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Abstract

Applying differentiable programming techniques and machine learning algorithms
to foreign programs requires developers to either rewrite their code in a machine
learning framework, or otherwise provide derivatives of the foreign code. This pa-
per presents Enzym a high-performance automatic differentiation (AD) compiler
plugin for the LLVM compiler framework capable of synthesizing gradients of
statically analyzable programs expressed in the LLVM intermediate representation
(IR). Enzyme synthesizes gradients for programs written in any language whose
compiler targets LLVM IR including C, C++, Fortran, Julia, Rust, Swift, MLIR,
etc., thereby providing native AD capabilities in these languages. Unlike traditional
source-to-source and operator-overloading tools, Enzyme performs AD on opti-
mized IR. On a machine-learning focused benchmark suite including Microsoft’s
ADBench, AD on optimized IR achieves a geometric mean speedup of 4.2 times
over AD on IR before optimization allowing Enzyme to achieve state-of-the-art
performance. Packaging Enzyme for PyTorch and TensorFlow provides convenient
access to gradients of foreign code with state-of-the-art performance, enabling
foreign code to be directly incorporated into existing machine learning workflows.

1 Introduction

Machine learning (ML) frameworks such as PyTorch [48] and TensorFlow [1]] have become
widespread as the primary workhorses of the modern ML community. Computing gradients necessary
for algorithms such as backpropagation [32], Bayesian inference, uncertainty quantification [60]], and
probabilistic programming [[16] requires all of the code being differentiated to be written in these
frameworks. This is problematic for applying ML to new domains as existing tools like physics
simulators [23} 110, [17,[18L35]], game engines, and climate models [58] are not written in the domain
specific languages (DSL’s) of ML frameworks. The rewriting required has been identified as the
quintessential challenge of applying ML to scientific computing [4]]. As stated by Rackauckas [50]
“this is [the key challenge of scientific ML] because, if there is just one part of your loss function that
isn’t AD-compatible, then the whole network won’t train.”

To remedy this issue, the trend has been to either create new DSL’s 3517} 43]) that make the rewriting
process easier or to add differentiation as a first-class construct in programming languages [44, |9,
61, 37]. This results in efficient gradients, but still requires rewriting in either the DSL or the
differentiable programming language. Developers may want to use code foreign to a ML framework
to either re-use existing tools or write loss functions in a language with an easier abstraction for their
use case. While there exist reverse-mode automatic differentiation (AD) frameworks for various
languages, using them automatically on foreign code for an ML framework is difficult as they still
require rewriting and have limited support for cross-language AD and libraries[61} 133,30, 36]]. The
two primary approaches to computing gradients are as follows.

!Code and documentation at https://github.com/wsmoses/Enzyme and https://enzyme.mit.edu.
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float mag(const float* x);//Compute magnitude in O(N)

void norm(float* out, float* in) {
// float res = mag(in); code motion optimization can move outside the loop
for(int i=0; i<N; i++) { out[i] = in[il/mag(in); }

}
// LICM, then AD, O(N) // AD, then LICM O(N"~2)
void Vnorm(float* out, float* d_out, void Vnorm(float* out, float* d_out,
float* in, float* d in) { float* in, float* d in) {
float res = mag(in); float res = mag(in);
for (int i=0; i<N; i++) { for (int i=0; i<N; i++) {
out[i] = in[i]/res; out[i] = in[i]/res;
} }
float d res = 0; for (int i=0; i<N; i++) {
for (int i=0; i<N; i++) { float d res = -in[i]*in[i]/res \
d res += -in[i]*in[i]/res * d_out[i]; * d out[i];
d in[i] += d out[il/res; d in[i] += d _out[i]/res;
} Vmag(in, d_in, d res);
Vmag(in, d_in, d_res); }
} }

Figure 1: Top: An O(N?) function norm which normalizes a vector. Running loop-invariant-code-
motion (LICM) [45] Sec. 13.2] moves the O(N) call to mag outside the loop, reducing norm’s runtime
to O(N). Left: An O(N) Vnorm resulting from running LICM before AD. Both mag and its adjoint
Vmag are outside the loop. Right: An O(N?) Vnorm resulting from running LICM after AD. Vmag
remains inside the loop as it uses a value computed inside the loop, making LICM illegal.

Operator-overloading computes derivatives by providing differentiable versions of existing language
constructs. Examples include Adept [33]/ADOL-C [27], C++ libraries providing differentiable types;
and JAX [9]/Autograd [44], Python libraries providing derivatives of NumPy-style functions. These
approaches, however, require rewriting programs to use differentiable operators in place of standard
language utilities. This prevents differentiation of many libraries and code in other languages.

Source-rewriting [26] analyzes the source code of programs and emits source code defining the
gradient. Examples of tools include Tapenade [30} 47 for C and Fortran; ADIC [46] for C and C++;
and Zygote 36,138, 37]] for Julia. Users must provide all code being differentiated to the tool ahead-
of-time and must write programs in a specific subset of the language. This makes source-rewriting
hard to use with header-only libraries and impossible to use with precompiled libraries.

Both operator-overloading and source-rewriting AD systems differentiate programs before optimiza-
tion. Performing AD on unoptimized programs, however, may result in complicated gradients that
cannot be simplified by future optimization. As an example, the gradient of norm in Figure[I|runs in
O(N) if optimization is run before AD and O(N?) if optimization is run after AD.

Traditional AD systems have not operated on optimized intermediate representation (IR) as doing so
requires either re-implementing all of the optimizations or working at a low-level after which opti-
mization has already been performed. Conventional wisdom says that producing efficient gradients
for low-level IR is difficult as it lacks high-level information many tools rely upon: “AD is more
effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than traditional ones such as
C/C++, Fortran and LLVM IR [...]” — Innes [36]]. This paper challenges that wisdom by creating an
efficient AD tool for LLVM [41]], a low-level IR and set of optimizations used by many compilers.

This paper presents Enzyme, an efficient cross-platform compiler plugin for automatic differentiation
that operates on LLVM IR [41] and makes the following contributions:

* Enzyme, a compiler plugin for LLVM that can synthesize fast gradients of statically analyzable
LLVM IR, including IR generated by compiler frontends for C, C++, Fortran, Rust, Swift, etc.

» PyTorch-Enzyme/TensorFlow-Enzyme, a foreign-function interface that allows machine learning
researchers to use foreign code written in LLVM-compiled languages in PyTorch and TensorFlow.

* Enzyme.jl, a Julia package that uses Enzyme to synthesize gradients of code written in a dynamic
high-level language using only low-level information.

* Multisource AD and static library support by leveraging link-time optimization (LTO) [41,139].

* A study demonstrating that running AD after optimization results in significant performance gains
on a standard machine learning benchmark suite [S7] and achieves state-of-the-art performance.



void f(void* dst, void* src) { memcpy(dst, src, 8); }

// Gradient memcpy for double inputs // Gradient memcpy for float inputs
void grad f(double* dst, double* ddst, void grad f(float* dst, float* ddst,
double* src, double* dsrc) { float* src, float* dsrc) {
// Forward pass // Forward pass
memcpy(dst, src, 8); memcpy(dst, src, 8);
// Reverse pass // Reverse pass
dsrc[0] += ddst[0]; dsrc[0] += ddst[0];
ddst[0] = 0; ddst[0] = 0;
dsrc[1] += ddst[1];
ddst[1] = 0;
} }

Figure 2: Top: Call to memcpy for an unknown 8-byte object. Left: Gradient for a memcpy of 8 bytes
of double data. Right: Gradient for a memcpy of 8 bytes of float data.

Related work Clad is a plugin to the Clang compiler that implements forward mode automatic
differentiation on a subset of C/C++ with reverse mode in development [59]. Chen et al. [[11] present
an end-to-end differentiable model for protein structure prediction. DiffTaichi [35]] implements a
differentiable DSL for physics and robotics simulation. de Avila Belbute-Peres et al. [17] also provide
a differentiable physics framework. Halide is a differentiable DSL for image processing [43]. Swift
implements first class automatic differentiation [61]. Elliott [21] present a compiler plugin to provide
differentiable programming in Haskell. Enzyme differs from the related work by running on generic
low-level IR and post-optimization. This gives Enzyme several performance and compatibility
benefits that don’t exist in current systems.

2 Design

Enzyme is composed of three stages: type analysis determines the underlying types of values, activity
analysis determines what instructions and values can impact the gradient calculation, and synthesis
creates the necessary functions to compute the gradient. A core design goal of Enzyme is to operate
upon optimized IR. As seen in Figure[I]this can result in significant benefits such as simpler and more
optimized gradients, though it requires working on a low-level representation. Gradients synthesized
by Enzyme contain two parts: a forward pass that mirrors the original code and a reverse pass that
computes the gradient by inverting the instructions in the forward pass. Inverted instructions in the
reverse pass are known as adjoints. For all differentiable instructions in LLVM, Enzyme defines an
adjoint to describe how gradients propagate through each instruction.

Type Analysis One challenge of performing AD on LLVM IR (and even C/C++) is that LLVM
types do not necessarily represent the type of the underlying data. For example, the memcpy function
copies data between generic pointers without types (void*). Creating a correct gradient for memcpy,
however, requires knowing the type of the memory being copied. As shown in Figure 2, copying
8 bytes of double data requires performing one double (8-byte) addition in the reverse pass, whereas
copying 8 bytes of float data requires two float (4-byte) additions. These operations are incompatible,
resulting in an incorrect gradient if the wrong one is used.

Since Enzyme works on a low-level representation, Enzyme must use a new interprocedural fixed-
point analysis rather than relying on types prescribed by the language. Every value in a function is
given a type tree that describes the known type at any given byte offset in the value. If the type at a
particular offset is a pointer type, we have a new type tree that represents the types inside that offset.
An example type tree is shown in Figure

Type analysis initializes the type trees of all values to empty and uses type-based alias analysis
(TBAA) metadata to initialize the type trees of loads, stores, and memcpy operations. TBAA allows
us to make assumptions about the underlying type because of strict aliasing [[19}112]]. For every kind
of instruction, Enzyme implements a type propagation rule that specifies how types flow through the
instruction. As an example, if the result of a load is known to be type T, then the pointer loaded must
be a pointer to T at offset 0. Type analysis then runs all of the type propagation rules until a fixed
point is reached. This is an application of abstract interpretation [15]].



X MyType

goubte vars | 0:_Pointer |——¥0:Double

int* var2; 8:Pointer 0:Integer
b

MyType* X;

Figure 3: An example TypeTree used by Type Analysis. The variable x (declared on the left) is a
pointer type, which points to a struct MyType, which contains a double at byte 0, and then a pointer
at byte 8. That nested pointer points to an integer.

double g(double* x) { return *x * *x; }
double sum(double* x) { void f(double* x) { *x = g(x); }
double total = 0;
for(int i=0; i<10; i++) {/*return val*/double,/*cache*/double}
total += read() * x[i]; augmented g(double* x) {
return total; return {x[0]*x[0], x[0]};
b }
void grad sum(double* x, void grad g(double* x, double* d x,
double* d_x) { double d_ret, double cache) {
double* read cache = malloc(10%*8); d x[0] += 2 * cache * d ret;
for(int i=0; i<10; i++) }
readCache[i] = read();
// reverse void grad f(double* x, double* d x) {
for(int i=10-1; i>=0; i--) {call, cache} = augmented g(x);
d x[1] += read cache[il; *x = call;
} double d ret = *d x;
free(read cache); *d x = 0;
} grad g(x, d x, d ret, cache);
}

Figure 4: Left: Caching the result of read for the reverse pass. Right: Creating an augmented
forward pass for a function to ensure requisite values are cached for the reverse.

Sometimes Type Analysis cannot deduce all the necessary information statically (e.g. if bithacks
to modify a floating-point). Rather than produce incorrect code, Enzyme will emit a compile-time
error if it is unable to perform an analysis needed by AD. This enables programmers to provide this
information to the compiler in the form of additional attributes, a custom derivative, or other means.

Activity Analysis Activity analysis determines what instructions could impact the gradient com-
putation and is common in automatic differentiation systems to avoid performing unnecessary
adjoints [56} 8]. Enzyme also uses activity analysis to avoid taking gradients of “undifferentiable”
instructions such as the cpuid instruction. An instruction is active if and only if it can propagate
a differential value to its return or another memory location. For example, a function that counts
the length of a an active input array would not be active. In our implementation of activity analysis,
we leverage LLVM’s alias analysis [3, Ch. 12] and type analysis to help prove that instructions are
inactive. As an example, any read-only function that returns an integer must be inactive since it
cannot propagate differential values through the return or any memory location. This is true because
the differential value of any integer value must be zero and while the instruction can read active
memory it cannot propagate it anywhere.

Shadow Memory Shadow memory is common in AD systems as a way to store gradients of values.
Consider the gradient of sum in the left of Figure[d} The gradient function grad_sum takes in both x
as an argument as well as the shadow d_x, where it will store the result. Enzyme’s scheme is designed
to be amenable to optimizations in LLVM while maintaining sufficient flexibility to represent arbitrary
programs. For every active value in the forward pass, Enzyme creates and zeros a shadow version of
that value. Similarly, any data structures (including function arguments) need to be duplicated. For
any data structures computed inside the function being differentiated, Enzyme will create a shadow
data structure automatically. This involves duplicating any memory instructions such as malloc,
new, and stores of pointers, with equivalent shadow memory operations. Finally, Enzyme delays all
deallocations until the memory is not needed by the gradient calculation. Shadow memory is used to



reverse if.end:

define double @relu3(double %x) ; adjoint of return
entry: store %d res = 1.0
; Shadow values for reverse ; adjoint of %res phi node
; alloca %d x = 0.0 %d call += if %x > 0, (load %d res), else 0
; alloca %d call = 0.0 store %d res = 0.0
; alloca %d result = 0.0 br %cmp, %reverse if.true, %reverse entry
br (%x > 0), if.true, if.end reverse if.true:
if.true: ; adjoint of %call
%call = @pow(%x, 3) %df = 3 * @pow(%x, 2)
br cond.end %d_x += %df * (load %d_call)
if.end: store %d call = 0.0
%res = phi[%call, if.true], br %reverse_entry
— [0, entry] reverse entry:
ret %res %0 = load %d x
ret %0

Figure 5: Example gradient synthesis for relu(pow(x,3)). The left hand side shows the LLVM IR
for the original computation. In the comments on the left we show the shadow allocations of active
variables that would be added to the forward pass. The right hand side shows the reverse pass that
Enzyme would generate. The full synthesized gradient function would combine these (with shadow
allocations added), replacing the return in if.end with a branch to reverse if.end.

compute the adjoint of instructions like load in the reverse pass, which propagates the gradient of
the load to the shadow of the pointer operand. Given shadow versions of all arguments and active
globals, the shadow version of any value can be computed by duplicating the instruction that created
the original value, replacing operands with their shadow. For calls to functions, we return the shadow
pointer along with the original pointer.

Synthesis Given the results of type and activity analysis, Enzyme can now perform synthesis, the
creation of the gradient function. Enzyme initializes all the shadow values as described above.
For every basic block BB in the original program, Enzyme creates a corresponding reverse block
reverse BB. Enzyme then emits the adjoint of all instructions from BB into reverse BB in reverse
order. Enzyme then branches to the reverse of BB’s predecessor, returning if BB was the entry block.
Finally, Enzyme replaces any return instruction in the forward pass with a branch to its reverse block.
An example of this procedure is shown in Figure 3}

Cache Computing adjoints of certain instructions requires values computed in the forward pass. By
default, Enzyme will attempt to recompute these in the reverse pass. However, it may be impossible
or less efficient to recompute certain instructions. The question of whether and how to cache is known
as the well-studied “checkpointing” problem in the literature [25} 40]. Checkpointing in Enzyme
adds additional complexity with the inclusion of potentially-aliasing memory, a cost model for LLVM
instructions (many of which are cost-free), and the impact of checkpointing on future optimization.

Consider the calls to read on the left of Figure[#, which cannot be recomputed. Enzyme provides
a cache (often referred to as a tape in other AD systems) that provides forward-pass values to the
reverse pass. In this example, Enzyme allocates memory (in this case an array of 10 doubles) to store
the values needed by the reverse pass. If Enzyme can statically bound the number of values needing
to be cached (e.g. a loop of fixed size), it will perform a single allocation to cache that instruction. If
not, Enzyme will dynamically reallocate memory. For function calls, Enzyme may need to augment a
call in the forward pass as shown in the right of Figure d]to save values needed to compute the adjoint
of the call.

To maximize performance, it is often desirable to reduce the number of values cached and Enzyme
contains optimizations to reduce the number of values that need caching. Enzyme greatly benefits
from LLVM’s alias analysis and function attributes by proving that it is legal to recompute certain
instructions. Enzyme also runs a differential-use analysis to determine which values are not necessary
for computing the gradient and avoids caching them. This analysis is sometimes referred to as “to be
recorded analysis” in other systems [31]. Additionally, if Enzyme already cached an equivalent value
(e.g. aload to the same location which couldn’t have since been written to), Enzyme simply reuses
the existing cache for that value. Finally, if a cached value A is only used to recompute a single value



__attribute  (( double dfunc(double* x, double *d x,
enzyme("augment", augment f), double* y) {
enzyme("gradient", gradient f) __enzyme_autodiff(func,

)) // The variable x is active

double f(double in); enzyme dup, x, d X,

double func(double* x, double* y) { // The variable y is constant

return f(*x) + f(*y); enzyme const, y);

} }

Figure 6: Left: Specifying a custom forward and reverse pass for f. Right: Creating a gradient for
func with x as an active variable and y as a constant.

B in the reverse pass, Enzyme will choose to cache the value B instead of the value A, minimizing
the amount of work in the reverse pass.

Function Calls It is desirable to compute both the forward and reverse pass in the same function.
This allows for optimization between the forward and reverse pass, and can reduce memory usage.
Enzyme detects whether it is legal to move the forward pass instructions of a function into the adjoint
computation. If so, the forward pass call is erased and the combined function is used as the adjoint.

An indirect function call is a call to an anonymous function pointer which is not known at compile
time. Like all other active pointers in a function, there exists a shadow version of the function pointer
being called. Whenever a function pointer is used outside of a static call, we create a new global
variable containing a pair of functions, namely the augmented forward and reverse pass. This global
is then used as the shadow pointer for the original function. Thus, whenever Enzyme needs to perform
an adjoint of an active indirect function call, it extracts the augmented forward and gradient functions
from the shadow of the indirect callee, then uses those functions in the adjoint. Like the rest of
shadow memory, this is handled automatically by Enzyme for all objects created inside functions
being differentiated. If you want Enzyme to differentiate a function with a virtual C++ class as an
argument, however, you need to pass in a modified virtual method table in the shadow that conforms
with Enzyme’s calling convention.

Limitations Enzyme needs access to the IR for any function being differentiated to create adjoints.
This prevents Enzyme from differentiating functions loaded or created at runtime like a shared library
or self-modifying code. Enzyme also must be able to deduce the types of active memory operations
and phi nodes. Practically, this means enabling TBAA for your language and limiting yourself
to programs with statically-analyzable types (no unions of differing types nor copies of undefined
memory). Enzyme presently does not implement adjoints of exception-handling instructions so
exceptions should be disabled (e.g. with - fno-exceptions for a C++ compiler).

3 Usage

Enzyme is designed to simplify both importing foreign code into machine-learning workflows and
providing native AD for LLVM-based languages. Enzyme is implemented as an LLVM compiler
plug-in, allowing it to be easily used in existing tools without need to build and maintain custom
forks of LLVM, PyTorch, or TensorFlow.

Static Languages Using gradients inside LLVM-based languages simply requires calling an external

__enzyme_autodiff function as shown on the right in Figure[6] For added control, users may specify
whether a variable is active by including either an Enzyme-specific variable or metadata as part of the
function call. Enzyme requires the IR for all functions it may need to differentiate to be available
when the pass is run. For single-source programs, all the IR is simply available. Codebases with
multiple source files or those using external libraries require an additional step. Enzyme makes use of
Link-Time Optimization (LTO) [39,41], a compiler technique for whole-program optimization that
preserves IR from all source files until link time where a final set of interprocedural optimizations may
run. To use Enzyme on multi-source codebases, a user enables LTO and runs Enzyme on the merged
IR for all the sources. Static libraries are handled by compiling them with the - fembed-bitcode
command that ensures that bitcode is included in the library as well. This allows Enzyme to perform
AD on a program linking against a static library, by extracting the bitcode in the static library and
then running Enzyme on the original program with the IR of the static library.



function f(x)

sum = zero(x) Tool \ Runtime (s)
for i = 1:10"7

using Zygote, Enzyme

e ) Enzyme.jl 0.810 Zygote.@adjoint f(x),
en(sium =X/ Zygote.jl 24.638 Enzyme.pullback(f, x)
AutoGrad.jl 609.256
en;eturn sum ! Zygote.gradient(f, 0.5)

Figure 7: Left: A simple scalar function computing a Taylor expansion. Center: The runtime of the
gradient as computed by Enzyme.jl and two common Julia AD frameworks. Right: How Enzyme
can be embedded in existing AD frameworks to use Enzyme’s efficient implementation of scalars.

Programmers can use custom forward and backward passes in Enzyme by specifying them as metadata
on the function to be differentiated, even if the definition of that function is not available during AD.
In a separate Clang C/C++ frontend extension, we allow users to specify this directly with function
attributes as on the left in Figure[6, Internally, one can also specify the type propagation, activity
analysis, and adjoint rules for custom foreign functions. To minimize the amount of work for users,
we provide these rules for common functions in the C/C++ standard and math libraries.

Dynamic Languages Dynamic languages such as Julia require more consideration. Julia uses
LLVM to perform native code generation for functions as a Just-In-Time compiler. The IR for all
code needed by Enzyme is not immediately available since Julia’s execution engine uses caching
aggressively. We use the infrastructure developed for Julia’s GPU code generator [5, (6] to collect
all the function definitions reachable by the function to be differentiated. Julia implements its own
version of common math functions like sin with custom implementations that are not amenable
to type analysis, or resolves them to indirect function calls through opaque pointers into 1ibm.
Enzyme. jl uses Cassette.jl [53] to replace these functions calls with LLVM intrinsics. The
Enzyme plugin is loaded and the Enzyme pass directly executed over the collected IR.

Zygote [36,138,[37] is a popular automatic-differentiation framework for Julia used in probabilistic
programming [24] and scientific machine learning [S1]. Zygote performs source-to-source AD on
high-level Julia code with optimizations for matrix programs. As shown in Figure[/} however, it can
perform poorly on scalar programs. By embedding Enzyme inside Zygote as shown in the right of
Figure[7] Julia is able to perform AD with both high-level knowledge and low-level optimizations. By
utilizing embedded bitcode, Enzyme. j 1 provides the ability to take derivatives of foreign functions.

ML Frameworks Having demonstrated the ability to synthesize gradients of functions in a vari-
ety of languages compiled by LLVM, we will demonstrate how to leverage this ability to embed
foreign code into a machine learning framework. After specifying the desired gradient by calling
__enzyme_autodiff as shown in Figure 8] users can follow the tutorials for creating a custom
operator in PyTorch [14] or TensorFlow [[13]] and compiling the custom operator with Enzyme as
described above. To simplify this workflow for machine learning researchers, we also created a
simple package for PyTorch and TensorFlow in Figure[§ that exposes this functionality in Python
without needing to compile a custom operator.

4 Evaluation

We evaluate the Enzyme approach by measuring the run time of seven benchmarks: the three reverse-
mode automatic differentiation benchmarks from Microsoft’s machine learning-focused ADBench
suite [S7], and four additional tests that are technically interesting or represent potential uses of
Enzyme in practice. The ADBench suite includes bundle analysis (BA), a long short term memory
model (LSTM), and a gaussian mixture model (GMM). We also differentiate two integrators (Euler,
RK4) from the Odeint header-only ODE solver library [2]; a simple Fast Fourier Transform (FFT);
and a finite difference discretized simulation of the 2-dimensional Brusselator system (Bruss) [22}162].

The two integrators test indirect function calls, complicated C++ headers, and foreign ODE solvers.
The FFT test demonstrates AD of recursive functions. The Brusselator test demonstrates the utility
in adjoint sensitivity analysis for ordinary differential equations, a widely applicable method with
applications to PDE-constrained optimization [7} 42|, control theory [49]], and scientific machine
learning like neural ODEs [51}11]].



void f(float* inp, size_t n, float* out); // Input tensor + size, and output tensor
void diffef(float* inp, float* d inp, size_t n, float* d out) {

// enzyme dupnoneed specifies not recomputing the output

~_enzyme autodiff(f, enzyme dup, inp, d _inp, n, enzyme dupnoneed, (float*)0, d out);

}
import torch import tensorflow as tf
from torch_enzyme import enzyme from tf_enzyme import enzyme
# Create some initial tensor
inp = ... inp = tf.Variable(...)
# Apply foreign function to tensor # Use external C code as a regular TF op
out = enzyme("test.c", "f").apply(inp) out = enzyme(inp, filename="test.c",
# Derive gradient function="f")
out.backward() # Results is a TF tensor
print(inp.grad) out = tf.sigmoid(out)

Figure 8: Top: Sample glue code for using Enzyme to produce a custom operator for an ML
framework. Left & Right: Sample code of using Enzyme to provide gradients of foreign code in
PyTorch and TensorFlow, respectively.

Enzyme‘ Clang }—)‘ -02% H Enzyme }—)‘ -02 I % CodeGen
Ref| Clang )I Enzyme }—)‘ -02* H -02 }—){CodeGen‘

Figure 9: The pipelines Enzyme and Ref, which run optimizations before and after AD, respectively.
The goal of running optimizations prior to AD is to reduce work and simplify the code. The first
round of optimizations (-02%*) disables scheduling passes such as vectorization or unrolling that make
heuristic decisions based on the current code size and machine attributes. Scheduling optimizations
are included in the second round of optimizations (-02) when the entire code (including gradient) is
available.

We ran our experiments on a “quiesced” AWS c4.8xlarge instance with hyperthreading and Turbo
Boost disabled. For all benchmarks, we took the geometric mean across all inputs. We ran all 92
inputs from ADBench, removing the 21 inputs where Adept exhausted system memory or a tool ran
in under 0.01 seconds. For the integrator and FFT tests, we ran a total of 36 different inputs, with the
number iterations or the input size increasing exponentially. For Bruss, we ran a total of 10 trials.

To evaluate the effectiveness of AD on optimized IR, we construct two pipelines shown in Figure 9}
The Enzyme pipeline consists of running optimizations before Enzyme AD, followed by a second
round of optimizations. The Reference (Ref) pipeline is identical to the Enzyme pipeline, except
that AD is performed before the first round of optimization. This allows us to effectively evaluate

1.0
4 B Enzyme
0.8 [ Ref
I Tapenade
0.6 I Adept

0.4

0.2

Higher is better

0.0 LSTM BA GMM Euler RK4 FFT Bruss

Figure 10: Relative speedup of different AD systems on the benchmark suite, higher is better. A red
X is used to denote a system not being compatible with the benchmark (Tapenade only supports C
and not C++ programs). For each benchmark, we take the geometric mean of the run time for all
test cases, normalizing to the victor. A value of 1.0 denotes the fastest AD system tested for that
benchmark, whereas a value of 0.5 denotes that an AD system produced a gradient which took twice
as long.



Enzyme Ref Tapenade | Adept

LSTM | 2.408 4.727 4.033 7.722

BA | 0.256 0.450 0.408 1.380

GMM | 0.076 0.480 0.125 1.677

Euler | 0.165 | 29.453 N/A 6.954

RK4 | 3.936 | 25.015 N/A 6.632

FFT | 0.122 0.122 0.139 2.632

Bruss | 0.180 0.184 0.513 3.546
Table 1: Geometric mean runtime of benchmark suite in seconds. Tapenade compiles only C and not
C++. N/A denotes a system incompatible with the benchmark (Tapenade only supports C and not

C++ programs).

the importance of optimization on AD without considering additional confounding factors (such
as differing tape implementations) between Enzyme and existing source AD systems. Taking the
geometric mean across all benchmarks and inputs, Enzyme outperforms Ref by a factor of 4.2.

We also compare against the two fastest C/C++ AD tools evaluated in ADBench, Tapenade and
Adep These results are presented in Figure Enzyme demonstrates state-of-the-art performance
in all benchmarks. Enzyme’s advantage in the BA, LSTM, Euler, and RK4 tests appears to stem from
running optimizations before AD. Enzyme uses a different tape structure than Tapenade (using a
recursive set of allocations rather than a stack), which explains their differences on the GMM and
Bruss benchmarks. Enzyme does not need to store as much on its tape as Adept (such as not needing
to store which statements were executed), explaining Enzyme’s superior performance on FFT and
Bruss.

5 Conclusion

Enzyme demonstrates the feasibility of performing efficient AD on low-level programs, opening
up the door for language-independent AD and AD after optimization. This transforms the existing
workflow machine learning researchers use to bring ML to foreign code. Instead of rewriting foreign
code for machine learning, they can automatically synthesize fast gradients! This allows researchers
to apply ML to a vast array of new use cases without the substantial effort of a rewrite or new DSL.

Building Enzyme as part of the LLVM compiler creates many avenues for future research. Exploring
new AD-specific optimizations in LLVM may yield additional performance benefits. One could
use LLVM’s existing GPU or parallel code generators on programs generated by Enzyme [28, [29].
Enzyme could be extended to differentiate GPU and CPU-parallel programs by using existing
representations for these programs in LLVM [54} 134} 155, 20]. Enzyme could also be extended to
support forward-mode AD, mixed-mode AD [52], and the checkpointing problem beyond a simple
heuristic. Fine-tuning the location of Enzyme in LLVM’s optimization pass pipeline remains an open
question. Enzyme opens up opportunities for cross-language AD. There are also opportunities to use
Enzyme to port various physics engines and other codebases to ML frameworks.
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Broader Impact

Enzyme reduces the amount of work necessary to apply ML to new domains. This has a generally
positive impact as it reduces the workload necessary by researchers to use ML. It could be negative,
however, for those whose job manually rewrites existing code for ML frameworks. Similarly, this
added accessibility advances various scientific problem domains with all the positives and negatives
that come with it. Enzyme also provides generally positive impact by helping bridge the gap between
the ML and the scientific computing communities through allowing them to share tools and more
easily interoperate. As an example, Enzyme may allow for improved policy design for climate change
via projected-gradient-descent on a climate simulator.
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