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Abstract

Sponges (phylum Porifera) are common inhabitants of kelp forest ecosystems in California, but their diversity and
ecological importance are poorly characterized in this biome. Here I use freshly collected samples to describe the diversity
of the order Scopalinida in California. Though previously unknown in the region, four new species are described here:
Scopalina nausicae sp. nov., S. kuyamu sp. nov., S. goletensis sp. nov., and S. jali sp. nov.. These discoveries illustrate
the considerable uncharacterized sponge diversity remaining in California kelp forests, and the utility of SCUBA-based
collection to improve our understanding of this diversity.
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Introduction

The order Scopalinida is young: it was created in 2015 (Morrow & Cardenas 2015). The independent evolution of
this lineage, however, is old. Phylogenies based on ribosomal DNA place the order, together with the freshwater
sponges, as the sister clade to all other extant orders in the subclass Heteroscleromopha (Morrow et al. 2013). This
interesting phylogenetic position motivates further investigation of this group. The order is comprised of only two
genera, Scopalina and Svenzea, though genetic data suggest Stylissa flabelliformis may also be in the order (other
genotyped Stylissa cluster with the order Agelisida (Erpenbeck et al. 2006; Morrow et al. 2012; Morrow & Cérde-
nas 2015)). Scopalinida have been found to be sources for novel anti-microbial or anti-tumor compounds, which
further motivates efforts to characterize their diversity (Avilés et al. 2013; Vicente ef al. 2015; Wei et al. 2007).

Nearly all Scopalinida are described from warm waters in the Mediterranean, Caribbean, South-West Pacific,
and Madagascar (van Soest et al. 2019). The only previous exceptions to this pattern are the two most recently
described species, from the Falkland Islands, which were found by hand-collecting sponges while SCUBA diving
(Goodwin et al. 2011). Collecting by hand has been shown to be a productive way to discover new sponges from
rocky areas in the shallow subtidal (Goodwin et al. 2011; Goodwin & Picton 2009), but past sponge surveys in
Southern California have primarily been conducted via dredging or by collecting in the intertidal zone (Bakus &
Green 1987; Green & Bakus 1994; de Laubenfels 1932; Sim & Bakus 1986). As a result, some common sponges
found in California kelp forests — which occur on shallow hard-bottom substrate — remain unknown to science.
Kelp forests in California are experiencing rapid changes due to anthropogenic impacts, and considerable work is
focused on understanding kelp forest ecology to better predict and/or mitigate these impacts (Caselle et al. 2018;
Castorini et al. 2018; Eger et al. 2020; Miller et al. 2018; Reed et al. 2016). The roles that sponges play in this eco-
system are unknown, but describing the species composition of the system represents a first and necessary step to
improving this understanding. To better understand the abundance and distribution of shallow-water marine sponges
in California, I have used SCUBA to collect over 300 individuals, mostly from kelp forest habitats in the Santa Bar-
bara Channel. I have previously used this collection to revise the order Tethyida in California (Turner 2020b), but
the other sponges remain to be described. Ten of these new samples can be assigned to the order Scopalinida, and
are described herein as four new species in the genus Scopalina.
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Methods

Collections. 1 collected sponge samples by hand with a knife. Each sample was placed immediately in a plastic bag
with copious seawater. After the dive, these bags were put on ice for 2—12 hours. Samples were then preserved in
95% ethanol, which was exchanged for new preservative after 1-3 days, and changed again if it remained cloudy.
Samples were vouchered with the California Academy of Sciences in San Francisco; archival information is listed
in table 1.

Samples were photographed in situ with an Olympus TGS5 before collection. I photographed all sponge mor-
photypes found at each site, so that presence/absence across sites could be used to form hypotheses about sponge
distributions and habitat. Table 2 contains information about all locations investigated, together with an estimate of
search effort at each location. These locations include intertidal sites, floating docks in marinas, and subtidal sites
searched on SCUBA. Subtidal sites were generally shallow (<15 m) rocky reefs, but a few sites were deeper (up to
27 m) and include artificial reefs and oil rigs. Scopalinida were only found at shallow, subtidal, natural reefs. Field
photos of all sponges have been archived with vouchers, and also posted as searchable, georeferenced records on
the site iNaturalist.org.

Spicules. Spicule preparations were performed by digesting soft tissue subsamples in bleach. With the spicules
settled at the bottom of the reaction tube, the bleach was then pipetted off and replaced with distilled water; this was
repeated several times. Spicules were imaged using a D3500 SLR camera (Nikon) with a NDPL-1 microscope adap-
tor (Amscope) attached to a compound triocular microscope. A calibration slide was used to determine the number
of pixels per mm, and spicules were then measured using Imagel (Schneider ez al. 2012). Spicule length was mea-
sured as the longest possible straight line from tip to tip, even when spicules were curved or bent. Spicule width was
measured at the widest point. To image spicular architecture, I hand-cut perpendicular sections and, when possible,
removed sections of ectosome. Sections were digested in a mixture of 97% Nuclei Lysis Solution (Promega; from
the Wizard DNA isolation kit) and 3% 20mg/ml Proteinase K (Promega). This digestion eliminates cellular material
while leaving the spongin network intact.

Genotyping. 1 extracted DNA from some samples with the Qiagen Blood & Tissue kit, and used the Qiagen
Powersoil kit on others; downstream results did not differ based on the kit used. At the cox1 locus, a ~1200 bp frag-
ment was amplified with the following primers (LCO1490: 5°-GGT CAA CAA ATC ATA AAG AYATYG G-3’;
COX1-R1: 5°-TGT TGR GGG AAA AAR GTT AAA TT-3’); these amplify the “Folmer” barcoding region and the
“col-ext” region used by some sponge barcoding projects (Rot et al. 2006).

Three primer sets were used to amplify portions of the 28S rDNA nuclear locus. Samples were sequenced over
the ~800 bp D3-D5 region using primers Por28S-830F (5’- CAT CCG ACC CGT CTT GAA -3') and Por28S-1520R
(5'- GCT AGT TGA TTC GGC AGG TG -3’) (Morrow et al. 2012). Most samples were also sequenced over the
~800 bp D1-D2 region using primers Por28S-15F (5’-GCG AGA TCA CCY GCT GAA T-3’) and Por28S-878R
(5’-CAC TCC TTG GTC CGT GTT TC-3’) (Morrow et al. 2012). A few samples were sequenced using primers
C2 (5-GAAAAGAAC TTT GRARAG AGA GT-3’) and D2 (5’-TCC GTG TTT CAA GAC GGG-3’) (Chombard
et al. 1998). The C2-D2 region is a ~50% subset of the D1-D2 region, including the most rapidly evolving region
recommended by the sponge barcoding project.

PCR was performed using a Biorad thermocycler (T100); the following conditions were used for the cox1
locus: 95°C for 3 min, followed by 35 cycles of 94°C for 30 sec, 52°C for 30 sec, 72°C for 90 seconds, followed
by 72°C for 5 minutes. The 28S C2-D2 region was amplified with the same conditions, except a 57°C annealing
temperature and 60 second extension time; the 28S D1-D2 and D3-D5 regions used a 53°C annealing temperature
and 60 second extension time. PCR was performed in 50 pl reactions using the following recipe: 24 ul nuclease-free
water, 10 ul 5x PCR buffer (Gotaq flexi, Promega), 8 ul MgCl, 1 ul 10mM dNTPs (Promega), 2.5 pl of each primer
at 10 uM, 0.75 bovine serum albumin (10 mg/ml, final conc 0.15 mg/ml), 0.25 pl Taq (Gotaq flexi, Promega), 1 pl
template. ExoSAP-IT (Applied Biosystems) was used to clean PCRs, which were then sequenced by Functional
Biosciences using Big Dye V3.1 on ABI 3730xI instruments. PCR products were sequenced in both directions, and
a consensus sequence was constructed using Codon Code v.9 (CodonCode Corporation). Blastn was used to verify
that the resulting traces were of sponge origin. All sequences have been deposited in Genbank; accession numbers
are listed in table 1.

Genetic analysis. 1 used the NCBI taxonomy browser to compile data from all samples identified as belonging
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to the order Scopalinida. I also used blastn to search for additional sequences that appeared to fall within this order,
but found none. At the 28S locus, data from Genbank was only included in the phylogeny if the highly variable C2-
D2 region was included. Sequences at cox1 were included if they contained the Folmer barcoding region. Together,
included data are from 18 different publications (Blanquer & Uriz 2008; Erpenbeck et al. 2002, 2006, 2007a, b,
2012, 2016; Kandler et al. 2019; Lavrov et al. 2005; Lavrov & Lang 2005; Montalvo & Hill 2011; Morrow et al.
2012, 2013; Nichols 2005; Pett & Lavrov 2015; Riesgo et al. 2013; Rot et al. 2006; Thacker et al. 2013). Sequence
alignments were produced in Codon Code v.9 (CodonCode Corporation). Phylogenies were estimated with maxi-
mum likelihood using 1Q-Tree (Nguyen et al. 2015; Trifinopoulos et al. 2016). Phylogenies are unrooted, and root
placement in figures is based on a published phylogeny that had many more characters and representatives from
more sponge orders, but limited taxon sampling within the Scopalinida (Morrow ef al. 2013). I used the Ultrafast
bootstrap (Hoang et al. 2018) to measure node confidence. Phylogenies were produced from the 1Q-Tree files using
the Interactive Tree of Life webserver (Letunic & Bork 2019). Figures were made ready for publication using R (r-
project.org) and/or Gimp (gimp.org).

Results
Genetic Results

Figure 1 shows the phylogentic tree of newly collected samples, previously sequenced Scopalinida, and outgroups
at the cox1 mitochondrial locus. The four new species from California form a clade with five previously sequenced
Scopalina, with Svenzea zeai as the closest outgroup. No other closely related sequences could be found in Gen-
bank, so these data support inclusion of the new species in the genus Scopalina. Figure 2 shows the phylogentic tree
at the 28S nuclear locus (the large ribosomal subunit), which is entirely congruent with results at cox1.

Both gene trees place two of the new species, S. kuyamu and S. goletensis, as the closest relatives to each other.
This raises the question of whether these two species may in fact be a single species. However, these vouchers are
different at 4.4% of sites at the cox1 locus, and 3.2% of sites at the 28S locus. The magnitude of this difference is
similar to species-level divergence among other Porifera. A review of genetic distances at cox1 found an average
4.9% sequence divergence between any individual sponge sequence and the most closely related sequence avail-
able from another species (N=57, (Huang et al. 2008)). A more recent analysis of 39 species in the poriferan order
Suberitida found 3.7% divergence at this same locus (Turner 2020a). Together with the morphological differences
detailed below, these data support species status for both S. kuyamu and S. goletensis.

Systematics
Order Scopalinida Morrow & Cardenas, 2015

Definition: Encrusting, massive or erect flabellate growth forms; smooth or conulose surface supported by promi-
nent spongin fibres cored with spicules; megascleres styles and/or oxeas, often with telescoped ends; no ectosomal
skeleton; tissue contains an unusual cell type filled with refractile granules. (Modified from Morrow and Cardenas
(2015) to include oxeas among megascleres.)

Remarks: As the focus of this paper is alpha taxonomy, rather than a revision of higher taxonomy, I have re-
tained the definition of Morrow and Cardenas (2015), adding oxeas among the megascleres as the only modifica-
tion. However, it should be noted that a more thorough revision is needed, and would likely result in further changes.
The description of Svenzea zeai, for example, does not include prominent spongin fibers.

Family Scopalinidae Morrow et al., 2012

Definition same as order.
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FIGURE 1. Gene tree at the cox1 mitochondrial locus. Bootstrap values are shown for nodes with > 50% support; nodes with
< 50% support are collapsed. Genbank accession numbers are shown; those beginning with M, shown in bold, are new. Scale
bar indicates substitutions per site. Root placement based on Redmond et al. (2013).

Scopalina Schmidt 1862

Definition: Thinly or thickly encrusting; soft and compressible; few or no ectosomal spicules; spongin abundant,
with extensions of spongin manifest as mounds or fibers arising from basal spongin plate; these fibers may branch
and merge; choanosomal skeleton of spicules or spicule bundles with proximal ends or entire spicule enclosed in
spongin; choanosome may have a grainy appearance. Larvae are elongated, conical; anterior region wider than the
posterior zone; completely covered by short cilia. (Modified from Blanquer and Uriz 2008).

Diagnosis: Scopalina have abundant spongin, while Svenzea are described as having limited spongin, primar-
ily at the nodes of a reticulated spicule network. Svenzea tend to have shorter spicules, (200-300 um), whereas in
Scopalina they mostly range from 400 to 2000 pm (though S. canariensis averages only 199 um). The skeletal
architecture of Svenzea has been noted as more like that of the haplosclerida than Scopalina. Svenzea are massive
or thickly encrusting, while Scopalina are thinly to thickly encrusting.
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Stylissa are erect, flabellate, or lobate, rather than possessing encrusting morphologies seen in Scopalina. Styl-
issa are noted as having a skeletal architecture like that of the Halichondridae, with many spicules in confusion.

Axinella pyramidata HQ379335/379201/379265
Axinella damicornis HQ379198/379261/379333

Stylissa carteri KU060542
Stylissa carteri KU060553
Stylissa carteri KU060320
Stylissa carteri EU146398

Svenzea zeai KC869635
Scopalina kuyamu MT586559

Scopalina goletensis MT586557

Scopalina ruetzleri KC869553

QScopaIina ruetzleri AY561872

Scopalina nausicae MT586561

o Scopalina nausicae MT586562

Scopalina nausicae MT586560

Scopalina blanensis HQ379205/379395/379268/379337

* Scopalina hispida KC884841

Scopalina jali MT586556 Tree scale: 0.1 ——
 Scopalina jali MT586558

et

67

100

FIGURE 2. Gene tree at the large ribosomal subunit (28S). Bootstrap values are shown for nodes with > 50% support; nodes
with <50% support are collapsed. Genbank accession numbers are shown; those beginning with MT, in bold, are new. Scale bar
indicates substitutions per site. Root placement based on Redmond et al. (2013).

Scopalina nausicae sp. nov.
(Fig. 3)

Material examined. Holotype: (CASIZ 235474) Point Loma, San Diego, California, USA (32.69438, -117.26860),
15 m depth, 2/7/20. Paratypes: (CASIZ 235471) Coal Oil Point, Santa Barbara, California, USA (34.40450, -
119.87890), 11 m depth, 8/30/19; (CASIZ 235472) Isla Vista Reef, Santa Barbara, California, USA (34.40278, -
119.85755), 12 m depth, 8/1/19; (CASIZ 235473) Arroyo Quemado Reef, Santa Barbara, California, USA (34.46775,
-120.11905), 11 m depth, 1/7/20.

Etymology. Named for the fictional character Nausicad from the film Nausicad and the Valley of the Wind.

Morphology. Encrusting, 2—4 mm thick, up to 10 cm across (Fig. 3). Soft and compressible. Prominent conules
0.5-1.0 mm in height,1.5-3.5 mm apart; spicules protrude at conules, making them microscopically hispid. Scat-
tered oscules 1-2 mm in diameter. In nature, ectosome appears opaque at conules but often lacy and porous between
them; ectosome more opaque in collected samples. Ectosome peach colored, choanosome yellow when alive; all
tissues fade to beige when preserved in ethanol.

Skeleton. Vertical trunks of spongin, 100-550 pm wide, arise from a basal spongin mat and terminate in surface
conules. Secondary branches of spongin 50-100 um wide arise from primary trunks, branching off at an angle of
less than 90 degrees and still extending towards surface. Primary and secondary trunks cored with spicules with
pointed ends up; spicules entirely enclosed in spongin or with tips projecting; projecting tips fan out to create a bou-
quet that pierces the ectosome at conules. An additional type of spongin tract is distinct from those described above:
60-90 pum wide, these tracts branch from primary trunks at approximately 90-degree angles, then meander through
the choanosome in a vermiform fashion, sometimes branching; these vermiform tracts do not contain spicules. Basal
spongin, spicule-containing spongin trunks, and vermiform tracts are sporadically cored with sediment. Spicule-
containing and vermiform spongin tracts are often filled and/or coated with what appear to be algal cells; these are
red in preserved tissue.
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FIGURE 3. Scopalina nausicae sp. nov. A: Field photo of paratype (CASIZ 235472), Isla Vista Reef. B: Field photo of para-
type (CASIZ 235473), Arroyo Quemado Reef. C, D: Skeletal architecture of holotype (CASIZ 235474), Point Loma; scale
applied to both. In C, vermiform and primary spongin trunks are coated in apparent algae. In D, only primary spongin trunk

showing algae, but vermiform tracts are sporadically cored with sediment. E, F: spicules from paratype (CASIZ 235472).

Spicules. Styles only, usually bent towards the head end, thickest at the head and tapered to a point. Some show
“telescoping” (width decreasing in a step-wise fashion) at the pointed end. Average spicule length for each voucher:
454, 483, 505, 532 pm (N=31-40 per sample); total range in spicule length across vouchers 375-623 um (N=135).
Average spicule width at head, for each voucher: 9, 9, 11, 11 pm (N=31-40 per sample); total range in spicule width
at head 5-17 pm (N=135).

Distribution and habitat. This species is common on the shallow (5-16 m) rocky reef at Coal Oil Point, Santa
Barbara, California. Often found on vertical rock walls or boulders, it can also occur on flatter areas, and has been
found partially buried by sand. It was not found at most other locations investigated, but was located in similar habi-
tat at the Arroyo Quemado Reef (near Point Conception) and in the kelp forests in extreme Southern California, off
Point Loma and La Jolla, San Diego. It is therefore likely that the specie’s range encompasses at least the Southern
Californian and Ensenadan biogeographical provinces, bounded by Point Conception in the North and Punta Euge-
nia in the South (Blanchette ef al. 2008; Valentine 1966).

Remarks. Skeletal architecture, spiculation, and genotype all conspire to place this species within the Scopa-
lina. I was unable to detect the “graininess” said to characterize other Scopalinidae. However, this was hard to assess
due to the abundant sediment within the sponge: dark grains were apparent, but appeared to be sediment rather than
refractile cells.

Spicule dimensions, skeletal morphology, and genotype all serve to differentiate S. nausicae sp. nov. from the
three other species newly described here. Fourteen other species are currently placed in the genus Scopalina, ac-
cording to the World Porifera Database (van Soest ef al. 2019). None of these are known from the Eastern Pacific,
making them unlikely conspecifics with any of the species described here. The gross morphology of S. nausicae
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sp. nov. in the field is quite similar to published images of S. ruetzleri (Wiedenmayer, 1977) (West Atlantic) and S.
erubescens (Goodwin et al., 2011) (Faulkland Islands). Spicule length and sponge color also match S. erubescens
better than other Scopalina, making this species the most likely conspecific. In addition to geographic separation,
however, S. erubescens is larger, more thickly encrusting, and has thicker spicules and spicule bundles. The de-
scription of S. erubescens also lacks any mention of the vermiform spongin tracts that pervade S. nausicae sp. nov.
(Goodwin et al. 2011). Scopalina ruetzleri can be excluded as a conspecific based on genetic data at both cox1 and
28S as well as color and habitat (Riitzler et al. 2003). This species is described as ranging throughout the Carib-
bean, but was also recently reported from the tropical Eastern Pacific (Carballo et al. 2019). This latter report is not
accompanied by morphological or genetic information, so comparisons between tropical Pacific Scopalina and S.
nausicae sp. nov. await future investigation.

Within its range, it is likely that this sponge can be identified from field photos, as I have seen no other sponge
with a similar morphology to date.

Scopalina kuyamu sp. nov.
(Fig. 4)

Material examined. Holotype: (CASIZ 235469) Naples Reef, Santa Barbara, California, USA (34.42212, -
119.95154), 12 m depth, 7/31/19.

Etymology. Named for the village of Kuyamu, a community of Barbarefio Chumash that once stood onshore at
the site where the sponge was discovered.

Morphology. Encrusting, 1-2 mm thick, 6 cm across (Fig. 4). Soft and compressible. Surface hispid due to a
profusion of protruding styles. Distinct ectosome not apparent. Peach colored in nature, except for translucent-white
varicose channels running along surface. Few scattered oscules, each ~300 um diameter; smaller pores (approxi-
mately 80 um diameter) abundant and uniformly distributed. Beige when preserved in ethanol.

Skeleton. Basal mat of spongin cored with sediment. Extensions of spongin arise from this mat: most are low
mounds, some only 25-50 pm high, but some are fingers 100-300 um high and cored with sediment. Heads of spic-
ules are embedded in these mounds and fingers, either singly or in bundles of up to 12. Spicules extent vertically
and pierce the surface of the sponge.

Spicules. Styles only, usually bent towards the head end, thickest at the head and tapered to a point. Some spic-
ule tips are “telescoping” (width decreasing in a step-wise fashion) at the pointed end. Spicules averaged 1557 um
in length (N=35, range 879-1948 pum); 16 um in width (N=35, range 11-21).

Distribution and habitat. Only a single individual has been found, on a vertical wall at 12 m depth, at Naples
Reef, in Santa Barbara, California. Habitat was rocky reef with abundant bryozoan, sponge, and anthozoan cover,
adjacent to year-round kelp forest. Three additional dives at the same location failed to locate other individuals;
similar, nearby habitat to the East and West also had considerable search effort, so this species appears to be rare in
this area.

Remarks. This sponge is quite genetically and morphologically distinct from S. nausicae and S. jali. The
spicular architecture is fairly similar to S. goletensis, though the spicule density is lower. As a result, S. goletensis is
removable from the substrate as a fairly firm sheet, while S. kuyamu peels away in rubbery strips that curl up upon
themselves. Also, the spicules average over twice as long in S. kuyamu, with non-overlapping size ranges among
the spicules measured. These morphological differences seem unlikely to be due to environmental influences, as the
two species were collected at the same depth, at very similar reefs, less than 5 km apart. Together with the consider-
able genetic divergence, these differences support species status for both species.

Among Scopalina from other regions, the only species with spicules as large as S. kuyamu are S. lophyropoda
(Schmidt, 1862) (Blanquer & Uriz 2008) (Mediterranean) and S. bunkeri (Goodwin ef al., 2011) (Falkland Islands).
In addition to great geographic distance, S. lophyropoda can be excluded based on genetic data (Fig. 1); S. bunkeri
has a different spicular architecture, gross morphology, and color (Goodwin et al. 2011).

It does not seem likely that this species can be identified from field photos alone, though it is difficult to say if
there are reliable field marks until more individuals are found.
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FIGURE 4. Scopalina kuyamu sp. nov.. All images from holotype. A: field photo. B: Skeletal architecture, showing basal plate

cored with copious sediment. C, D spicules.

Scopalina goletensis sp. nov.
(Fig. 5)

Material examined. Holotype: (CASIZ 235470) Elwood Reef, Santa Barbara, California, USA (34.41775, -
119.90150), 12 m depth, 10/23/19.

Etymology. Named for the town of Goleta that is onshore from the location where the sponge was discovered.

Morphology. Encrusting, 1.0—1.2 mm thick, approximately 2.5 cm across (figure 5). Firm and incompressible.
Surface hispid due to dense profusion of protruding styles. Distinct ectosome not apparent. Beige / cream colored in
nature; retained the same color when preserved in ethanol. Surface traced by varicose, translucent channels; pores
(approximately 200-300 um diameter) abundant and uniformly distributed.

Skeleton. Basal mat of spongin cored with sediment. Vertical extensions of spongin 10—600 pm high arise from
this mat: none of these were cored with sediment, but loose sediment was abundant throughout the sponge. Heads
of some spicules are embedded singly, directly in the basal mat of spongin, but most are embedded as tiered bundles
in the vertical extensions of spongin.

Spicules. Styles only, usually slightly bent towards the head end, thickest at the head and tapered to a point.
Some spicule tips are “telescoping” (width decreasing in a step-wise fashion) at the pointed end. Spicules averaged
687 um in length (N=37, range 388-801 um); 15 um in width (N=37, range 6-21).

Distribution and habitat. Only a single individual has been found, on a vertical ledge at 12 m depth, at Elwood
Reef, in Santa Barbara, California. Habitat was rocky reef with abundant bryozoan, sponge, and anthozoan cover,
under a year-round kelp canopy. Considerable search effort at Elwood Reef and nearby locations failed to locate
additional individuals, so this species is likely to be rare in this area.

Remarks. This species is most similar to S. kuyamu, but is morphologically and genetically distinct, as de-
tailed in the S. kuyamu remarks. The spicule dimensions are similar to several species from other regions (S. azurea
(Bibiloni, 1993), S. blanensis (Blanquer & Uriz, 2008), S. hispida (Hechtel, 1965)), though none of these others is
known to have spicules as thick. All but S. azurea can also be excluded based on the available genetic data (Figs. 1,
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2). Conspecificity with S. azurea is unlikely based on geographic isolation, color, and spicular architecture (Bibiloni
1993).

It does not seem likely that this species can be identified from field photos alone, though it is difficult to say if
there are reliable field marks until more individuals are found.

R N
5 wiibd “Ye

FIGURE 5. Scopalina goletensis sp. nov.. All images from holotype. A: field photo. B: Skeletal architecture, showing basal
plate cored with sediment. C, D spicules.

Scopalina jali sp. nov.
(Fig. 6)

Material examined. Holotype: (CASIZ 235466) Big Rock, Santa Cruz Island, California, USA (34.05220, -
119.57360), 12m depth, 1/19/20. Paratypes: (CASIZ 235467) Naples Reef, Santa Barbara, California, USA
(34.42212, -119.95154), 11 m depth, 9/26/19. (CASIZ 235468) Naples Reef, Santa Barbara, California, USA
(34.42212, -119.95154), 15 m depth, 12/10/19.

Etymology. The ectosome of live specimens in sifu is reminiscent of a jali: a latticed screen common in Indo-
Islamic architecture.

Morphology. Thickly encrusting, 1.0-1.5 cm thick, up to 35 cm across (Fig. 6). Soft, spongey, and very com-
pressible. Ectosome transparent, without spicules; a lattice-like mesh of spongin fibers visible in life; conules pres-
ent, but very small (100-300 pm in width and height); ectosome more opaque after preservation in ethanol but
remains partially transparent and lacy. Color in freshly collected specimens is terra-cotta (reddish-brown); red and
orange tones are more muted in field photos, with color appearing to vary from tan to terra-cotta; samples fade to
beige when preserved in ethanol. Oscules 10-20 mm in diameter; occur singly; sparse in some samples and denser
in others; partially closed by ectosomal membrane in collected samples.

Skeleton. Abundant spongin fibers cored with spicules form a chaotic mesh lattice within choanosome. Larger
spongin tracts, 45-65 um wide, are cored with bundles approximately 5 spicules wide; smaller tracts, 8-20 um
wide, are cored with single spicules. No spicules detected outside of spongin tracts. Considerable silt apparent in
tissue sections, but none seen coring spongin tracts.

Spicules. Oxeas only, gently curved; some spicule tips show “telescoping” (width decreasing in a step-wise
fashion). Average spicule length for each voucher: 354, 358, 366 um (N=30-37 per sample); total range in spicule
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length across vouchers 219-436 um (N=100). Average spicule width at widest point, for each voucher: 8,9, 11 um
(N=30-37 per sample); total range in spicule width at head 2—18 pm (N=100).

FIGURE 6. Scopalina jali sp. nov.. A: Field photo of holotype (CASIZ 235466), Santa Cruz Island. B: Field photo of paratype
(CASIZ 235467), Naples Reef. C: Skeletal architecture of holotype. In C, vermiform and primary spongin trunks coated in ap-

parent algae. D, E: spicules from paratype (CASIZ 235467).

Distribution and habitat. In the winter of 2019-2020, this sponge was abundant on the shallow (5-17 m)
rocky reefs off of Naples Point and the Elwood Bluffs, Santa Barbara, California. The species was not seen in 4
dives at these same locations in the Spring and Summer of 2019, suggesting that the population may vary seasonally
or in a boom-and-bust fashion on longer timescales. Consistent with this latter possibility, many large individuals of
this species were seen at the Big Rock dive site at Santa Cruz Island in January of 2020, while no individuals were
seen in three dives at the same location in November of 2018. The only other probable sighting I am aware of'is a
photo uploaded to the site iNaturalist (inaturalist.org/observations/41000570). This photo is very likely to be S. jali,
as no other sponge with this morphology is known in Southern California. The photo is annotated as from Heisler
Park, Laguna Beach, from 3/4/2007.

Remarks. Genetic data at two loci confirm that this species is within the Scopalina. Abundant spongin fibers
cored with simple spicules, telescoping spicule tips, and lack of ectosomal skeleton are all consistent with this place-
ment. The presence of oxeas, rather than styles, required modification of recent definitions of order, family, and ge-
nus -- though one species currently placed in Scopalina in the World Porifera database also contains only oxeas (S.
agoga (de Laubenfels, 1954)) and another contains both styles and oxeas (S. australiensis (Pulitzer-Finali, 1982)).
Scopalina jali is differentiated from S. agoga by spicule size and the presence of many tangential spicules in the
ectosome of S. agoga; this previously described species is also known only from Palau (de Laubenfels 1954). The

NEW SCOPALINA FROM CALIFORNIA Zootaxa 4970 (2) © 2021 Magnolia Press -+ 367



skeletal architecture of S. jali differs markedly from the other California species described herein due to its highly
reticulated nature, but this is similar to the published description of the Atlantic species S. ceutensis (Blanquer &
Uriz, 2008).

It is likely that this sponge can be identified from field photos alone within Southern California, as I have seen
no other sponge with a similar morphology to date.

Conclusions

It is remarkable that, among the relatively well-studied kelp forests of the Santa Barbara Channel, I was able to
locate 4 new species from an order not previously known to occur in the region. These species were not only un-
described, but apparently unsampled: no previous California survey includes samples matching their description
(Lee et al. 2007). These results illustrate how much remains to be learned about the sponges of California, and show
that SCUBA-based collection efforts can help bridge this gap. Moreover, collection by hand allows for underwater
photography of live samples before collection. By comparing photographs of the species described here with photos
of all other sponges I have collected, I believe that the two more common species (S. jali and S. nausicae) are easily
recognizable within their range. This assertion is supported by the fact that, after collection of the first samples of
each, subsequent samples were correctly identified as conspecifics based on field photos before being confirmed as
such using spicules and DNA. This will simplify future efforts to understand the ecology of these species, perhaps
by using diver surveys or photo transects.

In contrast, the other two new species (S. kuyamu and S. goletensis) are thinly encrusting and will be harder
to identify based on gross morphology. Each was found only once; as they were both found within the range and
habitat I have most thoroughly sampled, it is likely they are uncommon in this area (but could be common in deeper
waters). Though describing new species from a single sample is not ideal, I feel confident these samples are not
conspecific with any currently named species due to their considerable genetic divergence from other sequenced
species, substantial morphological differences from un-genotyped species, and the fact that no previously named
species are known from the region.

Much remains to be learned about the Scopalinida. Twenty species were previously known to reside in the or-
der: 14 Scopalina species, 5 Svenzea species, and Stylissa flabelliformis (Morrow & Cardenas 2015). These sponges
are known from the Mediterranean and Canary Islands (5 species), Caribbean (6 species), the tropical South-West
Pacific (6 species), Madagascar (1 species), and the Falkland Islands (2 species). The addition of four species from
Southern California expands this range considerably, and makes the group more accessible to researchers in this
geographic region. It is my hope that this will lead to an improved understanding of the ecology and evolution of
these interesting and understudied animals.
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