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Multiple climate change‑driven 
tipping points for coastal systems
Patrick L. Barnard1*, Jenifer E. Dugan2, Henry M. Page2, Nathan J. Wood3, 
Juliette A. Finzi Hart1, Daniel R. Cayan4, Li H. Erikson1, David M. Hubbard2, 
Monique R. Myers5, John M. Melack6 & Sam F. Iacobellis4

As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and 
storms, combined with confining development and infrastructure, will place greater stresses on 
physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal 
systems could reach “tipping points,” at which hazard exposure substantially increases and threatens 
the present-day form, function, and viability of communities, infrastructure, and ecosystems. 
Determining the timing and nature of these tipping points is essential for effective climate adaptation 
planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to 
identify potential climate change-related tipping points for various coastal systems. This study 
integrates numerical and statistical models of the climate, ocean water levels, beach and cliff 
evolution, and two soft sediment ecosystems, sandy beaches and tidal wetlands. We find that tipping 
points for beaches and wetlands could be reached with just 0.25 m or less of SLR (~ 2050), with > 50% 
subsequent habitat loss that would degrade overall biodiversity and ecosystem function. In contrast, 
the largest projected changes in socioeconomic exposure to flooding for five communities in this 
region are not anticipated until SLR exceeds 0.75 m for daily flooding and 1.5 m for storm-driven 
flooding (~ 2100 or later). These changes are less acute relative to community totals and do not qualify 
as tipping points given the adaptive capacity of communities. Nonetheless, the natural and human 
built systems are interconnected such that the loss of natural system function could negatively impact 
the quality of life of residents and disrupt the local economy, resulting in indirect socioeconomic 
impacts long before built infrastructure is directly impacted by flooding.

A tipping point “refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or 
development of a system”1. In relation to Earth’s systems, such as the climate, a tipping point is a critical juncture 
at which the system responds nonlinearly to a small change in forcing, significantly altering future states1,2. A key 
climate tipping point has been projected to occur if global temperatures rise beyond 1.5 °C above pre-industrial 
levels, at which point threats to health, food security, water supply, economic growth, and geopolitical stability 
are expected to increase appreciably3.

In an ecological context, a tipping point is a condition in which an ecosystem experiences a shift to a new state, 
with significant changes to biodiversity, and the functions and services it underpins4. Several ecological tipping 
points have already been reached due to climate change and other anthropogenic influences, such as overfishing 
and pollution, resulting in significant loss of habitat, species, and biodiversity5–8, with a major decline in marine 
biodiversity since the mid-twentieth century9. However, individual components of Earth’s physical, ecological, 
chemical, and human systems will reach tipping points at different stages based on their internal dynamics and 
sensitivity to external forcing. For example, coral reefs are sensitive to ocean temperature, water quality, and 
pH, with recent, relatively moderate changes in ocean temperature and chemistry having resulted in significant 
degradation of this ecosystem10, possibly pushing reef sustainability beyond a tipping point11,12. Human popula-
tions on low-lying coral atolls, which depend on the reefs for protection from wave-driven flooding13, are also 
vulnerable, but could develop adaptation options that provide several more decades protection before sea level 
rise (SLR) reaches a critical threshold for their sustainability14. Defining tipping points for communities is, 
therefore, quite complex15. A consensus definition for what constitutes a community-scale tipping point has not 
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been established16–18. How humans respond to physical climate disturbance is dependent on factors that include 
accommodation space, adaptability, migration potential, and habitat availability, many of which are controlled 
by anthropogenic factors, such as urbanization and land use change, as well as political will19–25.

SLR is one of the major consequences of climate change26–28 and is linked to global surface temperature29. 
Multiple studies derive SLR estimates whose mid-range values by 2100 exceed 1 m (e.g. Refs.29–32) with higher 
estimates (but with lower probabilities) exceeding 2 m under upper end emission and temperature scenarios33,34. 
During the Last Interglacial Stage (125,000 years ago), sea level was 6–9 m higher than present, serving as a 
potential analogue for the long-term (i.e. centuries to millennia) ramifications of present-day warming of 1–2 °C 
above pre-industrial levels35. With over 1 billion people expected to live in the coastal zone (< 10 m elevation) 
by 2050 (ref. 36), the potential permanent inundation and more frequent flooding of coastal environments and 
threats to human populations could have widespread and catastrophic impacts37.

The vulnerability of the coastal zone environment is often assessed by a single component deemed to be 
representative of that system, typically based on physical38, biological11, or statistical relationships39. Climate 
adaptation plans are generally developed with a single tipping point target, such as flood exposure. This may be 
an effective approach in identifying the vulnerability and timing of an individual component of the coastal zone 
(e.g., human population), but this approach inherently is not adequate to identify the full breadth of vulner-
ability of coastal systems to climate change (e.g. impacts to natural systems as well as built or human systems). 
Adaptation planning can benefit from effective identification of multiple SLR tipping points that will result in 
major and irreversible consequences to coastal ecosystems, such as sandy beaches and tidal wetlands, which 
provide valuable ecosystem functions and services (e.g. preservation of native biodiversity, nursery habitat and 
food chain support for rare and endangered biota, fish and wildlife, organic matter and nutrient cycling, coastal 
flood protection, cultural and recreational opportunities and associated economic revenue), as well as to coastal 
infrastructure and the human population. Moreover, better characterizing multiple tipping points, and their 
potential interactions, could help communities better understand the complexity of positive feedbacks40 and 
interconnected and cascading impacts resulting from social-natural dependence and interactions41.

Here we report on an interdisciplinary study to simultaneously assess the vulnerability of major components 
of a coastal system to climate change during the twenty-first century in the Santa Barbara region, California 
(USA). Our investigation integrates the modeled SLR response of beaches, cliffs, beach and tidal wetland eco-
systems, flooding potential, and socioeconomic exposure to these flood hazards. Through this synthesis we 
demonstrate that multiple SLR tipping points exist, the identification of which is critical for effective short-and 
long-term planning, serving as a model for climate adaptation studies in coastal settings worldwide.

Study approach.  We performed a multidisciplinary climate vulnerability study by integrating twenty-first 
century projected changes in climate forcing with the associated response of coastal watersheds, beaches, and 
tidal wetlands, and the exposure of the urbanized environment to flooding and erosion. A Mediterranean climate 
exists in the Santa Barbara region, characterized by warm, dry summers, and sporadically wet, cool winters42, 
with atmospheric rivers and quasi-periodic El Niño events strongly influencing local hydrology43 and coastal 
hazards44,45. This is an optimal location to perform such a study, as projected SLR in this region is substantial30 
and it contains a representative swath of coastal environments along the 95-km study area (Fig. 1), including 
coastal bluffs and cliffs, dunes, beaches, river mouths, and tidal wetlands, with development ranging from rural 
to urbanized. Further, the influence of coastal hazards (e.g., erosion and flooding) on the ability of ecosystems to 
adapt is dependent on the variability and degree of urbanization.

The foundational study was designed to broadly support local government officials tasked with developing 
plans to adapt to climate-driven threats to natural and human communities46. Downscaled twenty-first century 
climate projections that included rainfall, winds, and SLR47 drove a coastal hazards model, the Coastal Storm 
Modeling System (CoSMoS)48,49, as well as an analysis of local impacts to watersheds50, tidal wetlands46, sandy 
beach ecosystems51, and socioeconomic exposure52. Each of the research components used a consistent set of 
atmospheric forcing and SLR scenarios provided by downscaled climate projections.

For this study, potential tipping points were defined by identifying the SLR scenarios at which subsequent 
projected changes to system metrics (e.g. ecosystem habitat-rich zones, amount of developed land in flood-
hazard zones) exceed 50% compared to current conditions (i.e. zero SLR and no storm scenarios). We assume 
that a negative change of at least 50% of the total metric represents a substantial change in state at which point 
further degradation is likely53,54. Further, we assume that projected changes at a specific SLR increment cannot 
be reversed without human intervention, and therefore a potential tipping point has been reached. We also 
highlight SLR scenarios where the relative increase in projected change between two SLR scenarios exceeds 
50%, less as a potential tipping point of system function and more as a moment at which the system experiences 
a considerable change that may mobilize communities to implement interventions to reduce future losses. We 
demonstrate that the timing of the projected changes for total system metrics and between SLR scenarios for the 
different components of this coastal system are out of phase, which can have implications for natural resource 
management and climate adaptation planning.

Results
The rate of twenty-first century SLR is dependent on surface temperature increases29, which in turn are dictated 
by prescribed global emissions trajectories, characterized by the Representative Concentration Pathway (RCP) 
scenarios developed for the 5th Assessment Report of the Intergovernmental Panel on Climate Change55. For the 
Santa Barbara region, two RCP scenarios were considered: the intermediate RCP4.5 scenarios wherein emissions 
peak in mid-21st Century and diminish thereafter; and the higher RCP8.5 scenario wherein emissions continue 
to rise along with population growth through the 21st Century. Projected global surface temperatures for the 21st 
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Century were downscaled for both RCPs to the study region using 10 global climate models (GCMs) (Fig. 2). 
Using the 30 year 1970–1999 average as a recent baseline, the two RCP scenarios follow a similar temperature 
trend until 2035, increasing by ~ 1.5 °C. After 2035 the two scenarios begin to diverge, and by the end of the 
21st Century have increased by ~ 2.5 °C under RCP4.5 and ~ 5.0 °C under the RCP8.5 scenario. There has been 
a marked rising trend of recent global surface temperatures, which in 2019 has already reached ~ 0.55 °C above 
the 1970–1999 baseline, and ~ 1.2 °C above pre-Industrial temperatures56. Moreover, the years 2015–2020 were 
the 6 warmest in the 140-year instrumental record56–58. Thus, by 2029 the Paris Agreement target of 1.5 °C will 
likely be reached under either RCP4.5 or 8.5, and possibly sooner59, which is widely considered a critical tipping 
point for climate impacts to natural and human systems3.

As recent temperatures are rising at a rate equal or higher than either RCP4.5 or RCP8.5 scenarios, it seems 
prudent to consider future SLR that accords with the higher RCP8.5 scenario. Downscaled wind, surface pressure 
and temperature from eight RCP8.5 GCMs were employed to drive short period sea level variability, superim-
posed upon three long term SLR scenarios (Fig. 2). These scenarios are consistent with recent SLR guidance 
from the State of California30,32. Mid-century SLR projections (2050) for the Santa Barbara region range from 
a median of 15 cm (low range) to 60 cm (high range), and 45 cm to 170 cm by 2100. An extreme scenario that 
considers rapid warming coupled with accelerated ice sheet decay projects as much as ~ 3 m of SLR by the end 
of the century for Santa Barbara31,32,47.

Beaches and cliffs provide the first lines of defense for SLR and storm-driven hazards that can result in the 
more frequent exposure and degradation of in situ and adjacent ecological and human systems. For the Santa 
Barbara study area, the relative amounts of beach erosion and cliff retreat are projected to increase most signifi-
cantly beyond 0.50 m (55%) and 0.25 m (95%) of SLR, respectively (Fig. 3A). Coastal erosion rates would be 
expected to accelerate as the rate of SLR increases under the higher scenarios, but this is not projected for the 
Santa Barbara region as coastal defenses and other urban infrastructure limit landward retreat in many locations.

Figure 1.   Study area. Projections of coastal change were conducted from Point Conception east to the Santa 
Barbara County line, just east of Carpinteria, California. Inset shows location of tidal marsh and sandy beach 
ecosystem study sites (SB = Sands/Ellwood beach, IV = Isla Vista, EC = East Campus, AB = Arroyo Burro, 
EB = East Beach, SC = Santa Claus, CM = Carpinteria salt marsh, and CB = Carpinteria city beach). Map also 
identifies the communities used to characterize socioeconomic exposure to projected flooding, including 
Goleta, Isla Vista, Santa Barbara (city), Montecito, and Carpinteria. (Figure generated using ArcGIS v. 10.4.2, 
www.​esri.​com. Local basemaps from https://​servi​ces.​arcgi​sonli​ne.​com/​ArcGIS/​rest/​servi​ces/​World_​Image​ry/​
MapSe​rver).

http://www.esri.com
https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer
https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer
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The future width of the ecologically important upper intertidal zone of sandy beaches in the Santa Barbara 
region, whose landward boundaries included coastal bluffs, dunes, and armoring as well as intensively groomed 
beaches, was assessed for SLR scenarios ranging from 0 to 2.0 m in 0.5 m increments (Fig. 3B). Using CoSMoS 
projections of the mean high water (MHW) shoreline and maximum water levels along the beaches, projected 

Figure 2.   Global Climate Model projections of climate metrics for the Santa Barbara, California, region 
through 2100. Top panel: Annual mean temperature anomalies (relative to 1970–1999 base period) in the 
Goleta-Santa Barbara-Carpinteria coastal region from an ensemble of ten climate models employing the RCP 
4.5 (green) and RCP 8.5 (red) emission scenarios. Solid line is the ensemble mean while the envelope is + /− one 
standard deviation of the individual model annual values from the ten model ensemble mean. Bottom panel: 
Departures of annual mean sea level (relative to year 2000 values) using three sea level rise scenarios and eight 
climate model projections using the RCP 8.5 emission scenario. The sea level rise scenarios are the low-range 
(green), mid-range (blue), and high-range (red) estimates from the National Research Council (NRC) 2012 
report85. The solid line represents the ensemble mean while the envelope is + /− one standard deviation of the 
annual values from the eight models about the ensemble mean.
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Figure 3.   Projected changes in coastal systems for the Santa Barbara study area. (A) Beach erosion and cliff 
retreat projections, (B) the percent of beach remaining along transects, (C) the percentage of vegetated marsh/
transition habitat (upland, transition zone, and high/mid marsh) and high/low mudflat and subtidal habitat in 
Carpinteria salt marsh, and the amount of various community assets in projected flood zones including (D) 
developed land, (E) residents, (F) employees, and (G) parcel values relative to sea level rise scenarios from 0 to 
2 m.
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future upper intertidal zone habitat sharply decreased immediately with the transition from 0 to 0.5 m SLR, 
averaging 74% habitat loss across all beach types, including 87% and 99% for the bluff-backed and armored 
beaches, respectively, that represent the majority of beaches in the study region, with a resulting loss of ecosys-
tem functions and services46. When SLR reaches 1.0 m, < 10% of the upper tidal zone habitat space remains, and 
when SLR reaches 1.5 m SLR, < 5% remains. Analyzing the loss of the upper intertidal zone when considering 
SLR combined with annual storms yielded identical tipping point patterns (Supplemental Table S1). With the 
most severe ecosystem habitat loss observed after the first SLR scenario (i.e., between 0 and 0.5 m), these results 
indicate that a tipping point for sandy beach ecosystems may have already been reached.

Tidal marsh habitat zones in Carpinteria salt marsh were tracked for SLR scenarios based on the present-day 
relationship between habitat distribution, elevation and flooding frequency (Fig. 3C). Although mid-marsh, 
high marsh, and transition-upland zones currently account for > 90% of the tidal marsh habitat areas, with just 
0.36 m of SLR relative to the marsh surface, those zones are projected to comprise only 46% of the tidal marsh, 
with the consequent loss of ecological function, including nursery and foraging habitat and biodiversity of rare, 
threatened and endangered species46,60–62. With increasing SLR, the mudflats and sub-tidal habitats become 
dominant, including a more than tripling of the lower mud flat area when transitioning from 0.18 to 0.36 m of 
SLR, and the high mudflat zone between 0.36 and 0.61 m of SLR. During the SLR transition from 0.18 to 0.61 m, 
areas of the mid-marsh, high marsh, transition, and upland zones decrease most acutely by 54%. Upon reach-
ing 1 m of SLR, mud flats and sub-tidal regions are projected to account for 85% of the tidal marsh, and 97% at 
2 m. In short, by ~ 0.6 m of SLR, consistent with sandy beach ecosystems by 0.5 m of SLR, vegetated tidal marsh 
habitat will have already severely degraded, with the largest change occurring after 0.18 m of SLR. Since the 
habitat changes are relative to the marsh surface, the timing of the tipping point depends on the rate of accretion 
and SLR scenario. Assuming a marsh accretion rate of 4 mm/year63 and the high range scenario of SLR, mudflat 
would comprise 56% of habitat by 2050 and > 80% by the end of the twenty-first century46, representing a major 
shift in habitat type.

The potential for socioeconomic tipping points was based on projected changes in the number of residents 
and employees and the amount of developed land and parcel values in areas that are estimated to have daily/
permanent coastal flooding (i.e. inundation) and storm-driven flooding (i.e. annual and 100-year return interval 
events) relative to CoSMoS SLR scenarios (0 to 2.0 m). Changes in flood-hazard exposure were estimated for five 
communities near the sandy beach and tidal wetland ecosystem study sites, including Goleta, Isla Vista, Santa 
Barbara, Montecito, and Carpinteria (Fig. 1). Exposure to daily flooding (i.e. no storms considered) for each 
societal metric relative to study area totals is far below the 50% tipping point threshold, instead only directly 
affecting 2.4% of total parcel values, 2.7% of total residents, 2.9% of total employees, and 7.4% of total developed 
land even for the largest SLR scenario of 2.0 m (Fig. 3D–G). Although total system exposure is not projected to 
surpass the 50% threshold observed in the ecological systems, there are certain SLR scenarios that could result in 
considerable, relative increases between SLR scenarios that may galvanize communities to mitigate further losses. 
For example, the largest relative increases of societal exposure to inundation occurs across all four metrics when 
transitioning from 0.75 m to 1.0 m of SLR (Fig. 3D–G, Supplemental Table S1), with an increase of 1,712 residents 
(175% increase), 972 employees (254% increase), $283 million dollars of parcel value (160%) and 1.5 km2 of 
developed land (144% increase). Peak increases in coastal flood hazard exposure associated with SLR inundation 
are preceded by the largest increases in the relative amounts of beach erosion and cliff retreat (Fig. 3A).

Even without considering future SLR, the Santa Barbara region is already at risk from coastal storm, wave-
driven flooding hazards (Fig. 3D–G). The five communities in our study area collectively have 2,302 residents 
and $345 M in property value in projected flood areas for coastal storms with an average annual return interval, 
increasing to 3,232 residents and $581 M in property values for storms with a 100-year return interval. These 
storm-related exposure values rise considerably when taking into account the role of SLR in increasing potential 
flood areas. Nevertheless, similar to the non-storm scenarios, total system exposure is not expected to surpass 
the 50% threshold for any societal metric, instead only directly affecting 3–7% of residents and parcel values, 
3–8% of employees, and 8–13% of developed land for the largest SLR scenario of 2.0 m (range noting annual and 
100-year storm estimates). There are, however, considerable relative increases in flood hazard exposure from 100-
year storms when transitioning from 1.5 to 2.0 m of SLR (Fig. 3D–G, Supplemental Table S1), with an increase 
of 6,542 residents (130% increase), 6,532 employees (171% increase), $2B of parcel value (156%) and 2.6 km2 of 
developed land (66% increase). This analysis of the physical and societal hazards related to SLR demonstrates 
that the largest changes in exposure for the different styles of projected future flooding are asynchronous (e.g., 
when transitioning from 0.75–1.0 m of SLR for daily flooding/inundation compared to 1.5–2.0 m of SLR for 
storm-driven flooding). Further, when exposure changes are calculated uniformly by comparing scenarios based 
on jurisdictional and habit area totals and not relative changes, the human system values do not occur until much 
higher SLR scenarios, are far smaller, and do not qualify as tipping points.

Discussion
The results described herein indicate that degradation of coastal ecosystems in the Santa Barbara region is on the 
leading edge of climate impacts, consistent with observations world-wide5–8,10–12. Sandy beach ecosystems have 
possibly reached a tipping point, and tidal marshes will reach that point perhaps as early as ~ 0.25 m of SLR. This 
timing (~ mid-century or sooner) is similar to the temperature tipping point of the terrestrial biosphere projected 
to be within just a few decades64, although the precise timing of this transition is difficult to determine due to 
uncertainty related to future climate warming, response of SLR to warming, SLR scenario resolution, and future 
sediment supply to beaches and marshes. Greenhouse gas emissions are currently tracking the RCP8.5 scenario 
most closely59, so warming is likely to rapidly exceed 1.5 °C and therefore SLR could reach 0.25 m by mid-century 
under either a middle or high SLR scenario, and just a few decades later for the low SLR scenario (Fig. 2). Even 
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if greenhouse gas emissions are reduced to a net zero level, the current concentration of C02 in the atmosphere 
has already committed oceans to an additional ~ 1.7 m of global mean SLR65, which would match the higher end 
SLR scenario projected for Santa Barbara by 2100. Given that 250 million people currently live within 1 m of 
present-day high tide across the world66, a SLR tipping point may have already been reached globally and locally.

Sandy beach ecosystems are especially vulnerable and appear on the verge or have already exceeded a tip-
ping point, especially for armored beaches (e.g. refs. 67,68), where 99% of the existing upper beach zone habitat 
is projected to be lost with just 0.5 m of SLR (range of all beach types = 51–99%, mean = 74%). The majority of 
beaches are projected to decline in overall width with increasing SLR. Importantly, the loss of beach width will not 
be evenly distributed across intertidal zones. Upper beach zones are projected to experience the greatest declines 
in width and losses with SLR. Although often narrow in width, these upper intertidal zones are vital components 
of biodiversity and ecosystem function51,69. The sandy upper intertidal zone is associated with the distributions 
of key beach organisms, biodiversity and ecosystem functions, including the accumulation of macrophyte wrack 
and the wrack-associated invertebrate community67,69. This often narrow zone supports ~ 45% of total intertidal 
invertebrate biodiversity, provides prey resources for birds and fish, and plays a vital role in detrital processing 
and nutrient cycling51,68–73. These key upper beach zones are already scarce and/or ephemeral for many beaches 
in the study region with consequent loss of biodiversity and ecosystem function (e.g. refs. 67,74,75). When seawater 
regularly reaches the bluff toe, armoring structure or beach limit, drift macrophyte wrack and the rich intertidal 
biodiversity, ecosystem functions and prey resources that macrophyte supports, as well as critical habitat for fish 
and wildlife are eliminated from the beach ecosystem. The upper intertidal transition, the zone where native 
coastal strand vegetation develops that can enhance resilience by trapping and storing sand and building dune 
topography76, also is eliminated.

While continued cliff retreat might create more space for sandy beach habitats, SLR-driven erosion will 
remove the sand in front of cliffs. Across Southern California, one- to two-thirds of beaches, and the habitats 
therein, are expected be drowned and lost due to SLR this century, the loss accelerated by curbs on landward 
migration due to cliffs and/or urban resistance77. Existing coastal armoring already restricts the migration poten-
tial of up to 57% of Southern California county beaches, including 12% in Santa Barbara County78, and impacts 
intertidal biodiversity and function67,68. There has been a greater than five-fold increase in armoring over the 
last 50 years across this region, and as the coastal hazards associated with rising seas increase in this urbanized 
setting, as in others worldwide, more structures are likely to be constructed that protect human populations but 
limit habitat migration.

Urbanization is a major factor in the observed habitat squeeze of sandy beach and tidal marsh ecosystems and 
related short-term tipping points as engineered tidal marsh shorelines, armored beaches, as well as bluffs prevent 
the upland transgression of tidal marshes and landward migration of sandy beaches (Fig. 4). In the absence of 
urbanization, these coastal habitats are resilient and capable of responding to high rates of SLR, as evidenced 
by their ability to survive during the > 100 m of SLR of the late Quaternary, including several centuries during 
Meltwater Pulse 1A where rates approximated 5 cm/year79.

However, tidal marshes have more recently been in decline across the coast of California due to urbanization 
and land management practices, with a 48% loss of habitat across southern California since 1850, including a 
62% decline in Santa Barbara County80. Accelerating sea levels world-wide and limits to landward mobility will 
further increase tidal inundation of marshes leading to changes in key physical and biological properties known 
to structure marsh plant communities and habitats81. As demonstrated in this study, major changes are forthcom-
ing or already underway in Carpinteria salt marsh, and this regionally scarce ecosystem may pass a tipping point 
with less than 0.25 m of SLR with the significant loss of high salt-marsh and transition habitats and the functions 
these habitats provide. Similar losses of existing vegetated marsh by the end of the century have been projected 
for other tidal marshes region-wide82 and are consistent with global studies linking early warning signals to 
marsh collapse83. The precise timing of habitat evolution will depend on the rate of SLR and the accretion rate 
of the marsh surface, but ultimately, with limited landward accommodation space, this vegetated marsh will be 
converted to mudflat. While specific tipping point dates are tidal marsh-specific and depend on local hydrology, 
sediment supply, and topography, urbanized tidal marshes are the norm along the California coast and other 
populated settings. This study, therefore, may serve as a proxy for the response of similar tidal marsh systems 
world-wide. Mitigating and adapting to the anticipated vulnerability of this ecosystem to climate-related impacts 
are a key planning and management priority for local, state, and federal agencies84–86.

If the sole trigger for communities across the region to implement adaptation options is based on substantial 
increases in the physical exposure of developed land and built systems to SLR and storms, then communities 
might delay adaptation strategies until after 2050 as the largest absolute and relative changes in exposure are not 
projected until SLR exceeds 0.75 m for daily flooding (i.e. inundation) and 1.50 m for storm-driven flooding, 
and therefore not projected to occur until toward the end of the twenty-first century or later. Further, when 
looking at socioeconomic exposure, the population, employees, property values, and developed land directly 
exposed to flooding in the study area jurisdictions represents just 2–13% of totals even under the most extreme 
SLR scenario considered here (i.e. 2 m), and the largest changes between scenarios are all 5% or less. However, 
societal exposure to other coastal hazards, such as tsunamis87 and groundwater hazards88, will also increase due 
to SLR but were not considered here.

Although projected changes in flood-hazard exposure may not represent high percentages of the total number 
or amount of residents, employees, property values and developed land in the communities, these values do not 
consider the interconnection of the human-natural system. For instance, the study region is highly dependent 
on tourism, driven largely by visitors enjoying the beaches and wetlands along the coast. For example, an analy-
sis of visitor profiles in the study area identified several activities that relate to these coastal systems, including 
going to the beach (52–68% of visitors, depending on type of visitor), going to parks (19–25%), and water-based 
recreational activities (2–8%). This report also estimates that the region had an average of 28,884 daily visitors, 
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which supported 13,482 jobs and resulted in $1.9 billion in annual revenue89. While there is not a direct 1:1 
relationship between beach loss and loss of tourism, it has been shown to lead to economic impacts in other 
regions and is something for which coastal communities could prepare. In addition, valuable public infrastructure 
and public services, such as the Santa Barbara airport, the railroad, Highway 101, the El Estero Water Resource 
Center, along with stormwater drains, sewage pump stations, and harbors are located in these coastal strips; 
even intermittent coastal storm-related flooding can cause severe interruptions of these systems, resulting in 
further economic impacts that can compound over time. Understanding the timing of different tipping points 
(or at least the point when the largest changes in exposure are projected to occur), including losses to natural 
systems, upon which economic drivers such as coastal tourism are dependent, could therefore be important for 
robust adaptation planning15.

Admittedly, assuming an irreversible change in our tipping point definition does not consider the adaptive 
capacity of each system to respond to SLR. Adaptive capacity may be limited when beach and tidal marsh habi-
tat areas are squeezed between rising seas and hardened urban landscapes. In such cases, endemic plant and 
animal populations dependent on those habitats may be completely eliminated. Other biota (e.g. deeper water 

Figure 4.   Conceptual diagram of the tipping points in the Santa Barbara coastal system with increasing 
sea level rise. Present day: coastal habitats and infrastructure vulnerable. 0.5 m sea level rise (SLR): sandy 
beach ecosystems squeezed by SLR and urban infrastructure, tidal marsh habitats degrading. 1 m SLR: sandy 
beach ecosystems and salt marsh habitats almost completely eliminated, daily tidal flooding impacts urban 
environments. 2 m SLR: Habitats lost, and urban environment highly susceptible to daily and periodic storm 
impacts.
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fish assemblages) might use the flooded habitat, however, overall ecological composition, biodiversity, and func-
tions will change. Conversely, while the socioeconomic impacts of more frequent coastal flooding may be severe, 
human populations have the ability to migrate to safer, inland settings, although social inequities can play a major 
role in migration potential for underserved communities. The complexity of adaptive capacity, human response, 
and societal value placed on different coastal systems makes a universal definition for a community-scale tipping 
point difficult to quantify in a way that directly supports management action across the board. What is clear, 
however, is that regardless of the chosen metric, individual coastal systems will continue to evolve at different 
rates and reach critical thresholds at different times due to climate change, prompting the need to adopt a multi-
tiered, multi-disciplinary approach to address the range of physical, biological, and human impacts associated 
with climate change in coastal systems.

The most substantial changes and/or tipping points identified here are based on projections of future coastal 
hazard exposure and ecosystem response assuming no interventions, i.e., they are not inevitable. Measures 
that could counter local SLR and storm impacts include ecosystem restoration, removing barriers to inland 
transgression90, increasing sediment supply (e.g. dam removal), and removing shoreline armoring and reducing 
mechanized beach grooming76. Ultimately, the pace of management action will depend upon societal values and 
the availability of community resources (e.g. financial resources and political will) to mitigate potential losses, 
absorb losses, and/or implement adaptation measures within the coastal zone. However, if communities only look 
at singular triggers to make adaptation planning decisions – either for natural (e.g. limited marsh conversion) or 
human systems (e.g. number of businesses impacted) – they are missing the interconnectedness of natural-human 
systems. The full range of vulnerability, and their associated tipping points, must be analyzed in tandem. If the 
prevention of significant ecosystem changes is a priority, then swift action is essential as those tipping points are 
imminent. Similarly, beyond the intrinsic value of having thriving coastal ecosystems, like many coastal towns, 
a healthy coastal zone is also critical to this region’s economy.

In summary, defining a tipping point that universally captures the point of significant degradation across 
physical, biological, and human systems is challenging. Cascading interactions between SLR, coastal hazards, 
and human response amplify impacts but are complex and difficult to quantify; humans could choose to adapt 
and stay in place or move away from a hazardous region. Moreover, in a tourism-driven economy such as 
Santa Barbara’s, focusing only on flooding to infrastructure and property, and not preparing for the impacts to 
the coastal ecology and beach loss, ignores an important socio-natural interconnection on which the region’s 
economy depends; natural system degradation will likely negatively impact coastal tourism, which in turn then 
makes local businesses and communities vulnerable well before direct flood exposure to physical assets. Nev-
ertheless, to better inform resource decisions, this study identifies climate-adaptation planning that considers 
tipping points for multiple components of a coastal system, including for natural ecosystems, as opposed to the 
more common singular focus on human components.

Materials and methods
Climate modeling.  Ten global climate models (GCMs) were selected from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) archive55,91 based on their realism in representing California’s historical 
climate47. The Local Constructed Analogs (LOCA) statistical technique was used to downscale each GCM to 
6 km resolution for daily temperature and precipitation from 1950–2100 for Representative Concentration Path-
way (RCP) scenarios RCP4.5 and RCP8.5 (ref. 92).

Sea level rise projections for the 21st Century were derived from the National Research Council85 and inte-
grated with short period fluctuations due to tides, meteorological conditions, and short period climate variability 
(e.g. El Niño) to produce hourly coastal water levels for the study area. Model inputs for the multiple-linear 
regression model were based on water level observations at Santa Barbara Harbor and historical NCEP mete-
orological reanalysis data, with the variables including daily climate model data, surface pressure, wind stress, 
and both local sea surface temperature and central Pacific Ocean sea surface temperature to assess El Niño 
variability93.

Coastal hazards.  Driven by the wind and pressure fields from the native resolution and downscaled GFDL-
ESM2M (RCP4.5 scenario) GCM from above, the Coastal Storm Modeling System (CoSMoS)48,49,94,95 was 
applied to the study area by considering 40 SLR (i.e. 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 and 5.00 m) 
and storm scenarios (i.e. daily conditions and annual, 20-year and 100-year storms). Twenty-first century wind 
fields were fed into a global and nested Eastern North Pacific WAVEWATCH III wave model96 to establish 
wave conditions at the continental shelf edge97, and then dynamically downscaled using SWAN98 to transform 
the waves to the nearshore. To establish nearshore water level boundary conditions, SWAN was coupled with 
DELFT3D-FLOW to capture the tides, seasonal water level anomalies, river discharge and storm surge95,99,100. 
High-resolution hydrodynamic grids (O ~ 10 m) were used to model total water levels and overland flooding 
for complex shorelines, including protected embayments, while cross-shore, 1-D XBeach models101 were spaced 
every 100 m alongshore on the open coast to predict wave set-up and swash. Projected flood levels for each sce-
nario were interpolated onto a 2-m grid and differenced from a Digital Elevation Model (DEM)102 to provide the 
flood extent and depth. Storm scenarios for the full computational application of CoSMoS were established via a 
proxy approach103, which also served to provide a twenty-first century, continuous time series of total water lev-
els to drive the coastal change models for sandy beaches (CoSMoS-COAST)77 and cliffs104 along the established 
XBeach transects. The long-term coastal change projections were used to evolve the DEM for the future flooding 
scenarios105. All the model projections are freely available for viewing106 and download107.
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Sandy beach ecosystems.  Standard elevational metrics were related with ecological components and 
habitat zones of beaches to identify the vulnerability of sandy beach ecosystems to SLR. The current and future 
state of the ecologically critical, upper tidal zone of each beach, which ranged from bluff-backed, dune-backed, 
armored, and groomed, was measured and modeled using the total water level datum108,109 as a proxy for the 
dynamic landward extent of the upper intertidal zone, equivalent to the daily High Strand line (HTS)51. Ecologi-
cal research on area beaches51,67,69–71 combined with beach surveys and coastal processes studies enabled a pre-
dictive framework to be established between SLR and changes in the upper beach zones84,110. The total water level 
projections from CoSMoS48,49,95 for 0.50, 1.00, 1.50, 2.00 and 5.00 m of SLR combined with background condi-
tions (i.e. daily) and annual storm scenarios were used to establish the landward extent of the upper beach zone. 
The seaward limit of the upper beach zone was determined by the projected MHW elevation, as determined by 
shoreline modeling driven by a CoSMoS-generated twenty-first century water level time series77. Upper beach 
zone landward migration and width was restricted by the presence of non-erodible structures, such as revet-
ments, sea walls, roads or parking lots.

Tidal wetlands.  This study examined the wetland evolution of Carpinteria salt marsh, a 93 ha tidal wetland 
(Fig. 1). This wetland represents an urbanized marsh system, surrounded by urban and residential develop-
ment that restricts potential upland migration, and an engineered inlet that maintains the tidal connection to 
the ocean. The system contains a wide range of marsh species and habitats, including salt tolerant pickleweed 
(Salicornia pacifica) dominating the regularly flooded middle tidal marsh, and various succulent, grass, and 
perennial and annual herb species that occur in the high marsh and upland transition zones, including rare 
and endangered species46,62. Existing habitats were delineated using multispectral aerial imagery as open water 
subtidal, high and low mudflat, coastal salt marsh, (mid and high), transition, and undeveloped upland. Using 
Santa Barbara Harbor tide data from 2006–2014 (ref. 111) and elevation surveys from both aerial Lidar and 
in situ Real Time Kinematic Global Positioning System (RTK GPS), habitat was linked to elevation and flooding 
frequency46,62. This relationship was then applied to assess future marsh habitat evolution using SLR ranging 
from 0 to 2.5 m. The potential timing of habitat evolution was evaluated assuming a vertical accretion rate of 
4 mm/year63 and based on the National Research Council SLR scenarios85.

Socioeconomic exposure.  Socioeconomic exposure to the flood extent for 21 SLR/storm scenarios49 was 
estimated by the geospatial analysis of various community assets52,112. Residential counts are based on 2010 
block level data from the U.S. Census Bureau113. Employee counts and locations came from the 2020 Infogroup 
Employer Database114. Parcel boundaries and their total assessed values (tax year 2019) are from the Homeland 
Infrastructure Foundation-Level Data (HIFLD) repository115. Estimates of developed land are based on high-, 
medium-, and low-intensity developed classes in the 2016 National Land Cover Database116. All the data are 
served up in an interactive web application117.
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