optimize the fused expression,
e.g., by eliminating common subexpressions. Fusion also obviates the need for temporary
arrays: Intermediate values, such as the result of a .+ b in Table 1, now exist as scalar
values within the fused function, and do not need to be stored outside of that.

As of Julia 1.0 dot expressions are represented lazily through a first-class data struc-
ture [14]. The Broadcasted data structure represents the tree of a broadcast expression
and is accessible to implementers of broadcast at run time. This enables fine-grained cus-
tomization of how broadcast is computed depending on the arguments and output types.
For example, it allows for broadcast expressions on ranges to be calculated eagerly, for cus-
tom array types to opt-out of broadcast fusion, and for splitting broadcast expressions into
chunks that can be computed in parallel.

5. Heterogeneous Programming with Arrays

Programming with the array abstractions from the previous section makes it possible for
application code to only deal with what needs to be computed, while an underlying array
type takes care of where the data is stored, and how the computations are performed. Now,
we will describe how an array type for storage and execution on a heterogeneous device can
be implemented. We hence temporarily switch to the side of the programming expert, who
has to deliver such an implementation to support the needs of rapid-prototyping engineers.

At its core, every array type starts with a parametric type definition that subtypes the
AbstractArray type. In the case of an array type that is backed by actual device memory,
as opposed to, e.g., an array that performs a computation like the example from Listing 3,
the type contains a number of member fields that provide handles to device memory. In
Listing 9, we define such a HeterogeneousArray type that contains a single field, handle,
to store a pointer to device memory. The constructor on line 8 accepts any array data as
input, and uploads it to the device by using an the to_device function that is provided
by the illustrative device back-end package DeviceBackend.jl. A counterpart function on
line 11 implements conversion back to a CPU array, downloading from device memory using
the from_device function.

13

Listing 9: Storage handling for a heterogeneous array type.

1 using DeviceBacked: to_device, from_device

2

3 struct HeterogeneousArray{T,N} <: AbstractArray{T,N}

4 # member field storing handle to device memory

5 handle::Ptr{T}

6

7 # constructor

8 HeterogeneousArray (data::AbstractArray{T,N}) where {T,N} = new{T,N}(to_device(data))
9 end

10

11 Base.convert (::Type{Array}, array::HeterogeneousArray) = from_device(array.handle)

Listing 10: Scalar indexing for a heterogeneous array type.

using DeviceBacked: to_device, from_device

function Base.setindex!(array::HeterogeneousArray, i::Integer, value)
to_device (array.handle, i, value)
return

end

function Base.getindex(array::HeterogeneousArray, i::Integer)
return from_device (array.handle, i)
end

OO0~ Uk W

[y

The AbstractArray type also contains two type parameters, T and N, for respectively
the type and dimensionality of the array. These type parameters need to be filled in for
any concrete instantiation of an array, and can be used to dispatch to optimized method
implementations that depend on the value of these type parameters. Examples are an
optimized matrix-vector multiplication, or an implementation that calls a C library that
only provides implementations for C data types. In the case of HeterogeneousArray, the
actual values of these type parameters are deduced by the constructor from the input data.

As part of the AbstractArray interface, custom array types should implement certain
functionality, such as the getindex and setindex! methods to fetch and to store scalar
elements from the array. Examples of these methods are defined in lines 3 and 8 of Listing 10
where we rely on versions of the from_device and to_device functions of the device backend
package to load from and store to device memory.

These scalar access methods are useful because they provide compatibility of the array
type with existing code that explicitly iterates over the elements of arrays. For example, the
“default” definition of matrix multiplication for AbstractArrays in the Julia standard library,
which is designed for execution on a host CPU, uses the textbook algorithm with nested
for loops that multiply and accumulate matrix elements. When that matrix multiplication
is invoked on an array of type HeterogeneousArray, it still computes the correct result,
albeit it very slowly: The nested loops is still executed on the host CPU, and every element
accessed in the array on the device is transferred individually from the device to the host.
This obviously is very slow, and defeats the entire purpose of auxiliary hardware devices.

14

Listing 11: In-place multiplication for a heterogeneous array type.

1 using DeviceBacked: @on_device

2

3 function LinearAlgebra.mul!(Y::HeterogeneousArray{T, N},

4 A::HeterogeneousArray{T, N},

5 B::HeterogeneousArray{T, N}) where {T, N}
6 Qon_device begin

7 x = A[...] = B[...]

8 Y[...1 =y

9 end

10 end

Listing 12: Implementation of the broadcast interface for a heterogeneous array type.

1 using DeviceBacked: @on_device

2

3 function Base.copyto!(dest::HeterogeneousArray, op::Broadcasted)
4 @on_device begin

5 I = CartesianIndex(dest)

6 dest [I] = oplI]

7 end

8

end

Still, it provides compatibility with existing scalar code. Such code can then be incrementally
ported to use array abstractions, and the results can be verified at every step. This will be
further illustrated in Section 6.

For an array type to be usable for engineering purposes, it has to provide efficient versions
of relevant array abstractions. As detailed in Section 3, the design of the Julia program-
ming language facilitates such overloads. In Listing 11 we demonstrate how a custom array
type can implement a generic matrix-matrix multiplication that replaces the aforementioned
generic, scalar version of the standard library. The example uses the @on_device macro pro-
vided by the DeviceBackend.jl package to mark code that should be executed on the device.
Note that the implementation is still fully generic. It can be used with any element type
(e.g., the Dual number type from Section 3) as long as multiplication and addition are de-
fined for the type. When this method is invoked, the run-time compiler specializes the code
on the actual run-time arguments, i.e., concrete instances of HeterogeneousArray with val-
ues for the T and N type parameters, and on the execution context, i.e., @on_device. The
illustrative operations on lines 7 and 8 are syntactic sugar underneath of which the abstract
getindex and setindex! as implemented in Listing 10 are still used. But in this context,
they are executed on the device. This obviates the transfers of the elements to and from the
host processor. In the @on_device context, the from_device and to_device are specialized
to direct accesses in the device memory, and the computations are performed directly on
the device. How this is achieved technically is out of the scope of this paper.

Abstractions such as matrix multiplication from Listing 11 as implemented for a hetero-
geneous array type define both what is executed, where, and how. By contrast, higher-order
abstractions such as broadcast from Section 4.1 make the user responsible for specifying

15

only what is computed. Section 6.3 will discuss how this makes it possible to compose differ-
ent array types, where each type deals with different aspects of the computation. To support
the broadcast abstraction, the example from Listing 12 provides an implementation of the
copyto! function for HeterogeneousArray when it is also passed a Broadcasted tree. This
method is responsible for executing a flattened representation of broadcast expressions in
the context of a certain array type, and is part of the interface that makes up the broad-
cast interface. In the case of our HeterogeneousArray type, we make sure this operation
happens on the device by using the @on_device macro.

The following sections discuss two concrete packages for which we relied on the dis-
cussed types of interfaces to provide array types for programming heterogeneous devices:
CuArrays.jl for NVIDIA GPUs, and DistributedArrays.jl to program multiprocessor sys-
tems.

5.1. CuArrays.jl

The CuArrays.jl package [6] defines a CuArray type alongside optimized implementations
of many common array operations for NVIDIA GPUs. Some of these implementations
call out to existing, vendor-provided libraries such as cuBLAS or cuDNN. These libraries
are mature and optimized for each hardware generation. Other operations, such as the
higher-order abstractions from Section 4 are implemented on top of CUDAnative.jl [5], a
package that compiles arbitrary Julia code to PTX machine code for NVIDIA GPUs. The
performance of code generated by this package is on-par with the performance of CUDA C
as compiled by the NVIDIA compiler [5].

Availability of a GPU compiler like CUDAnative.jl not only enables abstractions that
compose with user code, but also extends the applicability of other operations. For example,
matrix multiplication as implemented by cuBLAS only supports certain real and complex
element types, and is limited to specific dense memory layouts. CuArrays.jl also provides
a generically-typed implementation of matrix multiplication, similar to the aforementioned
textbook implementation, but optimized for GPUs. Because the implementation is generi-
cally typed, it is applicable to all element types that define multiplication and addition and
supports every memory layout with well-defined indexing semantics. This is relevant to, e.g.,
the example from Listing 2, where derivatives are computed by the ForwardDiff.jl package
through a dual number type. This requires all used array operations, which includes matrix
multiplication, to be applicable to arrays of such element types.

As an example of the low-level kernel programming interface, Listing 14 shows how to
compute an element-wise addition of two CuArray GPU arrays using CUDAnative.jl. This
package works at an abstraction level similar to CUDA C, where the programmer needs to
provide a kernel function to be executed in parallel according to the Single Program, Multiple
Data (SPMD) programming model. The vadd function on line 10 is such a function, and is
launched on line 16 at which point the CUDAnative.jl compiler specializes the function on
the types of its arguments in order to generate efficient and GPU-compatible code. Although
this is a low-level and explicit interface for programming a GPU, the kernel is still written in
high-level Julia code: Kernels are generically typed and specialized upon first use, high-level
language features such as metaprogramming or parametric types are available, etc. This

16

Listing 13: Low-level addition of GPU arrays using kernel programming interfaces from CUDAnative.jl

1 using CuArrays

2

3 a = CulArray(rand(2,2))

4 b = CulArray(rand(2,2))

5 ¢ = similar(a)

6

7

8 using CUDAnative

9

10 function vadd(c::CuArray, a::CulArray, b::CulArray)
11 i = (blockIdx().x-1) * blockDim().x + threadIdx().x
12 c[il = alil + b[il]

13 return

14 end

15

16 @cuda threads=4 vadd(c, a, b)

Listing 14: High-level alternative to Listing 13, adding two GPU arrays using broadcast from CuArrays.jl.

1 using CuArrays

2

3 a = CuArray(rand(2,2))
4 = CuArray(rand(2,2))
5 ¢ = similar(a)

6

7 c .= a .+ b

greatly improves the productivity of kernel programming and makes it possible to reuse
code that is independent from the specific execution environment [5]. This includes most of
the Julia standard library, external packages that are not tied to CPU execution, and even
vendor-neutral GPU kernels as implemented by the GPUArrays.jl package. At the same
time, CUDAnative.jl still requires the developer to understand the SPMD model, and the
performance characteristics of the underlying GPU hardware.

Line 7 of Listing 14 is an alternative, but semantically equivalent, high-level vector ad-
dition that uses CuArrays.jl to program the GPU. It uses the dot syntax from Section 4.2
as a shorthand for calling the broadcast function with a simple scalar function (here, +).
This completely avoids the need to provide a SPMD kernel. The example demonstrates how
users can use the CuArray type with powerful, higher-order abstractions that often obviate
manual kernel programming. However, when flexibility is required, it is still perfectly possi-
ble to go deeper and use CUDAnative.jl to create custom SPMD kernels as with Listing 13.
Both approaches can perfectly coexist in a single application.

Under the hood, the implementation of broadcast for CuArray transforms the scalar
transformation to a valid SPMD kernel. Listing 15 shows a part of that implementation from
the CuArrays.jl package. As explained in Section 5, the copyto! method is responsible for
executing a broadcast expression in the context of a specific array type, here CuArray. The
implementation defines an anonymous kernel on line 6, which calculates array indices using
GPU intrinsics in accordance with the dimension-matching semantics of the broadcasting

17

Listing 15: Low-level implementation of one of the methods that implement the broadcast abstraction, taken
from CuArrays.jl.

1 using CUDAnative

2

3 function Base.copyto!(dest::CuArray, bc::Broadcasted)

4 op = Broadcast.preprocess (op)

5

6 function kernel(dest, op::Broadcasted)

7 i = (blockIdx().x-1) * blockDim().x + threadIdx().x

8 I = CartesianIndex (i)

9 dest [I] = opl[I]

10 return

11 end

12

13 numthreads, numblocks = ... # heuristic to mazimize occupancy
14 @cuda threads=numthreads blocks=numblocks kernel(dest, op)
15

16 return dest

17 end

abstraction. The kernel is subsequently executed in parallel on line 14 using CUDAnative.jl.
This is similar to the low-level use of CUDAnative.jl as shown in Listing 14. Note, however,
that only the developers of CuArray.jl need to face this level of complexity; users of the
package are spared of it.

Finally, high-level abstractions can also improve performance. As mentioned in Sec-
tion 4.2, the Julia parser syntactically fuses multiple broadcast expressions together, re-
sulting in fewer calls to the copyto! method from Listing 15. In the context of GPU
programming, the advantages of broadcast fusion are profound: fewer kernel launches are
required, memory allocations for temporary outputs can be avoided, and temporaries live
on the stack and do not have to be loaded from global memory.

5.2. DistributedArrays.jl

The DistributedArrays.jl package builds upon Julia’s distributed computing infrastruc-
ture to provide a Global Array-like interface [15]. A DArray is a data structure that dis-
tributes an array across a set of processes, where each process holds a chunk of the total array.
The memory is globally addressable, and Remote Procedure Calls (RPCs) are issued auto-
matically when accessing memory that is not local to the process. This makes it possible to
support scalar indexing for code compatibility reasons, while optimized implementations of
operations are aware of the distribution of memory and can avoid communication overhead.

The type signature of DArray consists of three type parameters: T and N from the
AbstractArray interface for respectively the element type and dimensionality, and A for
the underlying local array type. The local array type parameter enables a great amount of
flexibility, since it allows DArray to be mostly agnostic to the underlying array type. This
again allows to separate concerns, where the DArray type manages communication while the
underlying array A is responsible for the storage, computation, etc. Section 6.3 will show
how this patterns makes it possible to compose array types that, like DArray, wrap other
arrays.

18

Listing 16: Low-level implementation of in-place map taken from Distributed Arrays.jl.

1 function Base.map!(f, dest::DArray, data)

2 @sync for p in procs(out)

3 @async remotecall_wait(p, f, dest, data) do f, dest, data

4 local_dest = localpart(dest)

5 map! (f, local_output, makelocal(data, localindices(dest)...))
6 end

7 end

8 end

Listing 17: High-level use of the map! abstraction with distributed arrays from Distributed Arrays.jl

prepare a parallel computing environment
using Distributed
addprocs (2)

using DistributedArrays

distribute (rand(2,2))
similar (a)

a
b

O O 00U WN -

—

map! (sin, b, a)

Listing 16 is an example of an implementation of a high-level abstraction for distributed
arrays in DistributedArrays.jl. It follows the owner-computes rule by which each processor
performs the computations on the data it owns. The example implements an in-place map
through a series of RPCs, predominantly operating on local memory and avoiding unneces-
sary communication to other processes. The master process orchestrates the communication
between workers and the actual work is delegated to operations on local data. The example
demonstrates the aforementioned separation of concerns: The code of Listing 16 only deals
with distributing the map operation, and defers to the underlying array type for the actual
implementation of the abstraction.

The example calls remotecall _wait from the Julia distributed infrastructure to in-
voke an anonymous function on process p that executes the do ... end block that follows.
The worker process then accesses the localpart of the target array and localizes through
makelocal those parts of the input data array that are required to compute the local part of
the map. If necessary makelocal fetches and copies data from other workers, but if the data
is already locally available this copy is avoided. The call to remotecall wait is a blocking
RPC and is wrapped into an @async block, which starts a lightweight task. Tasks are used
to prevent the processes, especially the master, from blocking on a call since otherwise no
progress could be made and no other RPCs could be issued. Finally, the @sync block waits
on all enclosed tasks to make sure the computation is finished when returning from the map!
function.

The distributed computing abstractions as used in Listing 16 are defined in the Julia
standard library. They are built on top of a ClusterManager interface for launching worker
processes on distributed systems. The standard library implements this interface for local

19

processes and for networked systems that expose the Secure Shell (SSH) protocol. Exter-
nal packages can be used to work with managed clusters, such as ClusterManagers.jl that
implements a ClusterManager subtype for the Slurm workload manager [16], the Portable
Batch System [17], and others. For environments that rely on the Message Passing Inter-
face (MPI), MPIManager from MPLjl can be used to communicate with processes over an
optimized communication fabric such as InfiniBand [18]. The design of this infrastructure
enables distributed code that works with distributed processes, such as Distributed Arrays.jl,
to be agnostic of the underlying processes and how they communicate.

The implementation as shown in Listing 16 is written by specialists that know how
the DistributedArrays.jl package is structured, and how to execute code efficiently in a
distributed setting. This complexity is completely hidden from the end user: Listing 17
shows how to use the map! abstraction from Listing 16 on a newly allocated DArray. This
does not differ from use of the abstraction with any other array type. The only code specific
to distributed computing deals with launching local processes by calling addprocs on line 3.

6. Code Portability

This section discusses how the examples from Section 2 and other codes can be ported
to other platforms and environments by using the array types from Section 5. Section 6.1
focuses on the portability of standalone applications with respect to different array im-
plementations for different heterogeneous platforms. Section 6.2 focuses on libraries that
provide domain-specific functionality using array abstractions, for use in standalone appli-
cations and/or in compositions with other libraries. Such libraries should be generic with
respect to array types not to hinder the portability of the applications or other domain
libraries in which and with which they are used. Finally, Section 6.3 focuses on the portabil-
ity and composability of libraries that define new array types and/or extend existing array
abstractions.

6.1. Application Portability

Array-based application code that does not rely on library functionality, such as the
example from Listing 1, can be ported trivially. It suffices to use an appropriate array type
by changing the array allocations to use a different constructor, for example, CuArray(. . .)
instead of Array(...). Operations on these arrays then dispatch to respective implemen-
tations in the corresponding array package. If that package does not provide certain op-
erations, fallback methods from the Julia standard library are used. For example, when
passing a CuArray to the domeigen function from Listing 1, the call to rand! dispatches
to an optimized implementation in CuArrays.jl that uses the cuRAND library. Similarly,
the multiplication on line 11 is lowered to a call to mul!. Several implementations of mul!
are provided in CuArrays.jl, using the cuBLAS library when possible but falling-back to
a generic matrix-matrix multiplication when required for, e.g., element types that are not
supported by cuBLAS. This implementation is written in Julia, and uses CUDAnative.jl to
compile code for the GPU and to execute it on the GPU.

20

In the case of array types that support computations with user code, we can also use code
that is built around the higher-order array abstractions from Section 4.1. These abstractions
compose with user code, and require the ability to generate code for the hardware that is
targeted by the array type. For example, we can take the example from Listing 17 and
change the call to distribute to create a CuArray instead. The CuArrays.jl package uses
CUDAnative.jl to generate code for NVIDIA GPUs. Similarly, we can take the example
from Listing 14 and execute it with arrays of type DArray{Array}, which would result in
distributed execution on the CPU. DArray itself does not execute the user code but defers
to the inner Array, which uses the Julia compiler to generate code for the CPU.

Application code can also perform scalar iterations over array elements, either because
the application code is written that way or because (standard) library operations used in
the application code are implemented as such. As explained in Section 5, this type of
iteration defeats the purpose of heterogeneous programming as it cannot be implemented
efficiently. Still, packages like CuArrays.jl and DistributedArrays.jl support this type of
iteration because it greatly simplifies the effort of porting code. Initially, one can run
the application on heterogeneous hardware without any change to the code, to verify the
functional correctness of the implementation. Subsequently, performance can be improved
by reimplementing methods that rely on scalar iteration using array abstractions that can
be executed efficiently on heterogeneous hardware. Identifying the methods that need to be
reimplemented is facilitated by API calls that disallows scalar iteration. For example, both
CuArrays.jl and Distributed Arrays.jl provide a configuration value allowscalar that, when
set to false, triggers errors upon use of inefficient scalar functionality.

Typical applications also contain multiple allocation sites. For example, the domeigen
function from Listing 1 takes not only an array as argument, but also allocates an output
container for the resulting eigenvector. To avoid hard-coding an array type, Julia provides
functions such as similar to allocate new containers based on existing ones. These functions
make it possible to write generic code that is independent from the chosen array type. The
Julia standard library is built on top of these generic programming approaches, and rapid
prototyping engineers can also use it, to facilitate reuse with different array types.

In summary, during rapid prototyping, application code can be written independently
from the underlying array types. Porting the code to different types optimized for different
types of heterogeneous hardware during the prototyping or afterwards requires minimal code
changes, and only serves to improve performance.

6.2. Library Portability

When applications use code from libraries, complexity is hidden behind opaque function
calls whose implementations are outside immediate control of the application developer.
These implementations can be complex, might themselves depend on auxiliary libraries, and
should not have to be understood by the application developer in order to port application
code to another platform.

Library code that works with arrays behaves similarly to application code as described
in Section 6.1. As long as the library only uses functionality mandated by or implemented

21

Listing 18: Reimplementation of a method from ForwardDiff.jl using array abstractions.

1 # original, scalar implementation

2 function seed!(duals::AbstractArray{Dual{T,V,N}}, x,

3 seeds::NTuple{N,Partials{N,V}}) where {T,V,N}
4 for i in 1:N

5 duals[i] = Dual{T,V,N}(x[i]l, seeds[il)

6 end

7 return duals

8 end

9

10 # replacement broadcasting version

11 function seed!(duals::AbstractArray{Dual{T,V,N}}, x,

12 seeds::NTuple{N,Partials{N,V}}) where {T,V,N}
13 duals[1:N] .= Dual{T,V,N}.(x[1:N], seeds[1:N])

14 return duals

15 end

for AbstractArray, and allocates new containers using generic functions like similar, it is
possible to reuse the library code with different array types.

However, where application code is often untyped, library code typically specifies types
for function arguments [3]. For code to be portable, i.e., reusable with different array types,
these signatures should use abstract array types such as AbstractArray or AbstractSparseVector
and not their concrete CPU instantiations such as Array or SparseVector.

This requirement poses no problem in practice, as Julia developers in general, and library
developers in particular, are not unfamiliar with such patterns of using abstract types to
achieve generic array program. Those patterns are in fact recurring elements in examples,
documentation, and the standard library. Furthermore, many common operations on arrays
return wrapper objects, for the purpose of lazy evaluation or to avoid allocations. Those
objects require the code to be generic in order to benefit from said optimizations. For
example, transposing a matrix results in an array of type Transpose, slicing produces a
SubArray, etc. As a result, most library code is already type-generic and should be reusable
in the context of heterogeneous array programming.

We conclude that the necessary technical support and developer culture are available
and even convenient to achieve portability when domain-specific libraries are developed and
used.

As a concrete library example, consider the already mentioned ForwardDiff.jl package.
It implements methods to compute different kinds of derivatives of arbitrary user-defined
computations on arrays and their elements [9]. For example, in the machine-learning example
from Listing 2 the gradient and derivative functions are used to differentiate the loss
function of a model for use by a gradient descent optimization algorithm. The ForwardDiff.jl
package is an example of a high-quality, type-generic library. Simply changing the type of
the arrays as passed to the derivatives makes the example from Listing 2 work on, e.g., a
GPU, without requiring any other changes to either the code in Listing 2 or the underlying
library.

However, the performance of the standard implementation of the ForwardDiff.jl package

22

was not optimal when used with heterogeneous array types. To identify functionality that
needs to be optimized, we disabled scalar iteration as described in Section 6.1. This revealed
that certain methods of the ForwardDiff.seed! function were implemented using scalar for
loops, one of which is shown in lines 2 to 8 of Listing 18. By reimplementing those methods
using array abstractions (lines 11 to 15) they are better suited for execution on, e.g., a GPU.
In this case, the replacement uses a broadcast expression as a substitute for the scalar for
loop. The replacement code is certainly not more complex.

When the need to redefine a library function to obtain higher performance in a specific
application arises, either during or after the rapid-prototyping phase, the redefinition does
not necessarily needs to happen in the library itself. It can also be done in the application,
by prefixing the function name with the contained module. For example, to implement
the replacement of Listing 18 in an application rather than in the ForwardDiff.jl library, it
suffices to write it down as function ForwardDiff.seed! ... end. When a replacement
definition in an application has exactly the same signature as the original definition in the
library, the replacement overrides the library version.

This capability can be very useful during rapid prototyping and/or performance opti-
mization: it allows the engineer to overcome deficiencies in third-party libraries without
requiring the immediate help of the owners of those libraries and without having to build
and then later maintain custom versions of those libraries. The effects of these additional
method definitions are global, and can thus be used to influence functionality deep down
the library as opposed to only functions that are called directly by the library.

Furthermore, the original definition in the library can easily be kept available for the
purpose of verifying the replacement implementation. It suffices to use a dispatch signature
that is limited to the heterogeneous array type of choice to avoid that the original definition
is overridden. For example, by changing the definition on line 11 to specify CuArray instead
of AbstractArray for the first argument, the broadcasting version would only be used for
GPU arrays, and the known-good library implementation remains available, and can be
used on Array types to verify the semantical equivalence of the original and the replacement
definitions.

We conclude that even in case when libraries are not fully portable with respect to array
types and abstractions, convenient techniques are available to a user of the library to resolve
the portability issues without unnecessarily delaying or complicating the prototyping.

6.3. Array Infrastructure Portability

The previous examples have used arrays in a fairly straightforward manner, where user
code instantiates a concrete subtype of the AbstractArray type to express where data is
stored, array abstractions are used to describe what is going to be computed, and multiple
dispatch is the core mechanism to influence how computation happens. This section demon-
strates how this separation of concerns makes it possible to compose multiple array types,
and enable reuse of array infrastructure.

23

6.3.1. Kronecker Products on the GPU

The example from Listing 3 uses a custom array type for efficiently computing the
Kronecker product of two matrices, and provides an optimized implementation of the norm
function computing the matrix norm using properties of the Kronecker product to improve
performance. The Kronecker array type is generically typed, and only requires that the two
input matrices should be part of the AbstractArray type hierarchy. No so-called glue code
is required for the Kronecker type to work with concrete array types.

For example, we can create objects of type Kronecker{CuArray} by calling the Kronecker
constructor with inputs of type CuArray. The resulting object can be used as if it were a
generic array, with the Kronecker type influencing what is computed, while the CulArray
type defines how and where the computation happens.

With only the getindex function for scalar indexing defined, array operations with ob-
jects of type Kronecker{. ..} dispatch to generic implementations as described in Section 5.
However, any optimized method that calls functions on the underlying containers compiles
to specialized code that uses functionality optimized for the contained array type. For ex-
ample, with a Kronecker product of CuArrays and the optimized but still generically-typed
implementation of the matrix norm from Listing 3, calls to the norm function result in an
execution that combines the properties of the Kronecker product that allow for an efficient
calculation of the norm with a well-optimized GPU implementation of the Euclidean norm
that is available in the CuArrays.jl package and that in turn invokes the cuBLAS library.
This powerful example illustrates how multiple array types, each dealing with separate con-
cerns, seamlessly compose together to form a high-performance interface that can still be
used generically.

Ideally, it should also be possible to use the broadcast abstraction from Section 4 in
combination with custom array types. However, currently that does not yet work out of the
box. One problem is the implementation of the type hierarchy in relation to broadcasting
when wrappers are combined. For example, Kronecker{CuArray} is an AbstractArray,
but not a CuArray. In the current language implementation, the compiler’s use of available
methods optimized for CuArray to specialize code depends on the presence of certain artifacts
in the Kronecker class method implementations, such as whether or not those (by accident)
defer explicitly to the inner CuArray. That dependency on the occurrence of those artifacts
should be avoided, as it violates the separation of concerns and limits composibility and
performance portability in ways a non-expert programmer cannot easily handle.

We expect this situation to improve in the future, since heavy use of array wrapper types
is relatively new, and the current broadcast infrastructure has been designed as recently as
Julia 1.0. For now, array packages such as CuArrays.jl and Distributed Arrays.jl provide the
necessary definitions for common array wrappers, such as the ones from the Julia standard
library, to work as expected.

6.3.2. Distributed GPU Arrays

Where the previous section combines array types that have separate responsibilities, we
can also compose types that involve similar concerns. For example, both the CuArrays.jl
and DistributedArrays.jl packages define array types that define where data is stored and

24

how values are computed. The DArray type distributes data across multiple processes and
prefers computations with local memory, while the CuArray type uses the GPU for storage
and parallel execution. As explained in Section 5.2, the distributed chunks of a DArray are
arrays, typically regular CPU-based Arrays, but we can use CulArray as the underlying data
array, and thereby distribute data and computations across multiple GPUs. For DArray
to be able to wrap and manage an array, the type only needs to implement the object
serialization interface.

Similar to the example in the previous section, the resulting DArray{CuArray} object
implements the AbstractArray interface and can therefore be used as any other array.
This kind of infrastructure portability arises from a clear separation of concerns, each type
implementing specific, fine-grained methods with minimal surface area. Both types are
oblivious about one another and generic code can take advantage of them jointly.

Listing 16 is an example of how DArray separates the responsibilities of communication
and computation. Computation is delegated to a different array type, may it be Array for
CPU or CuArray for GPU execution. Similarly, broadcast of a DArray is implemented
by delegating the computation to a different array type without having to specify which
array types are supported. This allows new array types to be bootstrapped quickly and to
take advantage of these rich abstractions. For example, a transposition of any array can be
represented as an object of type Transpose{...} without that array having to solve the
problem of transposing data itself. If there exists a better approach to transposing this kind
of array, it can simply be implemented as an additional method of the transpose function,
specialized for this type.

7. Performance Evaluation

This section analyzes the performance of different array types applied to the examples
from Section 2. We work with the latest stable version of Julia, 1.0.1, using the official
binaries from the homepage. For auxiliary packages, we also used the latest released versions
at the time of writing: CUDAdrv 0.8.6, CUDAnative 0.9.1, and ForwardDiff 0.9.0. In the
case of array packages, CuArrays.jl and DistributedArrays.jl, we used development branches
to incorporate fixes and improvements to the array types that we developed while working
on this paper.

All measurement are done on a dual processor system, with two Intel quad-core Xeon E5-
2637 v2 CPUs totaling 8 cores and with simultaneous multi-threading support for 16 threads.
The system is equipped with 64GB of DDR3 ECC memory, while each CPU has 15MB of
shared cache. The system also contains 2 NVIDIA GPUs: a Kepler-era GTX TITAN with
6GB memory, and a Pascal-era GeForce GTX 1080 with 8 GB memory. We use a 64-bit
Debian Stretch running Linux 4.9, with CUDA 9.0 on NVIDIA driver 390.87.

Code that targets the CPU by using the Array or DArray{Array} types is allowed to
take advantage of the supported 16 simultaneous CPU threads. In the case of Array, this is
done by configuring the OpenBLAS library that empowers many of the array abstractions
as implemented for Array to use 16 threads. This implies a single-process multi-threaded
parallelization. In the case of DArray{Array}, single-threaded multi-process parallelization

25

10* E

103 4

iz F g
é L i
o 107} .
E g |
) [|
g 1w0'p E
= = B
5 | -
ol ol ’
Ly
1 - —— Array .

10 § —— CuArray é

B —— DArray{Array} ||

10—2 g | | | | T—A——DA‘rray{Cu‘Array} I

20 22 24 26 28 210 212 214 216

input size N

Figure 1: Time to execute the domeigen function from Listing 1 and compute the dominant eigenvector and
eigenvalue of a N x N matrix. We benchmark for 1000 iterations of the power method, approximating the
reference eigenvalue with sufficient accuracy.

is used instead. This is done by configuring the Distributed standard library that is used by
DistributedArrays.jl to launch 16 worker processes, while OpenBLAS is configured to use
only thread per process to avoid oversubscription of the system. For measurements with a
single GPU, we use the GeForce GTX 1080 in a single process. When targeting multiple
GPUs, e.g., with the DArray{CuArray} type, we use one worker process per GPU.

We used the BenchmarkTools.jl package to collect accurate timings for the experiments
in this paper [19]. Measurements are performed on an otherwise idle system, after tuning
in order to determine the required execution and sample count for each experiment to yield
accurate timings. In the charts below, we report the mean execution time.

The performance evaluation below is limited in scope. We rely on existing array packages
to perform well in the contexts they were designed for, i.e., CuArrays.jl for GPU execution
and DistributedArrays.jl for execution on multi-core CPU computers and distributed sys-
tems. The measurements in this section serve to illustrate how the realistic problems from
Section 2, built on top of array abstractions from Section 4, can be used with the array
types from Section 5 to effortlessly program heterogeneous systems and to benefit from the
increased performance and/or enlarged scale these systems provide. This does not neces-
sarily imply optimal or efficient use of the hardware, but we will show that our approach
facilitates that goal.

7.1. Power Iteration

The example from Listing 1 is a simple application that uses array abstractions. It can
trivially be executed with a variety of array types, for which it suffices to change the initial

26

allocation site. Figure 1 shows how the execution time of the domeigen function evolves
with the problem size. This time includes all run-time overhead such as the time to allocate
output buffers, launch GPU kernels, and communicate data across compute nodes.

The results in Figure 1 highlight several performance characteristics. First of all, it is
clear how regular multi-threaded Arrays have very low overhead, and scale with increas-
ing problem size as would be expected from working with N x N arrays. A distributed
DArray{Array} works with multiple processes that require Inter-Process Communication
(IPC). This comes with a significant overhead that will be discussed below, but with large
problem sizes the performance shows to scale identically to multi-threaded arrays that do
not require IPC. This shows how the use of DArray{Array} is viable for large problems,
where performance of multiple processes with IPC is comparable to that of a multi-threaded
application that does not require communication.

The CuArray measurements are for using a single GPU. Again there is a constant
overhead that dominates the performance for small input sizes, albeit smaller than with
DArray{Array}. This overhead is caused by interactions with the CUDA driver, such as al-
locating memory or launching GPU kernels. This overhead is quickly dwarfed for larger input
sizes, however, by the performance improvements that result from using a GPU. These mea-
surements show how performance of array applications that work with nontrivial datasets
can be easily improved by using a GPU array type such as CuArray.

As GPUs typically have small memories, they are limited in the amount of data that can
be processed. Although certain operations can be implemented with so-called out-of-core
algorithms that support working set sizes larger than the available memory, and features like
CUDA Unified Memory make it possible to do so without significantly changing code, these
approaches come at a large performance cost [20, 21, 22]. We did not employ such techniques
in the reported experiments. For that reason, the CuArray measurements stop at input
size 2. The alternative solution of using multiple GPUs to extend the available memory
requires careful management of data in order to reach good levels of performance. This
data management has already been developed as part of DistributedArrays.jl, so we reuse
that functionality via objects of type DArray{CuArray} to distribute data automatically
across GPU devices. Figure 1 shows how this again comes with a large initial overhead for
small input sizes, but ultimately the approach scales past the limits of using a single GPU
and delivers performance that is better than the projected performance of using a single
GPU past its maximal problem size, consistent with the increase in computing power that
arises from using multiple GPUs. It shows how multiple GPUs can be easily used together
to extend the supported working set size of an array application, while further improving
performance despite inefficiencies in the current IPC implementation.

Similarly, Distributed Arrays.jl can be used to scale past single computers without changes
to the application, by using one of the cluster managers as explained in Section 5.2. This
makes it possible to support working set sizes that exceed the available main memory, and
to improve performance by adding more computational power than a single computer has to
offer. As we did not have such a system at our disposal at the time of writing this paper, we
do not present measurements for a distributed system that consists of multiple computers.

27

7.2. Performance Characteristics of DistributedArrays.jl

The above results showed that distributed arrays displays a constant overhead that only
is amortized when the working data is sufficiently large. Some of that overhead is to be
expected because IPC invariably involves communication, while types such as Array and
CuArray require no such communication. That communication does not explain all the
overhead, however. Some of it is actually caused by several inefficiencies in the current
implementation of DArray, which we plan to address in the future.

The first major inefficiency stems from the fact that communication and computation
share the same thread. Julia uses one event loop to schedule tasks and to allow forward
progress to be made when a task is blocked on 10. The event loop is current implemented
using cooperative tasks, which can lead to the unfortunate situation that a worker busy
with a computation and not yielding back to the event loop causes other tasks responsible
for communication to stall. This in turns prevents other processes from making progress.
Work is currently under way to move to a parallel thread runtime where this would not be
an issue.

Another slowdown is due to the many data copies occurring as part of IPC. The vector-
matrix product on line 11 of Listing 1 requires sending parts of the vector to different
processes. As part of that communication, extraneous copies of the data are made: The
vector is first serialized on one process and copied to an IPC socket. Then it is deserialized
from that socket on another process to be made available as a vector object again. There are
also places within DistributedArray.jl where unnecessary additional copies are made, such
as the current implementation of copyto! (::Array, ::DArray) where the remote data is
first copied into a local buffer and then copied again into the output array. These redundant
copies could be avoided by careful optimization, and communication could be improved, e.g.,
by using hardware capabilities such as Remote Direct Memory Access (RDMA) or NVLink
for GPUs. Such optimizations are very local, and often only require certain method defi-
nitions. As an example, support for efficient communication between GPUs would require
implementations of the serialize and deserialize methods for CuArray using the CUDA
IPC programming interfaces. Since our system does not support NVLink, we did not add
such definitions, and would have to explore alternative approaches. For now, the commu-
nication overhead is significant. As a result, the matrix-vector product used in Listing 1
shows little speed-up with DArray{Array}. It is bound by memory bandwidth and the cost
of communication is much higher than the computational cost of the operation. When exe-
cuting Listing 1 with DArray{CuArray}, the performance benefit of using GPUs overcomes
that overhead.

Despite these limitations, distributed arrays are still useful, e.g., once the working set
size is too big for one machine or one GPU, or simply when more computational power is
required. Furthermore, in scenarios that require little communication, Distributed Arrays.jl
scales nicely as will be demonstrated below.

7.8. Kronecker Product

Computation of the Kronecker product from Listing 3 illustrates a scenario where much
less communication is required. The Euclidean norm can easily be computed on local parts

28

FT 1

10° | E

10% |]

= 101}]
Bl |
@ 0L E
g 0%
-1 .

E 10 % %
S 102}]
¥ F]
2 g i
-3 | —o— Array u

g - CuArray E

10-4 1 e

g —*— DArray{CuArray} |]

N —+— Array (dense) ||

1075 £ ‘ ‘ | | I I I E

5 52 " 26 98 910 912 9ld 916

input size N

Figure 2: Time to compute matrix norm of the Kronecker product of two N x N matrices. Measure-
ments marked with “dense” first compute the Kronecker product in full, while other measurements uses the
structured matrix type from Listing 3 and the accompanying norm calculation from Listing 4.

of the input arrays, after which the partial scalar results can be communicated and used to
compute the total norm. Figure 2 show how this does not affect measurements with multi-
threaded Arrays, which do not require inter-process communication. The timings hence
scale quadratically, as would be expected from processing the Kronecker product of N x N
arrays.

For the sake of completeness, timings for a dense computation are also included, where
the Kronecker product is first computed in full, yielding a N? x N? matrix. Comparing
measurements with these dense computation timings to the timings of the Array imple-
mentation that uses the Kronecker type shows the value of using a a structured matrix for
computing the Kronecker product and for the associated optimized implementation of, here,
the matrix norm. Even for small N, computing the norm of two N x N input matrices as
per the optimized implementation for Kronecker products is faster than materializing the
product and computing the norm of a single N? x N? matrix. The working set size is of
course also significantly reduced.

With fewer communication demands, the measurements for distributed CPU arrays using
DArray{Array} show a much smaller overhead than were observed for the power iteration ex-
ample. For significantly large problem sizes, not only is the scaling behavior identical to that
of multi-threaded Arrays that do not require inter-process communication, the performance
is in fact higher. This shows that the distributed DArray{Array} is not only interesting
for extending the working set size using distributed systems, but that it can also improve
performance on a single computer as long as the application does not require significant
IPC. This performance improvement can be explained by the Non-Unified Memory Access

29

10° g]
10° g €

) |)
g 104 g E
o B i
E 0 1
+ 3L -
= 10 B E
S | 1
= =]
S L2l |
(5] E -
" 10 = E
D] = B
101 ; —o— Array ;

& . CuArray E

I —8— DArray{Array} |

100 L —+— DArray{CuArray} ||

E 1 ! ! ! ! I I E

I
20 23 26 29 212 215 218 221
input size N

Figure 3: Time to perform 25 iterations of proximal gradient descent from Listing 2 to optimize a network
of 100 parameters for IV outputs. The implementation uses linear regression as a user defined model and
performs enough iterations for the loss to reach 0.01 given random inputs that are normally-distributed
around 0 with a standard deviation of 1.

(NUMA) architecture of our 2-processor system. In the case of Array, the entire array is
allocated once on one of the NUMA nodes and processing from threads on a different NUMA
node results in relatively slow memory accesses. With Distributed Arrays.jl, data is explicitly
partitioned across workers on the system. This results in data allocated in the local NUMA
node, therefore minimizing memory traffic across NUMA zones.

Similar to the previous example, using GPUs through the CuArrays.jl package signifi-
cantly improves performance, but comes with a constant overhead that necessitates large

input sizes. With DArray{CuArray}, we again manage to scale past the memory limit of a
single GPU.

7.4. Proximal Gradient Descent

In Section 7.2 we mentioned a major performance penalty in the current implementation
of DistributedArrays.jl due to inefficiencies with IPC. This is particularly noticeable in
the machine learning example from Listing 2, where the main computational cost comes
from matrix-vector multiplications as part of the proximal_gradient_descent method.
These operations require significant communication, which is troublesome given the current
implementation of IPC in DistributedArrays.jl. Indeed, Figure 3 shows how distributed
execution with DArrays is completely dominated by the cost of communication, and even
drowns out any performance benefits that come from using GPU hardware. In contrast, local
execution with CuArray shows significant run-time improvements compared to CPU-based
Arrays, but is limited in terms of the working set size. As such, while the performance of

30

distributed execution is far from optimal at this point, it makes it possible to scale beyond
single devices and benefit from, e.g., the increase in available memory.

This example illustrates how application performance and potential improvements of
using different array types are currently subject to application characteristics and how those
influence the (composition of) the underlying array libraries. For example, Figure 3 shows
how the example from Listing 2 benefits significantly from using a GPU, but currently does
not improve when executed on a distributed system due to the heavy use of IPC. The
example from Listing 1 does not rely as much on IPC, and Figure 1 shows how it benefits
from using multiple GPUs in a distributed setting. At the other end of the spectrum, the
example from Listing 3 does hardly use any IPC and as a result Figure 2 shows how use of
distributed CPU and GPU resources yields significant speedups.

7.5. Optimization Opportunities

The code examples analyzed so far have been written using high-level, idiomatic code that
stays close to the mathematical definitions. This coding style is common with prototyping
code, and as we have shown does still allow for good performance and portability towards
heterogeneous computing environments.

After the initial prototyping phase in other high-level languages, developers typically
rewrite (part of) their code in a high-performance language. With a high-level language
that is designed for performance, as Julia is, this translation step can be avoided. Instead
the Julia language features great performance from the get go, and makes it possible to
optimize code within the language itself to the point where it reaches or even goes beyond
the performance of statically compiled languages such as C or Fortran [1].

Furthermore, a one-language solution makes it easier for domain experts and code opti-
mization experts to communicate and work together. Results can be passed between R&D
and production teams, and prototyping code can be improved until fit for reuse by other
projects or programmers. This avoids one-off solutions, improving the productivity and
performance of future prototyping efforts.

In the remainder of this section, we discuss two different types of optimizations and their
impact on examples from this paper.

7.5.1. Array Programming

In the case of array programming, common optimizations include using pre-allocated
buffers and in-place operations for matrix operations, replacing operations on small con-
tainers with explicit loops, optimizing the iteration order, etc. By using generically typed
functionality, or functionality that is expected to be implemented for all array types (such as
methods from the AbstractArray interface, common linear algebra operations like matrix-
matrix multiplication, etc), it is possible for such optimizations to be type-generic and
reusable in the context of different array types.

As an example, consider how every iteration of the for loop in the domeigen function
in Listing 1 allocates two temporary containers to store the outputs of the operations on
lines 11 and 14. Listing 19 shows an alternative version of the code that pre-allocates
two containers before the loop and uses in-place operations to prevent new allocations. This

31

Listing 19: Optimization of the power iteration loop from Listing 1, using pre-allocated buffers and in-place
array operations.

function domeigen(A, p)

1

2

3

4 # power iteration
5 br = bo

6 brt1 = similar (bg)
7 for _ im 1:p

8 mul! (bgy1, A, bg)

9
10 # normalize
11 by .= bry1 ./ norm(bgiq)
12 end
13
14 S
15 end
Listing 20: Optimizing the use of ForwardDiff.jl from Listing 2 for GPU execution.
1 using CuArrays
2 using ForwardDiff: Chunk, DEFAULT_CHUNK_THRESHOLD
3
4 Chunk(x::CulArray, threshold::Integer = DEFAULT_CHUNK_THRESHOLD) = Chunk{8}()

trivial optimization significantly improves performance, especially in the case of small inputs
where the overhead of allocating memory is similar to the run time of the actual array
operations. For example, with CPU arrays of size 64 x 64 or smaller, this optimization
improves performance by up to 15%. Furthermore, the change is fully generic and equally
applies to other array types. With CuArrays, where memory allocations aren’t backed by a
high-performance garbage collector, the improvements are about 5% for all matrix sizes as
used in this evaluation.

7.5.2. Multiple Dispatch

Beyond optimizing the use of array abstractions, it is always possible to use multiple
dispatch for providing fine-grained method overloads that optimize critical pieces of under-
lying functionality. One obvious example as discussed in Section 6 are method overloads
that avoiding scalar iteration, e.g., in an underlying library that is used by the application.
Although the main purpose of these overloads is to improve performance when working with
heterogeneous computing devices, the implementations are often generic and can be used
for all array types.

Method overloads can also be specific to an array type, and provide functionality that
only optimizes execution for that type. For example, the ForwardDiff.jl library as used in
Listing 2 performs partial derivative evaluations on the input vector in chunks [9]. Perform-
ing the evaluations on small smaller chunks uses less memory but requires more evaluations
of the target function. In the case of GPU execution, larger chunks also require more regis-
ters, which might result in inefficient use of the GPU’s parallel compute units. ForwardDiff.jl

32

uses a heuristic to optimize the chunk size and minimize the amount of chunks given the
size of the input vector. Listing 20 shows how to override that heuristic for GPU arrays by
hard-coding an empirically-chosen chunk size that performs well given a specific application
and GPU. Note that a production-quality version of this function would need to specialize
on the performance characteristics of the GPU hardware that backs the input array.

8. Related work

In this paper we focused on array abstractions and linear algebra, since that is the pro-
gramming model most commonly used in the prototyping stage of engineering applications.
Indeed MATLAB and NumPy and a host of other languages that lend themselves more or
less naturally to technical computing use the same programming model. High-level dynamic
languages often use this model not only for its expressibility, but because they can imple-
ment the functionality as libraries in a low-level programming language and thereby gain
performance. If they interact with accelerators like GPUs they use libraries, such as Array-
Fire [23], which provide functions that can be called from the CPU but are executed on a
GPU. This split between the programming language that main application developers write
in and the programming language that is used to implement the libraries, is an instance
of the two-language problem [1] and causes composability [24] and extensibility problems.
Once developers exhaust the functionality of the library and require custom functionality,
e.g., because they want to take advantage of problem-specific knowledge as shown in Sec-
tion 2.3, the library approach starts to break down and they have to resort to writing their
code in the low-level language. Numba [25] is a rare exception since it allows heterogenous
programming in the same language, but it still struggles with composability and allowing
for user-defined array abstractions that encode problem-specific knowledge.

We have shown that this is not a problem in Julia since the abstractions themselves are
implemented in the same programming language as used by the main application or library
developer. Furthermore we use higher-order array abstractions to separate the intent of
the developer from the actual execution, and we do so in a composable and extensible
manner [14].

The idea of separating the algorithm (what to compute) from the schedule (how and
where to compute) is most prominent in Halide [26, 27]. Halide uses a domain-specific lan-
guage (DSL) embedded in C++ to allow programmers to write pipelines (image algorithms)
independently of the schedule and then specify a schedule and execution target. Halide
allows for automatic scheduling of pipelines, but most advanced users will want to specify
their own, since a programmer with deep knowledge of the hardware can create an optimal
schedule of the pipeline. Additionally, Distributed Halide [28] allows for the distributed exe-
cution of a Halide pipeline. The Halide approach is declarative and focuses on stencils, which
is unfamiliar to a developer used to high-level languages and their use of array abstractions.

Heterogeneous programming has seen a furor of development in the realm of machine
learning, mainly in the form of frameworks and DSLs that are capable of transparently using
accelerators and scheduling operations in a distributed heterogeneous manner. Frameworks
such as TensorFlow [29] and PyTorch [30] make it easy to take advantage of heterogeneous

33

compute resources, but since they are effectively mini languages embedded in Python with
their own compiler infrastructure and their own implementation of array abstractions, they
fail to compose with the larger Python ecosystem and are hard to extend. In previous
work, we discussed the reason for this failure of composability [31] in the context of machine
learning itself. While these frameworks can be used for engineering workloads, they often
require recasting the problem at hand in terms of machine learning and do not cater to the
needs of engineers outside machine learning.

On the other side of the spectrum is the development of special purpose HPC languages
such as Chapel [32], IBMs X10 [33], and Fortress [34], which were created with any number of
good ideas, but have failed to attract a substantial user base outside of the community that
originally developed it. There are some initial developments to adapt these HPC languages
to heterogeneous computing, but it is not clear how that will play out and if they will
manage to address the diverse set of challenges in heterogeneous computing, while providing
an attractive and usable programming model.

In C and C++ there is a host of solutions for heterogeneous programming, like CUB [35],
Thrust [36], OpenMP [37], OpenACC [38] and several others. There are also several ap-
proaches for distributed programming like MPI [39], Legion[40], and UPC++[41]. Trili-
nos [42], PetSC [43], and Kokkos [44], are HPC libraries developed to facilitate the reuse of
common numerical infrastructure and have found a fervent following in the HPC commu-
nity. They are large and complicated libraries that achieve excellent performance in cluster
environments, and they are well suited for performance engineers comfortable with C/C++,
GPU programming, and distributed programming, but they are not as usable as higher-
level programming languages and require a higher investment in time and effort to become
proficient. They are thereby less suited for an initial exploration and prototyping phase.

9. Conclusion and Future Work

Concluston. We have shown the initial promise of a programming model that is partic-
ularly well suited for rapid prototyping, gradual performance improvements, and taking
advantage of heterogeneous computing resources to tackle problems at scale. It realizes
our vision of a unified development environment without walls between rapid prototyping
and performance engineering. We have demonstrated that non-trivial applications can be
expressed with array abstractions as offered by the Julia programming language, and how
that enables portability through the use of different array types.

Our work on CuArrays.jl and DistributedArrays.jl has made it possible to execute real-
istic array applications on respectively GPUs and distributed systems. The presented GPU
array type builds on our previous work for compiling Julia code for GPUs [5], and makes it
possible to program the hardware without any knowledge of GPU programming. We also
show how these array packages compose, and make it possible to target distributed CPUs
and GPUs alike.

Status. The initial focus of our work has been on usability and functionality, support-
ing common abstractions while offering mechanisms for incrementally porting existing code.

34

Nonetheless, performance improvements of applications that use our work are often signifi-
cant, albeit inconsistent and dependent on the application characteristics and implementa-
tion details of the underlying array library. Specifically, distributed arrays suffer from several
performance deficiencies, but prove useful to scale past individual systems and benefit from
the extended memory and computing power that distributed systems have to offer.

Our work is compatible with the latest version of Julia, and our contributions to the
packages as used in this paper are open-source and have been integrated with the upstream
development branches.

Future Work. Work is under way to improve performance problems with distributed ar-
rays as discussed in Section 7.2. This includes moving to a parallel thread runtime to
prevent worker starvation, and improvements to the communication primitives to support
high-performance mechanisms such as RDMA and NVLink.

We are also working on generalized handling of array wrappers in order to avoid the
composability issues as discussed in Section 6.3. These issues are equally relevant to regular
Julia code, outside of heterogeneous programming, where array wrappers are increasingly
used as a means to implement operations on arrays efficiently. Case in point, other devel-
opers have recently redesigned the broadcast infrastructure to better accommodate for deep
array hierarchies, and to allow fine-grained decisions at each level on how broadcasts are
processed. In turn, that work is valuable for heterogeneous programming, e.g., to control
which broadcast expressions are fused into GPU kernels. Exploiting the synergies between
all ongoing developments in this regard still requires some work.

Finally, there is ongoing work to generalize the abstractions from Section 4 in order to
represent most if not all of the common tensor comprehensions. This includes the develop-
ment of tensor and stencil compilers in Julia, and we predict that such developments could
take advantage of the general strategy outlined here to separate the individual concerns that
involve heterogeneous computing.

Acknowledgments

We are grateful to Peter Ahrens and Jarret Revels for valuable discussions and comments.
We would also like to thank the Julia community at large, and in particular Jameson Nash,
Matt Bauman, Andreas Noack, Chris Rackauckas and Yingbo Ma for their input on these
subjects.

This research is supported in part by NSF DMS-1312831, NSF OAC-1835443, Darpa
XDATA, and an ARAMCO MITEI grant. Tim Besard is supported by the Institute for
the Promotion of Innovation by Science and Technology in Flanders (IWT), the Research
Foundation — Flanders (FWO), and by Ghent University through the Concerted Research
Action on distributed smart cameras.

References

[1] J. Bezanson, S. Karpinski, V. B. Shah, A. Edelman, Julia: A fast dynamic language for technical
computing, arXiv preprint arXiv:1209.5145 (2012).

35

2]
3]

[4]

[20]

[21]

[22]

23]

[24]

J. Bezanson, et al., Julia: A fresh approach to numerical computing, STAM Review 59 (2017) 65-98.
J. Bezanson, B. Chung, J. Chen, S. Karpinski, V. B. Shah, J. Vitek, L. Zoubritzky, Julia: Dynamism
and performance reconciled by design, in: Proceedings of the International Conference on Object
Oriented Programming Systems Languages and Applications, ACM, 2018. To appear.

J. Bezanson, J. Chen, S. Karpinski, V. Shah, A. Edelman, Array operators using multiple dispatch:
A design methodology for array implementations in dynamic languages, in: Proceedings of ACM
SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming,
ACM, 2014.

T. Besard, C. Foket, B. De Sutter, Effective extensible programming: Unleashing Julia on GPUs, IEEE
Transactions on Parallel and Distributed Systems (2018).

Julia developers, CuArrays.jl: CUDA-accelerated arrays for Julia, 2018. URL: https://github.com/
JuliaGPU/Culrrays. jl.

Julia developers, DistributedArrays.jl: Distributed Arrays in Julia, 2018. URL: https://github.com/
JuliaParallel/DistributedArrays. jl.

R. Mises, H. Pollaczek-Geiringer, Praktische verfahren der gleichungsauflosung., Journal of Applied
Mathematics and Mechanics (ZAMM) 9 (1929) 152-164.

J. Revels, M. Lubin, T. Papamarkou, Forward-mode automatic differentiation in Julia,
arXiv:1607.07892 (2016).

L. Hogben, Handbook of linear algebra, Chapman and Hall/CRC, 2006.

P. Lancaster, H. Farahat, Norms on direct sums and tensor products, Mathematics of Computation
26 (1972) 401-414.

J. Bezanson, Abstractions in technical computing, Ph.D. thesis, Massachusetts Institute of Technology,
2015.

S. G. Johnson, More dots: Syntactic loop fusion in Julia, 2017. URL: https://julialang.org/blog/
2017/01/moredots.

M. Bauman, Extensible broadcast fusion, 2018. URL: https://julialang.org/blog/2018/05/
extensible-broadcast-fusion.

J. Nieplocha, R. J. Harrison, R. J. Littlefield, Global arrays: A portable shared-memory programming
model for distributed memory computers, in: Proceedings of the 1994 ACM/IEEE conference on
Supercomputing, IEEE Computer Society Press, 1994, pp. 340-349.

A. B. Yoo, M. A. Jette, M. Grondona, Slurm: Simple linux utility for resource management, in:
Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing, Springer, 2003, pp.
44-60.

R. L. Henderson, Job scheduling under the portable batch system, in: Proceedings of the Workshop
on Job Scheduling Strategies for Parallel Processing, Springer, 1995, pp. 279-294.

J. Liu, J. Wu, D. K. Panda, High performance RDMA-based MPI implementation over infiniband,
International Journal of Parallel Programming 32 (2004) 167-198.

J. Chen, J. Revels, Robust benchmarking in noisy environments, arXiv preprint arXiv:1608.04295
(2016).

T. Harada, A framework to transform in-core GPU algorithms to out-of-core algorithms, in: Proceed-
ings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, 2016,
pp- 179-180.

R. Landaverde, T. Zhang, A. K. Coskun, M. Herbordt, An investigation of unified memory access
performance in CUDA, in: Proceedings of the High Performance Extreme Computing Conference
(HPEC), IEEE, 2014, pp. 1-6.

N. Sakharnykh, Beyond GPU memory limits with unified memory on pascal, 2016. URL: https://
devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/.

P. Yalamanchili, U. Arshad, Z. Mohammed, P. Garigipati, P. Entschev, B. Kloppenborg, J. Malcolm,
J. Melonakos, ArrayFire - A high performance software library for parallel computing with an easy-to-
use API, 2015. URL: https://github.com/arrayfire/arrayfire.

A. Malakhov, Composable multi-threading for Python libraries, in: Proceedings of the Python in

36

https://github.com/JuliaGPU/CuArrays.jl
https://github.com/JuliaGPU/CuArrays.jl
https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/DistributedArrays.jl
https://julialang.org/blog/2017/01/moredots
https://julialang.org/blog/2017/01/moredots
https://julialang.org/blog/2018/05/extensible-broadcast-fusion
https://julialang.org/blog/2018/05/extensible-broadcast-fusion
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://github.com/arrayfire/arrayfire

[25]

[26]

[27]

[41]

[42]

Science Conferences, 2016.

S. K. Lam, A. Pitrou, S. Seibert, Numba: A LLVM-based Python JIT compiler, in: Proceedings of
the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15, 2015, pp. 7:1-7:6.

J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, F. Durand, Decoupling algorithms
from schedules for easy optimization of image processing pipelines, ACM Transactions on Graphics 31
(2012) 32:1-32:12.

T.-M. Li, M. Gharbi, A. Adams, F. Durand, J. Ragan-Kelley, Differentiable programming for image pro-
cessing and deep learning in Halide, Proceedings of the ACM Transactions on Graphics (SIGGRAPH)
37 (2018) 139:1-139:13.

T. Denniston, S. Kamil, S. Amarasinghe, Distributed halide, SIGPLAN Not. 51 (2016) 5:1-5:12.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, X. Zheng, Tensorflow: A system for large-scale machine learning,
in: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation,
0OSDI'16, USENIX Association, 2016, pp. 265-283.

A. Paszke, S. Gross, S. Chintala, G. Chanan, Pytorch, 2017.

M. Innes, S. Karpinski, V. Shah, D. Barber, P. Stenetorp, T. Besard, J. Bradbury, V. Churavy,
S. Danisch, A. Edelman, et al., On machine learning and programming languages, 2018. SysML Con-
ference.

B. L. Chamberlain, D. Callahan, H. P. Zima, Parallel programmability and the Chapel language, The
International Journal of High Performance Computing Applications 21 (2007) 291-312.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. Von Praun, V. Sarkar,
X10: An object-oriented approach to non-uniform cluster computing, in: ACM SIGPLAN Notices,
volume 40, ACM, 2005, pp. 519-538.

E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. Steele Jr, S. Tobin-
Hochstadt, J. Dias, C. Eastlund, et al., The Fortress language specification, 2005.

D. Merrill, NVIDIA-Labs, CUDA UnBound (CUB) Library, 2015. URL: https://nvlabs.github.io/
cub/.

N. Bell, J. Hoberock, Thrust: A productivity-oriented library for CUDA, in: GPU computing gems
Jade edition, Elsevier, 2011, pp. 359-371.

L. Dagum, R. Menon, OpenMP: An industry-standard API for shared-memory programming, IEEE
Computing in Science & Engineering (1998) 46-55.

S. Wienke, P. Springer, C. Terboven, D. an Mey, OpenACC: First experiences with real-world ap-
plications, in: Proceedings of the 18th International Conference on Parallel Processing, Euro-Par’12,
Springer-Verlag, 2012, pp. 859-870.

MPI Forum, MPI: A Message-Passing Interface Standard, Technical Report, 1994.

M. Bauer, S. Treichler, E. Slaughter, A. Aiken, Legion: Expressing locality and independence with
logical regions, in: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’12, IEEE Computer Society, 2012, pp. 1-11.

J. Bachan, D. Bonachea, P. H. Hargrove, S. Hofmeyr, M. Jacquelin, A. Kamil, B. van Straalen, S. B.
Baden, The UPC++ PGAS library for exascale computing, in: Proceedings of the Second Annual
PGAS Applications Workshop, PAW17, ACM, 2017, pp. 7:1-7:4.

M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M.
Willenbring, A. Williams, K. S. Stanley, An overview of the trilinos project, ACM Transactions on
Mathematical Software (2005) 397-423.

S. Balay, W. D. Gropp, L. C. Mclnnes, B. F. Smith, Efficient management of parallelism in object-
oriented numerical software libraries, in: Modern software tools for scientific computing, Springer, 1997,
pp. 163-202.

H. Carter Edwards, C. R. Trott, D. Sunderland, Kokkos: Enabling manycore performance portability
through polymorphic memory access patterns, Journal of parallel and distributed computing (2014)

37

https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/

32023216.

38

	Introduction
	Use Cases
	Power Iteration
	Proximal Gradient Descent
	Kronecker Product

	The Julia Perspective
	Abstractions for Array Programming
	The map, reduce, and broadcast abstractions
	Dot Expressions

	Heterogeneous Programming with Arrays
	CuArrays.jl
	DistributedArrays.jl

	Code Portability
	Application Portability
	Library Portability
	Array Infrastructure Portability
	Kronecker Products on the GPU
	Distributed GPU Arrays

	Performance Evaluation
	Power Iteration
	Performance Characteristics of DistributedArrays.jl
	Kronecker Product
	Proximal Gradient Descent
	Optimization Opportunities
	Array Programming
	Multiple Dispatch

	Related work
	Conclusion and Future Work

