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Abstract
Declines in species diversity carry profound implications for ecosystem functioning. Communities of primary producers and 
consumers interact on evolutionary as well as ecological time scales, shaping complex relationships between biodiversity and 
ecosystem functioning. In subsidized ecosystems, resource inputs are independent of consumer actions, offering a simpli-
fied view of the relationship between species diversity and function for higher trophic levels. With food webs supported by 
substantial but variable inputs of detritus from adjacent marine ecosystems, sandy beaches are classic examples of subsidized 
ecosystems. We investigated effects of consumer species diversity and identity on a key ecological function, consumption of 
kelp wrack from nearshore giant kelp (Macrocystis pyrifera) forests. We assessed effects of species richness on kelp consump-
tion by experimentally manipulating richness of six common species of invertebrate detritivores in laboratory mesocosms 
and conducting field assays of kelp consumption on beaches. Consumer richness had no effect on kelp consumption in the 
field and a slight negative effect in laboratory experiments. Kelp consumption was most strongly affected by the species 
composition of the detritivore community. Species identity and body size of intertidal detritivores drove variation in kelp 
consumption rates in both experiments and field assays. Our results provide further evidence that species traits, rather than 
richness per se, influence ecosystem function most, particularly in detrital-based food webs with high functional redundancy 
across species. On sandy beaches, where biodiversity is threatened by rising sea levels and expanding development, our 
findings suggest that loss of large-bodied consumer species could disproportionally impact ecosystem function.
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Introduction

Biodiversity is declining at local to global scales (Cardinale 
et al. 2012; Gonzalez et al. 2016) and understanding the 
ecological implications of these losses is an urgent challenge 
(Worm et al. 2006; Hooper et al. 2012). Numerous empiri-
cal, experimental, and modeling studies have evaluated the 
extent to which biodiversity affects ecosystem functioning 
(BEF, reviewed by Naeem 2002; Srivastava et al. 2009; Til-
man et al. 2014; Duffy et al. 2017). Many of these studies 

have focused on how species richness of plant communities 
affects primary production (Naeem et al. 1996; Reich et al. 
2001; Cardinale et al. 2004, 2007), and nutrient dynamics 
(Tilman et al. 1996; Hooper and Vitousek 1998; Bracken 
and Stachowicz 2006; Kahmen et al. 2006). Far fewer BEF 
studies have examined higher trophic levels, multitrophic 
systems, or naturally assembled communities (Duffy 2002; 
Duffy et al. 2007; Lefcheck et al. 2015; Soliveres et al. 2016; 
van der Plas 2019).

Consumers maintain critical functions in ecosystems, 
stimulating primary production and facilitating the transfer 
of energy and nutrients across trophic levels (Duffy 2002; 
Duffy et al. 2007; Hensel and Silliman 2013; Allgeier et al. 
2017). However, evaluations of relationships of biodiversity 
with ecosystem function across multiple trophic levels are 
greatly complicated by the reality that consumers are often 
embedded in a complex food web, vary widely in their rela-
tive functional dominance, and interact with a diverse set of 
primary producers (e.g., Hooper et al. 2005; Thebault and 
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Loreau 2006; Duffy et al 2007; Creed et al. 2009; Edwards 
et al. 2010; Filip et al. 2014; Lefcheck and Duffy 2015; 
Brose and Hillebrand 2016; Daam et al. 2019). Consumer 
and resource dynamics are not independent in these systems, 
and the effect of consumers on resources can impact future 
consumption, production, and ecosystem functioning (Dyer 
and Letourneau 2003). For example, herbivore and predator 
diversity may interact to affect basal functions, such as net 
primary production (Finke and Denno 2005; Ives et al. 2005; 
Stachowicz et al. 2007; Griffin et al. 2013). These inter-
actions feed back to affect community properties on both 
ecological and evolutionary timescales, adding complexity 
(Douglass et al. 2008; Matthews et al. 2011; Gravel et al. 
2011; Walsh et al. 2012). As a consequence, experimental 
studies on consumer diversity, and particularly multitrophic 
diversity, are logistically difficult and often confined to mod-
eling and experiments using microorganisms (Naeem et al. 
2000; Downing and Leibold 2002; Gamfeldt et al. 2005; 
Brose 2008).

Not all ecosystems and food webs, however, are charac-
terized by two-way interactions between consumers and pro-
ducers. Food webs with consumers that depend on alloch-
thonous subsidies, often detritus, as their main resource 
supply typically have no influence on detrital production or 
input (Polis et al. 1997; Cebrian and Lartigue 2004; Moore 
et al. 2004; Leroux and Loreau 2008; Srivastava et al. 2009) 
although they are strongly affected by subsidy supply (Hoek-
man et al. 2019). Nevertheless, such subsidized ecosystems 
can support food webs with a high diversity and abundance 
of consumers, as reported in streams (Wallace et al. 1997), 
submarine canyons (Vetter 1995), desert islands (Polis and 
Hurd 1995), and sandy beaches (Dugan et al. 2003). In these 
subsidized ecosystems, primary consumers play a vital role, 
incorporating detrital inputs into the food web and making 
energy available to higher-level consumers (Heck et al. 2008; 
Spiller et al. 2010; Hagen et al. 2012). Across terrestrial and 
aquatic ecosystems, detritus increases the standing stock of 
all trophic levels by supporting detritivores and providing 
energy and habitat to predators (Hagen et al. 2012). The 
separation in space between producers and consumers for 
subsidized ecosystems means that the effect of consumers 
can be quantified without ecological or evolutionary feed-
back or response from the resource donor (Wallace et al. 
1997), simplifying the evaluation of BEF relationships.

Sandy beach ecosystems are a widespread coastal 
interface between marine and terrestrial realms (Lui-
jendijk et al. 2018). Characterized by low in situ primary 
production, beaches are a classic example of subsidized 
ecosystems with food webs that rely primarily on marine 
subsidies (Brown and McLachlan 2006). Where nearshore 
productivity is high, drift macrophytes (macroalgae and 
seagrass), or wrack, cast ashore by waves and tides, 
can sustain rich productive communities of intertidal 

detritivores on beaches (Dugan et al 2003; Ince et al. 2007; 
Schlacher et al. 2017). In turn, these consumer populations 
support higher trophic levels including predatory arthro-
pods, reptiles, and shorebirds (Tarr and Tarr 1987; Polis 
and Hurd 1996; Dugan et al. 2003; Spiller et al. 2010). 
By acting as detritivores and shredders that process mac-
rophyte wrack inputs (Griffiths and Stenton-Dozey 1981; 
Lastra et al. 2008), facilitating recycling of nutrients in 
beach sand and nearshore waters (Dugan et  al. 2011; 
Gomez et al. 2018; Lowman et al. 2019), and support-
ing coastal food webs (Dugan et al. 2003), these abundant 
invertebrates perform key ecological functions.

To explore BEF relationships in this detritus-based eco-
system, we evaluated the influence of intertidal consumer 
diversity on a key ecosystem service, wrack processing. We 
used the consumption rate of the primary subsidy to beaches 
in our region, drift kelp from highly productive near-shore 
forests of giant kelp (Macrocystis pyrifera) to estimate this 
ecological function. We hypothesized that consumer spe-
cies richness would positively influence kelp consumption 
rates due to facilitation and/or species-specific feeding dif-
ferences (e.g. scraping vs shredding). To test this predic-
tion we manipulated the richness of six species of common 
intertidal beach detritivores in laboratory mesocosm experi-
ments. We further evaluated this prediction by comparing 
field consumption rates of kelp detritus on six beaches span-
ning a gradient of species richness and abundance of these 
invertebrates. We assessed the relative role of diversity and 
species composition on ecosystem function using analyses 
that separated species richness from species identity.

Methods

Study site and organisms

Sandy beaches of Santa Barbara, California, USA, are char-
acterized by large but variable inputs of stranded giant kelp 
(Macrocystis pyrifera), or wrack (> 500 kg  m−1  year−1, 
Dugan et al. 2011) from highly productive nearshore kelp 
forests. This major subsidy to beaches is consumed by a 
diverse assemblage of highly mobile intertidal detritivores 
(Lastra et al. 2008; Michaud et al. 2019). We focused on six 
intertidal arthropod species that make up > 90% of abun-
dance of invertebrate detritivores on these beaches: four 
congeneric species of talitrid amphipods (two large-bodied 
species, Megalorchestia corniculata and M. californiana, 
and two smaller species M. minor and M. benedicti), a ten-
ebrionid beetle (Phaleria rotundata) and an oniscid isopod 
(Alloniscus perconvexus). These taxa are representative of 
families of important intertidal detritivores on sandy beaches 
worldwide (Brown and McLachlan 2006).
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Richness experiment

To experimentally evaluate effects of intertidal consumer 
species richness on the consumption of giant kelp (Macro-
cystis pyrifera) wrack, we used a replacement design where 
consumer abundance in treatments was held constant at 12 
individuals, and five levels of species richness (1, 2, 3, 4 
and 6 species) were established in which the abundance of 
a given species decreased correspondingly to maintain the 
same total abundance (12, 6, 4, 3 and 2 individuals, respec-
tively). Given the size range of the consumer species we 
tested it was not possible to hold biomass constant in the 
treatments. We tested all possible species combinations, 
resulting in 57 unique treatments, each of which was run 
concurrently in triplicate. Experimental designs to test 
the effects of diversity on ecosystem function can include 
maintaining biomass rather than abundance, maintaining 
the abundance of one species when adding another, and 
using unique species in each richness level (Allison 1999; 
Benedetti-Cecchi 2004). We addressed this tradeoff by using 
a replacement design (Duffy et al. 2003) which allowed us 
to maintain species evenness within each richness level and 
evaluate the effect of species identity on function. Our goal 
was to understand the effect of changing biodiversity on an 
ecosystem function, not consumption per unit consumer 
biomass.

Our treatment mesocosms were plastic tubs 
(19 cm × 17 cm × 9 cm) filled to ~ 6 cm depth with sieved 
(1.5 mm) dry sand from Campus Point beach (34.41 N, 
119.84 W), mixed with filtered seawater to achieve a mois-
ture level of 10–15% by weight, approximately equivalent to 
that of the 24-h high tide line where the densest aggregations 
of these intertidal wrack consumers are typically found. On 
the morning of each experiment, fresh blades of giant kelp 
and live consumers were hand-collected. Kelp blades were 
cut into square pieces of ~ 2 g wet weight and weighed indi-
vidually. This amount was chosen after preliminary experi-
ments, to ensure that the entire piece was not consumed dur-
ing the experimental period. We removed a subsample from 
each piece of kelp, weighed it to the nearest mg, dried it at 
60 °C for at least 48 h, and then ashed it in a muffle furnace 
at 500 °C for four hours to obtain the ash weight. The sub-
sample provided a dry:wet ratio and an inorganic:organic 
ratio for each piece of kelp that was used to calculate con-
sumption rates (see below). Consumer species were added 
in their prescribed numbers to the mesocosms and observed 
for 5–10 min until all had burrowed into the sand, upon 
which time we added the square of kelp to each mesocosm. 
The six consumer species we used are largely nocturnal; all 
experimental units were run for three nights and began and 
ended in the morning. Trials were run over the course of 
three weeks during August 2016 and all replicates of a given 
treatment were run at the same time to ensure no treatment 

differences were driven by the differences in animal collec-
tions. Changes in the condition of animals collected over 
the three-week experimental period was unlikely as environ-
mental conditions are most stable during this time of year. 
We conducted the trials in an environmentally controlled 
room kept at 20 °C and set to a 14:10 h light:dark cycle, 
approximating natural conditions at the time of the experi-
ment. Each treatment was misted daily with filtered seawater 
to maintain moisture levels in the sand and kelp.

At the end of each experiment, the remaining kelp in 
each mesocosm was removed, gently rinsed, placed into pre-
weighed foil packets, and dried at 60 °C for at least 48 h to 
obtain dry mass. The dried kelp was then ashed in a muffle 
furnace at 500 °C for 4 hours to obtain the ash weight of the 
unconsumed kelp plus any attached sand. Extensive rinsing 
of the unconsumed kelp would have removed not only all 
attached sand but also a significant portion of the kelp bio-
mass. Therefore, we used the dry:wet and inorganic:organic 
mass ratios of the initial subsamples to remove the sand 
mass from the blade mass consumed (BC) in each replicate 
as follows:

where Bi is initial blade dry mass, taken as the wet mass of 
kelp measured at the beginning of the assay multiplied by 
the dry:wet mass ratio of the subsample, and Bf is final blade 
dry mass, corrected as follows:

where BT is total dry mass of the remaining blade material 
and S is sand mass, estimated as the inorganic ash weight 
of BT minus the inorganic kelp fraction, calculated as the 
organic mass of BT multiplied by the inorganic:organic frac-
tion of the sand-free subsample.

During the experiments, six control mesocosms were run 
for each trial using an identical setup as described above but 
with no animals, to account for any kelp biomass loss due 
to handling or microbial decomposition of the blades. Each 
trial was corrected using trial-specific controls by subtract-
ing mean control mass loss from each treatment (Silliman 
and Zieman 2001). The average mass loss from all controls 
was small, averaging 4.0 ± 1.5% dry mass (6.0 ± 2.5 mg).

The consumers were collected from each treatment and 
frozen for 24 h, after which they were rinsed, dried at 60 °C 
for at least 48 h to obtain dry mass, and then ashed at 500 °C 
for four hours to obtain ash-free dry weight (AFDW).

Field assays

As a comparative approach to evaluating the effect of spe-
cies richness on ecosystem function, we conducted feed-
ing assays on six sandy beaches located on a 22-km stretch 

BC = Bi − Bf,

Bf = BT − S,
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of shoreline in Santa Barbara County in October 2016 and 
April 2017 (map in Electronic Supplementary Material 
S1). To assess field consumption rates, six freshly collected 
kelp blades were prepared as for the experiments described 
above, except entire kelp blades were used. Feeding assays 
were conducted on a falling tide series such that the next 
high tide would not wash away the kelp blades. Replicate 
kelp blades were placed on the sand surface at the high tide 
line on the six beaches before sunset and collected just after 
sunrise. The kelp remaining in each kelp blade after the 
overnight assay was processed as above to determine the 
consumed dry mass for each replicate.

Prior to each field consumption test, we quantitatively 
surveyed macrophyte wrack cover and the species richness 
and abundance of macroinvertebrates in the upper beach 
zone of the six beaches using methodology adapted from 
Dugan et al. (2003). Wrack cover was estimated using the 
line-intercept method (Dugan et al. 2003). Invertebrates 
were surveyed by collecting 20 evenly spaced cores (10 cm 
diameter, 20 cm depth) from the upper beach boundary (cliff 
base or dune toe) to the lowest extent of upper beach inver-
tebrates on six haphazardly placed shore-normal transects. 
Core samples were aggregated and sieved in 1.5 mm mesh in 
the field to remove sand and then frozen before sorting in the 
lab, where animals were identified to species and counted. 
Counts were converted to number of individuals per meter 
of shoreline based on the number of cores and their spac-
ing rather than per m2 to better account for changing beach 
widths across sites and time (Brown and McLachlan 1990; 
Schlacher et al. 2008; Dugan et al. 2013). Mean site values 
were calculated across the six transects for each time point.

Data analysis

To compare feeding rates of the six detritivore species, we 
analyzed consumption rates from the six single species treat-
ments (n = 18 total replicates) using one-way ANOVA fol-
lowed by a Tukey post-hoc test and generation of a compact 
letter display for the pairwise comparisons. The relation-
ship between kelp consumer rates and consumer biomass 
was explored with linear regression analysis for the single 
species replicates (n = 18) and for all treatment replicates 
(n = 171). The effect of consumer diversity on kelp con-
sumption rates was evaluated with ANOVA, where kelp 
consumption was the response variable and richness the 
explanatory variable. To further explore the relationship 
between species richness and identity we employed a hier-
archical nested ANOVA model adapted from Reiss et al. 
(2011) and Bailey and Reiss (2014) that separated species 
richness from species identity and species composition. This 
set of models tests species richness alone, species identity, 
the interaction of richness and identity, and species combina-
tions as drivers of observed kelp consumption. The richness 

model depends only on the number of species. The species 
identity model assigns each species its own effect, which 
is multiplied by the number of individuals of that species 
present, thereby considering species’ abundance, and in 
polyculture treatments considers these effects to be additive. 
The richness and identity interaction allows species identity 
effects to differ at each richness level, and tests for interac-
tions between species due to the changing number of species 
present at each richness level. Lastly, species combination 
considers the species identities and their treatment combi-
nations. These related models form a hierarchical structure 
with increasing complexity (more degrees of freedom). We 
used ANOVA to compare the goodness of fit for each model 
with the goodness of fit for the next most complex model 
in the hierarchy (Grafen and Hails 2002; Reiss et al. 2011). 
Additional detail on the model structure is in the Electronic 
Supplementary Material S2.

We evaluated relationships between diversity and abun-
dance of detritivores and kelp consumption rates across the 
six survey sites using linear mixed effects modeling. We 
first assessed the relationship between kelp blade consump-
tion (n = 6) and our two random factors of site (n = 6) and 
month (n = 2). Then, we independently tested the effects of 
three site-level variables; (1) total richness of upper beach 
detritivores, (2) richness of the six species used in the labo-
ratory mesocosm experiment and, (3) the proportional abun-
dance of the two largest species relative to total abundance 
of detritivores. Each of the three linear mixed effects models 
were then compared to the model with random factors only 
using ANOVA and provided that the models explained sig-
nificantly different proportions of the variance, the model 
with the lowest Akaike Information Criterion (AIC) value 
was selected. Data display for the field assay consists of site-
level values rather than replicates for ease of distinguishing 
the various sites and timepoints. Analyses were conducted 
using base R v. 3.5 (R Core Team 2013) and the Tidyverse 
(Wickham et al. 2019), multcomp (Hothorn et al. 2008), 
lme4 (Bates et al. 2015), and lmerTest packages (Kuznetsova 
et al. 2017).

Results

Mesocosm experiment

Adult body size of the wrack detritivores varied over more 
than an order of magnitude among the six species we tested 
(mean individual AFDW ± SE, 2.7 ± 0.1 to 46.9 ± 2.5 mg, 
Fig. 1a). Consumption rates of kelp varied over an order of 
magnitude and differed significantly among the six species 
in the single species treatments (Fig. 1b, one-way ANOVA, 
F value = 12.3, p < 0.001, df = 5 and 12). The Tukey post-hoc 
test indicated that differences in consumption among the 
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six consumer species were driven by the two largest tali-
trid species (Electronic Supplementary Material S3). These 
two species, Megalorchestia corniculata and M. californi-
ana, consumed kelp at the highest mean rates, 3.1 ± 0.3 and 
2.1 ± 0.5 mg dry mass individual−1 day−1, respectively, in 
single species treatments while the two smaller species, M. 
benedicti and M. minor, consumed much less kelp on aver-
age, 0.2 ± 0.1 and 0.6 ± 0.3 mg dry kelp individual−1 day−1, 
respectively. The isopod Alloniscus perconvexus and the 
beetle Phaleria rotundata consumed kelp at similar rates, 
averaging 0.9 ± 0.2 mg individual−1 day−1 despite their large 
difference (> 4 × AFDW) in average body size (mean indi-
vidual AFDW = 12.3 ± 0.3 and 2.7 ± 0.1 mg, respectively) 
(Fig. 1a, b). The relationship between consumer biomass and 
kelp consumption rates was significant for the single species 
treatments (n = 18, r2 = 0.5, p < 0.001, df = 1 and 16) and all 
treatments (n = 171, r2 = 0.15, p < 0.0001, df = 1 and 169).

We evaluated the effect of biodiversity on an ecological 
function, in this case kelp consumption rate, using replicated 
combinations of the six consumer species across five levels 
of species richness. A linear regression between consump-
tion rate and species richness suggested a weak, albeit sig-
nificant, negative effect of diversity on kelp consumption 
(r2 = 0.02, p = 0.05) (Fig. 2a). Using species-specific kelp 
consumption rate values from the single species treatments, 
we estimated expected consumption values for every mixed 
species treatment and compared them to the actual consump-
tion values and found that, on average, species mixtures gen-
erally underperformed their expected kelp consumption rates 
by 24.6% (Fig. 2b).

The suite of models adapted from Reiss et al. (2011) 
and Bailey and Reiss (2014) confirmed that species rich-
ness alone did not explain observed rates of kelp consump-
tion (Table 1). The model results indicated that species 
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combinations (df = 32, p < 0.00001) and species identity 
(df = 5, p < 0.00001) were significant drivers of kelp con-
sumption, whereas richness was not. The significance of spe-
cies combinations is consistent with the finding that species 
mixtures tended to underperform predicted consumption 
rates. Additionally, if the monocultures (combined with 
richness levels) predict the polyculture outcomes, then the 
model “Richness + Identity” should account for everything 
apart from random error. Therefore, we compared this model 
with all treatment outcomes (i.e. “Species Combinations”), 
and found that, although monoculture consumption rates 
explain much of the consumption rates in mixed species 
assemblages, species combinations still noticeably under-
performed the expected consumption rates predicted by the 
monoculture consumption rates (Species combinations | 
Richness + Identity, df = 47, F = 2.99, p < 0.00001).

Field consumption assay

Background levels of macrophyte wrack cover on the six 
study beaches varied greatly ranging from 1.3 to 4.7 m2 m−1 
(mean 3.0 m2 m−1) in October and 0.1–2.3 m2 m−1 (mean 
0.8 m2 m−1) in April. However, cover of the primary food 
resource, giant kelp, was less variable over time ranging 
from 0.2 to 1.1 m2 m−1 (mean 0.56 m2 m−1) in October and 
0.08–1.9 m2 m−1 (mean 0.56 m2 m−1) in April. Species rich-
ness of intertidal detritivores varied from 5 to 15 species 
in surveys of the six beaches in October 2016 and April 
2017. Total abundance of detritivores ranged from 3300 to 
29,000 individuals m−1 of shoreline among the study sites, 
and the six species we evaluated in our BEF experiments 
made up 92–100% of the total abundance. The fraction of 
total abundance of the kelp detritivore community composed 
of the two large-bodied talitrid amphipods, Megalorchestia 
corniculata and M. californiana, ranged from 10 to 84% 
among sites and dates.

Mean values of overnight consumption of kelp in field 
feeding assays varied greatly across the six study beaches, 
ranging from 180 to 2549 mg dry kelp day−1. Site and month 
were not significant drivers of the observed variability in 
kelp consumption rates (p = 0.11). There was no relation-
ship between total consumer richness and overnight kelp 
consumption (Fig. 3a , p = 0.08) across the six beaches; this 
result also held when richness was limited to the six species 
of detritivores used in the mesocosm experiment (Fig. 3b , 
p = 0.68). Neither of these models explained more of the 
observed variance than the site and month model (p = 0.14 
and p = 0.78, respectively). Species identity, however, was 
a strong predictor of the observed consumption of kelp in 
our field assays: the relative abundance of the two species 
of large-bodied talitrid amphipods explained a significant 
portion of the variation in kelp consumption among beaches 
(Fig. 3c , t = 5.7, p < 0.0001, trendline displayed represents 
simple linear regression (also significnant) for display pur-
poses). This model was also a significant improvement over 
the site and month model (Chi-square = 20.8, p < 0.0001).

Discussion

Our results from laboratory experiments and field assays 
suggest that species richness of intertidal detritivores does 
not strongly influence the rate of processing of marine detri-
tal subsidies, a key ecological function on sandy beaches. 
Rates of kelp wrack consumption in both mesocosm exper-
iments and the field assays were better predicted by spe-
cies identity than by diversity. In mesocosm experiments, 
kelp consumption rates in mixed-species treatments were 
nearly 25% below predicted values based on the single spe-
cies treatments. In the field, processing of kelp wrack by 
intertidal consumers was strongly influenced by the relative 
abundance of the two largest species of talitrid amphipods, 
rather than the species richness of the intertidal detritivore 

Table 1   Results of ANOVA for nested model set derived from Reiss et al. (2011) and Bailey and Reiss (2014) on laboratory mesocosm results 
for response variables of trial, richness, identity and species combination

Trial refers to the week the treatment was conducted, richness is the number of species, identity is the species-specific effect, and species com-
bination refers to the specific assemblage composition of each treatment. Each row in the table corresponds to a difference between two models. 
The number in parentheses is the number of model parameters, the “|’’ means “given’’, and degrees of freedom is the difference between the 
numbers of parameters in the two models. See Electronic Supplementary Material S1 for more model information

Comparison Degrees of 
freedom

Sum of squares Mean square F p

Trial (3) | Constant (1) 2 350.2 175.1 4.13 0.02
Richness (5) | Trial (3) 2 143.4 71.68 1.69 0.2
Identity (6) | Constant (1) 5 4246.7 849.34 20.04  < 0.00001
Richness*identity (25) | Richness + Identity (10) 15 1652.9 110.19 2.6 0.002
Species combination (57) | Richness*Identity (25) 32 4309.8 134.68 3.18  < 0.00001
Residuals 114 4830.9 42.38
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community. Our finding that species identity is relevant to 
how ecosystem functioning may change if one species were 
substituted for another points to the role of consumer body 
size, but also indicates that results of BEF studies are context 
dependent based on the community metrics varied. While 
our focus was on the effect of changing community richness 
with evenness maintained, data indicate that community bio-
mass is also an important variable in the magnitude of this 
ecosystem function.

Ecosystem function may be strongly influenced by the 
number of species present if different processes require 
functionally distinct species (Perkins et al. 2015) or if the 
actions of one or more species facilitate others (Tonin et al. 
2018). Given that feeding habits, intertidal habitat, and other 
functional traits of the invertebrate consumers in this experi-
ment were similar and individual biomass varied greatly, 
our finding that species richness was not a strong driver of 
ecosystem function on beaches is perhaps not surprising. 
Our results are consistent with those from detritivore com-
munities in a variety of terrestrial and aquatic ecosystems 
including grasslands, floodplains, streams and salt marshes 
(Cragg and Bardgett 2001; Reiss et al. 2010; Treplin et al. 
2013; O’Connor et al. 2016; Little and Altermatt 2018). 
Instead, species identity was a better predictor of ecosystem 
functioning than richness in our sandy beach ecosystem. A 
strong role of species identity in function has been reported 
in a variety of systems (Handa et al. 2014; Gagic et al. 2015), 
including leaf litter breakdown by freshwater detritivores 
(Jonsson and Malmqvist 2000; Stoker et al. 2017; Santonja 
et al. 2018), grazing of marine algal biomass (Duffy et al. 
2001; O’Connor and Crowe 2005; Godbold et al. 2009), 
urban food litter consumption by arthropods (Youngsteadt 
et al. 2014), and nutrient regeneration by marine bioturbators 
(Ieno et al. 2006).

Patterns of resource dynamics in subsidized ecosys-
tems and the species traits of consumers that rely on these 
resources may underlie these findings. In ecosystems with 
stable and diverse primary producer communities, the 
resulting resource heterogeneity and stability is conducive 

to specialization by consumers (Reboud and Bell 1997; 
Kassen 2002). Niche partitioning by these specialists 
results in complementarity as different species use different 
resources (Finke and Snyder 2008) and increasing diversity 
leads to greater overall resource exploitation and ecosystem 
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Fig. 3   a Overnight kelp consumption for field assays compared to 
total observed richness of upper beach detritivores for six beaches 
in October 2016 (squares) and April 2017 (circles) (site colors: R 
Beach—black, Isla Vista—orange, East Depressions—light blue, East 
Goleta—green, Arroyo Burro West—yellow, Arroyo Burro East—
blue. A site map is available in the Electronic Supplementary Mate-
rial S1). b Overnight kelp consumption for field assays compared to 
observed richness of the six common species used in the mesocosm 
experiment. c Overnight kelp consumption for field assays com-
pared to the fraction of the abundance of the six consumer species 
occupied by the two large talitrid amphipod species (Megalorchestia 
corniculata and Megalorchestia californiana) (Linear mixed effects 
model, t = 5.7, p = 0.000079). The simple linear regression between 
site means (also significant) is shown for display purposes (r2 = 0.59, 
p = 0.0022). Error bars are standard error of consumption rates (n = 6)
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functioning (Thebault and Loreau 2003; Ives et al. 2005; 
Finke and Snyder 2008; Filip et al. 2014). In contrast, when 
the type or availability of resources is more stochastic, as in 
many subsidized food webs, generalist consumers tend to 
have an advantage (Reboud and Bell 1997; Ma and Levin 
2006; Narwani and Mazumder 2010). The highly dynamic 
supply of kelp wrack and other marine subsidies on sandy 
beaches may thus promote a relatively high abundance of 
generalist consumer species (Hutchinson 1961; Mihuc and 
Minshall 1995; Verberk et al. 2010), weakening BEF rela-
tionships due to greater functional redundancies across the 
community (Ives et al. 2005; Novotny et al. 2010; Filip et al. 
2014).

The underperformance of observed relative to predicted 
rates of kelp consumption in our laboratory mesocosm 
experiments (Fig. 2b) suggests that negative interspecific 
competitive interactions may have increased with species 
richness (Bond and Chase 2002; Bastian et al. 2008; Gessner 
et al. 2010). Competition for shared resources can be high in 
communities comprised of generalist consumers (Thebault 
and Loreau 2003; Ives et al. 2005). Species may respond to 
interspecific competition by shifting their diet (Finke and 
Snyder 2008) or their behavior across time and space (Mihuc 
and Minshall 1995; Mihuc 1997). Although giant kelp is the 
primary form of macroalgal detritus on southern California 
beaches (Dugan et al. 2003, 2011), other drift macroalgae 
and seagrasses, as well as carrion, are consumed by sandy 
beach invertebrates (Lastra et al. 2008; Bessa et al. 2014; 
Michaud et al. 2019). The intertidal consumer species we 
investigated all readily consumed blades of giant kelp; how-
ever, in nature they may adjust their behavior or diet to avoid 
interspecific competition. Such niche partitioning would 
represent a form of complementarity (Loreau and Hector 
2001; Thebault and Loreau 2003; Poisot et al. 2013; Tonin 
et al. 2018) that would not be observed in a study consider-
ing a single resource type. Although not tested here, this 
type of complementarity could result in greater total detritus 
consumption when multiple detritivore species and types of 
wrack detritus are present.

The ecological function of kelp wrack consumption was 
largely driven by the relative abundance of the largest detri-
tivore species in our field study. Body size is a key species 
trait (Brose et al. 2006; Norkko et al. 2013) and large-bodied 
species often make disproportionately high contributions to 
ecosystem function (Seguin et al. 2014; Brose et al. 2016; 
Tonin et al. 2018). Indeed, species traits or functional attrib-
utes are better predictors of ecological functions in multi-
trophic systems (Lefcheck and Duffy 2015). Species that 
contribute significantly more to an ecosystem function tend 
to be the dominant species in a community while rare spe-
cies that are generally low in abundance contribute much 
less (Smith and Knapp 2003; Dangles and Malmqvist 2004; 
Klemmer et  al. 2012; Wohlgemuth et  al. 2016). When 

function is driven by species identity and a dominant species 
is present, ecosystem functioning is expected to be nega-
tively correlated with diversity (Creed et al. 2009). The high-
est functioning species must also be the dominant species for 
process rates to be high at the ecosystem scale (Creed et al. 
2009; Treplin et al. 2013). Our finding that an important 
ecological function was maximized when the two highest 
functioning species were the dominant species adds to the 
growing evidence supporting the role of species identity and 
dominance in the provisioning of key ecosystem functions, 
especially in soft-sediment ecosystems (Henderson et al. 
2019, Schenone and Thrush 2020).

Threats to biodiversity from a changing climate are well 
recognized (Thomas et al. 2004), but our understanding 
of impacts on key species traits, like body size, is lacking. 
Warming temperatures associated with climate change can 
lead to decreases in animal body size due to higher meta-
bolic rates and faster development, particularly in ecto-
therms (Gardner et al. 2011; Sheridan and Bickford 2011; 
Ohlberger 2013). For example, a significant negative rela-
tionship between sea temperature and body size has been 
reported for populations of sandy beach invertebrates, 
including a talitrid amphipod, across a wide latitudinal gra-
dient (Jaramillo et al. 2017). Large-bodied species may also 
be particularly vulnerable to extinction as the climate warms 
(Cardillo 2006; Brose et al. 2016). Consequently, as these 
key species disappear, ecosystem functioning may decline 
more than predicted by diversity losses alone.

Globally, sandy beach ecosystems are threatened by 
sea level rise, urbanization, erosion, and coastal armoring 
(Schlacher et al. 2007; Defeo et al. 2009; Dugan et al. 2017; 
Schooler et al. 2017; Vitousek et al. 2017). In combination 
or alone, impacts from these threats commonly result in 
the degradation or loss of the upper beach zone required 
by intertidal wrack consumers (Dugan et al. 2008; Myers 
et al. 2019). On beaches worldwide, especially along highly 
developed shores, coastal management regimes that remove 
wrack (grooming or raking) and armor the shore to protect 
coastal development and infrastructure (Defeo et al. 2009) 
increase disturbance and reduce beach biodiversity (Dugan 
et al. 2003; Jaramillo et al. 2012; Schooler et al. 2019). On 
urbanized beaches in southern California, where intertidal 
diversity is lower than beaches in less developed areas, the 
two large-bodied talitrid species that we found to be the most 
effective kelp consumers are often sparse or absent (Schooler 
et al. 2019), suggesting that impacts to these key species 
from coastal management and climate change are already 
significantly degrading sandy beach ecosystem function on 
developed coasts.

Biodiversity is often used as a primary metric to set goals, 
establish baselines, and measure success of conservation 
efforts (Schwartz et al. 2000; Srivastava and Vellend 2005). 
Our results, however, reinforce the need to also consider the 
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roles of individual species and species traits in ecosystem 
functioning (Cadotte et al. 2011; Henderson et al. 2019). 
In many ecosystems, including the subsidized sandy beach 
communities studied here, ecosystem function and services 
may depend mainly on dominant and high-functioning spe-
cies (Winfree et al. 2015). Identifying these key species and 
traits is necessary to predict the impacts of species loss on 
ecosystems and their vital functions, and to prioritize them 
for conservation and management.
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