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Abstract

Modern design, control, and optimization often require mul-
tiple expensive simulations of highly nonlinear stiff models.
These costs can be amortized by training a cheap surrogate
of the full model, which can then be used repeatedly. Here
we present a general data-driven method, the continuous-
time echo state network (CTESN), for generating surrogates
of nonlinear ordinary differential equations with dynamics at
widely separated timescales. We empirically demonstrate the
ability to accelerate a physically motivated scalable model of
a heating system by 98x while maintaining relative error of
within 0.2 %. We showcase the ability for this surrogate to ac-
curately handle highly stiff systems which have been shown
to cause training failures with common surrogate methods
such as Physics-Informed Neural Networks (PINNs), Long
Short Term Memory (LSTM) networks, and discrete echo
state networks (ESN). We show that our model captures fast
transients as well as slow dynamics, while demonstrating that
fixed time step machine learning techniques are unable to ad-
equately capture the multi-rate behavior. Together this pro-
vides compelling evidence for the ability of CTESN surro-
gates to predict and accelerate highly stiff dynamical systems
which are unable to be directly handled by previous scientific
machine learning techniques.

Introduction

Stiff nonlinear systems of ordinary differential equations
are widely prevalent throughout science and engineering
(Wanner and Hairer 1996; Shampine and Gear 1979) and
are characterized by dynamics with widely separated time
scales. These systems require highly stable numerical meth-
ods to use non-vanishing step-sizes reliably (Gear 1971),
and also tend to be computationally expensive to solve. Even
with state-of-the-art simulation techniques, design, control,
and optimisation of these systems remains intractable in
many realistic engineering applications (Benner, Gugercin,
and Willcox 2015). To address these challenges, researchers
have focused on techniques to obtain an approximation to a
system (called a “surrogate”) whose forward simulation time
is relatively inexpensive while maintaining reasonable accu-
racy (Willard et al. 2020; Ratnaswamy et al. 2019; Zhang
et al. 2020; Kim et al. 2020; van de Plassche et al. 2020).
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A popular class of traditional surrogatization techniques is
projection based model order reduction, such as the proper
orthogonal decomposition (POD) (Benner, Gugercin, and
Willcox 2015). This method computes “snapshots” of the
trajectory and uses the singular value decomposition of the
linearization in order to construct a basis of a subspace of the
snapshot space, and the model is remade with a change of
basis. However, if the system is very nonlinear, the computa-
tional complexity of this linearization-based reduced model
can be almost as high as the original model. One way to
overcome this difficulty is through empirical interpolation
methods (Nguyen et al. 2014). Other methods to produce
surrogates generally utilize the structural information known
about highly regular systems like partial differential equa-
tion discretizations (Frangos et al. 2010).

Many of these methods require a scientist to actively make
choices about the approximations being performed to the
system. In contrast, the data-driven approaches like Physics-
Informed Neural Networks (PINNs)(Raissi, Perdikaris, and
Karniadakis 2019) and Long Short Term Memory (LSTM)
networks (Chattopadhyay, Hassanzadeh, and Subramanian
2020) have gained popularity due to their apparent appli-
cability to “all” ordinary and partial differential equations
in a single automated form. However, numerical stiffness
(Soderlind, Jay, and Calvo 2015) and multiscale dynamics
represent an additional challenge. Highly stiff differential
equations can lead to gradient pathologies that make com-
mon surrogate techniques like PINNs hard to train (Wang,
Teng, and Perdikaris 2020).

A classic way to create surrogates for stiff systems is
to simply eliminate the stiffness. The computational singu-
lar perturbation (CSP) method (Hadjinicolaou and Gous-
sis 1998) has been shown to decompose chemical reaction
equations into fast and slow modes. The fast modes are
then eliminated, resulting in a non-stiff system. Another op-
tion is to perform problem-specific variable transformations
(Qian et al. 2020; Kramer and Willcox 2019) to a form
more suited to model order reduction by traditional meth-
ods. These transformations are often problem specific and
require a scientist’s intervention at the equation level. Re-
cent studies on PINNs have demonstrated that such variable
elimination may be required to handle highly stiff equations
because the stiffness leads to ill-conditioned optimization
problems. For example, on the classic Robertson’s equations
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Figure 1: Prediction of each surrogate on the Robertson’s equations Shown in each figure is the result of the data-driven
algorithm’s prediction at p = [0.04, 3 x 107, 1 x 10*], a parameter set not in the training data. Ground truth, obtained by solving
the ODE using the Rosenbrock23 solver with absolute tolerance of 1075, is in blue. The PINN was trained using a 3-layer
multi-layer perceptron with the ADAM optimizer for 300,000 epochs with minibatching, and its prediction is in red. Both the
ESN and CTESN were trained with a reservoir size of 3000 on a parameter space of [0.036, 0.044] x [2.7 x 107,3.3 x 107] x
[9 x 102, 1.1 x 10%], from which 1000 sets of parameters were sampled using Sobol sampling. The predictions of the CTSEN
are generated by the radial basis function prediction of W+ (p) and are shown in green. Predictions from the ESN are in purple.
The LSTM predictions, in gold, are generated by a network with 3 hidden LSTM layers and an output dense layer, after training
for 2000 epochs. (A) A timeseries plot of the y;(¢) predictions. (B) The absolute error of the surrogate predictions on y1 (t).
(C) A timeseries plot of the yo(t) predictions. (D) The absolute error of the surrogate predictions on y2(t). (E) The result of
y1(t) + y2(t) + y3(¢t) over time. By construction this quantity’s theoretical value is 1 over the timeseries.



(ROBER) (Robertson 1976) and Pollution model (POLLU)
(Verwer 1994) stiff test problems it was shown that direct
training of PINNSs failed, requiring the authors to perform
a quasi-steady state (QSS) assumption in order for accurate
prediction to occur (Ji et al. 2020). However, many chem-
ical reaction systems require transient activations to prop-
erly arrive at the overarching dynamics, making the QSS as-
sumption only applicable to a subset of dynamical systems
(Henry and Martin 2016; Flach and Schnell 2006; Eilert-
sen and Schnell 2020; Turanyi, Tomlin, and Pilling 1993;
Schuster and Schuster 1989; Thomas, Straube, and Grima
2011). Thus while demonstrating promising results on diffi-
cult equations, training on the QSS-approximated equations
requires specific chemical reaction networks and requires
the scientist to make approximation choices that are diffi-
cult to automate, which reduces the general applicability that
PINNs were meant to give.

The purpose of this work is to introduce a general data-
driven method, the CTESN, that is generally applicable
and able to accurately capture highly nonlinear heteroge-
neous stiff time-dependent systems without requiring the
user to train on non-stiff approximations. It is able to ac-
curately train and predict on highly ill-conditioned models.
We demonstrate these results (Figure 1) on the Roberston’s
equations, which PINNs, LSTM networks and discrete-
time machine learning techniques fail to handle. Our re-
sults showcase the ability to transform difficult stiff equa-
tions into non-stiff reservoir equations which are then in-
tegrated in place of the original system. Given the O(n?)
scaling behavior of general stiff ODE solvers due to internal
LU-factorizations, the resulting approximation by a surro-
gate with linear scaling with number of outputs, we observe
increasing accelerations as the system gets larger. With this
scaling difference we demonstrate the ability to accelerate
a large stiff system by 98x while achieving < 0.2% error
(Figure 5).

Continuous-Time Echo State Networks

Echo State Networks (ESNs) are a reservoir computing
framework which projects signals from higher dimensional
spaces defined by the dynamics of a fixed non-linear system
called a “reservoir” (Ozturk, Xu, and Principe 2007). The
ESN’s mathematical formulation is as follows. For a Ng-
dimensional reservoir, the reservoir equation is given by:

T'n+1 = f(Arn + Wfbxn)7 (1)

where f is a chosen activation function (like tanh or sig-
moid), A is the Np x Np reservoir weight matrix, and Wy,
is the Np x N feedback matrix where IV is the size of our
original model. In order to arrive at a prediction of our orig-
inal model, we take a projection of the reservoir:

i’n - g(Woutrn)a (2)

where g is the output activation function (generally the iden-
tity or sigmoid) and W,,,; is the N x Np projection matrix.
In the training process of an ESN, the matrices A and W,
are randomly chosen constants, meaning the W,,; matrix is
the only variable which needs to be approximated. W,,,; is

calculated by using a least squares fit of against the model’s
time series, which then fully describes the prediction pro-
cess.

This process of using a direct linear solve, such as a
QR-factorization, to calculate W,,; means that no gradient-
based optimization is used in the training process. For this
reason ESNs have traditionally been used as a stand-in
for recurrent neural networks which overcome the vanish-
ing gradient problem (Jaeger et al. 2007; LukoSevicius and
Jaeger 2009; Mattheakis and Protopapas 2019; Vlachas et al.
2020; Chattopadhyay et al. 2019; Grezes 2014; Evanusa,
Aloimonos, and Fermiiller 2020; Butcher et al. 2013). How-
ever, ESNs have also been applied to learning chaotic sys-
tems (Chattopadhyay et al. 2019; Doan, Polifke, and Magri
2019), nonlinear systems identification (Jaeger 2003), bio-
signal processing (Kudithipudi et al. 2016), and robot con-
trol (Polydoros, Nalpantidis, and Kriiger 2015). These are all
cases where the derivative calculations are unstable or, as in
the case of chaotic equations, are not well-defined for long
time spans.

This ability to handle problems with gradient patholo-
gies gives the intuitive justification for exploring reservoir
computing techniques on handling stiff equations. However,
stiff systems generally have behavior spanning multiple
timescales which are difficult to represent with uniformly-
spaced prediction intervals. For example, in the ROBER
problem we will showcase, an important transient occurs
for less than a 10 seconds of the 10,000 second simulation.
However this feature is important to capture the catalysis
that kick-starts the long-term changes. Many more samples
from ¢ € [0,10] will be required than from ¢ € [10,10]
in order to accurately capture the dynamics of the system.
These behaviors are the reason why all of the major software
for handling stiff equations, such as CVODE (Hindmarsh
et al. 2005), LSODA (Hindmarsh and Petzold 2005), and
Radau (Hairer and Wanner 1999) are adaptive. In fact, this
behavior is so crucial to the stable handling of stiff systems
that robust implicit solves tie the stepping behavior to the
implicit handling of the system with complex procedures for
reducing time steps when Newton convergence rates are re-
duced (Wanner and Hairer 1996; Hosea and Shampine 1996;
Hairer and Wanner 1999). For these reasons, we will demon-
strate that the classic fixed time step reservoir computing
methods from machine learning are unable to handle these
highly stiff equations.

To solve these issues, we introduce a new variant of
ESNs, which we call continuous-time echo state networks
(CTESNSs), which allows for an underlying adaptive time
process while avoiding gradient pathologies in training. Let
NN be the dimension of our model, and let P be a Cartesian
space of parameters under which the model is expected to
operate. The CTESN of with reservoir dimension Np is de-
fined as

' = f(Ar + Wiy (p*, 1)), 3)
m(t> = g(WoutT(tDv 4)

where A is a fixed sparse random matrix of dimension N X
Npr and Wp, is a fixed random dense matrix of dimen-
sions N x N. The term W,z (p*, t) represents a “hybrid”



term that incorporates physics information into the reservoir
(Pathak et al. 2018), namely a solution at some point in the
parameter space of the dynamical system. Given these fixed
values, the readout matrix W, is the only trained portion
of this network and is obtained through a least squares fit of
the reservoir ODE solution against the original timeseries.
We note that in this study we choose f = tanh and g = id
for all of our examples.

To obtain a surrogate that predicts the dynamics at new
physical parameters, the reservoir projection W, is fit
against many solutions at parameters {py,...,pn}, where
n is the number of training data points sampled from the
parameter space. Using these fits, an interpolating function
Wout(p) between the matrices can be trained. A prediction
Z(t) for at physical parameters p is thus given by:

2(t) = Wour (P)r (). 5

A strong advantage of our method is its ease of imple-
mentation and ease of training. Global L fitting via stabi-
lized methods like SVD are robust to ill-conditioning, alle-
viating many of the issues encountered when attempting to
build neural surrogates of such equations. Also note that in
this particular case, the readout matrix is fit against the same
reservoir time series. This means that prediction does not
need to simulate the reservoir, providing an extra accelera-
tion.

Another advantage is the ability to use time stepping in-
formation from the solver during training. As noted before,
not only are step sizes chosen adaptively based on minimiz-
ing a local error estimate to a specified tolerance (Shampine
and Gear 1979), but they also adapt to concentrate around
the most stiff and numerically difficult time points of the
model by incorporating the Newton convergence into the re-
jection framework. These timestamps thus provide heuristic
snapshots of the most important points for training the least
squares fit, whereas snapshots from uniform time steps may
skip over many crucial aspects of the dynamics.

Training
In this section we describe the automated training proce-
dure used to generate CTESN surrogates. An input param-
eter space P is first chosen. This could be a design space
for the model or a range of operating conditions. Now n sets
of parameters {p1, ..., p,} are sampled from this space us-
ing a sampling sequence that covers as much of the space
as possible. The full model is now simulated at each sample
in parallel since each run is independent, generating time
series for each run. The choice of points in time used to gen-
erate the time series at each p comes from the numerical
ODE solve at that p. The reservoir ODE is then constructed
using a candidate solution at any one of the n parameters
x(p*,t),p* € {p1,...,pn} and is then simulated, gener-
ating the reservoir time series. Since the reservoir ODE is
non-stiff, this simulation is cheap compared to the cost of
the full model. Least squares projections can now be calcu-
lated from each solution to the reservoir in parallel. Once
all the least squares matrices are obtained, an interpolating
function is trained to predict the least squares projection ma-
trix. Both the least squares fitting and training the interpolat-

ing function are, in practice, much cheaper than the cost of
simulating the model multiple times.

Prediction comprises of two steps: predicting the least
squares matrix, and simulating the reservoir time series (or,
in this case, just using the pre-computed continuous solution
since the reservoir is fixed for every set of parameters). The
final prediction is just the matrix multiplication of two.

A strong advantage of the training is that it requires no
manual investigation of the stiff model on the part of the
researcher and can be called as an off-the-shelf routine. It
allows the researcher to make a trade-off, computing a few
parallelized runs of the full stiff model in order to generate a
surrogate, which can then be plugged in and used repeatedly
for design and optimization.

We implemented the training routines and the follow-
ing models in the Julia programming language (Bezanson
et al. 2017) to take advantage of its first class support for
differential equations solvers (Rackauckas and Nie 2017)
and scientific machine learning packages. For the exam-
ples in this paper, we have sampled the high-dimensional
spaces using a Sobol low-discrepancy sequence (Sobol’
etal. 2011) and interpolated the W,,,; matrices using a radial
basis function provided by the Julia package Surrogates.jl
(https://github.com/SciML/Surrogates. jl).

Case Studies

In this section we describe two representative examples. We
demonstrate that the CTESN can handle highly stiff be-
haviour through the ROBER example. We then talk about
the performance of the surrogate on a scalable, physically-
inspired heating system.

Robertson Equations and High Stiffness

We first consider Robertson’s chemical reactions involving
three reaction species A, B and C":

AO.04 B
7
B+B2XX, c4B
4
B+C X440

which lead to the ordinary differential equations:

1 = —0.04y; + 10%ys - ys (6)
yo = 0.0dy; — 10%ys - y5 — 3 - 1072 ()
ys =3-107y; ®)

where y1, 12, and y3 are the concentrations of A, B and C'
respectively. This system has widely separated reaction rates
(0.04,10%,3 - 107), and is well known to be very stiff (Gob-
bert 1996; Robertson and Williams 1975; Robertson 1976).
It is commonly used as an example to evaluate integrators
of stiff ODEs (Hosea and Shampine 1996). Finding an ac-
curate surrogate for this system is difficult because it needs
to capture both the stable slow reacting system and the fast
transients. Additionally, the surrogate needs to be consistent



with this system’s implicit physical constraints, such as the
conservation of matter (y; + y2 + y3 = 1) and positivity of
the variables (y; > 0), in order to provide a stable solution.

A surrogate was trained by sampling 1000 sets of param-
eters from the Cartesian parameter space [0.036,0.044] x
[2.7 x 107,3.3 x 107] x [9 x 103,1.1 x 10%] using Sobol
sampling so as to evenly cover the whole space. We train
on the time series of the three states themselves as outputs.
A least squares projection W,,; was fit for each set of pa-
rameters, and then a radial basis function was used to inter-
polate between the matrices. The prediction workflow is as
follows: given a set of parameters whose time series is de-
sired, the radial basis function predicts the projection matrix.
The pre-simulated reservoir is then sampled at the desired
time points, and a matrix multiplication with the predicted
Wout gives us the desired prediction. Figure 1 shows a com-
parison between the CTESN, ESN, PINN and LSTM meth-
ods. The PINN data is reproduced from (Ji et al. 2020) and
the ESN was trained using 101 time points uniformly sam-
pled from the time span, while CTESN used 61 adaptively
sampled time points informed by the ODE solver (Rosen-
brock23 (Shampine 1982)).

The CTESN method is able to accurately capture both
the slow and fast transients and respect the conservation
of mass. The ESN is able to accurately predict at the time
points it was trained on, but many features are missed. The
uniform stepping completely misses the fast transient rise
at t = 10~* because the uniform intervals do not sample
points from that time scale. Additionally, the first sampled
time point at £ = 100 is far into the concentration drop of
y1 which leads to an inaccurate prediction before the system
settles into near steady state behavior. As stated earlier, the
CTESN uses information from a stiff ODE solver to choose
the right points along the time span to accurately capture
multi-scale behaviour with less training data than the ESN.
In order to compare the discrete ESN to the continuous re-
sult, a cubic spline was fit to its 101 evenly spaced prediction
points.

The PINN was trained by sampling 2500 logarithmically
spaced points across the time span. The network used was
a 3-layer multi-layer perceptron with 128 nodes per hidden
layer and the Gaussian Error Linear Unit activation func-
tion (Hendrycks and Gimpel 2016). The layers were ini-
tialed using Xavier initialization (Glorot and Bengio 2010),
and trained with the ADAM optimizer (Kingma and Ba
2019) at a learning rate of 10~2 for 300,000 epochs with
mini batch size of 128. Figure 2 shows the convergence plot
as the PINN trains on the ROBER equations. The LSTM
network used a similar architecture to the PINN, but with
LSTM hidden layers instead of fully connected layers. It
used 2500 logarithmically spaced points and was trained for
2000 epochs until convergence.

Figure 1 highlights how the trained PINN fails to cap-
ture both the fast and the slow transients and do not re-
spect mass conservation. Our collaborators investigated why
PINNS fail to solve these equations in (Ji et al. 2020). The
reason for the difficulty can be attributed to recently iden-
tified results in gradient pathologies in the training arising
from stiffness (Wang, Teng, and Perdikaris 2020). With a

PINN training on the Robertson's Equations
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Figure 2: Training a PINN on the Robertson’s Equations:
PINN was trained for 300,000 epochs using the ADAM op-
timizer with a learning rate of 10~3, by which time the loss
seems to saturate. The hyperparameters of the PINN can be
found in the Case Studies section.

highly ill-conditioned Hessian in the training process due
to the stiffness of the equation, it is very unlikely for local
optimization to find a parameters which make an accurate
prediction. We additionally note stiff systems of this form
may be hard to capture by neural networks directly as neu-
ral networks show a bias towards low frequency functions
(Rahaman et al. 2019).

Stiffly-Aware Surrogates of HVAC Systems

Our second test problem is a scalable benchmark used in
the engineering community (Casella 2015). It is a simpli-
fied, lumped-parameter model of a heating system with a
central heater supplying heat to several rooms through a dis-
tribution network. Each room has an on-off controller with
hysteresis which provides very fast localized action (Ranade
and Casella 2014). The resulting system of equations is thus
very stiff and unable to be solved by standard explicit time
stepping methods.

The size of the heating system is scaled by a parameter
N which refers to the number of users/rooms. Each room
is governed by two equations corresponding to its temper-
ature and the state of its on-off controller. The tempera-
ture of fluid supplying heat to each room is governed by
one equation. This produces a system with 2N + 1 cou-
pled non-linear equations. This “scalability” lets us test how
our CTESN surrogate scales. To train the surrogate, we de-
fine a parameter space P under which we expect it to op-
erate. First, we assume set point temperature of each room
to be between 17°C and 23°C. Each room is warmed by
a heat conducting fluid, whose set point is between 65°C'
and 75°C. Thus the parameter space over which we expect
our surrogate to work is the rectangular space denoted by
[17°C,23°C] x [65°C, 75°C].

We used a reservoir size of 3000 and sampled 100 sets
of parameters from this space using Sobol sampling, and fit
least squares projection matrices W, between each solu-
tion and the reservoir. For a system with N rooms, we train
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Figure 3: Validating the surrogate of the scalable heat-
ing system with 10 rooms. When tested with parameters
it has not seen in training, our surrogate is able to repro-
duce the behaviour of the system to within 0.01% error.
The surrogate is trained on 100 points sampled from the
[17°C,23°C] x [65°C, 75°C] where the ranges represent set
point temperature of each room and set point of the fluid
supplying heat to the rooms respectively. The test parame-
ters that validated here are [21°C, 71°C]. More details on
training can be found in the Case Studies section.
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Figure 4: Reliability of surrogate through parameter
space. We sampled our grid at over 500 grid points and plot-
ted a heatmap of test error through our parameter space. We
find our surrogate performs reliably even at the border of our
space with error within 0.1%
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Figure 5: Scaling performance of surrogate on heating
system. We compare the time taken to simulate the full stiff
model to the trained surrogate with 10, 20, 30 , 40, 50, 60,
70, 80, 90, 100, 200 and 400 rooms. We observe a speedup
of up to 98x. The surrogate was trained by sampling 100 sets
of parameters from our input space, with a reservoir size of
3000.

on N + 1 outputs, namely the temperature of each room,
and the temperature of the heat conducting fluid. Figure 3
demonstrates that the training technique is accurately able
to find matrices W,,; which capture the stiff system within
0.01% error on a test parameters. We then fit an interpo-
lating radial basis function W, (p). Figure 4 demonstrates
that the interpolated W,,;(p) is able to adequately capture
the dynamics throughout the trained parameter space. Lastly,
Figure 5 demonstrates the O(N) cost of the surrogate eval-
uation, which in comparison to the O(N?3) cost of a general
implicit ODE solver (due to the LU-factorizations) leads to
an increasing gap in the solver performance as IV increases.
At the high end of our test, the surrogate accelerates a 801
dimensional stiff ODE system by approximately 98x.

Conclusion & Future Work

We present CTESNS, a data-driven method for generating
surrogates of nonlinear ordinary differential equations with
dynamics at widely separated timescales. Our method main-
tains accuracy for different parameters in a chosen parame-
ter space, and shows favourable scaling with system size on
a physics-inspired scalable model. This method can be ap-
plied to any ordinary differential equation without requiring
the scientist to simplify the model before surrogate applica-
tion, greatly improving productivity.

In future work, we plan to extend the formulation to take
in forcing functions.This entails that the reservoir needs to
be simulated every single time a prediction is made, adding
to running time, but we do note that numerically simulating
the reservoir is quite fast in practice as it is non-stiff, and
thus techniques which regenerate reservoirs on demand will
likely not incur a major run time performance cost.

Our method utilizes the continuous nature of differential
equation solutions. Hybrid dynamical systems, such as those
with event handling (Ellison 1981), can introduce discon-
tinuities into the system which will require extensions to



our method. Further extensions to the method will handle
both derivative discontinuities and events present in Filip-
pov dynamical systems (Filippov 2013).Further opportuni-
ties could explore utilizing more structure within equations
for building a more robust CTESN or decrease the necessary
size of the reservoir.

To train both the example problems in this paper, we re-
quired no knowledge of the physics. This presents an oppor-
tunity to train surrogates of black-box systems.
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