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Abstract: The conservation field is experiencing a rapid increase in the amount, variety, and quality
of spatial data that can help us understand species movement and landscape connectivity patterns.
As interest grows in more dynamic representations of movement potential, modelers are often
limited by the capacity of their analytic tools to handle these datasets. Technology developments in
software and high-performance computing are rapidly emerging in many fields, but uptake within
conservation may lag, as our tools or our choice of computing language can constrain our ability to
keep pace. We recently updated Circuitscape, a widely used connectivity analysis tool developed by
Brad McRae and Viral Shah, by implementing it in Julia, a high-performance computing language.
In this initial re-code (Circuitscape 5.0) and later updates, we improved computational efficiency and
parallelism, achieving major speed improvements, and enabling assessments across larger extents
or with higher resolution data. Here, we reflect on the benefits to conservation of strengthening
collaborations with computer scientists, and extract examples from a collection of 572 Circuitscape
applications to illustrate how through a decade of repeated investment in the software, applications
have been many, varied, and increasingly dynamic. Beyond empowering continued innovations in
dynamic connectivity, we expect that faster run times will play an important role in facilitating co-
production of connectivity assessments with stakeholders, increasing the likelihood that connectivity
science will be incorporated in land use decisions.

Keywords: Circuitscape; dynamic connectivity; conservation planning; computational ecology; Earth
observations; Julia programming language; landscape connectivity; Omniscape

1. Introduction
The conservation field is experiencing a rapid increase in the amount, variety, and

quality of spatial data that can help us understand the dynamics of ecological systems,
and incorporate key aspects of variation into land use decisions [1–4]. The accelerating
pace of advances in the spatial and temporal resolution of ecologically relevant datasets
track technology developments in remote sensing technologies, and in software and high-
performance computing [5,6]. Updated software, and access to cloud computing and
other high-performance hardware such as computing clusters and Graphics Processing
Units (GPUs) are essential tools of the trade for researchers in other fields like data science
and artificial intelligence that are experiencing similar explosions in data availability [7].
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However, for landscape modelers who are collaborating and co-developing analyses with
stakeholders and local governments, uptake of new science and technological advances
may move slowly [8], especially when implementing change means leaving behind familiar
tools or workflows. In this era of rapid global change, and concurrent leaps forward in
data quality and availability, partnerships between conservation scientists and computer
scientists that lead to updates of widely used, open-source software can help modelers
keep pace, and more effectively support conservation decisions [7,9].

Here, we focus on assessments of landscape connectivity and animal movement
potential, a conservation field that exemplifies the exciting opportunities and computational
challenges that accompany improvements in technology. Recent advances in remote
sensing and image processing have led to critically important increases in the variety of
Earth observations available for characterizing the environment (e.g., types of ecological
indicators and climatic variables, and options for spatial and temporal resolution), and
advances in animal tracking technology are providing time series data on animal locations
that can be integrated with environmental data [1,10,11]. Growth in citizen science efforts
(e.g., eBird [12]), the deployment of automated data collection networks (e.g., camera traps,
acoustic monitoring networks), and data sharing portals (e.g., Movebank [13]) are further
increasing the volume of animal observation data streams [2].

The specific goals and underlying theories for landscape connectivity and animal
movement models are many and varied [14]. Similarly, many different analytical ap-
proaches, software tools, and workflows are deployed to integrate geospatial data and
ecological observations to build connectivity models (e.g., [14–19]). For applications that
explore how landscape characteristics such as landcover type, topography, and the pres-
ence of barriers influence movement potential, representing the landscape as a “resistance”
grid is a common element [15,17,20,21]. Each pixel of this surface is assigned a weight
(or cost), that reflects, for example, habitat use patterns for an individual species, the
likelihood of mortality in different habitats, or the “naturalness” of the landscape [20–24].
The datasets and models used to create resistance surfaces again vary, depending on the
application, data availability, and the study goal [17,20–24]. However, once the surface is
created and used as input for a connectivity analysis, many modeling workflows share the
trait of being constrained by computational demand [15,22,25,26], as representing spatial
patterns in a cumulative process like connectivity requires extensive calculations, often
across millions of pixels. If connectivity modeling software crashes or requires weeks to
run, these performance issues limit the scope and scale of our work.

Yet, for many important connectivity questions, we have the data to rapidly advance
our understanding beyond a single snapshot (i.e., one resistance grid), and explore the
dynamic nature of animal movement and other processes. Moving the field of connectivity
science toward dynamic assessments has been identified as an important research priority,
a goal that motivated this Special Issue [27–30]. In our contribution, we focus on the
essential role that partnerships between ecologists and computer scientists can play in
shaping this rapidly growing branch of conservation science, drawing from the history of
improvements in and applications of Circuitscape [31].

For connectivity tools like Circuitscape that use resistance grids as inputs, shifting
toward a more dynamic approach typically involves additional model runs on resistance
surfaces parameterized for different seasons, climatic conditions, or landscape patterns.
However, if the workflow to create a single output map is already constrained by com-
putational requirements, adding more runs may not be feasible given time or resource
constraints. Improvements to software can empower innovation by reducing these con-
straints, but as a general rule, the programming languages that enable higher performance
are the most challenging to use. Here, we describe how a long-term partnership to improve
Circuitscape supported rapid growth in the tool’s use, and also helped inspire a new
high-performance programming language called Julia [32,33], which is now empowering
the most recent Circuitscape release. We suggest that when improvements in software
help users run computationally intensive models on available hardware (i.e., a personal
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computer, rather than a supercomputer), and are released as free, open-access tools, these
investments play a key role in increasing accessibility, which can foster innovation, and the
use of connectivity science to inform decisions. By describing this long-term collaboration,
we hope to inspire ecologists to consider how similar improvements to other key tools
could help the conservation community pursue more dynamic models, and take better
advantage of rapid advances in the availability of ecological data.

2. Dynamic Approaches to Connectivity: Circuitscape Applications as a Case Study
We recently updated Circuitscape [34], a widely used, open-source connectivity anal-

ysis software package, by migrating it from Python [35] to the Julia programming lan-
guage [33]. Developed by conservation scientist Brad McRae (with a background in
electrical engineering) and computer scientist Viral Shah, Circuitscape allows users to ap-
ply the logic and mathematics of electrical circuit theory to questions of how genes, animals,
or processes flow across heterogeneous landscapes [22,31]. Briefly, this approach treats
the landscape as a surface of resistors (the resistance grid). The Circuitscape algorithm
tracks where “current” flows across this resistance surface, following current flow from
source nodes to ground nodes, and quantifying the spatial patterns of current accumulation
as higher resistance areas and barriers shift current flow into pathways with lower resis-
tance [22]. This major update to Circuitscape was envisioned by McRae, but was carried out
after his death in 2017. Initially developed to provide a tool for understanding the spatial
dynamics of gene flow [36], Circuitscape has been applied in hundreds of connectivity
studies on a wide range of organisms and topics, in locations across the globe. A recent
review [16] and tributes [37,38] provide background on the underlying theory and history
of Circuitscape’s development, and McRae’s influence within the fields of conservation and
genetics. Circuitscape.jl (or 5.0 [34]), redesigned in the Julia language, represents a unique
milestone in the long collaboration between McRae and Shah. First publicly released in
2012, the Julia programming language is still in rapid development [32,33] and was, in part,
inspired by Shah’s experience collaborating with McRae to create a powerful yet accessible
tool for biodiversity conservation applications.

The reach of Circuitscape reflects an unusual combination of innovative theory, ana-
lytical flexibility, and software accessibility. To date, Circuitscape has been most widely
applied in landscape genetics, where modelers calculate “resistance distances,” a measure
that indicates gene flow, between spatially referenced pairs of genetic samples [22,36,39].
As described above in an animal movement context, the spatial data surface(s) used as
Circuitscape inputs typically represent habitat suitability, topography, climatic factors,
or a composite surface, and resistance distance matrices may be calculated for one or
many surfaces [20,24,40]. Later steps in the workflow focus on evaluating the relative
support for each environmental dataset as a constraint on gene flow, a process that can
involve multiple statistical modeling and optimization steps [41]. Some landscape genetics
applications include resistance or current flow maps, but many do not—the measure of
how environmental heterogeneity relates to genetic variation is typically the focal product.
In contrast, in an animal movement context, producing current flow maps is the goal,
with current magnitudes representing the relative use of different pixels by animals (or
ecological processes) moving across the landscape (resistance surface) between focal nodes
(habitat patches), following the assumption of a random walk [22].

Ecologists interested in animal movement questions have used a wide range of meth-
ods and models to create and assign weights to resistance surfaces, and these surfaces
are typically developed from many spatial data inputs. Unlike applications in landscape
genetics, which by their nature have a measure of past dispersal, the challenge of obtaining
suitable animal movement data typically limits modelers’ abilities to directly evaluate
weightings for animal movement models. This is an active area of research, and some
modelers incorporate outputs from animal movement models into the development of the
resistance grid (e.g., [17,42,43]), and/or develop outputs from other landscape connectivity
models with different assumptions (e.g., least-cost path models) to contrast or comple-
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ment Circuitscape’s assumption of a random walk (e.g., [44,45]). A third broad group of
Circuitscape applications, including much of McRae’s work at The Nature Conservancy
(TNC), emphasizes a generalized “structural” landscape connectivity that focuses on the
pattern of land use, human influence, and barriers, and does not require the delineation of
habitat patches to connect [46–49]. Like the species-focused maps, the structural outputs
provide a way to visualize movement across landscapes as a cumulative process where
both the magnitude and spatial pattern of resistance shapes how a generalized flow of
organisms is channeled or spread out across multiple pathways, but source nodes are either
aligned along the edges of the extent (e.g., [50]), or every pixel can be a source and ground
(as in Omniscape [46,51], see Sections 3–5).

In support of the effort to update Circuitscape without McRae’s leadership, and
inspired by the breadth of applications described in the Dickson et al. review [16], we
assembled a comprehensive set of peer-reviewed Circuitscape applications. Our intent
was to learn more about how the tool has been applied, to add to our list of potential
new features for the software, and to identify potential new collaborators to help us keep
building from McRae’s foundation. Our ongoing work with these applications includes
examination of how computing constraints influenced modeling practices and spatial
data use.

To find Circuitscape applications, we reviewed 1280 papers identified through Web of
Science searches (end date for publication, including “early online” of December 2020, with
the last search on 26 January 2021) that cited key foundational papers by McRae, Shah, and
colleagues [22,31,36,39,46], or a Circuitscape user guide [25,52]. The user guides did not
appear in searches by author, but we tracked them from the literature cited sections of a
few applications; we found only a few studies that cited a user guide without also citing at
least one of the foundational papers. From this set, we identified 572 papers in the natural
sciences published in English from 2007–2020 where Circuitscape analyses were part of a
research study. We included methods-focused papers if they had a case-study application;
11 papers that did not include a case study on a real landscape, as well as a few applications
in other branches of science, were not included in our descriptions of applications. We did
retain one paper in materials science [53], as it addressed issues of complexity that may
be of interest to ecological modelers. In our counts by software version and topic, we did
not attempt to control for the repeated use of the same Circuitscape analysis in different
research papers. In a few cases the same paper used multiple versions of the software; we
include these papers in the counts for both versions.

This set includes papers that used Circuitscape as part of another software package,
such as Linkage Mapper [54], which has Circuitscape-based tools (Pinch Point Mapper and
Centrality Mapper) in addition to tools for least-cost path analyses, and ResistanceGA [55]
and Seraphim [56], software tools that can deploy Circuitscape to calculate pairwise resis-
tance distances for genetics applications. We likely missed applications of Circuitscape
in these tools, as we did not search for them directly, and thus only found them if the
study cited one of the foundational papers. We did not include applications of gflow [57],
a version of Circuitscape designed for deployment on supercomputers. This body of work
represents an expansion over the 277 Circuitscape applications tallied in the Dickson et al.
review [16], in part due to our identification of applications that only cited McRae’s first
circuit-theory paper [36], a genetics-focused paper that was not traced in that review, and
due to the extension of the search past that effort’s early 2018 end date. In just two years,
the collection grew by over 180 papers (Figure 1a,b). The full list, including methods papers,
is available as Supplementary Materials on https://Circuitscape.org/publications/.

The set of Circuitscape applications provides an interesting perspective on broad
trends in the conservation field, including the expansion of dynamic connectivity ap-
proaches. There are many unique applications, but as described in Section 1, most Cir-
cuitscape analyses fall into three large and often overlapping categories—landscape genetic
applications, studies that focus on movement potential for specific species or taxonomic
groups, and structural connectivity approaches that provide a more general picture of

https://Circuitscape.org/publications/
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how the arrangement of permeable land types and barriers shape movement potential
(Figure 1a). We separated landscape genetics studies that provided a map(s) of resistance
or current flow in the body of the paper (maps in supplements may have been missed)
from those that did not, as these maps provide way to compare connectivity insights
across multiple methods. Notably, as each Circuitscape application incorporates one or
more resistance surfaces, the different methods used to construct these representations
of the environment also provide an interesting view of a decade of changes in landscape
ecology. For example, this collection illustrates the shift from patch dynamics toward
consideration of matrix habitats, the rapid growth of the machine-learning based species
distribution modelling tool Maxent [58,59], and the increasing use of remotely sensed data
to understand ecological processes (e.g., [60–62]).

Figure 1. Count of Circuitscape applications in peer-reviewed journal articles by year, categorized by (a) type of application
and (b) version of the software. Key milestones of each software version are indicated in the legend for (b). Graph (a) only
includes genetic and movement-related applications (569); (b) includes 3 additional ecological applications, and one from
materials sciences (573). A few studies used two versions of Circuitscape, and the count in (b) includes them under both
software versions.

While it is hard to draw a clear distinction between what is “dynamic” and what is
“static” when comparing many diverse studies, it is easy to see that some applications
are more dynamic than others. We found Zeller et al.’s dynamic connectivity framework
(see Figure 2 in [30]) very helpful for organizing this compelling body of Circuitscape
research. The dynamic connectivity framework identifies three categories, landscape
dynamics, movement dynamics, and challenges to connectivity, and then presents sets of
topics under each category that span a gradient of spatial and temporal scales. To help
characterize the breadth and distribution of Circuitscape applications, we (KH) sorted the
application papers following the framework, and present the resulting distribution across
categories in Figure 2. We used the framework as a tool for grouping similar papers so that
we could more easily highlight innovations in dynamic connectivity; as most papers could
reasonably fit in more than one box, others would likely split them differently.

Although many Circuitscape applications are static, they are based on the dynamic
concept of current flow across a network of resistors. For landscape genetics applications,
each node in the network carries information on changes that occurred in the past; more
dynamic applications include multiple genetic markers that provide insights from different
time periods. For non-genetic applications, the dynamic nature of analyses can be greatly
enhanced when modelers compare multiple representations of resistance (e.g., habitat
change over time), or demographic or seasonal difference in how species respond to the
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landscape. The process of sorting and revising categories led to the identification of natural
breaks in the set of papers, and we characterize those in Table 1. We used a few rules,
including assigning papers that incorporated two movement types (e.g., home range and
dispersal) or multiple challenges (e.g., habitat loss and climate change) in the larger-scale
category. While nearly all landscape genetics approaches could reasonably be categorized
as “gene flow,” the papers we grouped here emphasize a snapshot of the relationship
between environmental patterns and genetic structure; when studies applied multiple
genetic markers to capture change over time, or specifically addressed “challenges,” or
“landscape dynamics” they were placed in other categories.

Figure 2. Distribution of 572 Circuitscape applications across the Zeller et al. [30] framing of topics in dynamic connectivity.
Applications are grouped into three broad categories (inner circle), and then arranged in categories that range from finer
scale (spatial or temporal) studies in darker shades, to applications at larger scales and/or longer focal time periods (lighter
shades). See Table 1 for especially dynamic examples from these categories.

For each topic, we present a brief phrase if needed to describe the studies in the category,
and a few examples of dynamic study design approaches (Table 1). These factors show strong
overlap with topics discussed in [30], such as including multiple time steps, demographic
factors, movement types (habitat use vs. dispersal) and seasonal variations. For the studies
we highlight, we indicate their “Circuitscape application type” (see Figure 1a) to show the
overlap and unique contributions of each of these broad groups. To include the full set of
Circuitscape applications, we added a “biodiversity patterns” category to the framework.
We inserted this topic under movement dynamics to reflect studies where resistance distance
measures from Circuitscape are applied to species assemblage data (or similar measures) to
evaluate species turnover as a function of landscape heterogeneity (e.g., [63,64]). While we
did not distinguish papers that incorporate genetic or animal movement data from multiple
rather than a single species in Table 1 (as we did in Figure 1a for animal movement), we note
this as a “dynamic factor” under a few of the topic areas. We found examples for all topics,
though some topics have received much more coverage than others (Figure 2).
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Table 1. Examples of dynamic elements within Circuitscape applications, as grouped in the dynamic connectivity topics
presented in Zeller et al.’s framework [30]. The three main columns describe key research themes; topics are arranged
according to focal temporal and spatial scales (large to small, see “scale” column), and the color scheme links columns to the
same research themes and topics in Figure 2. Circuitscape application types are labeled as “LG” for landscape genetics,
“MO” for species movement data & habitat models, and “ST” for studies focused on generalized landscape structure.

Scale Landscape Dynamics Movement Dynamics Challenges to Connectivity

Glacial cycles
Identify refugia & drivers of

diversification [65–68]; detect a
“glaciation signature” that provides
context for current genetic variability

[69–71] (LG).

Range boundaries
Use multiple genetic markers to capture

environmental constraints across generational
times steps [72] (LG); test multiple factors to

identify constraints [73] (MO).

Climate cycles
Evaluate the influence of climate

variability on gene flow (“isolation by
instability”) [87–89] (LG). Includes the
influence of ocean currents [90] (ST).

Gene flow
This group includes “snapshots” of genetic
responses to heterogeneity. Also includes
patterns in human language [91] & other

distance-measurable traits.

Climate change
Include projections of future climate

[48,74–77] (ST & MO).

Consider niche space under paleo, current,
and future climates [78–80]; evaluate

adaptive capacity [81,82] (LG).

Integrate models of climate change & land
use change [45,83–86] (ST, MO).

Longer
time

&
Larger
extent

Land use
Evaluate broad-scale changes in land

use in time series data [49] (ST);
capture the genetic impact of forest

cover change (pollen sources) by
sampling trees of different ages [92]

(LG).

Model land use [93] (ST) or land
function [94] (LG) scenarios, or the

influence of land use policies [95] (ST).

Biodiversity patterns
Identify changes in species assemblages &
turnover as a function of resistance. Can
incorporate genetics, morphology [96].

Consider multiple time steps [97] or assess
many sites in different landscape contexts [98];

in freshwater, consider the role of different
hydrologic periods or [99] precipitation events

[100].

Habitat loss/land use change
Consider multiple habitat configurations

or loss scenarios [101–104]; integrate
multiple species [105,106]; evaluate
changes in a protected area network

[107–109] (LG, MO).

Use multiple genetic methods to detect the
influence of habitat loss relative to
historical baselines [110–116] (LG).

Disturbance regimes & succession
Incorporate ocean currents & tidal
influence [117–119] (LG & ST), fire
regime [120], post-fire succession,

[121] and dynamic (sand dunes) vs.
static habitats [122] (LG).

Migration
Incorporate seasonal patterns or variation in

resources [27,123–126] (MO).

Use multiple models to capture habitat choice
and movement speed [42] (MO).

Seasonality
Change in habitat patch configuration
due to seasonal flooding/drought (ST)

[61,136–138].

(see migration for many seasonality
examples with movement data).

Dispersal
Recognize differences in home range use vs.

dispersal [139–142] (MO); evaluate use of
microclimates [40,143,144] (LG).

Incorporate life history variation, e.g., by sex
[145,146], seed dispersal type [147], or

response to conspecifics [148] (LG & MO).

Invasive species & disease spread
Use information from multiple regions or
introduction events [127]; pair time series
of high-resolution habitat data with on-the
ground detections of invasive species [62];

evaluate barrier strategies [128] (MO).

Use multiple waves to model viruses with
wildlife vectors [129,130] (LG).

Consider how dynamics of pathogens &
hosts may interact [131–133], and be
influenced by humans [134,135] (LG).

Disturbance events
Disturbance events like fires can

change dispersal patterns [149] (LG).

Consider hurricane routes as a driver
of species colonization [150] (LG).

Home range
Consider variations by sex and/or seasons

[151,152] (LG, MO), and the influence of social
behavior [153] (MO).

Home range may include multiple habitat
types [154,155]; agriculture can be a key

connector [156,157] (MO).

Barriers to migration
Compare multiple sites [158,159] (LG);

model current & future urbanization [160]
or barrier removal [161] (MO), or passage

structure locations [162] (MO).

Consider demographic differences in
response to barriers (LG) [163,164].Shorter

time
&

Smaller
extent

Site restoration & management
Use scenarios to evaluate the targeting

of fire risk mitigation [165] (ST) &
vegetation management [166,167]

(MO).

Integrate connectivity benefits & costs
[168]; evaluate connectivity benefits of

restoration [169] (MO).

Foraging
Consider differences in foraging mode (active

vs. passive) [170] (LG).

Understanding reproductive timing may help
scale the linkage between a dynamic resource
and a focal species’ foraging range [171] (ST).

Human–wildlife conflict
Incorporate season & time of day in

studies of road crossing risk [43] (MO).
Simulate changes in barriers [172].

Integrate social science to understand the
human side of conflicts [173,174] (MO).
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As illustrated in Table 1, the collection includes applications at all scales, in freshwater,
marine, and terrestrial environments. Less apparent from the table, which emphasizes
alignment with the Zeller et al. framework, is the fact that the focal research subjects range
in size from viruses and grains of pollen (e.g., [93,175]) through trees and elephants, and
extend to work on human migrations and diseases, with a few applications integrating
interactions between ecological and social systems (e.g., [173,174,176,177]). This diversity
of scales and topics emphasizes Circuitscape’s role as a “springboard” for innovation [16],
and a tool that helps ideas flow between different branches of environmental modeling.

3. Computation as a Constraint to Dynamic Models and Driver of Innovation
As indicated by the range of applications (Figure 2, Table 1), Circuitscape provides

a very flexible platform for studying gene flow and connectivity, and we expect users
will continue to advance the field by incorporating more dynamic approaches. However,
the modeling process is very computationally intensive, a constraint that can limit how
models are run, and the resolution of datasets that are deployed. To understand why
computation can become a constraint, it’s helpful to understand that in a Circuitscape run,
the landscape is represented by a grid of cells, and a resistive circuit is constructed by
placing a resistor along the shared edge between every pair of neighboring cells. For a 1000
by 1000 resistance grid (1 million cells), the software will need computer hardware with
enough processing power and memory to solve a system of 1 million linear equations [34].
In “pairwise” Circuitscape, the mode that is used to develop distance metrics for landscape
genetics, and is commonly applied in animal movement studies, these calculations are
repeated for every pair of nodes (for example, habitat patches or populations) included in
the model. Our own experiences, and stories we have heard from other modelers, include
Circuitscape computations that ran for days, and sometimes weeks. If the problem is too
large for hardware resources (typically RAM, random access memory, is the limiting factor),
the analysis will not run to completion. In this section, we discuss computational demand
in the context of promoting more dynamic approaches to connectivity modeling, and also
highlight modifications in how Circuitscape has been used that arose (at least in part) to
address computational constraints. In Section 4, we introduce the Julia language version,
and discuss how innovations in computer science and programming languages have great
potential to help connectivity modelers track advances in the quality of spatial data, and
implement more dynamic connectivity models.

Although the mathematics that describe changes in computational requirements as the
resolution of input datasets increase are straightforward, in practice, this constraint is easy
for connectivity modelers to overlook, especially when new, high-resolution data products
are available. For example, if the 1 million cell landscape noted above is comprised of
1-km pixels (100 million ha, roughly the combined size of the US states of Utah, Colorado,
Arizona, and New Mexico) and a modeler shifts to a data resolution of 500-m, that would
typically quadruple the number of linear equations that need to be managed by the software
and hardware. A more dramatic shift to a 30-m resolution dataset, the native resolution of
many commonly used spatial data products, would increase the number of computations
by a massive 1100⇥. The Circuitscape user guides [25,52] are clear on these computational
challenges, and include warnings about total problem size, and sections on how to modify
the input data and/or run parameters to reduce the potential for problems with RAM,
or exceedingly long computation times. In the 572 Circuitscape ecological applications,
roughly one-fourth discuss issues with computation and/or or describe aspects of their
workflow that were designed to address computational issues. These types of modifications,
and their potential influence, are part the focus of our ongoing review of this collection
of papers. While our review is still underway, we found that at least 10% of authors
reported aggregating pixels (reducing the resolution of the resistance grid), combining
nodes (reducing the number of populations or patches to connect), or used some other
tactic to address computational constraints. We expect that many more users experienced
and addressed computation challenges than reported them.
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For Circuitscape modelers who are considering more dynamic assessments, computa-
tion speed is of great practical concern, because accounting for seasonal variation, land use
change, and other dynamic drivers requires multiple runs with different resistance grids.
Most modelers featured in our dynamic examples (Table 1) have included several resistance
grids, while a few of the most dynamic assessments have taken on large numbers of runs,
including use of 40 resistance grids to explore land use and climate change scenarios [84],
and 72 time-steps to evaluate the spread of an invasive beetle [62]. The mechanics of
creating a dynamic representation can also include adding or removing habitat nodes from
the system, as was done in a set of 99 time-steps depicting changes over 25 years of seasonal
droughts and floods in Australia’s Murray-Darling Basin [61]. While a subset of modelers
have access to computing clusters, we expect that as the researchers pursued many of the
dynamic applications in Table 1, either data resolution, number of nodes, study extent, or
some combination, were often reduced to make the project feasible. Our continued goal
in terms of tool development is to reduce this constraint, facilitating ecologically driven
choices, rather than compromises based on computation.

The trajectory of improvements to Circuitscape’s functionality and performance re-
flects advances in computer science, and the key influence of innovative applications
by modelers. To find additional efficiency in computation time, and also address other
modeling goals or bias issues, a number of studies have pursued ‘wall-to-wall’ or ‘omnidi-
rectional’ applications of Circuitscape ([47,50,73,178,179]). Instead of connecting patches,
these applications use bands or ‘strings’ of pixels at the edge of a grid to represent the
sources and grounds, and current is run across the full area, through all habitats, between
these bands of pixels. From an ecological perspective, these approaches allow modelers to
treat the landscape as a continuous gradient, avoiding the need to delineate core habitats
or patches (e.g., protected areas) to connect, and reducing biases in current magnitudes
that can occur near focal patches [50]. On the computation side, this shift in how Cir-
cuitscape is applied allows users to subdivide or “tile” the landscape, and conduct multiple
assessments on smaller problems, and then map the products together (e.g., [47]).

Building from “wall-to-wall” approaches, McRae developed Omniscape [46], a moving-
window version of Circuitscape that automated the process of breaking the landscape
into smaller problem sizes, and combining results. Omniscape runs Circuitscape from
“advanced mode,” iteratively calculating current flow between all (or a regularly spaced
subset of) pixels and the center pixel in a circular moving window of a user-specified
radius [46,51]. To determine how much current will flow from every pixel to this central
ground, Omniscape requires a source strength raster, which the user can supply, or define
as the inverse of the resistance grid. Cumulative current maps capture the total current
when results from all of the overlapping moving windows are summed. Breaking up large
geographies into many smaller pieces allowed McRae to map connectivity across larger
extents without running out of memory and causing a software crash, though regional
analyses (i.e., several western US states) with his original Python version still required
days or weeks of compute time for relatively high resolution (180–360 m) data.

A practical benefit of using tiles with the wall-to-wall approach, or using Omnis-
cape’s moving window method, is that modelers can expand their focal geographies
without aggregating pixels to keep the problem size tractable. At TNC, McRae co-led
work with Melissa Clark and Mark Anderson to engage large steering committees of re-
gional experts through a collaborative process to develop structural connectivity analyses
to support land protection decisions. These “Resilient and Connected Network” com-
ponents integrate regional flow potential maps created with wall-to-wall Circuitscape
for most of the coterminous US (e.g., [180]), and maps using Omniscape for the Pa-
cific Northwest and California [46]. The regional assessments are mapped together at
http://maps.tnc.org/resilientland/ (see the “connectivity and climate flow” layers, and
links to in-depth reports). This ability to produce high resolution products for large areas
allows modelers to provide partners in many locations with tools to inform local decisions,
as they can clip output maps to fit their focal area, and combine them with other local

http://maps.tnc.org/resilientland/
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data. Thus, while a foundational tenet of landscape ecology suggests that the appropriate
resolution of data increases with spatial extent (e.g., [181]), a key caveat to this important
concept is that it’s typically more efficient to run one analysis and share it, rather than
run many local assessments. The importance of higher resolution data will vary with the
landscape and focal question, but if an important habitat or barrier is rare or occurs in
narrow bands, such as riparian habitats, use of higher resolution data may provide impor-
tant improvements in how the connectivity network is modeled (e.g., see Figure 1 in [34]).
Balancing computational demands and data resolution, and the goal of sharing maps that
could be applied at local scales, were key drivers of the development of Omniscape, and
McRae’s continued interest in improving Circuitscape’s efficiency and speed.

4. An Introduction to the Julia Versions of Circuitscape and Omniscape
Given enough time and memory, the Circuitscape algorithm can solve arbitrarily

large problems, so the upper limit for any individual user will depend on their hardware
resources, and the software’s ability to effectively use those resources. The challenge of
increasing Circuitscape’s ability to handle large problems has been addressed multiple
times, using different software languages [34] (Figure 1b). The first version [22] was written
in Java, followed by version 2.0 in MATLAB. While MATLAB was easier for development,
it required that users obtain a commercial license to run the software. McRae and Shah
soon translated the code to Python for version 3.0, the first fully open-source release. It
made heavy use of several of Python’s numerical code libraries (numpy [182], scipy [35]
and pyamg [183]), which improved computational efficiency, and allowed users to solve
problems with millions of nodes. In collaboration with Tanmay Mohapatra, McRae and
Shah followed these improvements with additional steps to optimize the code for better
performance, and added early parallelism (the ability to execute multiple processes simulta-
neously), creating Circuitscape 4.0 [25]. The Spatial Ecology and Telemetry Working Group
of The Wildlife Society recognized this contribution with an award in 2013. While compu-
tation has been a major driver of updates, McRae and Shah also prioritized accessibility,
especially for practitioners without access to high-end hardware. Leonard et al. [57] built
the gflow software by modifying Circuitscape so that it could run on high performance
cluster computers, but this version is out of reach for many modelers. In the recent update,
Ranjan Anantharaman, working with Shah and following plans co-created with McRae,
ported Circuitscape 5.0 to the high performance Julia language [34]. Circuitscape.jl is open
source, runs on multiple platforms, and is very fast (Figure 3).

Figure 3. Reductions in solve time for Circuitscape 5.0 in Julia (red and orange bars) relative to
Circuitscape 4.0.5 in Python (blue) on problem sizes ranging from 1 to 24 million pixels, run in
pairwise mode with 153 pairwise solves, using 16 parallel processes. The two bars for the Julia
version represent runs with the default solver CG + AMG (conjugate gradient algebraic multigrid)
(red), and Suitesparse’s CHOLMOD solver (orange). Benchmarks were conducted on an Intel(R)
Xeon(R) Silver 4114CPU @ 2.20 GHz with 384 GB of RAM.
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The Julia implementation of Circuitscape represents a major leap forward in computa-
tional speed, and more effective use of the user’s hardware resources [34] (Figure 3). Major
contributors to increased performance include a larger variety of solvers (the option to
deploy different solvers allows the calculation approach to be more effectively matched
to the user’s specific problem), and greatly improved support for parallel computing. To
our knowledge, the largest problem a user has solved with Circuitscape.jl to date was
437 million pixels, representing the full range (roughly 13 million ha) of the threatened
Mojave desert tortoise at 30-m resolution [179]. This computation was carried out on
one server-class node in a cluster with 20 CPU (central processing unit) cores and 384 G
of memory. We encourage modelers to download Circuitsape version 5 from GitHub (
https://github.com/Circuitscape/Circuitscape.jl), and to support continued development
through reporting issues, suggesting new functionality, and contributing code (see Ap-
pendix A). Importantly, while we hope many Circuitscape users will be inspired by the
improvements in speed to try programming in Julia, modelers do not need to know Julia to
use the Julia version. It is provided as a self-contained Julia package, which can be loaded
and run without a complicated software installation process.

To promote continued collaboration among ecological modelers and the growing
community of Julia programmers, we highlight how the choice to use Julia reflects a major
advance in the continued evolution of Circuitscape, and related tools like Omniscape. For
ecologists that are less familiar with programming languages, we begin with a few basic
concepts, drawing from several recent works [32,33,184]. Programming languages are an
abstraction, an interface between the programmer and the computer. A key element of
what a software program needs to communicate to the computer is information about the
various forms of data in a program that are held in memory and operated upon as the
program runs—this information is the “data type.” Some languages are “statically typed,”
meaning they require this information to be spelled out by the programmer, while others,
called dynamically typed, do not. In general, the more information the system has about a
program’s data inputs, the faster a program can run. These differences underlie the two
broad families of programming languages; many conservation scientists are fluent in one or
more dynamically typed or “productivity” languages, such as Python [35,182] and R [185]
that allow them to write a program at a higher level of abstraction and not bother with
meticulously annotating data types. Fewer in our field are fluent in the statically typed
“performance” languages that are built for performance, but have a steeper learning curve,
such as C and Fortran. For tasks like dynamic connectivity modeling with Circuitscape,
continuing to sacrifice performance limits our ability to innovate, and take advantage of
high-resolution data sets.

Often, a software tool may be first created in a high-productivity dynamically typed
language, and as the tool matures and needs more performance and scale (ability to
maintain performance as the problem size increases), it may be converted to a high-
performance statically typed language [32,33]. Writing programs twice is not a good use
of the scientist’s time, and it is what is often referred to as the “two language problem.”
Julia was designed to solve this two language problem. It achieves high-performance by
automatically inferring the data types in a user’s program, without requiring the user
to provide them manually; thus achieving the speed of C and Fortran with the ease of
use of R and Python. Further, as with a spoken language, the elements of programming
languages are shaped by the context in which they are used. The design of Julia has
in part been shaped by Shah (one of the Julia co-creators) and McRae’s partnership to
address the challenge of getting Circuitscape to run on ever larger grid-based problems.
While development of the language continues, key aspects such as an emphasis on speed
and parallelism, while still being accessible to users with a wide range of expertise and
computing resources, are well-aligned with the objective of helping to promote rapid
advances in dynamic approaches to connectivity conservation.

Currently, Circuitscape in Julia distributes the tasks of calculating current flow be-
tween pairs of sources and grounds (or iterations of all-to-one or one-to-all, but not “ad-

https://github.com/Circuitscape/Circuitscape.jl
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vanced” mode) across multiple CPUs using a form of parallelism called multi-processing.
The consistently high performance across increasingly large problems shown in Figure
3 demonstrates that this parallelism scales well with the problem size [34]; our testing
indicates similar scaling for increasing numbers of pairwise solves. Improvements to Cir-
cuitscape have also been capitalized on by other software packages that depend on it, such
as ResistanceGA [55] which now calls the Julia version (see [186]), and Omniscape.jl [51],
our recent re-imagination and Julia implementation of McRae’s Python-based Omniscape,
which was led by Vincent Landau. Omniscape.jl uses another form of parallelism called
multi-threading to call Circuitscape on different CPU cores, allowing simultaneous analysis
of multiple moving-window-sized problems. Tests of Omniscape.jl’s performance again
indicate favorable scaling (no loss of performance) as more CPUs are used in a computa-
tion (Figure 4, [51]). Circuitscape in its next release will also offer parallelism via multi-
threading. Omniscape uses Circuitscape’s “advanced” mode, which does not currently
support multi-processing. However, future updates could use composable multi-threading,
which was introduced in Julia v1.3 (released in late 2019). Composable multi-threading
allows “parallelism within parallelism” to occur without interference among the different
processes. These Julia-empowered versions of Circuitscape and Omniscape are set up to
enable continent-wide connectivity analyses, and to catalyze the growing wave of dynamic
assessments. Every time we have improved the capabilities of Circuitscape computation-
ally, the community has responded with new applications, and we wait with excitement to
see what new applications these improved parallel computing capabilities will enable.

Figure 4. Increases in computational speed for Omniscape.jl from parallel processing via multi-
threading (deployment of moving window-sized calculations to different CPUs) scales well as the
number of simultaneous processes (threads) increase [51]. The benchmark problem was a 132,642
pixel grid, run with a block size of 21, and a moving-window radius of 100 pixels (approximately
34,000 pixels per window, and 300 window-sized runs). Scaling was evaluated for three different
solvers that are available in the software, the CG + AMG (preconditioned conjugate gradient with
algebraic multigrid preconditioner) in blue, Suitesparse’s CHOLMOD solver in orange, and Pardiso
compiled with Intel Math Kernel Library (MKL [187]) in red. Produced on an Intel(R) Xeon(R)
Silver 4114 CPU @ 2.20 GHz with 20 cores and 64 GB RAM. The Julia version is 1.6.0-dev Commit
599d3299c9, compiled with MKL.

5. Faster Software Facilitates Data Exploration and Stakeholder Engagement
Dynamic connectivity research has the power to produce models of the big landscape

ecology questions of our time: habitat loss, fragmentation, and climate change [30]. Creat-
ing a network of connected biodiversity is an international goal identified in action targets
1 and 2 in the United Nations Convention on Biological Diversity draft of the Post-2020
Global Biodiversity Framework 2030 mission [188]. Scientists, policy makers, resource
managers, and outreach specialists will need to work together if we are to achieve these
ambitious goals. With increased computational power, we expect to see rapid progress
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in dynamic connectivity modeling with Circuitscape and Omniscape. As we see such ad-
vances, we recognize it is critical to keep building bridges between scientists, governments,
and stakeholders [189–191], even as our increasing use of complex modeling approaches
and new technology may make our work more challenging for partners to understand.
Rather than complicating these important interactions, we hope these advances provide
connectivity modelers with critical opportunities to iterate and learn more quickly, and to
collaborate more broadly with practitioners and stakeholders.

While our intent with modeling may be to estimate resistance distance values, or
create a specific map product, the trial and error of building and running models is most
useful if the process itself provides insight into how systems work. The different modes and
tools for deploying Circuitscape have different characteristics, and current flow results will
reflect these differences. As we speed up the modeling process, this should make it easier
for users to explore how different ways of applying the same tool, different parameter
settings, and different datasets influence their results, which hopefully leads to greater
understanding of movement potential. In the section below, we include one simple example
of this type of exploration (Figure 5), where we ran Omniscape.jl on a resistance grid of
VIIRS Nighttime Lights data [192–194] for most of the US state of Colorado. We chose this
example to help familiarize connectivity modelers with outputs from Omniscape.jl, and
to highlight a frequently updated data source that can be part of assessing “challenges to
connectivity,” the most common broad topic area (Figure 2) for Circuitscape applications.
For a typical conservation application, we would incorporate multiple data sources into a
resistance grid, usually starting with land cover; here our goal was to isolate current flow
patterns derived from just the Nighttime Lights source.

To develop the current flow map (Figure 5b), we downloaded the mean of monthly av-
erages of VIRRS Nighttime Lights radiance values from Google Earth Engine for January—
September of 2019 (Figure 5a). Next, we projected and resampled the data to 100-m pixels,
rescaled the data to 1–100 to create the resistance grid, used the inverse of the resistance
grid as the source strength, and then ran Omniscape.jl with a 300-m window radius and
a 49 pixel block size (meaning it selects one pixel in every 49 by 49 square of pixels to
serve as the ground for the moving window, and all pixels in the window act as potential
sources; even with much faster software, the tool still has options for reducing computation
time). Note that in future work, we would likely drop the rescaling step, as it seemed to
overcompress the values.

To provide context for this example, we will start by describing the interpretation
of “typical” Circuitscape outputs, i.e., assessments where modelers define a set of focal
nodes or patches, and current is applied across pairs of nodes which act as sources and
grounds. In these models, high current values between nodes suggest high movement
potential, and the pattern and degree of spread of the current flow describes the network
of pathways between patches. The highest current flow values accrue in locations where
there are few options for movement between one or multiple patches; these “pinch points”
arise due to a concentration of natural or anthropogenic barriers that displace current into
a small number of pixels. Parts of the study region that are not between focal patches will
likely have low current values, even if in reality they are a key connector to other patches
outside of the study boundary. In this scenario, pixels with the highest current values
(pinch points) signal a high risk of connectivity loss through a relatively small amount of
landcover change, while broader zones of high current typically indicate multiple options,
and thus higher redundancy in terms of support for movement. Broad movement corridors
are likely also of high importance for conservation, but investments to restore and/or
provide legal protection may be less urgent.
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Figure 5. VIIRS Nighttime Lights radiance values (a) were used as the resistance and source strength
grids for Omniscape.jl [51] to explore the influence of anthropogenic activities on structural con-
nectivity in the wildland-urban interface in Colorado, USA. Areas with high radiance values had
high resistance, and low source strengths (i.e., source strength grid was the inverse of the resistance
grid). Major roads (dark blue) and topography (hillshade) have been included on the map to aid in
interpretation. Normalized current flow (b) is very low (dark blue) in cities due to high resistance
and low source strength, as determined by the high nighttime light radiance values. Current flow
that is displaced from areas with many nighttime lights is most concentrated (highest current flow
values, in yellow) in small pockets of areas with few lights between the major city of Denver and
neighboring Loveland (to the north), which limits how far this displaced current can spread. In
other places on the landscape where displaced current encounters lower resistance and thus more
options, the landscape appears orange; pixels grade into reds and pinks in low resistance areas near
scattered high resistance areas (e.g., in the upper left section of the map, around Vail and Winterpark).
Areas with generally low resistance (few nighttime lights) are in purples—these can be interpreted
as a “baseline”or “natural” current flow, with light blue zones indicating lower flow due to higher
resistance, and many nearby options for where that displaced current could go. Both the broad
flow patterns of moderate current, and the high flow concentration areas are important, but suggest
different conservation approaches.
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In “patch-free” applications, where current is released from the pixels along the edges
of the geography (wall-to-wall), or emerges from every pixel based on values in a source
strength grid (Omniscape), appropriate interpretation of the current flow values typically
requires more consideration of how the pattern of resistances and sources interact on the
landscape. As with patch-based Circuitscape applications, current flow will be highest
in places with the fewest options (pinch points). However, if a section of the landscape
is relatively homogenous in terms of differences in resistance, or if displaced current can
spread out in many directions, it will not become highly concentrated. As a result, for
those expecting high current flow in highly intact landscapes, moderate current flow may
be misinterpreted as indicating low movement potential. In Figure 5, the broad expanses
of moderate current flow (purple) correspond to highly connected landscapes in terms of
“natural” light regimes (lack of nighttime lights). These areas could easily (and incorrectly)
be interpreted as having low connectivity value. The moderate flow values actually
suggest diffuse, near-natural levels of connectivity, with multiple redundant pathways for
movement, an important characteristic to consider in land conservation decisions.

With Omniscape, the normalization process (dividing current flow results by results
from a uniform resistance grid) provides information on how the realized current flow
compares to the level of current that would be “expected” in resistance-free conditions,
with the source strength held constant [46,51]. This innovation was incorporated by McRae
in part to address biases in the total current applied to each region (i.e., to account for
presence of water bodies, which would typically not be a source of current in a terrestrial
analysis, so total current in a region with many “water” pixels would be lower). It’s
important to remember that this simple example (Figure 5) does not include a land use
or habitat surface—just the nighttime lights. In studies with different configurations of
resistances and source strengths (e.g., incorporating higher resistance values for agriculture,
a common land use in the eastern part of this region, rather than just the point pattern of
resistance from nighttime lights), the patterns of variation in current would likely be quite
different. The best way to learn about how current flow patterns change is to study your
resistance and source strength surfaces, and run your data.

With faster model runs, we have more capacity to test options and incorporate sensi-
tivity analyses. In applications involving the use of expert opinion to inform resistance grid
weightings, speed enhancements can help modelers target the most important questions to
ask, rather than engaging experts in multiple discussions of choices with nominal influence
on the final map. Even better, if we can explore variations of different models in real
time in a workshop setting, the shared understanding that develops among participants is
likely to lead to better products, and higher investment in using those products to inform
decisions [195,196]. This approach would be especially useful in considering dynamic
conservation applications, including scenarios for land restoration, barrier removals, or
protection prioritization in a rapidly changing landscape and climate.

Finally, a bit of praise for beautiful and compelling connectivity maps. Dynamic
representations of connectivity, even those built from static models, can be very powerful
in terms of engaging people in conversations about how to protect moving targets. There
are likely many great examples, but the “Migrations in Motion” [197] map created by Dan
Majka is a crowd favorite with both research conference audiences and the public. This
global map animates Circuitscape-based trajectories for species range shift in response to
change [198] using colored lines for each species and visualizations designed for modeling
wind patterns. Increased collaboration between ecologists, data scientists, and app and
web developers to convey movement dynamics [199] has great potential to add even more
impact to work with Circuitscape and other connectivity models.

6. Dynamic Collaborations Empower Dynamic Approaches to Modeling
For our models to keep up with our ideas and the ever-increasing flow of data, we

need to continually improve them. Conversely, as is evidenced by many Circuitscape
applications, sometimes constraints in computing can lead to innovations that take the
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science in new and interesting directions. In this way, the software, modeling philosophy,
and modelers are also a dynamic system. The more we recognize how our modeling tools
and ability to compute shape our thinking as well as the products we produce, the more we
are likely to learn. The fact that Circuitscape has been deployed in such a large and diverse
number of applications in just over a decade shows both the power of Brad McRae’s ideas,
but also an unusual and enduring commitment to a tool—both by its developers, but also
by users and funders. Looking at the growth of dynamic approaches to connectivity solely
through the lens of Circuitscape obviously leaves out an extensive volume of important and
innovative work, but we hope that it demonstrates the dependence of science innovation
on software innovation—if you build it, and keep improving it, people will come, and do
amazing things. It is our hope that in the next decade, the pace of innovation we see in
Circuitscape applications can be matched or even exceeded by innovations in the outreach
and engagement efforts that build from these tools, accelerating opportunities for new
biodiversity protections in the process.
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Appendix A
We invite connectivity modelers to help us continue to develop Circuitscape and

Omniscape in Julia, and to integrate them into other tools and workflows. Julia’s modern
Just in Time (JIT) compiler enables programmers to write generic code by generating
specialized code for desired precision, index types and platform. This makes maintenance
of the Circuitscape code base simple, and easy to integrate into other software packages.
More broadly, we invite you to consider Julia as you develop other ecological modeling
tools that will benefit from high performance (see [200]). The ecology and overlapping GIS
communities in Julia continue to grow, and software packages centered around ecology
and GIS are in rapid development and beginning to mature (see https://ecojulia.org, and
https://juliageo.org/). Julia’s extensible type system helps define hierarchies of complex
data structures while paradigms like multiple dispatch enable rich, natural workflows
that define the properties or behavior of these objects [201]. For example, the package
EcologicalNetworks.jl [202] defines two fundamental data types describing the partiteness
of a graph, parameterized by the nature of the interactions in the graph. This enables

https://ecojulia.org
https://juliageo.org/
https://juliageo.org/
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multiple combinations of graphs to be generated by a few lines of code. Julia’s type
system and multiple dispatch can thus define rich behavior for complex objects at any
level of granularity. Julia’s JIT compiler then compiles down to high performance native
code for many hardware platforms. This performance, coupled with Julia’s expressivity,
benefits code bases written entirely in Julia. Other notable features include the package
environment system https://julialang.github.io/Pkg.jl/v1/environments/ which can be
used to set up reproducible environments for research. A larger ecosystem of Julia pack-
ages for ecology, built on similar principles, may be found on the EcoJulia Github page
(https://github.com/EcoJulia).
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