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ABSTRACT. We consider the numerical construction of minimal Lagrangian
graphs, which is related to recent applications in materials science, molecular
engineering, and theoretical physics. It is known that this problem can be for-
mulated as an additive eigenvalue problem for a fully nonlinear elliptic partial
differential equation. We introduce and implement a two-step generalized finite
difference method, which we prove converges to the solution of the eigenvalue
problem. Numerical experiments validate this approach in a range of chal-
lenging settings. We further discuss the generalization of this new framework
to Monge-Ampere type equations arising in optimal transport. This approach
holds great promise for applications where the data does not naturally satis-
fy the mass balance condition, and for the design of numerical methods with
improved stability properties.

We consider the problem of constructing a diffeomorphism f : X — Y such that

the graph
L=A{(z, f(z)) |z e X} (0.1)

is a Lagrangian submanifold of R” x R™ with minimal area (or equivalently, having
zero mean curvature). Here X, Y C R" are smooth, convex, and bounded. The
problem of constructing minimal surfaces is important in applications such as ma-
terials science [32] and molecular engineering [2]. There has also been recent interest
in the use of mean curvature flows to generate minimal Lagrangian submanifolds of
Calabi-Yau manifolds [31, 33].

Here we are interested in R™ x R™ equipped with the symplectic form

w= Z dx; A dy; (0.2)
i=1
where coordinates in R x R™ are given by (21,...,2Zn,¥1,...,Yn). A submanifold

L is said to be Lagrangian if w|s, = 0, which is equivalent to the condition that f
can be expressed as a gradient: f = Vu [20].

In order to compute a minimal Lagrangian submanifold, we can equivalently seek
a submanifold whose Lagrangian angle (which is a primitive of mean curvature) is
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constant. This can be expressed as the following eigenvalue (or additive eigenvalue)
problem for a nonlinear elliptic PDE,

— z": arctan(\;(D*u(z))) +¢=0, z€X (0.3)

where \;(D?u) denote the eigenvalues of the Hessian of u and the constant ¢ is not
known a priori. This is augmented by the so-called second type boundary condition

Vu(X) =Y. (0.4)

A result by Brendle and Warren [6] showed that as long as X and Y are smooth
and uniformly convex, (0.3)-(0.4) has a unique (up to additive constants) convex
solution u € C?(X) with associated Lagrangian angle ¢ € (0, %F).

Equation (0.3) is an example of a fully nonlinear elliptic partial differential equa-
tion (PDE). The past few years have seen a rising interest in numerical techniques
for solving fully nonlinear elliptic PDEs, with several new approaches being intro-
duced including [7, 10, 13, 15, 27]. The unusual boundary condition (0.4) has also
received recent attention because of its relationship to optimal transport [3, 28].

The PDE for minimal Lagrangian submanifolds is unique, however, in that it
involves an additional unknown constant ¢. In fact, Monge-Ampére equations and
other Generated Jacobian Equations related to Optimal Transport may also be
expressed this way, as hinted at in [14]. There are distinct advantages to using this
formulation in applications where data does not naturally satisfy the mass balance
condition (e.g., image registration [16], seismic full waveform inversion [12], mesh
generation [8]) and in problems where consistent discretizations fail to inherit the
well-posedness of the underlying PDE.

In this article, we develop a framework for numerically solving eigenvalue prob-
lems of the form

F(z,u(x), Vu(z), D*u(z)) + cf (x,u(z), Vu(z)) =0 (0.5)

where F'is an elliptic operator and the PDE is coupled to a second type boundary
condition (0.4). In particular, we use this framework to introduce and implement a
numerical method for computing minimal Lagrangian submanifolds. The method u-
tilizes generalized finite difference approximations on augmented piecewise-Cartesian
grids, as introduced in [19]. We adapt this to the minimal Lagrangian problem, and
show how this approach can be used to enforce the second boundary condition (0.4)
and numerically compute the eigenvalue ¢. Though the method is implemented in
two dimensions, it could be easily adapted to higher dimensions and more compli-
cated PDEs.

We prove that our method converges to the solution of the nonlinear eigenvalue
problem (0.3)-(0.4). Ultimately, the techniques developed and analyzed for the
minimal Lagrangian problem hold great promise for the solution of other more
challenging PDEs related to Optimal Transport.

1. Background.

1.1. Elliptic equations. A PDE
G(z,u,Vu, D*u) =0 (1.1)

is fully nonlinear and elliptic if it exhibits nonlinear dependence on the highest order
derivative, and satisfies the ellipticity condition:
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Definition 1.1 (elliptic operator). The PDE (1.1) is (degenerate) elliptic if
G(a,r,p, A) < G(z,5,p, B)

forallz € X, r,s e R, pe R", A,B € 8" with A > B and r < s where A > B
means A — B is a positive definite matrix and S™ is the set of symmetric n x n
matrices.

We remark that the PDE operator is not required to be continuous in space.
In particular, this allows us to incorporate boundary conditions directly into the
operator GG. In the present article, we will be particularly interested in problems
where the boundary operator takes the form

G(x,u,Vu, D*v) = H(x,Vu), z¢€0dX (1.2)

and the boundary operator H (x, Vu) can be written in terms of one-sided directional
derivatives.

A desirable property that is shared by many elliptic operators is the comparison
principle.

Definition 1.2 (comparison principle). The PDE operator (1.1) satisfies a com-
parison principle if whenever G(z, u(z), Vu(z), Dfu(m)) <G(z,v(x), Vu(x),
D?v(x)) for all z € X then u(z) < v(zx) for all z € X.

A comparison principle can be used to establish existence and uniqueness of
solutions to the PDE. A common technique for proving existence is Perron’s method,
which involves arguing that the maximal subsolution

u(z) = sup {v(z) | G(z,v(z), Vo(z), D*v(z)) < 0} (1.3)

is actually a solution to the PDE. Uniqueness of solutions follows immediately from
a comparison principle.

Many fully nonlinear elliptic equations do not possess a classical solution, and
thus some notion of weak solution is needed. A powerful approach is the viscosity
solution, which relies on a maximum principle argument to transfer derivatives onto
smooth test functions [9].

In order to define viscosity solutions, we first must define the upper and lower
semicontinuous envelopes.

Definition 1.3 (upper and lower semicontinuous envelopes). The upper and low-
er semicontinuous envelopes of a function u(x) are defined by

u*(z) = limsup u(y),

y—x
and
" = lim inf
us(2) = liminf u(y)
respectively.

Definition 1.4 (viscosity solution). An upper(lower) semicontinuous function w is
a viscosity sub(super)solution of (1.1) if for any * € X and any ¢ € C?(X)
such that u — ¢ attains a local maximum(minimum) at x,

G (2, u(z), Do(x), D*¢(x)) < ()0

A continuous function is a viscosity solution of (1.1) if it is both a viscosity sub-
and supersolution.
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Viscosity solutions provide a framework which allows many comparison, unique-
ness, existence, and continuous dependence theorems to be proved. An equation
can be shown to have a unique viscosity solution if it has a comparison principle [9].

1.2. Eigenvalue problem for a PDE. The equation (0.3)-(0.4) we consider in
this article is an example of an (additive) eigenvalue problem for a fully nonlinear
elliptic operator. Abstractly, the problem statement is to find u € C2(X) N C*(X)
and ¢ € R such that

{F(x, Vu(z), D*u(z)) + cf(z,Vu(z)) =0, z€X

H(z,Vu(z)) =0, x € 0X. (14)

We remark that the solution is at best unique only up to additive constants.

In fact, this formulation of the problem is intricately connected to the solvability
of a related PDE. As an example, we consider the Neumann problem for Poisson’s
equation.

—Au+f=0, z€Q

1.5
a—u:g, x € 0N (1.5)
on

For a solution to exist, data must satisfy the solvability condition

/Qf(x) dx = /an(x) ds.

However, data f, g arising in applications are susceptible to noise, measurement
error, etc. This can lead to a failure in the solvability condition. One approach
to ensuring solvability in this case is to relax the problem and interpret it as an
(additive) eigenvalue problem by introducing a constant ¢ and solving

—Au+cf =0, z€Q
ou (1.6)

8—n:g, x € 0N

for the unknown pair (u, c).
The new solvability condition is

c/ﬂf(x) dxz/mg(x)ds. (1.7)

The solution of the eigenvalue problem (1.6) will then select a value of ¢ that satisfies
this condition and forces the problem to be solvable. If f and ¢ are close to satisfying
the solvability condition, then the solution will choose ¢ =~ 1 and produce a solution
to a PDE close to the original (1.5), with the error due to errors in the input data

I 9

A similar issue arises in the solution of the second boundary value problem for
the Monge-Ampére equation, which arises in the context of optimal transport.

—g(Vu(e)) det(D?u(a)) + f(2) =0, @€ X
u is convex (1.8)

Vu(X) =Y.

This problem has a solution only if the following mass balance condition is satisfied,

[ s@de= [ g an (1.9)
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However, in many applications (e.g., image processing [16], seismic full waveform
inversion [12], mesh generation [8], etc.) the data is not expected to naturally
satisfy the solvability condition. A proposed solution is to view the equation as an
eigenvalue problem and seek a pair (u, c) satisfying

—g(Vu(x))det(D?*u(z)) + cf(z) =0, z€X
u is convex (1.10)
Vu(X) =Y.

In fact, even when data does satisfy the relevant solvability condition, consistent
discretizations of (1.5) or (1.8) cannot be expected to inherit this solvability. To il-
lustrate this, consider Poisson’s equation in one dimension with Neumann boundary
conditions:

—u"(z)+ f(x)=0 x€(0,1)
u'(z) = g(x) x=0,1

where
f(z) = cos (g:v), g(z) = %sin (g:v)

This has a solution, which is unique up to additive constants, since the data satisfies
the solvability condition

1
/0 f(@)dz = g(1) - g(0).

Now consider the uniform grid x; = jh, j =0, ..., N and discretize the equation us-
ing standard centered differences for the second derivative and a one-sided difference
for the boundary condition. It is not hard to check that the resulting linear system
has a solution only if the following discrete solvability condition is satisfied [23]:

N—-1

Y fay) = glan) — glao).

j=1

This is a natural discrete analogue of the continuous solvability condition, but it is
not exactly satisfied at the discrete level and the discrete problem thus fails to have
a solution.

As an alternative, we view the Poisson equation as the following eigenvalue prob-
lem.

—u"(x) +ef(z) =0 z€(0,1)
u'(x) = g(x) x=0,1

We discretize as before, including the eigenvalue ¢ as an additional unknown, and
supplementing the linear system with an additional equation u(zp) = 0 in order to
select a unique solution. This time, the discrete problem has a solution u" with
corresponding eigenvalue ¢. We verify that both u” — v and ¢® — 1 as the grid is
refined, so that the limiting problem is the original Poisson equation. See Figure 1.

There is certainly a need for numerical methods and convergence analysis that
can be applied to eigenvalue problems for fully nonlinear elliptic equations. In
addressing this issue for the construction of minimal Lagrangian graphs, we also
begin the development of a framework for solving many other important nonlinear
PDEs.
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FIGURE 1. Discrete solution to Poisson’s equation when viewed as
an eigenvalue problem.

1.3. Second boundary value problem. The unusual second type boundary con-
dition (0.4) does not at first glance appear to be a boundary condition at all. How-
ever, when u is a convex function (which is the case for our problem [6]) and X,Y
are uniformly convex sets, it can be recast as a nonlinear Neumann type boundary
condition. To do this, we require a defining function for the target set Y [11, 34],
which should have the property that

<0, yeY
H(y)=4¢=0, yedYy
>0, y¢v.

A natural choice is the signed distance function to the target boundary 9Y.
In this case, as in [3], we can rewrite the boundary condition as

H(Vu(z)) =0, xe€0X. (1.11)
This simply requires that all points on the boundary of the domain X are mapped
(via the gradient of u) onto the boundary of the target set Y.

Then the problem of constructing minimal Lagrangian graphs can be recast as the
following eigenvalue problem with nonlinear Neumann type boundary conditions.

F(D?u(z))+c¢=0, z€X
{H(Vu(m)) =0, xr € 0X (1.12)
where N
F(D?*u(z)) = — Z arctan(\; (D?*u(z))) (1.13)
and -

—dist(Vu(x),dY), Vu(zx)eY

H(Vu(z)) =<0, Vu(z) € 9Y (1.14)
dist(Vu(z),0Y), Vu(z) ¢Y.

From the convexity of Y, the signed distance function to its boundary is also convex,

and thus, H is convex. We can rewrite H in terms of supporting hyperplanes to
the convex target set

H(y) = ysggy{n(yo) “(y—wo)} (1.15)



FINITE DIFFERENCE METHOD FOR LAGRANGIAN GRAPHS 7

where n(yg) is the outward normal to Y at yq [3]. By duality, this is equivalent to
H(y) = sup {n-(y—yo(n))} (1.16)

where yo(n) is the point on the boundary of Y with the normal n. Then if n is a
unit outward normal to Y at yo, the Legendre-Fenchel transform of H(y) is

H*(n)= sup {n-yo— H(yo)} = sup {n-yo} (1.17)
Yo €Y Yo €Y
and we can rewrite the condition as [3]
H(y) = lSl‘lpl{n-y—H*(n)}- (1.18)
nl=

Lemma 1.5. Let u € C%(X) be uniformly convex with X and Y convex. Then
there exists £ > 0 such that for all x € 0X

H(Vu(z)) = nn;im);é{Vu -n—H*(n)} (1.19)

From Section 2.3 of [4], we know that
ng -y = a(x)VH(Vu(z))" D*u(z)VH(Vu(z)),

which is positive for all = since D?u(x) is positive definite. Moreover, this is con-
tinuous on the compact set 0X. Thus, it has a minimum, which must also be a
positive value . From the same section in [4], we know that the maximum in (1.19)
is attained when n = n,. Since we know that n; - n, > £ > 0, we can restrict the
maximum to vectors n satisfying this constraint.

1.4. Discretization of elliptic PDEs. In order to build convergent methods for
the eigenvalue problem (0.3), we wish to build upon recent developments in the
approximation of fully nonlinear elliptic equations.

Classically, the convergence of numerical methods is established via the Lax-
Equivalence Theorem. Roughly speaking, a consistent, stable method will converge
to the solution of the continuous equation. However, this does not immediately
yield convergent methods for fully nonlinear equations for a couple of reasons. First,
establishing the existence and stability of solutions to a discrete method can be a
delicate problem in the case of nonlinear equations and secondly, it does not apply
when the equation does not have classical solutions.

A powerful contribution to the numerical approximation of elliptic equations
was provided by the Barles-Souganidis framework, which states that the solution
to a scheme that is consistent, monotone, and stable will converge to the viscosity
solution, provided the underlying PDE satisfies a comparison principle [1].

In this article, we consider finite difference schemes that have the form

G"(z,u(z),u(z) —u(-)) =0, zegh (1.20)
where u : G* — R is a grid function and G"* C X is a finite set of discretization
points, which can be a finite difference grid or a more general point cloud. Here h
is a small parameter relating to the grid resolution. In particular, we expect that
as h — 0, the domain becomes fully resolved in the sense that

lim sup min |z — y| = 0. 1.21
}Hoyegwegh\ yl (1.21)

In this setting, the properties required by the Barles-Souganidis framework can be
defined as follows.
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Definition 1.6 (Consistency). The scheme (1.20) is consistent with the PDE
operator (1.1) if for any smooth function ¢ and z € ,

lim sup G"(2,6(y) + & ¢(y) — ¢() < G*(z,¢(x), Vo(x), D*¢(x)),

h—0,y—z,2€Gh—z,6—0

lim inf G"(z,0(y) + & d(y) — 6(-)) > Gu(,6(x), Vo(x), D*p(x)).

h—0,y—z,2€Gh— 2,60

To consistent schemes, we also associate a truncation (consistency) error 7(h).
For uniformly consistent schemes, we expect that this consistency error should van-
ish uniformly as h — 0.

Definition 1.7 (Uniform consistency and truncation error). The scheme (1.20)
is uniformly consistent with the PDE operator (1.1) if it is consistent and if
there exists a function 7(h) (the truncation error) satisfying the following two
properties:
1. For every smooth function ¢
im sup max
h—0 xEGh 7(h)
2. lim 7(h) = 0.
h—0

< 0.

Definition 1.8 (Monotonicity). The scheme (1.20) is monotone if G” is a non-
decreasing function of its final two arguments.

Definition 1.9 (Stability). The scheme (1.20) is stable if there exists a constant
M, independent of h, such that if h > 0 and u” is any solution of (1.20) then
[u* o < M.

Definition 1.10 (Continuity). The scheme (1.20) is continuous if G" is continuous
in its last two arguments.

Remark 1. The domain for the first argument of G" is the discrete set G, and
the above definition does not require continuity in this argument.

The Barles-Souganidis convergence framework does not apply to all elliptic PDEs,
including (1.12), which does not have the required comparison principle. Neverthe-
less, it provides an important starting point for the development of convergent
numerical methods.

In particular, monotone schemes possess some form of a comparison principle
even if the limiting PDE does not. Under the additional assumption that G” is
strictly increasing in its second argument, we can obtain a discrete comparison
principle very similar to Definition 1.2, which in turn yields uniqueness of solutions
to the approximation scheme; see [26, Theorem 5]. The schemes we consider in this
work do not satisfy this traditional comparison principle. Nevertheless, as noted
in [17, Lemma 5.4], they do obey a slightly weaker form of comparison principle.

Lemma 1.11 (Discrete comparison principle). Let G* be a monotone scheme and
Gz, u(z),u(z) — u(-)) < GM(x,v(z),v(z) —v(-)) for every x € G". Then u(x) <
v(x) for every x € G".

Remark 2. Because the inequality in this discrete comparison principle is strict,
it does not guarantee solution uniqueness. Moreover, for some monotone schemes
(including those described in the present article), it is not possible to find grid
functions u, v such that G"(z,u(z), u(z) — u(-)) < G*(x,v(z),v(z) — v(-)) at every
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grid point. This observation allows us to use the discrete comparison principle as a
key element in a proof by contradiction argument.

The proof of Lemma 1.11 is essentially identical to the proof of [26, Theorem 5],
but is included here for completeness.

Proof of Lemma 1.11. We suppose that G (z, u(z), u(z)—u(-)) < G"(z,v(z),v(x)—
v(-)) for every x € G" and choose y € G" such that

u(y) - vly) = maxfu(z) —v(x)},

which is well-defined since G” is a finite set. In particular, this yields
u(y) —u(z) 2 v(y) —v(z), =eg"

Now we suppose that

u(y) —v(y) = 0.
By monotonicity, we find that

G"(y, uly), u(y) — u(-)) = G"(y,v(y), v(y) — v(-)) > G"(y,u(y), uly) — u(")),

where the last step is simply the hypothesis of the lemma. This is a contradiction,
and we conclude that
max {u(z) —v(z)} <O0. O
zegh
Our goal in this article is to exploit the discrete comparison principle to prove that
computed eigenvalues ¢ converge to the exact eigenvalue of (1.12). From there,
we introduce additional stability into our scheme, which allows us to modify the
Barles-Souganidis argument to prove convergence of the computed solution u” even
in the absence of a comparison principle.

2. Reformulation of the PDE. We begin by proposing a reformulation of the
PDE (1.12), which will allow us to build more stability into our numerical schemes.
Moreover, we demonstrate that viscosity solutions of this new equation (with the
eigenvalue coy fixed) are equivalent to classical solutions of the original problem.
We remark first of all that solutions to the second boundary condition (0.4)
will trivially satisfy a priori bounds on the solution gradient. That is, choose any
R > max{|p| | p € Y} and let u satisfy the second boundary condition (0.4). Then

[Vu(z)| <R (2.1)

for all x € X.
We also recall that any smooth convex solution of the second boundary condition,
reformulated as in (1.11), will satisfy the constraints

—M(D%*u(z)) <0

H(Vu(x)) <0 (22)

for every z € X. Here A\(M) denotes the smallest eigenvalue of the symmetric
positive definite matrix M.
We propose combining all of these constraints into a new PDE

max { F(D*u(z))+cex, —A (D*u(z)), H(Vu(z)), |[Vu(z)|-R} =0, z€ X. (2.3)
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We remark that this equation is posed only in the interior of the domain, and
boundary conditions will not be required to select a unique (up to additive con-
stants) solution. We also note that in the above equation, the eigenvalue cqy will
be interpreted as a known quantity.

Theorem 2.1 (Equivalence of PDEs). Let u : X — R be continuous and ce, €
(0,n7/2) be the unique eigenvalue of (1.12). Then (u,cey) s a classical solution
of (1.12) if and only if u is a viscosity solution of (2.3).

Proof. This result is an immediate consequence of Lemmas 2.2-2.3, proved below.
O

Lemma 2.2 (Classical implies viscosity). Let (u,cez) be a classical solution of
(1.12). Then u is a viscosity solution of (2.3).

Proof. We remark that u trivially satisfies the constraints (2.1)-(2.2). Since addi-
tionally

F(D*u(x)) + ez = 0,
it is certainly true that the modified equation (2.3) holds in the classical sense. It
is a simple consequence that (2.3) will also hold in the viscosity sense [9]. O

Lemma 2.3 (Viscosity implies classical). Let u : X — R be continuous and Cey €
(0,n7/2) be the unique eigenvalue for (1.12). If u is a viscosity solution of (2.3)
then (u, cer) s a classical solution of (1.12).

Proof. Let uex be any classical solution of (1.12). From [6], this is uniquely deter-
mined up to an additive constant.
We remark first of all that u is a viscosity subsolution of the equation

—A1(D?*u(zx)) = 0.
From [25, Theorem 1], u is convex.
We also observe that u is a convex viscosity subsolution of the equation
H(Vu(z)) =0.
From [18, Lemma 2.5], the subgradient of u satisfies
ou(X)cCY.
As u is continuous up to the boundary, a consequence of this is that
ou(x)NY # 10 (2.4)
for every z € 0X.
We now assume that v — uex is not a constant and show that this leads to a

contradiction. Since uey is a viscosity solution of the constrained PDE (2.3), it is
also a subsolution of the uniformly elliptic component

F(D*u(x)) + cex < 0.
Since uey is a classical solution of
F(D?*tey () + Cox = 0,
it is also a viscosity solution [9] and a viscosity supersolution.

From [21, Theorem 3.1], the maximum of u — ue, must be attained at some point
xo € 0X. Moreover, by a nonlinear version of the Hopf boundary lemma [24], we

have that
O(u — uex ) (20)

0
on >
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for any exterior direction n satisfying n-n,(zo) > 0. That is, taking any p € du(xg),
we must have
(p — Vex(x0)) - n > 0.

Now we consider in particular the choice of n = VH (Vuex(20)), which does satisfy
the requirement n - ngy(z¢) > 0 as in Lemma 1.5. Hence,

(p — Vuex(0)) - VH(Vuex(x0)) >0
On the other hand, since H is convex, we know that
H(p) > H(Vuex(x0)) + VH(Vuex(20)) - (p — Vex(20)) > H(Vuex(x0)) = 0.
The condition H(p) > 0 implies p is outside Y for any p € du(xg), which contra-

dicts (2.4).
We conclude that u — ue, must be constant on X. Since the classical solution
of (1.12) is unique up to additive constants, u is a classical solution. O

3. Numerical method. In this section, we describe our approach to numerically
solving the eigenvalue problem (0.3)-(0.4). Ultimately, we will establish convergence
of this method (Theorems 4.1-4.2).

3.1. Numerical framework. The computational and convergence framework we
employ involves a two-step approach. Let us first suppose that we have discrete ap-
proximations F*, H" E" L" of the PDE operators F(D?u), H(Vu), |Vu| ,~\i(D*u).
The details of these discrete operators will be explained in the following subsections.
We assume the existence of a fixed function 7(h), the maximum truncation error,
satisfying the properties of Definition 1.7. We also let 2o € X be any fixed point in
the domain and choose a sequence z{! € G such that ! — . Finally, we choose
some (h) > 0.

We now employ a two-step procedure to solve for an approximation (u”,c") to
the true solution (uey, Cex)-

1. Solve the discrete system
Fh(z,o"(z) =P ()) +c =0, z€G"nX
H"(z,v"(x) —v"(-)) =0, reGhnox (3.1)
o () = 0
for the grid function v* and scalar c¢”.
2. Solve the discrete system
max { F"(z, w"(z) —w" () +c", LMz, wh(z) —w" (")),
Hh(x,wh(m)—wh(-)),Eh(x,wh(a:)—wh(~))—R}:0,
reghnXx (3.2)
max{H" (z, w"(x) —w"(-)) +r(h)w" (z), E" (z, w" (z) —w"(-)) - R} =0,
reghnox
for the grid function w”" and set
ul(z) = wh(z) — wh(zh). (3.3)

We remark that the second step is important for the convergence analysis as it
is not a priori clear that the solution of (3.1) will inherit a discrete version of the
gradient bound |Vu| < R. However, we have never found it necessary to solve this
second system in practice. Instead, we typically find that the solution v" obtained
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in step 1 automatically satisfies the second system with x(h) = 0. If this does
not occur, solving the second system (3.2) becomes necessary. In that case, we
should choose x(h) > 0 to guarantee existence of a solution. This relaxation of
the boundary condition is needed since the solvability conditions for (3.1) and (3.2)
may differ slightly.

We also observe that the final candidate solution u" that we compute satisfies
the scheme

GM(z,u"(z)—u" (")) =max { F'(z,u"(x)—u"())+c", L"(z,u" (z)—u" ("), (3.4)
H"(z, u"(2)—u" (), E" (2, u" (x —uh(~))—R}:O
at interior points = € G" N X and satisfies the inequality
EMz,u"(z) —u"()) =R <0 (3.5)

at all points = € Gh.

The approximation schemes will have to satisfy consistency and monotonicity
conditions in order to fit within the requirements of our ultimate convergence the-
orems (Theorems 4.1-4.2), with some additional structure built into the discrete
Eikonal operator E".

3.2. Quadtree meshes. We begin by describing the meshes we use to discretize
the PDE. It is possible to construct convergent methods on very general meshes or
point clouds. However, we desire a mesh with the flexibility to resolve directional
derivatives in many directions and deal with complicated geometries, while retaining
enough structure to allow for an efficient implementation. For this reason, we choose
to utilize piecewise Cartesian meshes augmented with additional nodes along the
boundary. These can be conveniently stored using a quadtree structure as in [19].
See Figure 2 for examples of such meshes.

T 05 0 05 1

(a)

FI1GURE 2. Examples of quadtree meshes. White squares are inside
the domain, while gray squares intersect the boundary [19].

We require three parameters to describe the refinement of the mesh: the glob-
al resolution h, the boundary resolution hp, and the gap § between interior and
boundary points.

h = sup min |z — y|, (3.6)
yeX zegh
hg = sup min |z —yl, (3.7)

yedX TeGhNX
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0= min z—yl. 3.8
weg”ﬂX7yEGhﬁaX| y| ( )

In order to construct consistent numerical methods, we require that hg = o(h) and
d = O(h) as h — 0. This is easily accomplished as described in [19].

We will also associate to the mesh a directional resolution df and a search radius
r, whose roles will become clear in the remainder of this section. We choose

do = O(h), (3.9)
r=OWh). (3.10)

3.3. Approximation of second-order terms. We now utilize the approach of [15,
19] to describe consistent, monotone approximations of the eigenvalues of the Hes-
sian.

We begin by noting that the second-order operators appearing in (2.3) all involve
the eigenvalues of the Hessian matrix. In two dimensions, these can be characterized
in terms of the maximal and minimal second directional derivatives

0*u
2 o .
(D7) = i 5,0

0%u

Ao (D?u) = ‘rlrlllzfi 92

We begin by considering the approximation of the second directional derivative at

a point o along a generic direction v € R?. We first seek out candidate neighbors

to use in discretizing this operator. To begin, we consider all grid points within our
search radius r.

Neighboring grid points can be written in polar coordinates (p, ¢) with respect to
the axes defined by the lines z¢+tv, zo+tr~. We seek one neighboring discretization
point in each quadrant described by these axes, with each neighbor aligning as
closely as possible with the line xg + tv. That is, we select the neighbors

x; € argmin {sin2 b | (p,®) € G" N B(xg,r) is in the jth quadrant }

(3.11)

for j =1,...,4. See Figure 3. Because of the “wide-stencil” nature of these approx-
imations (since the search radius r > h), care must be taken near the boundary.
Our requirement that the boundary be sufficiently highly resolved (hp < h) ensures
that consistency can be maintained even at points x( close to the boundary.

. . 8% u(xg)
We now seek an approximation of = 5%

Dy, ulwo) = Z a;(u(z;) = u(zo))- (3.12)

of the form

Via Taylor expansion of u(xz;) (see [15]), we can verify that a consistent, (negative)
monotone approximation is obtained with the coefficients

25,(C385 — C2.53)

U= (385 — C285)(C25s — C25,) — (C181 — C151)(C285 — 0255)
e 285(C1 54 — CuS1)

(C85 — 0555)(C28; — C25,) — (C194 — C151)(C285 — C2S3)
as = —285(C184 — C451)

(C555 — C255)(C2S; — C25,) — (C1 51 — C15,)(C2Ss — C255)
= —281(C35; — C253)

(C3S5 — C255)(C2S, — C281) — (C154 — C451)(C2S, — C283)
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Y
L
Y
\

/
O ©
+
N~ +
‘ +

FiGURE 3. Potential neighbors are circled in gray. Examples of
selected neighbors are circled in black [19].

where we use the polar coordinate characterization of the neighbors to define
S; = pjsing;, Cj = pjcosg;.
We now want to use this to build up an approximation scheme for the eigenvalues
of the Hessian via the characterization in (3.11). At the discrete level, instead
of considering all possible second directional derivatives, we will consider a finite
subset along the subset of unit directions
7r

vh = {(cos(jde),sm(jda)) lj=1,..., L@J } . (3.13)
Notice that df, introduced in (3.9), now clearly describes the angular resolution of
this subset of unit vectors.

We now approximate our second order operators by

r.u(x) = u()) = min Dyu(a)

N (
)\ (z,u(x) —
(

) = max Duyu(z)

u(-
Fh(z,u(z) — u(-)) = —arctan(\? (z, u(z) — u(-))) — arctan(\2 (z, u(z) — u(-)))
LMz, u(z) — u(-)) = =M (z, u(z) —u()). (3.14)

This immediately leads to consistent, monotone approximations of our second-order
operators since the underlying schemes for D, u are (negative) monotone.

Lemma 3.1 (Second order approximations). The approzimation schemes F" and
L" are uniformly consistent, monotone approzimations of F(D*u) and —\;(D?u)
respectively.

3.4. Approximation of first-order terms. Monotone approximations of the
first-order terms in (2.3) have been more well-studied; of particular note are up-
wind [30, 35] and Lax-Friedrichs schemes [22]. Here we briefly review one choice of
discretization for the first-order terms in the interior of the domain, which is fairly
easily extended onto the non-uniform grids we are considering.
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Several options are available for the Hamilton-Jacobi operator H(Vu). A simple
choice is a modification of a standard Lax-Friedrichs scheme.

To construct this, we need to first describe generalizations of standard first-order
differencing operators. Let 2y € G and consider a differencing operator to approx-
imate a partial derivative in the coordinate direction v = (1,0). Let x1, %2, 23, 4
be the neighbors used in the approximation of D,,u(zg) (3.12). We can use these
same neighbors to generate a consistent forward difference type approximation of

the first derivative %

D gyu(zo) = bi(u(z1) — u(wo)) + ba(u(zs) — ulwo)). (3.15)

If either 1 —xg or x4 —xg is parallel to the direction v = (1,0), we can choose a
standard forward difference. Otherwise, let h; = (z;—x¢)-(1,0) and k; = (z;—x0)-(0,1)
be the horizontal and vertical displacements. Then a consistent scheme is given by

as

k‘4 kl
bl = ) b4 = :
kihg — hiky kihg — hiky
We can similarly define the differencing operators D(_1,0)7 DEBJ), and D(_(),l)' We can

also construct the centered type approximations
1
Dyu(z) = 5 (D +D;)) u(z). (3.16)

We note that the signed distance function H has Lipschitz constant one. Then a
consistent, monotone approximation at interior points x € X is given by

H" (2, u(z) —u("))
:H(D(170)U($)7 D(OJ)U(Z')) — E(h) (D(170)7(170)u(x) + D(071)7(071)U("E)) (317)

where
b
e(h) :max{ljl lj= 1,...,4}.
aj

Note that this is a natural generalization of the standard Lax-Friedrichs approxi-
mation to our augmented piecewise Cartesian grids.

Finally, we need to approximate the Eikonal term |Vu|. Again, many options
are possible. A slightly non-standard choice that is convenient for the convergence
analysis involves characterizing this as the maximum possible first directional de-
rivative,

B du(z)
[Vu(z)| = max =

Then a simple choice of discretization involves looking at all possible directions that
can be approximated exactly within our search radius r.

B, u() — ul- :max{u@%u(y)
(,u(er) — u(-)) e
3.5. Boundary conditions. Finally, we need to discretize the Hamilton-Jacobi
operator H(Vu) at points on the boundary. Using the representation (1.18) and

the angular discretization (3.13), we would like to express this as
H"(z,u(z) —u() = sup {Dpu(z) — H*(n)} (3.19)

neVh nn,>0

|y e ghﬂB(ﬂc,r)}. (3.18)

where D,u is a monotone approximation of the directional derivative of u in the
direction n.



16 BRITTANY FROESE HAMFELDT AND JACOB LESNIEWSKI

To accomplish this at a point zo € dX, we need to identify points 1,z € G"
such that for small ¢ > 0, the line segment xy — nt is contained in the convex hull
of zg,x1,22 (which is a triangle). Given the structure of our mesh, this is easily
accomplished for neighbors satisfying

|1’1 71’0| , |CE2 7%0‘ S O(h)

See Figure 4 for a visual of this selection.

Using these neighboring points, a consistent and monotone approximation for
Dpu(xg) can be built in exactly the same way as the forward differencing operator
D} was constructed in (3.15). That is, we let nt be a unit vector orthogonal to n
and define

h; = (xz —on) n, k= (xz —350) 'nlv

noting that h; < 0 for i+ = 1,2 and k1ks < 0. Then a consistent, monotone
approximation is given by

Dhu(zg) = ﬁ%(u(ml) —u(xg)) + ﬁ(u(m) —u(xg)). (3.20)

FIGURE 4. Examples of neighbors x1,zs needed to construct a
monotone approximation of the directional derivative in the direc-
tion n at the boundary point xg.

We remark that the discrete operator E" at the boundary is unchanged from the
form used on interior points; see (3.18).

4. Convergence analysis. We are now prepared to state our convergence results
for the numerical scheme presented in the previous section. We separate this into
two results: convergence of the eigenvalue ¢” and convergence of the grid function
ul.

Theorem 4.1 (Convergence of the eigenvalue). Let (e, Cer) be any solution of the
eigenvalue problem (0.3)-(0.4) and let (v, c") be any solution of the scheme (3.1).
Then c" converges to Cey as h — 0.

Theorem 4.2 (Convergence of the grid function). Let (teg, Cez) be a solution of
the eigenvalue problem (0.3)-(0.4) satisfying wes(wo) = 0 and let u™ be any solution
of the scheme (3.2)-(3.3). Then u" converges uniformly to ue, as h — 0.
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We also remark that, while our focus here is the construction of minimal La-
grangian graphs, this analysis could be readily adapted to more general eigenvalue
problems of the form (0.5) involving uniformly elliptic operators. We expect that
this approach can also be extended to non-uniformly elliptic operators, though the
proofs would require more technical regularization arguments such as those in [17,
Lemma 6.3].

4.1. Convergence of the Eigenvalue. We begin by establishing convergence of
the eigenvalue (Theorem 4.1). The proof of this result will require several short
lemmas. In these we will use the shorthand notation

FlMu) = F" (23, u(x;) — ul-))

H'[u] = H" (25, u(x;) — u(-)).

We also define the following objects relating to sub- and super-solutions of the
schemes.
Ul ={u| F'u]+¢c¢<0,2; € "N X; H'Mu] < 0,2; € G"NoX} (4.1)
Vh={v|FM'u]+¢>0,2; €G"NX; H'u] > 0,2, € G"noX} (4.2)
We begin by establishing that these sets of sub(super)-solutions are non-empty for
appropriate choices of c.

Lemma 4.3 (existence of sub(super) solutions). There exist u’ € Vc};+w(h)’ uth e

Ue,,—w(n) where w(h) is proportional to the mazimum consistency error T(h) of the
scheme.

Proof. We begin by letting D(x) be the signed distance function to the boundary
of the domain 0X. Note that D is smooth in a §-neighborhood of the boundary
0X for some 0 > 0. Next, we let ¢ be a smooth cut-off function satisfying

)1, dist(z,0X) < §/2
(@) = {0, dist(z, 0X) > 6.

We can then define a smooth function
w(z) = D(@)o(2).
Notice that on the boundary 0X, this will satisfy
Vw(z) =VD(z) =n,, x=¢€dX.

We choose some € > Mr(h), where £ is the constant arising in the formu-
lation of the Hamilton-Jacobi boundary condition (Lemma 1.5) and the constants
C1, Cy will be fixed later. Next we define

ul = Uex — EW, u}fr = Uex + EW.

We will show that for suitable choices of Cy,Cy and w(h) = O(7(h)) we have

ul € Uchexfw(h). The argument regarding u’i is similar.

Note that from Lemma (1.5), if € 9X then
H(Vu" (z)) = sup {Vu" (z)-n— H*(n)}

nng >l

< sup {Vuex(z) — H*(n)} — el

n-ng>L
= H(Vuex(x)) — €l
= —¢l.
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By consistency we have
HIMu"] < H(VU" (2;)) + Ci7(h) < —el + Cy7(h)

Ci7(h)
4

for some C; > 0. Since € > , we obtain

H"[u"] < 0.
Since our PDE operator F' is Lipschitz, we can also find some L > 0 so that
F(D*u" (2)) < F(D?uex(x)) + Le = —cox + Le.
By consistency we again have
Fl'ul] < F(D?u” () + Cor(h) < —cox + Le + Co7(h)
Since € > CQ+(h) and defining w(h) = Le(h) 4+ 7(h) we have
F'"u] 4 cox —w(h) < 0.

We conclude that u” € Uchex_w(h). O

Now using the discrete comparison principle, we can begin to see how the set-
s of sub(super)-solutions are related to each other, which will lead ultimately to
constraints on our numerically computed eigenvalue.

Lemma 4.4 (Comparison of eigenvalues). Suppose u1 € U and up € V. Then
c1 < co.

Proof. Suppose instead that ¢; > c5. Note that for any constant k£ we also have
uy + k € Uchl. Thus, we can assume that u; > us. Now we estimate

Fih[u1]—|—62 <Fih[U1]—|-Cl SOSFih[U2]+CQ, xieghﬂX
and
H!'Mui) <0< HM'ug), z; € G"noX.

By the discrete comparison principle (Lemma 1.11) we have u; < usg, a contradic-
tion. O

With these lemmas in place, we can now prove convergence of the numerically
computed eigenvalue.

Proof of Theorem 4.1. Recall that
FMoM +c" =0, z;€e6"nX
and

H!'v" =0, z;€G"nox.

?

Following Lemmas 4.3-4.4 we conclude that
Cox —w(h) < " < ey +w(h). O
Having proved the convergence of the eigenvalue ¢ — cey, this reduces our task from

the convergence of an eigenvalue problem to the convergence of a fully nonlinear
elliptic PDE.
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4.2. Convergence of the grid function. We now turn our attention to the con-
vergence of the approximation u” to the solution ue, (Theorem 4.2).

In order to prove this theorem, we first need to construct a piecewise linear
extension " of the grid function u”.

Let T" be a triangulation of G". In particular, given the structure of our balanced
quadtree mesh (augmented on the boundary), we can construct such a triangulation

such that the maximal angle of any triangle is bounded uniformly away from 7.
Definition 4.5 (Structure of triangulation). Define T" to be a triangulation of G"
satisfying the following properties:

(a) There exists some M < 1 (independent of h) such that if ¢+ € T" has the

interior angles 0, < 65 < 63 then
|cos B3| < M. (4.3)
(b) If t € T", then at most two nodes of ¢ are contained on the boundary 9X.
(c) If t € T", then the diameter of ¢ is bounded by 2h.

We note that since G" ¢ X , we need to ~extend triangles that intersect the
boundary in order to obtain a decomposition 7" that fully covers the domain. To
do this, we define the regions ¢; as follows:

Definition 4.6 (Extension of triangulation). Let t € T", with the nodes zq, z1, 3.
Then we define the corresponding region £ € T" as follows:
(a) If at least two nodes of ¢ are in X, set
t=t.
(b) If two nodes x1,z2 € 90X, set

t = Conv{xg, o + 2(z1 — 70), To + 2(2 — w0)} N X.

Ji=x.
ieT
Now we are able to define a continuous piecewise linear extension.

We remark that

Definition 4.7 (Extension of grid function). Define the unique continuous piece-
wise linear function %" satisfying:

(a) @"(z) = uh(x) for all x € G".

(b) @"(x) is a linear function on each region ¢ € 7.

We remark that 4" will also satisfy the approximation scheme (3.3)-(3.5).
An important element to our convergence proof will be to establish uniform

Lipschitz bounds on the approximations @".

Lemma 4.8 (Lipschitz bounds). There exists a constant L > 0 such that the
Lipschitz constant of 4" is bounded by L for all sufficiently small h > 0.

Proof. We begin by considering the function @" restricted to some fixed region
feTh. Let xo,x1, T2 be the nodes of £. Without loss of generality, we can assume
that the maximal interior angle 6 of £ occurs at the node zg.
Now we know that z; € G" for i = 0,1, 2. Since @" satisfies the scheme (3.5), we
know that
EM(zy, " (z;) — a"(-)) = R<0.
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From the definition of E® (3.18), we can conclude that
@ (x;) <" (y) + R|z; — |

for every y € G" N B(x;,7). In particular, this holds for y = xg, 21, x> since the
diameter of £ is bounded by 2h < r = O(v/h) for small enough h > 0. Thus, we
obtain the discrete Lipschitz bounds

|a"(z;) — @"(z;)| < Rlz; — 2], 4,5 €{0,1,2}.
We now use this to bound the gradient of @ over the region . Notice that for = € ¢
we can write
() = 4" (zo) +p - (x — x0)
where p = Vﬂh(x) is constant over this region. Since x; — z¢ and z — x¢ span R2,
we can find constants a1, as € R such that
p=ai(xy —x9) + az(ze — xp).
Now we use our discrete Lipschitz bounds to compute
R|z1 — x0| > Jur — uo| = |21 — ®o| |a1 |1 — xo| + a2 |x2 — 0| cos ).
Simplifying and applying the bound on the maximal angle (Definition 4.5) we obtain
R > |a1]|z1 — zo| — M |az| |z2 — 0] -
Similarly,
R Z |l12| |.CC2 — $0| - M|a1| |£L'1 — I0| .
Combining the two above expressions, we find that
R(M +1) > (1= M?) lag] |5 — ]

and thus
R
(]. — M) |{E2 —QC()|.
An equivalent bound is available for |a;].
Now we can bound p = Vi"(x) over the region by

las] <

2R
<lai||lx1 — as||xe — xg| < =L
[pl < lasl |21 = zo| +Jaz| oz — 2o < T—7
Since @" is piecewise linear, its Lipschitz constant will be bounded by the maximum
Lipschitz constant over each region ¢ € T", which is given by L. O

An immediate consequence of this is uniform bounds for @".

Lemma 4.9. There exists a constant C > 0 such that |1 | < C for all sufficiently
small h > 0.

Proof. Since " (x}) = 0 and 4" has a bounded Lipschitz constant (Lemma 4.8), we
have that
|7:Lh($)‘ = |11h(x) - ﬂh(wo)‘ < Lz — zg] < Ldiam(X)

for every x € X. O

Next we adapt the usual Barles-Souganidis convergence proof [1] to begin to show
how we can obtain viscosity solutions to (2.3) from our approximation scheme (3.2).

Lemma 4.10. Let h,, be any sequence such that h, — 0 and @' converges uni-
formly to a continuous function v. Then v is a viscosity solution of (2.3).
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Proof. We first demonstrate that v is a viscosity subsolution.
Consider any zg € X and ¢ € C? such that v — ¢ has a strict local maximum at
T with v(xg) = ¢(z0). Define by z, € G" a maximizer of @"» — ¢ over the grid,

@' (20) = ¢(z) 2 @ () — p(x), x € G
Because @ and the limit function v are uniformly Lipschitz continuous, we have
Zn = o, U (2n) = v(20).
From the definition of z,, as a maximizer of @"» — ¢, we also observe that

ﬂhn (zn) - ﬂ‘hn(') > ¢(Zn) - ¢()
Let G(Vu(z), D?u(z)) denote the PDE operator (2.3) and G"(x,u(x) — u(-)) the
scheme (3.4) at interior points z € G" N X. Since @~ is a solution of the scheme,
we can use monotonicity to calculate

0= Ghn (Zn7ahn(2n) - ,ahn(.)) > Ghn (Z'm ¢(Zﬂ) - ¢())
As the scheme is consistent, we conclude that

02 lim G" (20, ¢(2n) — $(-)) = Gu(20, Vé(x0), D*(0))-

Thus v is a subsolution of (2.3).
An identical argument shows that v is a supersolution and therefore a viscosity
solution. ]

With these lemmas in place, we can now complete the main convergence result.

Proof of Theorem 4.2. Let h, be any sequence converging to 0. Since @' is u-

niformly bounded and Lipschitz continuous (Lemmas 4.8-4.9), we can apply the
Arzela-Ascoli theorem to obtain a subsequence h,,, such that u#+ — v uniformly
for some continuous function v.

By Lemma 4.10, v is a viscosity solution of (2.3) and therefore a classical solution
of the eigenvalue problem (0.3)-(0.4). Moreover, since convergence is uniform and

u"mk continuous we have that

o(wo) = lim " (zp"*) = 0.

Thus v = uey is the unique solution of (0.3)-(0.4) satisfying v(zg) = 0.
Since every sequence %/» has a subsequence converging to ey, we conclude that

h converges to Uey. O

U
5. Computational results. We now present some numerical results to illustrate
the effectiveness of our methods.

These computations require solving the nonlinear algebraic system (3.1)

G " =0
for the unknowns v" and ¢*. While the system is not differentiable, the non-

smoothness occurs in a simple form through the max function. These systems can
be solved using a nonsmooth version of Newton’s method [29], which involves the

iteration
Vk+1\ _ (Y&\ _ {,—1.h,, .
(Ck+1> n (Ck> Vi G [k o]

where Vi € 0G"[vy; cx] is an element of the generalized Jacobian of G". Given the
simple form of the non-smoothness in this problem, appropriate elements of the
generalized Jacobian are easily computed via Danskin’s Theorem [5].
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We note that the solution v we obtained here always satisfied (3.2) so we have
never found it necessary to solve this second system in practice.

5.1. Affine surface. We begin with an example where the minimal Lagrangian
surface Vu is affine, which allows us to exactly determine the error in our computed
results.

Let B be the unit circle. Then the domain ellipse is given by X = M, B and the
target skew ellipse is given by Y = M, B, where

2 0
_—
and
1.5 5
=23

In R? the optimal map can be found explicitly to be
Vu(z) = MyRyM, =

where Ry is the rotation matrix

and the angle is given by
0 = tan™* ((trace(M;1M;1J)/trace(M;1M;1)))
where
0 -1
1= ] ]

The map and the convergence data are in Figure 5 and Table 1. In this example, we
actually observe linear convergence, which is higher than the formal discretization
error of our method.

h lu® — tex]le Ratio Observed Order
2.625 x 10°T 1.304 x 1071
1.313 x 107! 5.703 x 1072 2.287 1.194
6.563 x 1072 2.691 x 1072 2.119 1.084
3.281 x 1072 1.423 x 102 1.891 0.919
1.641 x 1072 6.768 x 103 2.103 1.072

TABLE 1. Error in mapping an ellipse to an ellipse.

5.2. Varying boundary conditions. For most examples, we do not have access
to an exact solution. Nonetheless, we can easily compute the solutions and visually
determine if the computed mapping Vu appears correct. In the following examples,
we take as our domain the square X = (—1.1,1.1) x (—1.1,1.1), which is not required
to align well with any underlying Cartesian grid in order to challenge our numerical
method. We consider the solution of (0.3)-(0.4) for a variety of convex (though not
necessarily uniformly convex) target sets Y. These include a bowl shape, an ice
cream cone, a pentagon, and a circle. The computed maps are pictured in Figure 6
and do effectively recover the required geometries.



FINITE DIFFERENCE METHOD FOR LAGRANGIAN GRAPHS 23

Domain Gradient
25 T T T T T r T

T T T T 25 T T T

FIGURE 5. Domain and computed target ellipse.

Gradient Gradient
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FI1GURE 6. Computed maps from a square X to various targets Y.

Additionally, we consider the case where the domain X is the unit circle and
the desired target Y = (—1.1,1.1) x (—1.1,1.1) is a square. The computed map is
shown in Figure 7, and again achieves the required geometry.
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Domain Gradient

1 1 1 1 1 1 1 1 1 1 1
-1 08 -06 -04 02 0 02 04 06 08 1 -1 05 0
X X

FI1GURE 7. Circular domain X and square target Y.

5.3. Degenerate example. We also tested our method on the highly degenerate

example of a circle X mapped to a line segment Y = {0} x (—1,1). The exact
solution for this is u(x,y) = % This example leads to a highly degenerate PDE
that falls outside the purview of our convergence proof. Nevertheless, our method
computes the solution without difficulty, and we again observe O(h) convergence.

The error is presented in Table 2 and the computed map is pictured in Figure 8.

h |u® — tex|le  Ratio Observed order
1.375 x 10T 9.132 x 1072
6.875 x 1072 3.812x 1072 2.396 1.261
3.438 x 1072 1.936 x 1072 1.969 0.978
1.719 x 1072 1.082 x 1072 1.790 0.840
8.59 x 1073  4.636 x 10~3 2.333 1.222

TABLE 2. Error in mapping a circle to a line segment.

6. Conclusion. In this paper, we considered the numerical construction of minimal
Lagrangian graphs. Following [6], we can interpret this as an eigenvalue problem
for a fully nonlinear elliptic PDE with a traditional boundary condition replaced by
the second type boundary condition.

To date, the literature has produced very little in the way of numerical analysis
for this type of nonlinear eigenvalue problem. We introduced a numerical framework
for solving this problem, which could be easily adapted to more general eigenvalue
problems. This includes a very promising approach for solving PDEs where noisy
data fails to exactly solve a required solvability condition or where the discrete
solvability condition differs slightly from the solvability condition for the original
continuous problem.

We used the monotonicity of our method to demonstrate convergence of the ei-
genvalue. By introducing a strong form of stability into our method, we were able
to modify the Barles and Souganidis convergence proof to obtain a proof of uni-
form convergence of our computed solution. A range of challenging computational
examples illustrated the effectiveness of our approach.
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