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ABSTRACT The recovery of large carnivore species from over‐exploitation can have socioecological effects;
thus, reliable estimates of potential abundance and distribution represent a valuable tool for developing
management objectives and recovery criteria. For sea otters (Enhydra lutris), as with many apex predators,
equilibrium abundance is not constant across space but rather varies as a function of local habitat quality and
resource dynamics, thereby complicating the extrapolation of carrying capacity (K ) from one location to
another. To overcome this challenge, we developed a state‐space model of density‐dependent population
dynamics in southern sea otters (E. l. nereis), in which K is estimated as a continuously varying function of a
suite of physical, biotic, and oceanographic variables, all described at fine spatial scales. We used a theta‐logistic
process model that included environmental stochasticity and allowed for density‐independent mortality
associated with shark bites. We used Bayesian methods to fit the model to time series of survey data,
augmented by auxiliary data on cause of death in stranded otters. Our model results showed that the expected
density at K for a given area can be predicted based on local bathymetry (depth and distance from shore),
benthic substrate composition (rocky vs. soft sediments), presence of kelp canopy, net primary productivity, and
whether or not the area is inside an estuary. In addition to density‐dependent reductions in growth, increased
levels of shark‐bite mortality over the last decade have also acted to limit population expansion. We used the
functional relationships between habitat variables and equilibrium density to project estimated values of K for
the entire historical range of southern sea otters in California, USA, accounting for spatial variation in habitat
quality. Our results suggest that California could eventually support 17,226 otters (95% CrI= 9,739–30,087).
We also used the fitted model to compute candidate values of optimal sustainable population abundance (OSP)
for all of California and for regions within California. We employed a simulation‐based approach to determine
the abundance associated with the maximum net productivity level (MNPL) and propose that the
upper quartile of the distribution of MNPL estimates (accounting for parameter uncertainty) represents an
appropriate threshold value for OSP. Based on this analysis, we suggest a candidate value for OSP (for all of
California) of 10,236, which represents 59.4% of projected K. © 2021 The Authors. The Journal of Wildlife
Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.

KEY WORDS Bayesian state‐space model, density dependence, Enhydra lutris, habitat quality, optimal sustainable
population, population abundance, sea otter.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Received: 22 April 2020; Accepted: 17 November 2020

1E‐mail: ttinker@ucsc.edu
2Current affiliation: Ecology and Evolutionary Biology, UC Santa Cruz, Long Marine Lab, 115 McAllister Way, Santa Cruz, CA 95060, USA

Tinker et al. • Habitat Features Predict K for Sea Otters 1

http://orcid.org/0000-0002-3314-839X
mailto:ttinker@ucsc.edu


After decades of legal protection and conservation efforts,
some of the world's most depleted and endangered wildlife
populations are recovering and re‐colonizing regions from
which they had once been extirpated (Halley and
Rosell 2002, Heide‐Jørgensen et al. 2007, Ripple and
Beschta 2007, Buxton et al. 2014, Silliman et al. 2018).
Although encouraging, this recovery process is sometimes
associated with new conservation and management
challenges. Particularly in the case of large predators, their
return to ecosystems from where they were missing for long
periods may cause substantial perturbations to local food web
dynamics (Ripple and Beschta 2012). Returning large pred-
ators to ecosystems can lead to direct human‐wildlife conflict
or to resource‐use conflicts with human economies that de-
veloped during their absence (Carswell et al. 2015). At the
same time, the recovery of large predators can help restore
ecosystem functioning, sometimes in unanticipated ways, and
fuel the growth of new economic opportunities (Lotze
et al. 2006, Beschta and Ripple 2009). Anticipating the
ecological and socioeconomic effects of large predator re-
covery requires first answering a suite of questions that can be
summarized as when, where, and how many? The question of
when relates to the speed of recovery, which requires in-
formation on growth rates and dynamics of population ex-
pansion into un‐occupied suitable areas. The question of
where refers to the specifics of location and distribution
(current and future) within a species’ potential range, which
requires information on habitat associations or environmental
predictors of occupancy and abundance. The question of how
many refers to the expected future abundance of the species
once it has fully recovered; this requires information on en-
vironmental carrying capacity (K ), or the number of animals
that can be supported in a given area once the population has
reached equilibrium with its limiting resources. Estimating K
is complicated because equilibrium abundance can vary as a
function of prey productivity and habitat quality (Hobbs and
Swift 1985) and thus cannot be simply extrapolated from one
location to others. A further complication is that changing
environmental conditions (e.g., anthropogenic influences,
climate change effects) can lead to variation in K over time.
Sea otters (Enhydra lutris) provide an excellent example of a

recovering coastal marine predator whose return to regions
from which it was extirpated during the fur trade of the
eighteenth and nineteenth century (Kenyon 1969) can have
substantial ecological and (in some cases) socioeconomic ef-
fects (Larson et al. 2013, Salomon et al. 2015). As a keystone
carnivore in nearshore marine ecosystems, sea otters have a
disproportionately large influence on the structure and
function of subtidal food webs (Estes and Palmisano 1974).
Many of the changes associated with the return of sea otters
to these systems are considered beneficial; these include an
increase in growth and productivity of dominant primary
producers such as kelp and eelgrass (Zostera spp.; Estes and
Duggins 1995, Hughes et al. 2013), greater diversity and
productivity of invertebrate assemblages (Duggins 1980,
Estes et al. 2004), and improved nursery habitat for com-
mercially important fish (Reisewitz et al. 2006). But in some
areas, the return of sea otters can lead to conflicts with

commercial, recreational, and subsistence fisheries that were
made possible by the super‐abundance of certain invertebrate
taxa that occurred when sea otters were removed from the
system (Carswell et al. 2015). Resource managers thus face
the dual challenge of ensuring full recovery of depleted sea
otter populations, while anticipating and addressing potential
socioeconomic changes that are likely to occur. Successful
resolution of conflicts between fisheries and recovering ma-
rine bird and mammal populations depends on early en-
gagement with stakeholders and availability of reliable
scientific data on spatially explicit dynamics and population
potential (Bruckmeier et al. 2013, Jepsen and Olesen 2013,
Klenke et al. 2013, Butler et al. 2015, McDonald et al. 2016).
The southern sea otter (E. l. nereis) is listed as threatened

under the United States Endangered Species Act (ESA) and is
also protected under the United States Marine Mammal
Protection Act (MMPA). The MMPA established federal
policy that marine mammal species and stocks should not be
allowed to diminish below their optimum sustainable pop-
ulation (OSP), defined as the number of animals resulting in
maximum productivity, keeping in mind the carrying capacity
of the habitat and the health of the ecosystem of which they are
a part (16 United States Code [USC] 1362). Species or stocks
that are listed under the ESA are automatically considered to
be depleted under the MMPA, but designation of depleted
status for non‐ESA‐listed species may also result from a de-
termination that a species or stock is below its OSP (16 USC
1362). Because an estimate of carrying capacity (K ) forms the
basis for determination of a species or stock's OSP and hence
its depleted status, estimating K for each designated stock of sea
otters is a high priority for management under the MMPA.
The southern sea otter's current distribution in central

California, USA, ranging from approximately Pigeon Point in
the north to Gaviota State Park (20km east of Point
Conception) in the south (Fig. 1), represents just a fraction of
its historical distribution, which includes all the coastal waters of
California and portions of coastal Oregon, USA, and Baja,
Mexico (U.S. Fish and Wildlife Service [USFWS] 2003).
Anticipating the potential equilibrium abundance of sea otters
in currently occupied areas and in uncolonized but potential
future habitats is a high priority for managers. A first step in
achieving this goal is to define the spatial scale at which K is to
be measured or estimated. There is growing recognition that sea
otter populations are structured at fairly small spatial scales
(Bodkin 2015, Davis et al. 2019, Tinker et al. 2019a) because of
the limited mobility and high site fidelity of reproductive fe-
males (Tarjan and Tinker 2016, Breed et al. 2017) and because
the abundance of their benthic invertebrate prey varies at small
spatial scales and is subject to local depletion (Burt et al. 2018).
Demographically, K for sea otters is determined at local scales
(i.e., over tens of kilometers rather than over hundreds of
kilometers), and a regional value of K is better understood as the
summation of K over all local habitats. This recognition shifts
the challenge to understanding how local K varies over space
(and potentially over time), and what explains this variation.
The equilibrium density for any species depends on the

dynamics of ≥1 limiting resources. For many upper‐trophic‐
level predators (sea otters included), the key limiting resource
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is high‐quality prey (Estes 1979, Estes et al. 1996).
Therefore, spatial variation in the abundance and productivity
of benthic macro‐invertebrates is the factor most likely to
predict local variation in K for sea otters. Unfortunately,
many sea otter prey are highly cryptic and their abundance is
logistically difficult to quantify at relevant scales. Luckily
there are a number of possible habitat‐based proxies for in-
vertebrate prey productivity, and several previous analyses
have used habitat‐based predictors of sea otter abundance or
carrying capacity (Laidre et al. 2001, Coletti 2006, Gregr
et al. 2008, Laidre et al. 2009, Stewart et al. 2015). Laidre
et al. (2001) analyzed the relationship between sea otter
density and benthic substrate, then extrapolated an estimate
of K for all of California. This estimate of K has served as a
useful benchmark for coastal resource managers for almost
2 decades; however, a re‐analysis of K for southern sea
otters is warranted for several reasons. The single habitat
predictor used for the earlier analysis was a relatively simple

classification of substrate type (rocky, sandy, mixed), but re-
searchers have reported that sea otter abundance and foraging
success are affected by a broader array of environmental fea-
tures including coastal bathymetry (Thometz et al. 2016),
kelp canopy cover (Nicholson et al. 2018), benthic substrate
complexity and composition (Stewart et al. 2015, Tinker
et al. 2017), and ocean productivity (Davis et al. 2019). We
now understand that estuarine systems may represent im-
portant sea otter habitat, distinct from soft‐sediment areas of
the outer coast (Hughes et al. 2013, Silliman et al. 2018).
Recent innovations in remote sensing, substrate character-
ization using multi‐beam sonar, and analysis using geographic
information systems (GIS) have made data available for all
these habitat features in coastal California waters, thereby
enabling a more comprehensive examination of habitat
predictors of carrying capacity.
A second limitation of the analysis by Laidre et al (2001)

was the assumption that certain areas of the coast had

Figure 1. The central coast of California, USA, showing the main study area. Sea otter habitat (both currently occupied and potential) is shown as a colored
band along the coast, color‐coded to identified 5main regions used to summarize model projections. The central coast region is further sub‐divided into
19 coastal sections (labeled with numbers), with a twentieth section around San Nicolas Island in the Channel Islands; we used these 20 coastal sections to
analyze population trends between 1983 and 2018, and they represent the currently occupied (as of 2018) areas of the coast.
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reached carrying capacity by the late 1990s; they used these
index areas as the basis for extrapolating substrate‐specific
values for equilibrium density. It is now recognized that the
apparent leveling off of sea otter abundance in California
between 1995 and 2000 was a brief period of population
decline caused by elevated mortality in the geographic
center of their range (Tinker et al. 2006), and positive
growth resumed in the early 2000s (Tinker and
Hatfield 2017). Thus, some of the index areas used by
Laidre et al (2001) were likely still below K, and the esti-
mated equilibrium density values therefore were biased to
some degree. Recently developed analytical methods offer a
more robust approach for estimating K, circumventing the
need to assume equilibrium status of any one index area.
Specifically, by fitting Bayesian state‐space models to time
series of survey data, it is possible to estimate the parameters
of a theta‐logistic growth model, including K (Miller and
Meyer 2000, Chaloupka and Balazs 2007, Wang 2007).
Similar methods have been used recently to estimate local
and regional values of K for sea otters in southeast Alaska
(Tinker et al. 2019a).
We developed a method for estimating the functional

relationship between habitat features and carrying capacity
for the southern sea otter. We used a state‐space model of
density‐dependent population dynamics, in which K is es-
timated as a continuously varying function of a suite of
physical, biotic, and oceanographic variables, all described at
fine spatial scales. We fit the model to a time series of
spatially explicit survey data, incorporating auxiliary data on
non‐density‐dependent mortality sources to improve model
fit and generalizability. We used the results to project
estimated values of K to the entire historical range of
southern sea otters in California. We designed our analyses
to determine whether habitat‐based predictor variables can
identify key areas of the coast capable of supporting high
density sea otter populations, the expected equilibrium
abundance of sea otters across their entire range in
California, and an appropriate candidate value for OSP in
California.

STUDY AREA

Our analyses apply to all potential sea otter habitat
(9,580 km2; Fig. 1) in coastal California, over the period
1983–2018. Sea otter habitat has been defined previously as
all coastal marine intertidal and subtidal areas between
the shoreline and the 100‐m depth contour (Bodkin
et al. 2004), although other studies have limited consid-
eration to the 0–40‐m depth range (Gregr et al. 2008).
Based on preliminary analysis of survey data (Tinker and
Hatfield 2017) and published information on diving depths
of sea otters in California (Tinker et al. 2007, Thometz
et al. 2016), we defined potential sea otter habitat in
California as the marine coastal zone between 0–60m in
depth, including tidally influenced estuaries. This region is
part of the California Current and is characterized by cool,
nutrient‐rich waters and strong seasonal upwelling caused
by prevailing northwesterly winds between May and
September (Lynn and Simpson 1987). Seasonal fluctuations

in temperatures and rainfall are typical of temperate,
Mediterranean‐like climates, with a long summer dry season
(May–Nov) and slightly cooler and wetter winters
(Dec–Apr).
The intertidal and nearshore subtidal zones in coastal

California include a mix of complex rocky areas interspersed
with soft‐sediment areas, the latter including several large,
sand‐bottomed embayments. In rocky reef areas, macroalgae
(i.e., kelp) forms the dominant vegetation, including surface
canopy‐forming kelp species (giant kelp [Macrocystis
pyrifera] and bull kelp [Nereocystis luetkeana]) and various
understory kelps (including brown and red algae species),
which together comprise a kelp forest (Schiel and
Foster 2015). Diverse assemblages of macro‐invertebrates
and fish species rely on these kelp forests for food and
physical habitat structure (Miller et al. 2018). Larger ver-
tebrate predators (seals, seabirds, sea otters) represent the
upper trophic levels of these kelp‐associated food webs, with
sea otter diets including virtually all available macro‐
invertebrate taxa (Riedman and Estes 1990). Sub‐tidal food
webs in soft‐sediment coastal areas differ from kelp forests:
phytoplankton represent the predominant primary pro-
ducers and burrowing infaunal (e.g., clams, marine worms)
and epifaunal invertebrates (e.g., crabs, sand dollars) repre-
sent the primary prey species for sea otters (Kvitek and
Oliver 1988). In addition to the rocky and soft‐sediment
benthic areas of the outer coast, California features several
estuarine ecosystems, defined as semi‐enclosed, tidally in-
fluenced embayments with freshwater inputs, which expe-
rience a mixture of fresh and saline waters and provide
important habitat for a variety of marine and terrestrial
species (Day et al. 1989). Dominant vegetation includes
seagrass (Zostera marina) and green algae in sub‐tidal areas
and pickleweed (Salicornia virginica) in the inter‐tidal zone.
Infaunal invertebrate species (e.g., clams, marine worms)
and epifaunal species (e.g., crabs, fish, sharks, rays;
Hechinger et al. 2011) can occur at high densities. Sea
otters can use any estuarine waters having sufficient tidal
exchange to support marine invertebrate prey assemblages;
recent evidence suggests that estuarine systems may
potentially support higher densities of sea otters than
comparable soft‐sediment areas along the outer coast
(Silliman et al. 2018).
Analyses of sea otter population dynamics and genetics

(Gagne et al. 2018, Tinker et al. 2019a) indicate that
populations are structured and regulated at relatively small
spatial scales, tens of kilometers rather than hundreds of
kilometers. To accommodate this demographic structure in
our analyses, we partitioned all potential sea otter habitat
into a contiguous series of coastal sections (s= 1, 2… S),
each spanning approximately 20–40 km of coast (Fig. 1).
The size of each section was several times larger than a
typical sea otter home range (Tarjan and Tinker 2016) and
thus demographic processes within a section can be con-
sidered homogenous, whereas sea otters in different sections
might experience different conditions and limiting factors.
We selected boundaries between coastal sections to match
the divisions used previously for analyzing sea otter survey
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data (Laidre et al. 2001, Tinker et al. 2008); these boun-
daries correspond to natural breaks between areas of mostly
homogenous benthic zone characteristics (Tinker and
Hatfield 2017).

METHODS

Data Collection and Processing
Survey data.—We use previously published data from

standardized range‐wide censuses conducted annually along
the central California coast (Hatfield et al. 2018a), detailed
methods for which are described elsewhere (Tinker and
Hatfield 2017). Hatfield et al. (2018b) used similar methods
to survey the mainland coast and the distinct sea otter
population at San Nicolas Island, California. Shore‐based
survey methods consisted of teams of observers that scanned
the entire nearshore central coastal zone using binoculars
and high‐powered spotting scopes. They marked the
location of each individual or group of otters on high‐
resolution coastal maps (scale 1:24,000) and later digitized
locations into a GIS. In areas of the mainland with limited
coastal access, or shallow, sandy embayments where sea
otters can occur far from shore and thus are difficult to
count reliably by shore‐based observers, teams used aerial
survey methods. They flew aerial surveys along contiguous
transects oriented parallel to the shore covering all areas
between the coastline and the 60‐m depth contour; 2
observers and a data recorder digitized the locations of all
observed animals directly into a GIS. We combined data
from shore‐based and aerial surveys prior to analyses. The
resulting data set provides an un‐corrected count of the
entire population. Because of the un‐replicated nature of
each year's count, no formal correction is available for the
number of un‐observed animals for any given survey, a value
that likely varies considerably from year to year (Tinker and
Hatfield 2017). Also, aerial surveys (which account for
~30% of the mainland count) have a lower and more
variable detection probability than shore‐based counts,
which can detect 90–95% of animals present (Estes and
Jameson 1988, Udevitz et al. 1995, Bodkin and
Udevitz 1999). A previous investigation of the detection
probability of southern sea otters from an aerial platform
(which used decoy sea otter targets in replicated trials)
suggested a detection probability ranging from 40–80%,
depending on viewing conditions (Henkel et al. 2014).
Observers did not record viewing conditions for aerial
surveys consistently over the study period; thus, selection
of an appropriate correction factor for this study was
not feasible. Moreover, all management benchmarks
for southern sea otters (e.g., criteria for up‐listing or
down‐listing recovery status under the ESA) correspond
to an abundance index based on un‐corrected counts
(USFWS 2003). Given these limitations, and for
consistency with management benchmarks and previous
publications (Tinker et al. 2006), we did not attempt to
correct counts for detection probability or availability, as
has been done for northern populations (Bodkin and
Udevitz 1999), but instead relied on un‐corrected counts

that are assumed to capture a high proportion of the
population on average (Estes and Jameson 1988). Observers
conducted all sea otter surveys with approval and oversight
by the Institutional Animal Care and Use Committee of the
University of California Santa, Santa Cruz, and with
permission of the USFWS Department of Management
Authority (permit number MA672624).
We analyzed annual spring count data from mainland coast

censuses conducted during 1983–2018 (Hatfield et al. 2018a)
but excluding 2011 when adverse weather conditions pre-
vented completion of the survey. For San Nicolas Island we
used annual spring count data from 1995–2018 (Hatfield
et al. 2018a). For both time series, raw data consisted of
spatially explicit observations of independent otters and de-
pendent pups in groups ≥1. To fit the state‐space model, we
compiled the raw data into 2 separate and effectively in-
dependent data sets. First, we tallied the annual counts in each
of the 20 distinct coastal sections (Fig. 1) to obtain the count
of independent otters for coastal section s in year t (Cs,t).
Second, we created a high‐resolution spatial summary of sea
otter distribution by tallying across all years the number of
otter observations at each cell of a 100‐m grid. We created
this 100‐m square grid in NAD83 Teale Albers projection
(https://spatialreference.org/ref/sr-org/california-teale-albers-
nad83-projection, accessed 1 Sep 2019) for the entire
coastline of California between the low tide and the 60‐m
depth contour (see Fig. S1, available online in Supporting
Information) and used the grid for summarizing all habitat
features (described below). We spatially joined the raw
survey data for the mainland and San Nicolas Island to this
grid (i.e., assigned each observed otter group the unique
identifier of the closest grid cell [g] based on the Euclidean
distances between observations and grid centroids) to com-
pute a vector of otter counts summed across survey years for
each grid cell (Og).
Carcass data.—Shark‐bite mortality has recently emerged

as a major source of mortality for sea otters in California
(Tinker et al. 2016, Moxley et al. 2019, Miller et al. 2020).
Variation in per capita risk of shark bite may be explained in
part by proximity to pinniped haul‐out areas and availability
of kelp canopy cover (Tinker et al. 2016, Nicholson
et al. 2018) but appears to be largely independent of sea
otter population density (Miller et al. 2020). To the extent
that elevated rates of shark‐bite mortality are influencing
local population trends (Hatfield et al. 2018b) and are
functionally density‐independent, they could complicate the
detection of density‐dependent trends. Therefore, to avoid
confounding effects and improve fit of the state‐space
model, we tracked this source of mortality separately from
all other sources of mortality that are largely density‐
dependent. To improve fit, we used a previously published
data set documenting all sea otter strandings in California
from 1985–2017 (Hatfield et al. 2017). Moribund and dead
sea otters frequently wash ashore in California, where they
may be found and reported by the general public and are
then collected by members of a coordinated state‐wide sea
otter stranding response network. The objective of the
network is to document and recover all stranded southern
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sea otters, although certain areas such as the Big Sur
coastline are under‐represented because of access and
logistical constraints. Members examine all beach‐cast sea
otters (most of which are dead, but also live moribund
animals that would have died without intervention) and
record the date, geographic location, sex, age class, general
condition, and circumstantial cause(s) of death (if evidence
is apparent) of each recovered animal. Shark‐bite wounds in
particular leave very clear evidence (puncture wounds), and
with the exception of heavily decomposed or scavenged
carcasses, cause of death from sharks can be reliably
distinguished from all other causes of death (Tinker
et al. 2016, Hatfield et al. 2017). For each year and
coastal section, we tabulated the number of recovered
carcasses (Zs,t) and the number of carcasses with shark bite
as likely cause of death (Zsb,s,t). We tallied data separately
for males and females and excluded from analyses a small
number of decomposed or scavenged carcasses where
determination of shark‐bite status (or any other cause of
death) could not be reliably determined.
Habitat variables.—Physical variables that affect sea otter

density include bathymetric depth and substrate type (Laidre
et al. 2001, 2009; Bodkin et al. 2004; Tinker et al. 2017,
2019a). In California, we collected bathymetric data describing
depths (in m) from the coastline out to 20km from shore using
high‐resolution multibeam mapping by the California Seafloor
mapping program ( Johnson et al. 2017), although we used
some legacy data to fill in gaps in coverage, especially in
southern California (California Department of Fish and
Wildlife, Marine Region GIS downloads, ftp://ftp.dfg.ca.gov/
R7_MR/BATHYMETRY, accessed 1 Sep 2019). Next, we
classified multibeam bathymetry data into 2 categories of
benthic substrate, corresponding approximately to rocky versus
soft sediment, using the vector ruggedness measure (VRM)
tool in ArcGIS (version 10.4+ ; Esri, Redlands, CA, USA),
part of the Benthic Terrain Modeler toolbox (https://coast.
noaa.gov/digitalcoast/tools/btm.html, accessed 1 Sep 2019)
provided by the National Oceanic and Atmospheric
Administration's Office for Coastal Management. We
completed most substrate classifications based on the
California Seafloor mapping program (Johnson et al. 2017),
but we classified areas of unmapped nearshore zone separately
using auxiliary data sources. Specifically, we simplified shoreline
data derived from the National Oceanic and Atmospheric
Administration's Environmental Sensitivity Index (https://
response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/
environmental-sensitivity-index-esi-maps, accessed 1 Sep
2019) to rock versus sediment categories, then we compiled
the best available bathymetry, substrate, and shoreline data
from the SeaGrant project (https://caseagrant.ucsd.edu/
project/filling-the-white-zone-new-methods-for-interpolating-
seafloor-attributes-in-californias, accessed 1 Sep 2019) and
used these data to interpolate benthic substrate type and depth
contours in the unmapped nearshore zone (a narrow band
generally <10m depth coastwide). We conducted
interpolation between the shoreline layer and deeper benthic
layers at the scale of a 30‐m× 30‐m grid. We interpolated the
proportion of rock substrate using inverse distance weighting

(with weighting of 0.5), with shoreline and offshore data
inputs of mean proportion of rock in each 30‐m grid cell. We
interpolated depths across the unmapped zone using the
natural neighbor technique in ArcGIS, with shoreline and
offshore data inputs of mean depth in each 30‐m grid cell. We
then up‐scaled the resulting GIS layers for depth (D) and
proportion of rock (using bi‐linear interpolation and
averaging) to the common 100‐m grid. Finally, because
equilibrium densities within enclosed estuaries may differ
from those in soft‐sediment areas of the open coast (Silliman
et al. 2018), we also included a categorical switch variable
to identify grid cells in estuarine areas (1 for estuaries, 0 for
open coast).
Another physical variable predictive of sea otter abundance

is distance to shore (DS), which we computed as the
Euclidean distance in meters from the centroid of each grid
cell to the nearest permanently exposed shoreline (i.e., ex-
cluding emergent rocks that are covered at high tide). In
general, higher densities of otters are found closer to shore
(Bodkin and Udevitz 1999, Tinker et al. 2017). Because
distance to shore is strongly correlated with depth, inclusion
of both variables resulted in problems with model identifi-
ability. We therefore created an index of distance to shore
that was de‐trended for depth, by taking the residuals from a
non‐linear function relating DS to D for all grid cells (g)
along the California coast:

DS Dlog 1 1.669 3.123.g g
0.289( + ) = × + (1)

In equation 1 we fit the numeric coefficients using max-
imum likelihood, and thus residuals from this equation
(DSR) provide an index of relative distance to shore that is
independent from depth effects: positive values indicate
areas that are farther from shore than average for a given
depth, whereas negative values indicate areas that are closer
to shore than average for a given depth. The DSR index is
related to the slope of the continental shelf in the region
around each grid cell: areas with a steep benthic slope such
as the Big Sur coast (Fig. 1) tend to have negative values of
DSR, whereas areas with shallow benthic slope such as
northern Monterey Bay tend to have positive values of
DSR. We therefore expected that the DSR index would
capture several potential direct and indirect effects on sea
otter density. For example, benthic shelf slope could affect
sea otter density and distribution by determining how
concentrated or dispersed the sea otter foraging habitat is,
and could also affect oceanographic processes such as pri-
mary productivity and prey recruitment. We anticipated
that the effect of DSR on habitat quality for sea otters might
be non‐linear; thus, we computed squared index values
(DSR2) to allow for both linear or quadratic effects of rel-
ative distance to shore (de‐trended for depth).
In cases of very shallow continental slopes or offshore

seamounts, accessible depths may occur extremely far
from shore (e.g., tens of kilometers). Radio‐tagging data
from field studies suggest that sea otters rarely use these
far‐offshore areas (Tinker et al. 2017), unless they include
shallow rocky reefs with kelp canopy; this pattern may
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reflect differing prey communities or lack of proximity to
shelter in far‐offshore areas. Regardless, to allow for an
offshore effect beyond that explained by the DSR index, we
calculated an offshore index (OFSH) as:

DSOFSH max 0, 1,000 5,000 .g g
2= [ ( − )/ ] (2)

Equation 2 takes on values of 0 for distance‐to‐shore values
<1,000m, and the quadratic functional form is structured to
allow that OFSH becomes substantial only at large distances
from shore (≥5km). Equation 2 is scaled using a divisor of
5,000 to produce values of the same approximate magnitude as
other habitat variables, to facilitate model fitting.
In addition to the physical habitat variables described

above, we also consider biotic variables that may affect
habitat quality for sea otters. Kelp forests provide
3‐dimensional structure over shallow rocky reefs along the
California coast and support a diverse assemblage of species
(Miller et al. 2018), and sea otters may preferentially use
kelp forests, where prey is more abundant (Riedman and
Estes 1990). We therefore created a GIS‐based kelp canopy
layer throughout sea otter range in California. We de-
termined kelp forest canopy occurrence using the Landsat
satellites from 1984–2018 following established methods
(Cavanaugh et al. 2011, Bell et al. 2017). Briefly, we ac-
quired Level‐2 Surface Reflectance products from Landsat
5 Thematic Mapper, Landsat 7 Enhanced Thematic
Mapper+, and Landsat 8 Operational Land Imager from
the United States Geological Survey (https://earthexplorer.
usgs.gov, accessed 1 Sep 2019). We used a binary decision
tree classifier to classify each 30‐m× 30‐m pixel as seawater,
cloud, land, or kelp canopy for each image date. We re-
tained all pixels classified as kelp canopy in ≥1% of the
Landsat images to minimize errors of omission. We vali-
dated classifications by comparing the binary decision tree
classifications to manual classifications of kelp canopy area
(Bell et al. 2020). We then generated an annual time series
of kelp canopy occurrence in each pixel and determined the
proportion of years in which a pixel contained kelp canopy.
We up‐scaled these relative kelp presence values (using
bi‐linear interpolation and averaging) to the 100‐m grid
cells.
Another biotic variable likely to affect sea otter abundance

is the overall productivity (recruitment and growth rates) of
key invertebrate prey species. Spatially explicit data on most
sea otter prey species are not available; we therefore used the
Vertically Generalized Production Model (VGPM; https://
www.science.oregonstate.edu/ocean.productivity, accessed
1 Sep 2019) of net primary production (NPP) as a proxy
index for spatial differences in mean invertebrate pro-
ductivity. The VGPM model estimates net primary pro-
duction from remotely sensed chlorophyll concentrations
using temperature‐dependent photosynthetic efficiency at a
spatial resolution of 9 km (Behrenfeld and Falkowski 1997).
Primary productivity derived from this dataset has been
positively correlated with populations and habitat selection
of other top predators such as reef sharks and dolphins
(Nadon et al. 2012, Huang et al. 2019), the quantity of food

delivered to macroinfaunal communities (Campanyà‐Llovet
et al. 2018), and the growth and recruitment of rockfishes
(Sebastes spp.) to coastal areas (Wheeler et al. 2017). We
generated the mean monthly net primary production from
2002–2018 for subtidal areas along the coast of California as
a proxy for ecosystem productivity, and interpolated values
at each grid cell centroid. We then centered and re‐scaled
values of NPP, to produce index values for each grid cell
(NPPig) of the same approximate magnitude as other
habitat variables and thus facilitate model fitting:

iNPP NPP 3,000 1,000.g g= ( − )/ (3)

State‐Space Model
We designed a dynamic population model with the goal of
estimating carrying capacity (K) of sea otters at multiple
spatial scales. To accomplish this goal, we used Bayesian
methods to fit a state‐space model in which the abundance
of otters (N) varies across years within designated coastal
sections, with dynamics determined by a density‐dependent
(theta‐logistic) process model. In addition to density‐
dependent mortality, the process model also incorporates
year‐to‐year stochastic variation in mortality (i.e., temporally
induced environmental stochasticity), additional non‐
density‐dependent mortality due to shark bites (Tinker
et al. 2016), and positive effects on recruitment associated
with an unusual pulse in the abundance of urchins
and mussels in some areas of the coast after 2013 (Carr and
Caselle 2018). By fitting the process model to 3 observed
data sets (Cs,t, Og, Zsb,s,t, and Zs,t), we derived local and
regional estimates of K and the parameters of a function
relating K to the habitat variables described above. We then
applied the function to the entire historical range in
California, and thus forecast the probable values of K for
currently unoccupied areas of the coast.
Process model.—We quantified sea otter density in units

of independent otters/km2 of habitat; we excluded
dependent pups for the purpose of tracking across‐year
variation in abundance because it reduces the effects of
statistical noise associated with pup counts, which can
vary year to year based on kelp canopy conditions, timing
of pupping, and other factors. Our goal was to estimate
the density of sea otters at carrying capacity, which we
represent using the symbol κ to differentiate this density‐
based metric from K, the absolute number of otters that
can be sustained at equilibrium within a specified area.
We assumed that the expected density at carrying capacity
for any grid cell g along the open coast (κg) can be
computed as a log‐linear function of a suite of local
habitat variables:

∑ H f D Dlog , , ,g

j

j j g g s g0 , 1 2κ α α β β ζ( ) = + + ( | ) +* ( )

(4)

where α0 represents mean log density in soft‐sediment areas
of the open coast, the second term represents the net effects
of all habitat variables (Hj,g) evaluated at grid cell g, the
third term is a function describing the effect of depth at
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grid cell g, and ζs(g) is a random effect representing the
unexplained deviation from expected density for grid cells
occurring in the coastal section s that contains grid cell g
distributed as a random normal variate with mean of zero
and standard deviation (σk) to be estimated. Because equa-
tion 4 is log‐linear, the multipliers of each habitat variable
(αj) can be interpreted as log‐ratios (i.e., the log of the
proportional increase [for positive values of αj] or decrease
[for negative values of αj] associated with a unit change in
the associated habitat variable Hj). The habitat variables we
considered included the proportion of substrate composed
of rock, relative kelp canopy presence, occurrence of
estuarine areas, the distance to shore index de‐trended for
depth (DSR and DSR2), offshore effects (OFSH), and the
index of net primary productivity (NPPi). In the case of
water depth (D), previous researchers reported a non‐linear
functional relationship between otter density and depth,
such that the highest densities occur at some intermediate
depth and densities decrease inshore and offshore from this
modal depth (Tinker et al. 2017). To accommodate this
non‐linearity, the effect of depth in equation 4 is described
as a non‐linear function:

f D D D D

D D

, , 0.01 max 0,

max 0, ,

g g

g

1 2 1
2

2
2

β β β

β

( | ) = − × [ × ( − )

+ × ( − ) ]

* *

* (5)

where the modal depth (D*) represents the depth associated
with the highest sea otter densities and the β parameters
determine the rate of decrease in otter density as depths
decrease (β1) or increase (β2) relative to the modal depth.
Evaluating equations 4 and 5 provided the expected local
equilibrium density (κg) at any location in open coastal
areas.
We multiplied expected equilibrium cell densities (κg) by

grid cell area (Ag= 0.01 km2) and then summed across all
grid cells within a coastal section (Fig. 1) to obtain an es-
timate of Ks, the estimated abundance at carrying capacity
for coastal section s. We used the estimated value of Ks to
model density‐dependent population dynamics using a re-
cursive theta‐logistic growth equation, whereby the number
of independent otters in section s at year t (Ns,t) is
calculated as:

N N r N Kexp 1

.

s t s t s t s

s t s t s t

, , 1 max , 1

, , ,δ υ ε

= × ( ( − [ / ] )

− + + )

θ
− −

(6)

In addition to Ks, equation 6 includes parameters that
determine the maximum rate of growth at low densities
(rmax), the rate at which growth rates decline as pop-
ulations increase (θ, where 0< θ<∞ and θ= 1 corre-
sponds to simple logistic growth), density‐independent
mortality from shark bite (δs,t), positive effects on re-
cruitment associated with the urchin abundance pulse
after 2013 (υs,t), and unexplained environmental stochas-
ticity (εs,t), assumed to be distributed as a random normal
variate with mean of 0 and standard deviation (σr) to be
estimated. To account for temporally and spatially

autocorrelated variation in shark‐bite mortality (Tinker
et al. 2016), we incorporated a conditional autoregressive
(CAR) model (Besag 1974, Banerjee et al. 2003, Gelfand
and Vounatsou 2003) to describe variation in δ over s
and t. We used a simple spatiotemporal CAR model
(following Liu et al. 2017), which required 3 additional
fitted parameters: the baseline log mortality rate (γ0), the
magnitude of spatial variation in δ (σδ), and the degree of
temporal autocorrelation in δ (ρ; detailed methods of the
CAR model formulation are available online in
Supporting Information, Appendix 1). We treated the
urchin pulse effect as a fitted constant (υ′) applicable
to a subset of coastal sections and years (s= 7–9 and
t> 2013), based on previously published data (Carr and
Caselle 2018), and forced to zero for all other values
of s and t.
Data model.—Annual range‐wide survey counts in

California are assumed to be reflective of true population
dynamics, but with observer error (a combination of
measurement uncertainty and sampling error) tending to
inflate variation in counts. Accordingly, we used a negative
binomial distribution to account for overdispersion in
counts relative to what would be expected for a Poisson
process. We assumed the number of otters counted in s at
t to be drawn from a negative binomial distribution with
mean equal to the true abundance (Ns,t):

C x NNegative Binomial , ,s t s t c s, , ,η~ ( ̅ = ) (7)

where ηc,s is a shape parameter controlling the degree of
overdispersion in counts (variance x x c s

2
,η= ̅ + ̅ / , smaller

values of ηc,s indicate higher variance). Because we expected
that sections would differ with respect to the magnitude of
observer error (e.g., data from sections censused using aerial
methods tend to be more over‐dispersed than data from
sections censused by shore‐based observers), we treated ηc,s
as a hierarchical parameter: specifically, log(ηc,s) is drawn
from a normal distribution with mean of log(ηc) and
standard deviation (ση) to be estimated.
We used a similar approach for Og; however, the large

number of grid cells posed a computational challenge, so to
facilitate model fitting we first collapsed grid cells into larger
groupings of adjacent cells. We defined 100 sub‐sections, or
bins, for each coastal section, by dividing subtidal benthic
areas into 25 contiguous bands parallel to the coast and of
similar depth throughout each band, then sub‐dividing each
depth band into 4 equal lengths (each ~5–10 km). The
depth bands were of varying width: between the shore line
and the 20‐m depth contour, depth bands corresponded to
the area between adjacent 1‐m isobaths; between 20m and
30m, depth bands corresponded to the area between ad-
jacent 5‐m isobaths; and between 30m and 60m, depth
bands corresponded to the area between adjacent 10‐m
isobaths. We then defined an additional bin for any es-
tuarine areas in section s. We summed the cumulative grid
cell counts for all grid cells falling within a bin (b), and
assumed these tallies followed a negative binomial
distribution:
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∈
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K
NNegative Binomial , ,b s

g b g g

s t

s t o,

κ
η~ ̅ =

(8)

where ηo is a shape parameter. The mean expected count for
bin b in section s thus depends on the summation of total
abundance across survey years, scaled by the proportion of
estimated K for section s accounted for by the grid cells
falling within b.
We used observed data on beach‐cast carcass

distributions—specifically, the ratio of shark‐bitten to non‐
shark‐bitten female carcasses—to improve model fit by es-
timating a separate mortality parameter (δs,t) for shark‐bite
effects. We limited consideration to female carcasses be-
cause in sea otter populations, as with many polygynous
mammals, female mortality is the primary influence on
population trends (Tinker et al. 2006). We assumed that the
observed number of female shark‐bite carcasses in section s
at year t (Zsb,s,t) is drawn from a binomial distribution:

Z R ZBinomial probability , count ,sb s t s t s t, , , ,~ ( = ˆ = ) (9)

where Zs,t represents the number of female carcasses re-
covered in s at t and where the expected probability that a
carcass is shark‐bitten (Rs t,

ˆ ) is calculated as:

R
d r N K

1 exp

1 exp
.s t

s t

s t s s t
,

,

min max , ,

δ

δ
ˆ =

− (− )

− (− − (( / ) ) − )θ

(10)

The numerator of equation 10 describes per capita annual
deaths attributable to shark bites, and the denominator
describes total per capita deaths from all sources of mortality.
The denominator includes a parameter describing the in-
stantaneous death rate for adult female sea otters (dmin) in a
population growing at or near rmax, which we set to 0.048
based on previously published analyses (Tinker et al. 2019b).
Model fitting and evaluation.—The observed data variables

(Cs,t, Og, Zsb,s,t, Zs,t) constrain the possible values of
unknown parameters in the process model (α0, αj, β1,
β2, D*, rmax, θ, ρ, γ0, υ′, σk, σr, σδ) and observer model
(ηc, ση, ηo), allowing us to estimate posterior distributions
for these parameters using standard Markov chain Monte
Carlo (MCMC) methods. We used vague prior
distributions for most parameters (i.e., weakly informed
based on biological feasibility but having no information
specific to the analysis), including Cauchy priors for fixed‐
effect parameters in equations 4 and 5, half‐Cauchy priors
for all variance and dispersion parameters (Gelman 2006,
Gelman et al. 2008), and gamma priors for D* and θ
(Table 1). For rmax we used a strongly informed normal
prior with mean of 0.2 and standard deviation of 0.05,
reflecting the results of multiple studies showing that rmax

consistently falls within this range for sea otter populations
(Jameson et al. 1982, Estes 1990, Monson et al. 2000,
Gerber et al. 2004, Lafferty and Tinker 2014). We used R
(R Core Team 2014) and Stan software (Carpenter
et al. 2017) to code and fit the model, saving 20,000

samples after a burn‐in of 5,000 samples. We evaluated
model convergence by graphical examination of trace plots
from 20 independent chains and by ensuring that the
Gelman‐Rubin convergence diagnostic (psrf) was ≤1.1 for
all fitted model parameters. To validate the model and
evaluate goodness of fit, we conducted posterior predictive
checking, using the χ2 statistic (sum of squared Pearson
residuals of annual survey counts and grid cell cumulative
counts vs. expected values) to compare fit of observed data
and new data (i.e., out of sample observations) generated
from the same distributions (Gelman et al. 2000). We
examined scatter plots of the posterior distribution of χ2

scores for new versus observed data (in the case of well‐
fitting models, points in such a plot should be evenly
distributed around a line with slope of unity and zero
intercept) and we used the χ2 scores to compute the
Bayesian P value (the proportion of out of sample
observations more extreme than existing observations;
Gelman 2005, Ghosh et al. 2007), which should fall
within the range of 0.2–0.8 for a well‐fit model. We
summarized model results by reporting the mean and 95%
credible interval (CrI) of parameter posterior distributions.
We included habitat variables in the final model if their 95%
CrI did not include zero, and we compared the full model to
reduced models using the leave‐out‐one information
criterion to assess relative model support (Vehtari
et al. 2017). Additionally, we calculated the unexplained
variance in observed local densities for each model (i.e.,
mean squared deviations from expected densities given the
fixed effects included in eq. 4). We calculated unexplained
variance by summing σk

2 and the variance associated with
the negative binomial distribution of grid cell counts
(x x o

2 η̅+ ̅ / , where x exp
0
α̅ = ( )). We then calculated the

proportional reduction in unexplained variance relative to a
null model (i.e., intercept only) or a model having only an
intercept and depth effects; this allowed us to assess the
degree to which inclusion or exclusion of different variables
affected the amount of variation explained by the model.

Range‐Wide Projections of K and a Candidate Value
for OSP in California
For the 20 coastal sections within the currently occupied
range (the central coast and San Nicolas Island; Fig. 1),
fitting the state‐space model provided point estimates of Kp

and associated uncertainty (described by the 95% CrI of
the posterior distributions). We report densities at carrying
capacity (κ) for coastal sections, standardized to mean
otters/km2 of habitat between 0–40‐m depth, to facilitate
comparison with previously reported density values (Laidre
et al. 2001). We evaluated fine‐scale spatial variation in κ
within the current range by plotting the coastal 100‐m grid
with cells color‐coded by the model‐estimated values of κg.
In the case of currently unoccupied areas of the coast, we
generated posterior predictive distributions of κg by iter-
atively drawing from posterior distributions for all model
parameters and evaluating equations 4 and 5. Summing
these predictive distributions of κg multiplied by grid areas
(Ag), we calculated point estimates and 95% CrI of K for
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4 currently unoccupied coastal regions—the North coast
(Oregon border to Pigeon Point), San Francisco Bay, South
coast (Gaviota State Park to the Mexico Border), and the
Channel Islands (Fig. 1)—and a range‐wide estimate of
K for all possible sea otter habitat in California. We report
2 metrics for abundance values: independent otters only
(excluding dependent pups) and independents plus pups
(calculated using an empirically derived average pup:adult
ratio of 0.15; Tinker and Hatfield 2017).
In addition to local and regional estimates of K, an im-

portant metric for management of marine mammal pop-
ulations under the MMPA is the OSP, operationally
defined as an abundance level that falls between maximum
net productivity level (MNPL) and K (Gerrodette and
DeMaster 1990). Various guidelines have been suggested
for setting OSP, including incorporation of uncertainty in
population status and demographic parameters (Taylor
et al. 2000). By fitting the state‐space model, we obtained
point estimates and associated uncertainty measures for K
and the other key parameters of a theta‐logistic population
growth model (eq. 6). We used these values to estimate an
appropriate candidate value for OSP that accounted for
uncertainty in all relevant parameters. For each coastal
section within the current defined range (Fig. 1), we solved
10,000 iterations of equation 6 in which we randomly se-
lected parameter values from their joint posterior dis-
tributions (but with δs,t and υs,t forced to zero). For each
iteration we systematically varied Ns,t−1 over a sufficiently
large range of values that should include the highest ex-
pected net growth (between 20% and 80% of the point
estimate of Ks), then numerically solved for the abundance
value associated with the maximum growth rate (calculated
as the difference between Ns,t and Ns,t−1); this value of Ns,t−1

represented the MNPL point estimate associated with a
specific combination of parameter values. We calculated the
upper quartile of the resulting distribution of iterated

MNPL estimates, which we suggest as an appropriate
candidate value for a local OSP (OSPs) because this ac-
counts for demographic processes and parameter un-
certainty. Finally, we summed OSPs across sections within
each of the 5 regions to obtain regional OSP values, and
across regions to arrive at a California‐wide candidate value
for OSP.

RESULTS

The state‐space model provided a good fit to observed data
(Bayesian P= 0.462; Fig. S2, available online in Supporting
Information) and MCMC chains converged well, with all
psrf values <1.1 (Table 1). The estimated rate of shark‐bite
mortality increased over the last decade of the time series
(2007–2017), with the highest values (δs,t≥ 0.2) occurring
near the northern and southern peripheries of the central
coast range (Table 1; Fig. 2) and associated with local de-
clines in sea otter abundance in these coastal sections after
2007 (Fig. 3A,B). We observed a contrasting trend for the
Monterey Peninsula region after 2013, where positive ef-
fects on per capita recruitment (υ′= 0.18; Table 1), appa-
rently due to a glut of urchin and mussel prey (Carr and
Caselle 2018), were associated with a localized increasing
trend in sea otter abundance (Fig. 3C,D). The posterior
estimates of δs,t and υ, together with estimates of Ks, rmax, θ,
and σr (Table 1), resulted in predicted population dynamics
that were in good agreement with observed survey counts
(Fig. 3A–E).
The best‐supported model for predicting K included all

habitat variables (Table 2), each of which was statistically
significant (Table 1; Fig. S3, available online in Supporting
Information). Inclusion of habitat variables reduced un-
explained variance in grid cell counts by almost half (42%)
as compared to an intercept‐only model, or by 17% as
compared to a depth‐only model (Table 2). Depth had a
strong effect on sea otter density, with the highest

Figure 2. Heatmap plot in which color intensity represents the estimated magnitude of delta (δs,t), the instantaneous rate of shark‐bite mortality for sea
otters in any given year (horizontal axis) and coastal section (vertical axis) of California, USA, 1983–2018.
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equilibrium densities occurring between 3m and 20m of
depth (D*= 5.7, 95% CrI= 4.29–7.11) and declining den-
sities inshore and offshore of this range (Fig. 4A). Estuarine
areas supported higher equilibrium densities, on average,
than did soft‐sediment areas of the outer coast; the mean
density at K in estuaries was 9.38 otters/km2 (95%
CrI= 1.64–47.65) as compared to 2.23 (95%
CrI= 1.23–4.47) in equivalent coastal soft‐sediment areas.
Benthic substrate composition had a strong effect, with
rocky areas supporting higher densities than soft‐sediment
areas, and an increase in the proportion of rocky substrate
from zero to 50% resulting in more than a doubling of the
mean density at K (Fig. 4B). The presence of kelp canopy
was associated with higher densities as well; an area with

50% kelp cover supported 3.6 times more otters at K than an
equivalent area without kelp canopy (Fig. 4C). Areas of
high NPP supported more otters; an NPP value of 4,000
was associated with equilibrium densities 1.5 times higher
than the average NPP value of 3,000 (Fig. 4D). There
was a non‐linear relationship between density at K and the
slope of the benthic shelf, with higher densities predicted in
areas with shallower‐than‐average slopes and areas with
steeper‐than‐average slopes (Fig. 4E). Finally, areas that
were far offshore supported much lower densities than
nearshore areas; the mean density in an area 10 km from
shore was just 17% (95% CrI= 4.9–42.8%) of the mean
density in an area 1 km from shore having identical substrate
and depth.

A

B

C

D

E

Figure 3. Observed survey counts (points) and model‐estimated trends (black lines), together with 95% credible intervals (CrI; gray shaded bands), of sea
otter abundance in coastal California, USA, 1983–2018. Trends are plotted for 4 of the 20 coastal sections (s; panels A–D) and for all currently occupied
areas of California (panel E).
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The combined influence of habitat variables and random
effects resulted in considerable spatial variation in estimated
density at K at the scale of coastal sections, ranging from
>10 otters/km2 around Monterey Peninsula (s= 7) and
Elkhorn Slough estuary (s= 5) to <1.5 otters/km2 in sandy
embayments such as northern Monterey Bay (s= 4;
Fig. 5A). Evaluating equation 4 for all grid cells resulted in
map‐based projections of fine‐scale variation in equilibrium
densities (Fig. 5B). We applied these fine‐scale projections
to both occupied and currently unoccupied habitats
throughout California (Fig. S4, available online in
Supporting Information); the resulting maps provide a
means to identify potentially important future habitat areas
for sea otters. Summing across all grid cells, we obtained
projected abundance at K for 5 regions within California
(Fig. 6; Table 3), which when tallied produced a California‐
wide estimate of 17,226 otters (95% CrI= 9,739–30,087,
including both independents and dependent pups). After
accounting for parameter uncertainty and using simulations
of theta‐logistic population dynamics to examine variation
in MNPL estimates, our results indicated a candidate value
for OSP (for all of CA) of 10,236, which represents 59.4%
of projected K. Regional OSP values ranged from 1,269 for
the Channel Islands to 2,528 for the central coast (Table 3).

DISCUSSION

Estimates of potential future abundance and distribution of
recovering carnivore populations can help resource man-
agers set realistic management targets, anticipate ecosystem
and possible socioeconomic changes, and identify key hab-
itat areas for protection. The analyses we present here
demonstrate that, in the case of southern sea otters, readily
available geospatial data on biotic and abiotic habitat vari-
ables can be used to estimate equilibrium densities at
multiple spatial scales. By estimating the functional rela-
tionships between these habitat variables and K, we devel-
oped a mechanistic understanding of how various habitat
features affect spatial variation in equilibrium densities. Our

results provide a means of predicting future population
potential, within the current distribution and in areas where
sea otters have yet to recover. Our model also provides an
update to previous estimates of southern sea otter carrying
capacity (DeMaster et al. 1996, Laidre et al. 2001) using a
broader suite of habitat variables and more extensive and
updated abundance data. By modeling dynamics using a
stochastic theta‐logistic process model and including
density‐independent mortality terms, our results provide
new insights into the functional form of density depend-
ence, the magnitude of environmental stochasticity, and
spatiotemporal variation in emerging mortality sources such
as shark bite.
Estimates of K for mammalian species often benefit from

incorporation of data on habitat quality or prey abundance
(Potvin and Huot 1983, Hobbs and Swift 1985, Iijima and
Ueno 2016). Habitat variables considered should ideally
relate to the demographic and ecological processes that
regulated abundance, via their effects on per capita re-
production and survival (Hobbs and Swift 1985). Previous
estimates of K for sea otters have incorporated habitat dif-
ferences to improve predictions (Laidre et al. 2001, 2002;
Gregr et al. 2008). Our analyses build on these earlier
analyses in several important ways. First, we use a more
extensive and spatially explicit set of habitat variables, in-
cluding physical parameters (e.g., depth, benthic substrate
composition, distance from shore) and biotic variables (e.g.,
kelp presence, primary productivity). All these variables
were selected based on a priori inferences about their effects
on sea otter foraging success and, ultimately, survival and
productivity. By including a broad suite of continuous var-
iables, rather than just 1 or 2 categorical variables, we were
able to explain a higher proportion of the observed variation
in sea otter abundance (Table 3). The incorporation of
depth as a continuous variable in our model was particularly
important because it allowed for different areas of the coast
supporting differing numbers of otters simply based on their
unique bathymetric profiles. This strong effect of depth

Table 2. Comparison of relative support for alternative models used to estimate local carrying capacity (K ) for southern sea otters, California, USA,
1983–2018. Model support is measured using information‐theoretic methods, with lower values of the leave‐out‐one information criterion (LOOic)
indicating better support. We also provide standard errors for LOOic estimates. We show the standard deviation parameter (σk) for unexplained variation in
the density at K among coastal sections, and the negative binomial dispersion parameter (ηo) for grid cell counts (higher values indicate lower dispersion) for
each model. Combining these variance components, we present the overall residual variance (variation in counts around model‐predicted values). We then
calculated the proportional reduction in residual variance of each candidate model relative to a reduced model that includes only an intercept and depth
effects, and a null model in which only an intercept is included.

Variance reduction

Model LOOic SE σk ηo Variance vs. depth vs. null

Full model 14,325.3 167.6 0.904 0.8251 7.3760 16.95% 42.40%
No estuary effect 14,326.9 167.3 1.216 0.8204 8.0631 9.21% 37.03%
No NPPa effect 14,331.1 166.5 0.890 0.8201 7.3793 16.91% 42.37%
No offshore effect 14,337.8 168.6 0.914 0.8201 7.4218 16.44% 42.04%
No distance to shore effect 14,341.5 169.7 0.951 0.8172 7.5074 15.47% 41.37%
No kelp effect 14,465.0 172.6 0.829 0.7594 7.6437 13.94% 40.31%
No rocky substrate effect 14,549.2 173.4 0.695 0.7216 7.7028 13.27% 39.85%
Depth‐only model 14,827.5 187.1 0.891 0.6195 8.8815 30.64%
Null model (intercept only) 15,686.7 195.3 1.087 0.3931 12.8053

a NPP= net primary productivity.

Tinker et al. • Habitat Features Predict K for Sea Otters 13



likely reflects the depth dependence of most sea otter prey
species (Bodkin et al. 2004, Thometz et al. 2016). The type
of substrate (rock vs. soft sediment) and kelp presence also
provided key information that improved predictive power,
likely reflecting the strong relationship between kelp forests
and invertebrate productivity (Miller et al. 2018). Our re-
sults indicate that spatially explicit consideration of multiple
habitat features can provide a better understanding of

variation in sea otter equilibrium abundance, as has also
been shown for terrestrial species (Iijima and Ueno 2016).
Another key feature of our model is that the state‐space

analytical approach does not require simplifying or sub-
jective decisions about which areas of the coast are already at
K (Buckland et al. 2004, Clark and Bjørnstad 2004,
Chaloupka and Balazs 2007, Wang 2007). Indeed, all
survey data are used to fit the model and thus estimate K,

A

B

C

D

E

Figure 4. Plots showing the model estimated effects of 5 habitat variables on the relative abundance of sea otters at carrying capacity (K ), based on survey
data from coastal California, USA, 1983–2018. Habitat variables include A) the effect of depth, showing peak abundance occurring at approximately 5 m; B)
proportion of benthic substrate composed of rock, with higher densities occurring in more rocky areas; C) proportional occurrence of kelp canopy, with
higher densities occurring in areas having more kelp canopy cover; D) net primary productivity (NPP), with higher densities occurring in areas having higher
values of NPP; and E) residuals from a function of distance to shore versus depth (DSR), whereby areas with positive residuals (i.e., farther from shore than
average for a given depth, indicating shallow benthic slope) or very negative residuals (i.e., closer to shore than average for a given depth, indicating steep
benthic slope) both show higher densities at K than areas of average benthic slope.
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irrespective of their status with respect to K, the only re-
quirement being a sufficiently long time series of counts
(Wang 2009). By fitting the state‐space model using
Bayesian methods, we obtained realistic estimates of the
uncertainty associated with each model parameter and
the combined uncertainty around derived parameters such
as area‐specific values of K. This resulted in somewhat wider
credible intervals associated with our regional and range‐
wide projections of K as compared to previous estimates of
K (DeMaster et al. 1996, Laidre et al. 2001). We believe
this represents a benefit of our modeling approach because
our estimates explicitly incorporate sources of uncertainty
that were not included (or not recognized) in previous
analyses, including unexplained spatial heterogeneity in
habitat‐based relationships (described in our model by σk),

observer error inherent in census‐based estimates of abun-
dance and trends, and the uncertainty around estimates of
long‐term equilibria for any given location imposed by the
effects of environmental stochasticity.
Despite the differences in analytical approach between our

model and previous estimates of sea otter carrying capacity,
the predictions of range‐wide K were strikingly similar:
17,226 otters (this study) versus 15,941 in Laidre et al.
(2001) and 13,515 in DeMaster et al. (1996). This similarity
in overall estimates of K is encouraging, especially given that
they were arrived at using different methods and data sets,
which probably reflects the consistency of demographic
processes in sea otter populations (Eberhardt 1995, Monson
et al. 2000, Gerber et al. 2004, Tinker et al. 2019a). The
higher estimate from the current analysis may reflect the

Figure 5. A) Violin plots of estimated density of sea otters at carrying capacity (K ) for 20 coastal sections in central California, USA, 1983–2018. The width
of the gray shaded bands illustrates the degree of model support for a given value, and the error bars span the 95% credible intervals (CrI) for the estimates.
B) The Santa Barbara Channel area, with sea otter habitat in the nearshore zone color‐coded to show fine‐scale variation in the estimated potential density at
K. The model facilitated estimates of K for both currently occupied and future potential habitats.
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more detailed treatment of habitat variation, including the
differentiation of estuarine systems from outer coast soft‐
sediment areas (Hughes et al. 2013), and also the state‐
space approach, which avoids assumptions about whether
index areas have already achieved K. Another similarity
between our results and previous analyses is the pattern of
higher equilibrium densities in rocky versus soft‐sediment
areas (Laidre et al. 2001), a pattern that likely reflects more
productive epibenthic prey communities in rocky substrate
areas. Our results reveal some further details about this re-
lationship. First, the relative degree of kelp canopy in rocky
areas provides even more information about potential den-
sities, and second, it appears that soft‐sediment estuaries can
support higher densities of otters than can soft‐sediment
outer coast areas. A key difference between our model and
previous analyses is that our model provides fine‐scale and
spatially explicit projections of expected K in future poten-
tial habitats (Fig. 5B), thereby providing a useful tool for
resource managers to help identify key areas for

conservation and management (Fig. S4). We caution that
some estuarine areas outside the current range contain a
diversity of substrate types, hydrological features, and
human activities, and not all of these may be suitable for sea
otters (Hughes et al. 2019); thus, further examination of the
quality and distribution of different features within estuaries
is warranted, particularly in areas modified by human
activities.
An important advantage of process‐based models over

purely descriptive statistical models is the resulting insight
into underlying mechanisms and causes of observed dy-
namics. Such insights are important if models are to be used
for forecasting in novel conditions (Evans et al. 2012). Our
state‐space model features a density‐dependent process
model that incorporates spatial structure and environmental
stochasticity and density‐independent factors (shark‐bite
mortality, unusual prey pulses). By incorporating population
structure at relevant scales, we show that the maximum rate
of growth for southern sea otter populations at low density

Figure 6. Violin plots showing the projected abundance at carrying capacity (K ) for sea otter populations in 5 coastal regions of California, USA,
1983–2018. The width of the gray shaded bands illustrates the degree of model support for a given value, and the error bars span the 95% credible intervals
(CrI) for the estimates.

Table 3. Estimated abundance at carrying capacity (K ) and candidate values for optimal sustainable population (OSP) of southern sea otters in California,
USA, 1983–2018. Estimates are listed by coastal region and as a state‐wide total. We provide point estimates and 95% credible intervals (CrI) for K in units
of independent otters only, and independents plus dependent pups (assuming a pup:adult ratio of 0.15). Candidate OSP values are in units of independents
plus pups.

Independents only Independents plus pups

Region x ̅ Lower CrI Upper CrI x ̅ Lower CrI Upper CrI Candidate OSP value

North Coast 3,055 1,128 6,754 3,513 1,297 7,767 2,070
San Francisco Bay 3,509 622 9,851 4,036 716 11,328 2,527
Central Coast 3,895 3,198 4,689 4,480 3,677 5,393 2,528
South Coast 2,667 959 6,194 3,067 1,102 7,123 1,842
Channel Islands 1,853 794 3,887 2,131 914 4,470 1,269
California total 14,979 8,469 26,162 17,226 9,739 30,087 10,236
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(rmax= 0.18; Table 1) is almost identical to that of northern
populations at low density (Tinker et al. 2019a). Earlier
reports of much lower rates of growth for the California
population (Estes 1990) were based on an unrecognized and
inaccurate assumption that southern sea otters represent a
single homogenous population, as opposed to a meta‐
population with differing growth rates in areas of high and
low density (Tinker et al. 2008, Lafferty and Tinker 2014,
Tinker 2015, Davis et al. 2019). Another novel insight
provided by our dynamic process model is the role of in-
creasing shark‐bite mortality in depressing population re-
covery or even causing local declines (Fig. 3A,B). Our
results are in agreement with previous studies (Tinker
et al. 2016, Nicholson et al. 2018, Moxley et al. 2019) that
have reported rapidly increasing rates of shark‐bite mortality
at the northern and southern peripheries of the current
distribution, and especially in southern areas after 2005
(Fig. 2). Whether shark‐bite mortality rates will remain at
these high levels or prove to be a transient phenomenon is
uncertain; however, if levels remain high indefinitely, there
are several implications. First, the concentration of elevated
mortality near the range peripheries, where range expansion
occurs (Tinker et al. 2008, Lafferty and Tinker 2014), will
likely inhibit future population spread and growth in new
areas. This possibility has prompted some conservation
groups to suggest re‐locations of stranded or rehabilitated
animals to expedite range‐wide recovery (Nicholson
et al. 2018). Second, continued shark‐bite mortality may
impose a top‐down‐based equilibrium abundance in some
areas that is lower than that dictated by prey productivity. If
so, this may require re‐evaluation of K to explicitly include
elevated shark‐bite mortality; our process‐based model
provides a simple way of doing this, by iterating equation 6
to numerically solve for a realized equilibrium that includes
shark bite. This latter point highlights that K is not a fixed
property; rather, K can change over time in response to
changing conditions. Although our current analysis did not
explicitly allow for temporal variation in K, such dynamics
were implicit in the allowance for stochasticity in annual
growth rates and shark‐bite mortality, and in the relation-
ship between K and biotic variables (kelp cover and NPP)
because the biotic variables are themselves subject to tem-
poral variation because of external forcing (e.g., the effects
of climate change). Future analyses should further explore
the implications of temporal variation in K.
The updated habitat‐based estimate of range‐wide carrying

capacity, combined with the fitted parameters of a process
model of sea otter population dynamics, provided a unique
opportunity to estimate a candidate value of OSP for
southern sea otters in California. The MMPA defines OSP
as an abundance value that falls between MNPL and K
(Gerrodette and DeMaster 1990). Selecting an appropriate
value of OSP thus requires estimates of MNPL and
K. Determining species‐specific MNPL in turn requires
information about demographic processes, specifically about
non‐linearities in the functional form of density‐dependent
variation in growth rates (Taylor and Demaster 1993), and
failure to account for uncertainty in estimates of K and

demographic parameters can result in inappropriate values of
OSP (Taylor et al. 2000). We addressed both these concerns
in our estimation of a candidate OSP value for sea otters by
using the full range of uncertainty in the parameters of a
theta‐logistic growth model to obtain a distribution of
credible MNPL values for each coastal section. We then
took the sum of the upper quartiles of these distributions to
obtain a conservative OSP candidate value for California.
The upper quartile of estimates for MNPL ensures some
confidence (75%) of achieving or exceeding the true MNPL
and is always <80% of the point estimate for K. The can-
didate OSP value (10,236) corresponds to approximately
60% of the point estimate of K. Coincidentally, 0.6K is a
benchmark often used to set OSP for marine mammals;
however, the rationale for an OSP value falling in the range
0.5K–0.85K is the assumption that marine mammal species
will generally exhibit a convex functional form of theta‐
logistic growth (i.e., θ > 1). Although θ > 1 is a reasonable
assumption for most long‐lived cetaceans and pinnipeds
(Taylor and Demaster 1993), our fitted model for southern
sea otters actually suggests a value of θ slightly below 1
(Table 1; although the 95% CrI for θ includes 1). The lower
value of θ for sea otters implies that density‐dependent ef-
fects on reproduction and survival emerge soon after pop-
ulation establishment, a pattern supported by empirical data
from several recovering populations (Bodkin et al. 2000,
Rechsteiner et al. 2019, Tinker et al. 2019a). Regardless, the
reason that our candidate value of OSP is >0.5K is not
indicative of a convex functional form of density‐dependent
growth but rather reflects the incorporation of parameter
uncertainty in our estimates of K and MNPL. Another
benefit of our approach is the ability to define OSP values at
smaller scales than the sub‐species or stock level currently
used as the basis of management (Table 3). It is increasingly
recognized that management goals and objectives should
ideally be set at temporal and spatial scales relevant for the
species of interest (Clapham et al. 2008); in the case of sea
otters, the relevant spatial scale of population regulation
appears to be much smaller than the stock level, on the order
of tens of kilometers (Bodkin 2015, Gagne et al. 2018,
Tinker et al. 2019a). Unfortunately, lack of availability of
comparable habitat data for Oregon and Mexico at the time
of analysis prevented the application of the model to the
entire historical range of the southern sea otter (USFWS
2003), but as these GIS layers become available, it will be
straightforward to extrapolate projections and thus estimate
candidate OSP values for these remaining areas.
The model we present for estimating K using GIS‐based

data on habitat variables and using state‐space methods to
analyze population trends, represents a powerful approach
for assessing population growth potential at fine spatial
scales for a recovering carnivore. The method provides new
insights into habitat‐density relationships and important
information about the nature of density dependence, envi-
ronmental stochasticity, and additional density‐independent
mortality. Although a similar analytical framework has been
applied to terrestrial mammals (Iijima and Ueno 2016), this
is a novel approach for marine mammals and could be easily
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adapted for other species for which both long survey time
series and detailed habitat data are available. Expanding this
method to northern sea otter populations will allow com-
parison of habitat relationships across regions and provide
insights into the habitat features or mortality sources lim-
iting abundance in those areas. We therefore expect that our
results will provide useful new tools for resource managers as
they adapt to changing conservation needs for sea otters and
other recovering marine mammals.

MANAGEMENT IMPLICATIONS

The results of our study provide estimates of population
potential for southern sea otters (Table 3) that can be used for
projecting future growth and evaluating population status at
regional and sub‐regional spatial scales. Our results can fa-
cilitate identification of areas within currently unoccupied
habitats (Figs. 5B and S4) where potential hot spots of sea
otter abundance overlap with economically valuable com-
mercial or recreational fisheries that are likely to be negatively
affected by sea otter recovery (e.g., dive fisheries for urchins
or abalone). Such information can be used by managers to
anticipate areas of conflict, engage relevant stakeholders, and
take preemptive steps towards mitigation. Likewise, fine‐
scale maps of population potential can be used to identify
future hot spots of sea otter abundance where resource con-
flicts are less likely (e.g., the southern edges of the Channel
Islands in Santa Barbara Channel; Fig. 5B). Such areas could
be the focus of future conservation efforts because they are
likely to support both abundant sea otters and diverse and
productive sub‐tidal communities.
Our model facilitated the first process‐based estimate of

OSP for this sub‐species, one that incorporates the func-
tional form of density dependence and parameter un-
certainty. A meaningful value of OSP for recovering marine
mammals represents the abundance at which a population is
likely to be sustainable and to exert key functional roles
within its ecosystem; OSP is thus a key management target
under the MMPA. A high priority future task will be to
apply the current model to the remainder of the southern
sea otter's range in Oregon and Mexico, once suitable
habitat data are available.
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