
2019 IEEE International Conference on Data Mining (ICDM)

Deep Multi-attributed Graph Translation with
Node-Edge Co-evolution

Xiaojie Guo, Liang Zhao, Cameron Nowzari, Setareh Rafatirad
Houman Homayoun, and Sai Manoj Pudukotai Dinakarrao

George Mason University
Fairfax, VA, USA.

{xguo7,lzhao9,cnowzari,srafatir,hhomayou,spudukot}@gmu.edu

Abstract—Generalized from image and language translation,
graph translation aims to generate a graph in the target domain
by conditioning an input graph in the source domain. This
promising topic has attracted fast-increasing attentions recently.
Existing works are limited to either merely predicting the node
attributes of graphs with fixed topology or predicting only
the graph topology without considering node attributes, but
cannot simultaneously predict both of them, due to substantial
challenges: 1) difficulty in characterizing the interactive, iterative,
and asynchronous translation process of both nodes and edges
and 2) difficulty in discovering and maintaining the inherent
consistency between the node and edge in predicted graphs.
These challenges prevent a generic, end-to-end framework for
joint node and edge attributes prediction, which is a need for real-
world applications such as malware confinement in IoT networks
and structural-to-functional network translation. These real-
world applications highly depend on hand-crafting and ad-hoc
heuristic models, but cannot sufficiently utilize massive historical
data. In this paper, we termed this generic problem “multi-
attributed graph translation” and developed a novel framework
integrating both node and edge translations seamlessly. The
novel edge translation path is generic, which is proven to be a
generalization of the existing topology translation models. Then,
a spectral graph regularization based on our non-parametric
graph Laplacian is proposed in order to learn and maintain the
consistency of the predicted nodes and edges. Finally, extensive
experiments on both synthetic and real-world application data
demonstrated the effectiveness of the proposed method.

Index Terms—Multi-attributed graphs; graph translation. I.

I . I n t r o d u c t i o n

Many problems regarding structured predictions are encoun­
tered in the process of ’’translating” an input data (e.g., images,
texts) into a corresponding output data, which is to learn
a translation mapping from the input domain to the target
domain. For example, many problems in image processing
and computer vision can be seen as a ’’translation” from
an input image into a corresponding output image. Similar
applications can also be found in language translation [1]—[3],
where sentences (sequences of words) in one language are
translated into corresponding sentences in another language.
Such generic translation problem, which is important yet
has been extremely difficult in nature, has attracted rapidly-
increasing attention in recent years. The conventional data
translation problem typically considers the data under special
topology. For example, an image is a type of grid where each
pixel is a node and each node has connections to its spatial

neighbors. Texts are typically considered as sequences where
each node is a word and an edge exists between two contextual
words. Both grids and sequences are special types of graphs.
In many practical applications, it is required to work on data
with more flexible structures than grids and sequences, and
hence more powerful translation techniques are required in
order to handle more generic graph-structured data. This has
been widely applied into many applications, e.g. predicting
future states of a system in the physical domain based on
the fixed relations (e.g. gravitational forces) among nodes [4]
and the traffic speed forecasting on the road networks [5],
[6]. Though they can work on generic graph-structured data,
they assume that the graphs from the input domain and target
domain share the same graph topology but cannot model or
predict the change of the graph topology.

To address the above issues where the topology can change
during translation, deep learning-based graph translation prob­
lem has debuted in the very recent years. This problem is
promising and critical to the domains where the variations of
the graph topology are possible and frequent such as social
network and cyber-network. For example, in social networks
where people are the nodes and their contacts are the edges, the
contact graph among them vary dramatically across different
situations. For example, when the people are organizing a riot,
it is expected that the contact graph to become denser and
several special “hubs” (e.g., key players) may appear. Hence,
accurately predicting the contact network in a target situation
is highly beneficial to situational awareness and resource
allocation. Existing topology translation models [7], [8] predict
the graph topology (i.e., edges) in a target domain based on
that in an input domain. They focus on predicting the graph
topology but assume that the node attributes value are fixed
or do not exist.

Therefore, existing works either predict node attributes upon
fixed topology or predict edge attributes upon fixed node
attributes. However, in many applications, both node attributes
and edge attributes can change. In this paper, such generic
problem is named as multi-attributed graph translation, with
important real-world applications ranging from biological
structural to functional network translation [9] to network in­
tervention research [10]. For example, the process of malware

2374-8486/19/$31.00 ©2019 IEEE 250
DOI 10.1109/ICDM.2019.00035

_ IEEEcomputer
society

Authorized licensed use limited to: George Mason University. Downloaded on December 05,2021 at 03:35:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Given the network at time t (shown in the left graph),
malware confinement is conducted to predict the most optimal
status at time t + 7 shown in the right, where Devices 2 and 3
are protected by cutting the links (edges) to the compromised
Device 1, while the Device 4 is propagated by malware without
cutting link.

confinement1 over IoT (Internet of Things) is typically a graph
translation problem as shown in Fig. 1. It takes the initial status
of IoT as input, and predicts the target graph which is ideally
the optimal status of the network with modified connections
(i.e., edges) and devices (i.e., nodes) state that helps to
limit malware propagation and maintain network throughput.
Epidemic controlling can also be considered as a multi-
attributed graph translation problem, which is to estimate how
the initial disease contact network (i.e., multi-attributed edges)
and the human health stage (i.e., multi-attribute nodes) are
jointly changed after the specific interventions. Since multi-
attributed graph translation problem is highly sophisticated,
there is no generic framework yet, but only ad-hoc methods
for few specific domains, which heavily rely on intensive hand­
crafting and domain-specific mechanistic models that could be
extremely time- and resource- consuming to run in large scale.
Hence, a generic, efficient, and end-to-end framework for
general multi-attributed graph translation problems is highly in
demand. Such framework needs to be able to comprehensively
learn the translation mapping, remedy human bias by enjoying
the large historical data, and achieve efficient prediction.

In this paper, we focus on the generic problem of multi-
attributed graph translation, which cannot be handled by
the existing methods because of the following challenges:
1) Translation of node and edge attributes are mutually
dependent. The translation of edge attributes should not only
consider edges, but also the node attributes. For example,
in Fig. 1, two links are cut down since their linked Device
1 is compromised, which exemplifies the interplay between
nodes and edges. Similarly, node translation also needs to
jointly consider both nodes and edges, e.g., Device 4 is
infected due to its link to Device 1. All the above issues need
to be jointly considered but no existing works can handle.
2) Asynchronous and iterative changes of node and edge
attributes during graph translation. The multi-attributed
graph translation process may involve a series of iterative

device infected in an IoT network can propagate to other nodes
connected to it, leading to contaminating the whole network, such as MiraiBot
attack. As such, it is non-trivial to confine the malware to limit the infection
and also equally important to maintain overall network connectivity and
performance.

changes in both edge and node attributes. For example in Fig.l,
the translation could take several steps since the malware
propagation is an iterative process from one device to the
others. The links to a device may be cut (i.e., edge changes)
right after it is compromised (i.e, node attribute change). These
orders and dependencies of how node and edge attributes
change during the translation are very important, yet difficult
to be learned. 3) Difficulty in discovering and enforcing
the correct consistency between node attributes and graph
spectra. Although the predicted node and edge attributes are
two different outputs, they should be highly dependent on each
other instead of being irrelevant. For example, as shown in
Fig. 1, the reason why Devices 2 and 3 on the right graph
are not compromised is that they have no links with the
compromised Device 1 anymore. It is highly challenging to
learn and maintain the consistency of node and edge attributes,
which are very sophisticated and domain-specific patterns.

To the best of our knowledge, this is the first work that
addresses all the above challenges and provides a generic
framework for the multi-attributed graph translation problem.
This paper propose an Node-Edge Co-evolving Deep Graph
Translator (NEC-DGT) with novel architecture and compo­
nents for joint node and edge translation. Multi-block network
with novel interactive node and edge translation paths are
developed to translate both node and edge attributes, while
skip-connection is utilized among different blocks to allow
the non-synchronicity of changes in node and edge attributes.
A novel spectral graph regularization is designed to ensure
the consistency of nodes and edges in generated graphs. The
contributions of this work are summarized as follows:

• The development of a new framework for multi-
attributed graph translation. We formulate, for the
first time, a multi-attributed graph translation problem
and propose the NEC-DGT to tackle this problem. The
proposed framework is generic for different applications
where both node and edge attributes can change after
translation.

• The proposal of novel and generic edge translation
layers and blocks. A new edge translation path is
proposed to translate the edge attributes from the input
domain to the output domain. Existing edge translation
methods were proven to be special cases of ours, which
can handle broad multi-attribute edges and nodes.

• The proposal of a spectral-based regularization that
ensures consistency of the predicted nodes and edges.
In order to discover and maintain the inherent relation­
ships between predicted nodes and edges, a new non­
parametric graph Laplacian regularization with a graph
frequency regularization is proposed and leveraged.

• The conduct of extensive experiments to validate the
effectiveness and efficiency of the proposed model.
Extensive experiments on four synthetic and four real-
world datasets demonstrated that NEC-DGT is capable
of generating graphs close to ground-truth target graphs
and significantly outperforms other generative models.

251

Authorized licensed use limited to: George Mason University. Downloaded on December 05,2021 at 03:35:44 UTC from IEEE Xplore. Restrictions apply.

II . R e l a t e d W o r k s

Graph neural networks learning. In recent years, there
has been a surge in research focusing on graph neural net­
works, which are generally divided into two categories: Graph
Recurrent Networks [11]—[13] and Graph Convolutional
Networks [14]—[21]. Graph Recurrent Networks originates
from the early works of graph neural networks proposed by
Gori et al. [11] and Scarselli et al. [12] based on recursive
neural networks. Another line of research is to generalize
convolutional neural networks from grids (e.g., images) to
generic graphs. Bruna et al. [22] first introduced the spectral
graph convolutional neural networks, and then it was extended
by Defferrard et al. [16] using fast localized convolutions,
which is further approximated for an efficient architecture for
a semi-supervised setting [20].

Graph generation. Most of the existing GNN based graph
generation for general graphs have been proposed in the last
two years and are based on VAE [23], [24] and generative
adversarial nets (GANs) [25], among others [26], [27]. Most
of these approaches generate nodes and edges sequentially to
form a whole graph, leading to the issues of being sensitive
to the generation order and very time-consuming for large
graphs. Differently, GraphRNN [27] builds an autoregressive
generative model on these sequences with LSTM model and
has demonstrated its good scalability.

Graph structured data translation. The existing Graph
structured data translation either deal with the node attributes
prediction or translate the graph topology. Node attributes
prediction aims at predicting the node attributes given the
fixed graph topology [4]—[6], [28]. Li et al. [5] propose a
Diffusion Convolution Recurrent Neural Network (DCRNN)
for traffic forecasting which incorporates both spatial and
temporal dependency in the traffic flow. Yu et al. [6] for­
mulated the node attributes prediction problem of graphs
based on the complete convolution structures. Graph topology
translation considers the change of graph topology from one
domain distributions to another. Guo et al. [7] proposed and
tackled graph topology translation problem by proposing a
generative model consisting of a graph translator with graph
convolution and deconvolution layers and a new conditional
graph discriminator. Sun et al. [8] proposed a graphRNN based
model which generates a graph’s topology based on another
graph.

III. P r o b l e m F o r m u l a t i o n

This paper focuses on predicting a target multi-attributed
graph based on an input multi-attributed graph by learning
the graph translation mapping between them. The following
provides the notations and mathematical problem formulation.

Define an input graph as G(Vq,Sq, Eq, Fo) where Vo is
the set of N nodes, and So ç Vo x Vo is the set of M
edges, e ij G Sq is an edge connecting nodes г G Vo and
j G Vo. £0 contains all pairs of nodes while the existence
of e ij is reflected by its attributes. Eq g m_NxNxK is the
edge attributes tensor, where E q̂ j g M1xA" denotes the
edge attributes of edge e^j and К is the dimension of edge

TABLE I: Important notations and descriptions

Notations Descriptions
G(V0 , 8 o , E 0 ,Fo) Input graph with node set Vo, edge set Eq, edge

attributes tensor Eq and node attributes matrix Fq
G (V ' ,E ' ,E ' ,F ') Target graph with node set V', edge set E', edge

attributes tensor E ' and node attributes matrix F'
C Contextual information vector
N Number of nodes
M Number of edges
D Dimension of node attributes
К Dimension of edge attributes
c Dimension of contextual information vector
s Number of translation blocks

attributes. Fq g WNxD refers to the node attribute matrix,
where Fq̂ g K1xD is the node attributes of node г and D
is the dimension of the node attributes. Similarly, we define
the target graph as G(V', S' ,E ' ,F '). Note that the target and
input graphs are different both in their node attributes as
well as edge attributes. Moreover, vector C provides some
contextual information on the translation process. Therefore,
multi-attributed graph translation is defined as learning a
mapping: T : G(Vo,£o,E0,F0)-,C ->■ G (V ,S ',E ',F ') .

Source domain Target domain

(a) Edges-to-edges interaction

Source domain Target domain

(c) Nodes-to-nodes interaction

(e) Graph Spectral property

Source domain Target domain

ф Compromised device (node)
I Uncompromised device (node)

П Protection against attacks
High-secure requirement devices

Fig. 2: Five types of interactions during graph translation
in the example of malware confinement. Node attributes are
indications of malware attacks of IoT devices and edges
represent the connections between devices.

For example, considering the malware confinement case
where the nodes refer to IoT devices and the edges reflect the
communication links between two devices. The node attributes
include the malware-infection status and the properties of that
device (i.e., specification and anti-virus software features).
A single IoT device (i.e., node) that is compromised has
the potential to spread malware infection across the network,
eventually compromising the network or even ceasing the
network functionality. In contrast, in order to avoid malware
spreading as well as maintain the performance of the net­
work, the network connectivity (i.e., graph topology) should
be modified through malware confinement, thus to change
the device status (i.e., node attributes) accordingly. Hence,
malware confinement can be considered as predicting the

252

Authorized licensed use limited to: George Mason University. Downloaded on December 05,2021 at 03:35:44 UTC from IEEE Xplore. Restrictions apply.

optimal topology as well as the corresponding node and edge
attributes of the target graph, where both malware prevention
and device performance are maximized.

Multi-attributed graph translation problem requires to high­
light several unique considerations as depicted in Fig.2: 1)
Edges-to-edges interaction: In target domain, the edge at­
tributes E[- of an edge e^· can be influenced by its incident
edges’ attributes and ^o,k,j in input domain. For exam­
ple, in Fig. 2 (a), if Devices 1 and 3 must be prevented from
infection, then the edges between the compromised Device 1
and Device 2 need to be cut, due to the paths among them
in input domain. 2) Nodes-to-edges interaction: In target
domain, the attributes E[^ of edge eitj can be influenced
by its incident nodes’ attributes Fq̂ and Fqj in the input
domain. As shown in Fig. 2 (b), if Device 2 is compromised
in input domain, then in target domain, only its connections
to Devices 1 and 3 need to be removed but the connection
between Devices 1 and 3 can be retained because they are
not compromised. 3) Nodes-to-nodes interaction: For a given
node i, its attribute Fq̂ in input domain may directly influence
its attribute F(in target domain. As shown in Fig. 2 (c),
Device 3 with effective anti-virus protection (e.g. firewall)
may not be easily compromised in target domain. 4) Edges-
to-nodes interaction: For a given node i, its related edge
attributes E q̂ j in input domain may affect its attributes F[
in target domain. As shown in Fig. 2 (d), Device 1 which has
more connections with compromised devices in input domain
is more likely to be infected in target domain. 5) Spectral
Graph Property: There exist relationships between nodes
and edges in one graph as reflected by the graph spectrum.
These relationships are claimed to have some persistent or
consistent patterns across input and target domains, which
have also been verified in many real-world applications such
as brain networks [9]. For example, as shown in Fig. 2 (e), the
devices that are densely connected as a sub-community tend
to be in the same node status, which is a shared pattern for
relationships between nodes and edges in different domains.

Multi-attributed graph translation should consider all the
above properties, which cannot be comprehensively handled
by existing methods because: 1) Lack of a generic framework
to simultaneously characterize and automatically infer all of
the above node-edge interactions during translation process.
2) Difficulty in automatically discovering and characterizing
the inherent spectral relationship between the nodes and edges
in each graph, and ensuring consistent spectral patterns in
graphs across input and target domains. 3) All the above
interactions could be imposed repeatedly, alternately, and
asynchronously during the translation process. It is difficult
to discover and characterize such important yet sophisticated
process.

IV. T h e P r o p o s e d M e t h o d : NEC-DGT
In this section, we propose the Node-Edge Co-evolving

Deep Graph Translator (NEC-DGT) to model the multi-
attributed graph translation process. First, an introduction of
the overall architecture and the loss functions is given. Then,

Fig. 3: The proposed NEC-DGT consists of multiple blocks.
Each block has edge and node translation paths which are
co-evolved and combined by a graph regularization during
training process.

the elaborations of three modules on edge translation, node
translation, and graph spectral regularization are presented.

A. Overall architecture
Multi-block asynchronous translation architecture. The

proposed NEC-DGT learns the distribution of graphs in the
target domain conditioning on the input graphs and contextual
information. However, such a translation process from input
graph to the final target graph may experience a series of
interactions of different types among edges and nodes. Also,
such a sophisticated process is hidden and needs to be learned
by a sufficiently flexible and powerful model. To address this,
we propose the NEC-DGT as shown in Fig. 3. Specifically,
the node and edge attributes of input graphs are inputted into
the model and the model output the generated target graphs’
node attributes and edge attributes after several blocks. The
skip-connection architecture (black dotted lines in Fig. 3)
implemented across different blocks aims to deal with the
asynchrony property of different blocks, which ensures that
the final translated results fully utilize various combinations
of blocks’ information. To train the deep neural network to
generate the target graph G(E', F ') conditioning on the input
graph G(Eq. F0) and contextual information C, we minimize
the loss function as follows:

CT = C(T(G(E0,F0),C),G (E ',F ')) (1)

where the nodes set Vo and V' as well as edges set Eq and E'
can be reflected in F q and F ', as well as E q and E '.

Node and edge translation paths. To jointly tackle various
interactions among nodes and edges, respective translation
paths are proposed for each block. In node translation path
(in upper part of detailed structure in Fig. 3), node attributes
are generated considering the ”nodes-to-nodes” and ”edges-to-
nodes” interactions. In edge translation path (in lower part of
detailed structure in Fig. 3), edge attributes are generated fol­
lowing the ”edges-to-edges” and ”node-to-edges” interactions.

Spectral graph regularization. To discover and charac­
terize the inherent relationship between nodes and edges of

253

Authorized licensed use limited to: George Mason University. Downloaded on December 05,2021 at 03:35:44 UTC from IEEE Xplore. Restrictions apply.

each graph, the frequency domain properties of the graph is
learned, based on which the interactions between node and
edge attributes are jointly regularized upon non-parametric
graph Laplacian. Moreover, to maintain consistent spectral
properties throughout the translation process, we enforce the
shared patterns among the generated nodes and edges in
different blocks by regularizing their relevant parameters in
the frequency domain. The regularization of the graphs is
formalized as follows:

TZ(G(E, F)) = Ko(G(Es, Fa)) + ΤΖ(Θ) (2)

where S refers to the number of blocks, and Θ refers to the
overall parameters in the spectral graph regularization. E s
and Fs refer to the generated edge attributes tensor and node
attributes matrix in the sth block. Thus G (E s,F s) is the
generated target graph. Then the final loss function can be
summarized as follows:

£ = C(T(G(Eo,F0),C),G (E ' ,F ')) + / 3 7 F)) (3)

where β is the trade-off between the Cq- and spectral graph
regularization. The model is trained by minimizing the mean
squared error of E s with E f, and Fs with F f, enforced by
the regularization. Optimization methods (e.g. Stochastic gra­
dient descent (SGD) and Adam) based on Back-propagation
technique can be utilized to optimize the whole model.

Subsequently, the details of a single translation block
are introduced: edge translation path in Section IY-B, node
translation path in Section IV-C and graph spectral-based
regularization in Section IV-D.

B. Edge Translation Path
Edge translation path aims to model the nodes-to-edges and

edges-to-edges interactions, where edge attributes in the target
domain can be influenced by both nodes and edges in the
input domain. Therefore, we propose to first jointly embed
both node and edge information into influence vectors and
then decode it to generate edges attributes. Specifically, the
edge translation path of each block contains two functions,
influence-on-edge function which encodes each pair of edge
and node attributes into the influence for generating edges, and
the edge updating function which aggregates all the influences
related to each edge into an integrated influence and decodes
this integrated influence to generate each edge’ attributes. Fig.
4 shows the operation of the two functions in a single block
by translating the current input of graph G(ES1FS) to output
graph G (£s+i,.Fs+i).

Influence-on-edge layers. As shown in Fig. 4, the input
graph G(ES,FS) is first organized in unit of several pairs of
node and edge attributes. For each pair of nodes v and u,
we concatenate their edge attributes E S:UjV and their node
attributes: F8iU and F8iV as: B 8,UiV = [F8iU,E 8tUiV,F 8iV]
(as circled in black rectangles in Fig. 4). Then B SjUtV G
jĵ i X (2D-\-K) js inputted into the influence-on-edge function: a
constrained MLP (Multilayer Perceptron) φ which is used to
calculate the influence ß(Bs û v̂) G Mlxgr from the pair of the

Fig. 4: Details of edge translation path for one edge (i.e. ео,з)
in a single block.

nodes и and v. q refers to the dimension of the final influence
on edges, φ for edge translation path is expressed as follows:

Φ(Χ; WE,bE) =σΜ(···{σ0(Χ ■
S-t.,Wg^.D = ^ e\d+K)-.(2D+K)

(4)
where We and Ъе are weights and bias for φ in

edge translation path. M refers to the number of lay­
ers of φ and {σοг ..ам} refers to the activation func­
tions. For undirected graph, we add a weight constraint
We \.d = ^ ε \ό+κ)·{2Ώ+κ) to ensure that the influence of
B s,u,v is the same as the influence of B s,ViU, which means
that the first D rows (related to the attributes of node и) and
the last D rows (related to the attributes of node v) of w ffl
are shared. The influence on edges of each pair is computed
through the same function with the same weights. Thus the
NEC-DGT can handle various size of graphs.

Edge updating layers. After calculating the influence of
each pair of nodes and edge, the next step is to assigning
each pairs’ influences to its related edge to get the integrated
influence for each edge (as shown of φ operation in Fig.4).
This is because each edge is generated depending on both its
two related nodes and its incident edges (like the pairs circled
in the orange rectangle and purple rectangle related to node 0
and node 3 respectively in Fig.4). Here we define the integrated
influence on one edge attribute E s+ as: C8+i,i,j £ Ш1хд,
which is computed as follows:

= У 2 0(Bs,iM]WE,bE) +
* - ^ k i £N(i) ^

F k2eN(j)^ B^ WE^

where N(i) refers to the neighbor nodes of node i. Then the
edge attributes E s+ i s generated by ф([Е0^ , Cs+i,i,j, C]),
where E q̂ j refers to the input edge attributes of edge e^j.
C refers to the contextual information for the translation. The
function ijj is implemented by an MLP.

Relationship with other edge convolution networks. Edge
convolution network is the most typical method to handle
the edge embedding in graphs, which was first introduced as
BrainNetCNN [17] and later explored in many studies [7],
[29], [30]. Our edge translation path is a highly flexible and
generic mechanism to handle multi-attributed nodes and edges.
Several existing edge convolution layers and their variants can

254

Authorized licensed use limited to: George Mason University. Downloaded on December 05,2021 at 03:35:44 UTC from IEEE Xplore. Restrictions apply.

be considered as special cases of our method, as demonstrated
in the following theorem2:

Theorem 1. The influence-on-edge function φ in edge trans­
lation path of NEC-DGT is a generalization of conventional
edge convolution networks.

C. Node Translation Path
Node translation aims to learn the “nodes-to-nodes” and

“edges-to-nodes” interactions, where translation of one node’s
attributes depends on the edge attributes related to this
node and its own attributes. The node translation path of
each block contains two functions, influence-on-node function
which learns the influence from each pair of nodes, and node
updating function which generates the new node attributes by
aggregating all the influences from pairs containing this node.
Fig. 5 shows how to translate a node in a single block.

Fig. 5: Details of node translation path for one node (i.e. node
0) in a single block.

Influence-on-node layers. As shown in Fig. 5, the input
graph G{ES,F S) is first organized in the unit of pairs of nodes,
where each pair is B 8jUtV G Mlx (2D+K) which is similar to
the edge translation path (as circled in the black rectangle
in Fig. 5). Then B S}UjV is inputted into the influence-on-node
function, which is implemented by contrained MLP φ as Equa­
tion (4), to compute the influence ф(Ва,иу, Wp, bp) G R lxh
to nodes (as shown in the grey bar after φ in Fig. 5), where
h is the dimension of the influence on nodes.

Node updating layers. After computing the influences of
each node pair, the next step is to generate node attributes.
For node i, an assignment step is required to aggregate all
the influences from pairs containing node г (as shown of
φ operation in Fig. 5). Thus, all the influences for node г
are aggregated and input into the updating function, which is
implemented by a MLP model φ to calculate the attributes of
node i as: Fa+l,i = Φ № 0,i> J2jeN(i) Ф(В 8,г,В Wf , C])·

D. Graph spectral-based regularization
Based on the edge and node translation path introduced

above, we can generate node and edge attributes, respectively.
However, since these generated node and edge attributes are
predicted separately in different paths, their patterns may not
be consistent and harmonic. To ensure the consistency of the
edge and node patterns mentioned in Section III, we propose
a novel adaptive regularization based on non-parametric graph
Laplacian, and a graph frequency regularization.

Non-parametric Graph Laplacian Regularization. First,
we recall the property of the multi-attributed graphs where

2The proof process is available athttps://github.com/xguo7/NEC-DGT

node information can be smoothed over the graph via
some form of explicit graph-based regularization, namely,
by the well-known graph Laplacian regularization term [20]:

(d)TL(k)F (d) _ ,E\(fc) I p(d) _ p
s,i s,j

(d) where G
R N x 1 is the node attribute vector for the dth node attribute and
E ^ G R NxN is the edge attribute matrix for kth attribute gen­
erated in the sth block. L8k ̂— D8k ̂— E 8k ̂ denotes the graph
Laplacian for the kth edge attributes matrix. The degree matrix
D T] € R NxN is computed as: = Εί% ·

However, the above traditional graph Laplacian can only im­
pose an absolute smoothness regularization over all the nodes
by forcing the neighbor nodes to have similar attribute values,
which is often over-restrictive for many situations such as in
signed networks and teleconnections. In the real world, the
correlation among the nodes is much more complicated than
purely ’’smoothness” but should be a mixed pattern of different
types of relations. To address this, we propose an end-to-
end framework of non-parametric graph Laplacian which can
automatically learn such node correlation patterns inherent in
specific types of graphs, with rigorous foundations on spectral
graph theory. In essence, we propose the non-parametric graph
Laplacian based on the parameter Θ as: ge(Lik>>). is the
normalized Laplacian computed as L P = 2L f̂c)Z^fc) 2
and can be diagonalized by the Fourier basis U8k ̂ G R NxN,
such that = U8® A ^ U 8® where G l iVxJV is a di­
agonal matrix storing the graph frequencies. For example,

(к) ’is the frequency value of the first Fourier basis Ug {. Then we

got д , 0 Р) = βθ(υ ^ Α ^ υ ^)Τ) = и ^ д в{ А ^) и ^ Т .
Therefore, we have the regularization as follows:

Ke(G(Es, f t)) = Y f k=i Σ ° =1 ftM4 (*W A «)t/< fc>Tf t«

where д е (А ^) is a non-paramteric Laplacian eigenvalues
that will be introduced subsequently.

Scalable approximation. де(А ^) is a non-parametric
vector whose parameters are all free; It can be defined as:
ge{A8k)̂ — diag(9^) , where the parameter θψ^ G R N is a
vector of Fourier coefficients for a graph. However, optimizing
the parametric eigenvalues has the learning complexity of
О (IV), the dimensionality of the graphs, which is not scalable
for large graphs. To reduce the learning complexity of O(N)
to 0 (1), we propose approximating ge(A8k)̂ by a normalized
truncated expansion in terms of Chebyshev polynomials [31].
The Chebyshev polynomial Tp{x) of order p may be computed
by the stable recurrence relation Tp(x) — 2xTp-i(x) —
Тр_2(ж) with Ti = 1 and T2 = x. The eigenvalues of the
approximated Laplacian filter can thus be parametric as the
truncated expansion:

ge(A^) = Yfp=1 eSr,(A<«)/ Σ ρ=1 «Й (6)

for P orders, where Tp(A ^) G R NxNis the Chebyshev
polynomial of order p evaluated at A ^ = 2 A ^ /A i% ax — I,
a diagonal matrix of scaled eigenvalues that lie in [—1,1]. The

255

Authorized licensed use limited to: George Mason University. Downloaded on December 05,2021 at 03:35:44 UTC from IEEE Xplore. Restrictions apply.

As,max refers to the largest element in A{k\ Θ £ jjSxPxä:
denotes the parameter tensor for all S blocks, θψ], is the pth
element of Chebyshev coefficients vector £ Mp for the
Mi edge attribute. Each θΨΙ is normalized by dividing the sum
of all the coefficients in 0̂ to avoid the situation where
is trained as zero. Thus, the laplacian computation can then be
written as g eÿ ffl) = Σ ρ=ι Θ̂ ρΤρ0 ^) / Έρ=1 where
Тр0 к)̂ £ MNy'N is the Chebyshev polynomial of order p

- I .evaluated at the scaled Laplacian L ® = 2 /A^L·
For efficient computation, we further approximate As,max ~
1.5, as we can expect that the neural network parameters Θ
will adapt to this change in scale during training.

Graph frequency regularization. To ensure that the spec­
tral graph patterns are consistent throughout the translation
process across different blocks, we utilize a graph frequency
regularization to not only maintain the similarity but also
allow the exclusive properties of each block’s patterns to
be reserved to some degree. Specifically, regarding all the
frequency pattem basis of form L, some are important in
modeling the relationships between nodes and graphs while
some are not, resulting in the sparsity pattem of Θ. Thus,
inspired by the multi-task learning, we learn the consistent
sparsity pattern of ΘΒ by using the £ 2,1 norm as regularization:

д(*Г
I ,P (7)

E. Complexity Analysis
The proposed NEC-DGT requires Ο {Ν'2) operations in

time complexity and 0 (N 2) space complexity in terms of
number of nodes in the graph. It is more scalable than most of
the graph generation methods. For example, GraphVAE [23]
requires 0 { N i) operations in the worst case and Li et al [26]
uses graph neural networks to perform a form of message
passing with 0 { M N 2) operations to generate a graph.

V. E x p e r im e n t s

In this section, we present both the quantitative and quali­
tative experiment results on NEC-DGT as well as the com­
parison models. All experiments are conducted on a 64-
bit machine with Nvidia GPU (GTX 1070, 1683 MHz, 8
GB GDDR5). The model is trained by ADAM optimization
algorithm3.

A. Experimental Setup
1) Datasets: We performed experiments on four synthetic

datasets and four real-world datasets with different graph sizes
and characteristics. All the dataset contain input-target pairs.

Synthetic dataset: Four datsets are generated based on
different types of graphs and translation mles. The input
graphs of the first three datasets (named as Syn-I, Syn-II,
and Syn-III) are Erdos-Renyi (E-R) graphs generated by the
Erdos Renyi model [32] with the edge probability of 0.2 and
graph size of 20, 40, and 60 respectively. The target graph

3The code of the model and additional experiment results are available
at:https://github.com/xguo7/NEC-DGT

topology is the 2-hop connection of the input graph, where
each edge in the target graph refers to the 2-hop reachability
in the input graph (e.g. if node i is 2-hop reachable to node
j in the input graph, then they are connected in the target
graph). The input graphs of the fourth dataset (named as
Syn-IV) are Barabâsi-Albert (В-A) graphs generated by the
Barabâsi-Albert model [33] with 20 nodes, where each node
is connected to 1 existing node. In Syn-IV, topology of target
graph is the 3-hop connection of the input graph. For all the
four datasets, the edge attributes Es,i,j £ [0,1] denotes the
existence of the edge. For both input and target graphs, the
node attributes are continuous values computed following the
polynomial function: f (x) : y = ax2 + bx + c(a = 0, b =
1 ,c = 5), where x is the node degree and f{x) is the node
attribute. Each dataset is divided into two subsets, each of
which has 250 pairs of graphs. Validation is conducted where
one subset is used for training and another for testing, and
then exchange them for another validation. The average result
of the two validations is regarded as the final result.

Malware confinement dataset: Malware dataset are used
for measuring the performance of NEC-DGT for malware
confinement prediction. There are three sets of IoT nodes
at different amount (20, 40 and 60) encompassing tempera­
ture sensors connected with Intel ATLASEDGE Board and
Beagle Boards (BeagleBone Blue), communicating via Blue­
tooth protocol. Benign and malware activities are executed
on these devices to generate the initial attacked networks as
the input graphs. Benign activities include MiBench [34] and
SPEC2006 [35], Linux system programs, and word processor.
The nodes represent devices and node attribute is a binary
value referring to whether the device is compromised or
not. Edge represents the connection of two devices and the
edge attribute is a continuous value reflecting the distance
of two devices. The real target graphs are generated by the
classical malware confinement methods: stochastic controlling
with malware detection [10], [36], [37]. We collected 334 pairs
of input and target graphs with different contextual parameters
(infection rate, recovery rate, and decay rate) for each of the
three datasets. Each dataset is divided into two subsets: one
has 200 pairs and another has 134 pairs. The validation is
conducted in the same way as the synthetic dataset.

Molecule reaction dataset: We apply our NEC-DGT to one
of the fundamental problems in organic chemistry, thus pre­
dicting the product (target graph) of chemical reaction given
the reactant (input graph). Each molecular graph consists of
atoms as nodes and bond as edges. The input molecule graph
has multiple connected components since there are multiple
molecules comprising the reactants. The reactions used for
training are atom-mapped so that each atom in the product
graph has a unique corresponding atom in the reactants. We
used reactions from USPTO granted patents, collected by
Lowe [38]. we obtained a set of 5,000 reactions (reactant-
product pair) and divided them into 2,500 and 2,500 for
training and testing. Atom (node) features include its elemental
identity, degree of connectivity, number of attached hydrogen
atoms, implicit valence, and aromaticity. Bond (edge) features

256

Authorized licensed use limited to: George Mason University. Downloaded on December 05,2021 at 03:35:44 UTC from IEEE Xplore. Restrictions apply.

include bond type (single, double, triple, or aromatic), and
whether it is connected.

2) Comparison methods: Since there is no existing method
handling the multi-attributed graph translation problem, NEC-
DGT is compared with two categories of methods: 1) graph
topology generation methods, and 2) graph node attributes
prediction methods.

Graph topology generation methods: 1) GraphRNN [27]
is a recent graph generation method based on sequential gener­
ation with LSTM model; 2) Graph Variational Auto-encoder
(GraphVAE) [23] is a VAE based graph generation method
for small graphs; 3) Graph Translation-Generative Adversarial
Networks (GT-GAN) [7] is a new graph topology translation
method based on graph generative adversarial network.

Node attributes prediction methods: 1) Interaction Net­
work (IN) [4] is a node state updating network considering the
interaction of neighboring nodes; 2) DCRNN [5] is a node
attribute prediction network for tranffic flow prediction; 3)
Spatio-Temporal Graph Convolutional Networks (STGCN) [6]
is a node attribute prediction model for traffic speed forecast.

Furthermore, to validate the effectiveness of the graph
spectral-based regularization, we conduct a comparison model
(named as NR-DGT) which has the same architecture of NEC-
DGT but without the graph regularization.

3) Evaluation metrics: A set of metrics are used to measure
the similarity between the generated and real target graphs in
terms of node and edge attributes. To measure the attributes
which are Boolean values, the Acc (accuracy) is utilized to
evaluate the ratio of nodes or edges that are correctly predicted
among all the nodes or possible node pairs. To measure the
attributes which are continuous values, MSE (mean squared
error), R2 (coefficient of determination score), Pearson and
Spearman correlation are computed between attributes of
generated and real target graphs. N — < metric > represents
metrics evaluated on node attributes and E — < metric >
represents metrics evaluated on edge attributes.

B. Performance

1) Metric-based evaluation for synthetic graphs: For syn­
thetic datasets, we compare the generated and real target
graphs on various metrics and visualize the patterns captured
in the generated graphs. Table II summarizes the effectiveness
comparison for four synthetic datasets. The node attributes
are continuous values evaluated by N-MSE, N-R2, N-P, and
N-SP. The edge attributes are binary values evaluated by the
accuracy of the correctly predicted edges. The results in Table
Π demonstrate that the proposed NEC-DGT outperforms other
methods in both node and edge attributes prediction and is
the only method to handle both. Specifically, in terms of
node attributes, the proposed NEC-DGT get smaller N-MSE
value than all the node attributes prediction methods by 85%,
71%, 95% and 95% on average for four dataset respectively.
Also, NEC-DGT outperforms the other methods by 46%, 36%,
44% and 58% on average for four dataset respectively on N-
R2, N-P, and N-SP. This is because all the node prediction

methods only consider a fixed graph topology while NEC-
DGT allows the edges to vary. In terms of edges, the proposed
NEC-DGT get the highest E-ACC than all the other graph
generation methods. It also has higher E-ACC than graph
topology translation method: GT-GAN by 7% on average since
NEC-DGT considers both edge and node attributes in learning
the translation mapping while GT-GAN only considers edges.
The proposed NEC-DGT outperforms the NR-DTG by around
3% on average in terms of all metrics, which demonstrates the
effectiveness of the graph spectral-based regularization.

TABLE II: Evaluation of Generated Target Graphs for Syn­
thetic Dataset (N for node attributes, E for edge attributes, P
for Pearson correlation, SP for Spearman correlation and Acc
for accuracy).

dataset Method N-MSE N-R2 N-P N-Sp Method E-Acc
IN 5.97 0.06 0.48 0.44 GraphRNN 0.6212
DCRNN 51.36 0.12 0.44 0.45 GraphVAE 0.6591
STGCN 15.44 0.19 0.42 0.56 GT-GAN 0.7039

Syn-I NR-DGT 2.13 0.87 0.90 0.89 NR-DGT 0.7017
NEC-DGT 1.98 0.76 0.93 0.91 NEC-DGT 0.7129

IN 1.36 0.85 0.77 0.87 GraphRNN 0.5621
DCRNN 71.07 0.11 0.39 0.37 GraphVAE 0.4639
STGCN 33.11 0.21 0.15 0.15 GT-GAN 0.7005

Syn-II NR-DGT 1.43 0.91 0.94 0.97 NR-DGT 0.7016
NEC-DGT 1.91 0.93 0.97 0.97 NEC-DGT 0.7203

IN 35.46 0.31 0.59 0.56 GraphRNN 0.4528
DCRNN 263.23 0.09 0.41 0.39 GraphVAE 0.3702
STGCN 43.34 0.22 0.48 0.47 GT-GAN 0.5770

Syn-Ш NR-DGT 5.90 0.90 0.94 0.92 NR-DGT 0.6259
NEC-DGT 4.56 0.93 0.97 0.96 NEC-DGT 0.6588

IN 4.63 0.10 0.53 0.51 GraphRNN 0.5172
DCRNN 63.03 0.12 0.22 0.16 GraphVAE 0.3001
STGCN 6.52 0.08 0.11 0.10 GT-GAN 0.8052

Syn-IV NR-DGT 4.49 0.12 0.55 0.54 NR-DGT 0.6704
NEC-DGT 1.86 0.73 0.93 0.89 NEC-DGT 0.8437

2) Evaluation of the learned translation mapping for syn­
thetic graphs: To evaluate whether the inherent relationship
between node and edge (reflected by node degree) attributes
is learned and maintained by NEC-DGT, we draw the dis­
tributions of the node attribute versus node degree of each
node in the generated graphs to visualize their relationship.
For comparison, a ground-truth correlation is drawn according
to the predefined rule of generating the dataset, namely, each
node’s degree and attribute follows the function y = x + 5.
Fig. 6 shows four example distributions of nodes in terms
of node attributes and degree with the black line as ground-
truth. As shown in Fig. 6, the nodes are located closely on the
ground-truth, especially for the syn-I and syn-IV, where around
85% nodes are correctly located. This is largely because
the proposed graph spectral-based regularization successfully
discovers the patterns: the densely connected nodes all tend to
have large node attributes and in reverse.

3) Metric-based Evaluation for malware datasets: Table
ΙΠ shows the evaluation of NEC-DGT by comparing the
generated and real target graphs. For malware graphs, the
node attributes are evaluated by N-ACC by calculating the
percentage of nodes whose attributes are correctly predicted
in all nodes. The edge attributes are continuous value evaluated

257

Authorized licensed use limited to: George Mason University. Downloaded on December 05,2021 at 03:35:44 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Evaluation of Generated Target Graphs for Mal­
ware Dataset (N for node attributes, E for edge attributes, P
for Pearson correlation, SP for Spearman correlation and Acc
for accuracy).

Malware-I
Method E-Acc E-MSE E-R2 E-P Method N-Acc
GraphRNN 0.6107 1831.43 0.52 0.00 IN 0.8786
GraphVAE 0.5064 2453.61 0.00 0.04 DCRNN 0.8786
GT-GAN 0.6300 1718.02 0.42 0.11 STGCN 0.9232
NR-DGT 0.9107 668.57 0.82 0.91 NR-DGT 0.9108
NEC-DGT 0.9218 239.79 0.78 0.91 NEC-DGT 0.9295

Malware-II
Method E-Acc E-MSE E-R2 E-P Method N-Acc
GraphRNN 0.7054 1950.46 0.44 0.29 IN 0.8828
GraphVAE 0.6060 2410.57 0.73 0.16 DCRNN 0.8790
GT-GAN 0.9033 462.73 0.13 0.81 STGCN 0.9330
NR-DGT 0.9117 448.48 0.68 0.83 NR-DGT 0.8853
NEC-DGT 0.9380 244.40 0.81 0.91 NEC-DGT 0.9340

Fig. 6: Relation visualizations between node attributes and
node degrees for samples from four synthetic graphs

by E-MSE, E-R2 and E-P. We also use Е-Acc to evaluate the
correct existence of edges among all pairs of nodes. The results
in Table III demonstrates that NEC-DGT performs the best for
all the three datasets. In terms of Е-Acc, the graph generation
methods (GraphRNN and GraphVAE) cannot handle the graph
translation work and got low Е-Acc of around 0.6 at Mai-
1,Mal-Π, and 0.8 at Mal-Ш. GT-GAN achieves high E-ACC,
but its E-MSE is about 2 folds larger than that of the proposed
NEC-DGT on average. NEC-DGT successfully handle the
translation tasks with high Е-Acc above 0.9, and the smallest
E-MSE. In terms of N-Acc, NEC-DGT outperforms other
methods by around 5% on the first two datasets. In summary,
the proposed NEC-DGT can not only jointly predict the node
and edges attributes, but also performs the best in most of
metrics. The superiority of NEC-DGT over the NR-DGT in
terms of E-MSE demonstrates that the graph spectral-based
regularization indeed improve modeling translation mapping.

4) Case study for malware dataset: Fig. 7 investigates three
cases of input, real target and generated target graph by NEC-
DGT. The green nodes refer to the uncompromised devices
while the red nodes refer to the compromised devices. The
width of each edge reflects the distance between two devices.
In the first case, both in generated and real target graphs,
Devices 4 and 6 are restored to normal, while Device 19 get
attacked and is isolated from the other devices. It validates
that our NEC-DGT successfully finds the rules of translating
nodes and performs like the true confinement process. In the
second case, Device 8 propagates the malware to Device 38,
which is also modeled by NEC-DGT in generated graphs. In
addition, the NEC-DGT not only correctly predicts the nodes
attributes, but also discovers the change in edge attributes, e.g.
in the third case, most of the connections of compromised
Device 10 were cut both in generated and real target graphs.

5) Metric-based Evaluation for Molecule Reaction
datasets: In this task, the NEC-DGT is compared to the
Weisfeiler-Lehman Difference Network (WLDN) [39], which

Malware-III
Method E-Acc E-MSE E-R2 E-P Method N-Acc
GraphRNN 0.8397 1775.58 0.16 0.23 IN 0.8738
GraphVAE 0.8119 2109.64 0.39 0.32 DCRNN 0.8738
GT-GAN 0.9453 550.30 0.63 0.80 STGCN 0.9375
NR-DGT 0.9543 341.10 0.76 0.88 NR-DGT 0.8773
NEC-DGT 0.9604 273.67 0.81 0.90 NEC-DGT 0.9002

Input graph Real target graph Generated target graph

Fig. 7: Cases of Malware translation by NEC-DGT

is a graph learning model specially for reaction prediction.
Table IV shows the performance of our NEC-DGT on the
reaction dataset on five metrics, which are the same with the
synthetic datasets. The proposed NEC-DGT outperforms both
the translation model GT-GAN and the WLDN by 5% on
average. Though the atoms do not change during reaction,
we evaluate the capacity of our NEC-DGT to copy the input
node features. As shown in Table IV, The NEC-DGT get the
smallest N-MSE and get higher N-R2 than other comparison
methods by around 18%. This shows that our NEC-DGT can
deal with a wide range of real-world applications, whether
the edges and nodes need change or keep stable.

VI. C o n c l u s i o n a n d F u t u r e W o r k

This paper focuses on a new problem: multi-attributed
graph translation. To achieve this, we propose a novel NEC-
DGT consisting of several blocks which translates a multi-

258

Authorized licensed use limited to: George Mason University. Downloaded on December 05,2021 at 03:35:44 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Evaluation of Generated Target Graphs for
Molecule Dataset: N for node attributes, E for edge attributes

Method N-MSE N-R2 N-P N-Sp Method E-Acc
IN 0.0805 0.46 0.13 0.12 GT-GAN 0.8687
STGCN 0.0006 0.98 0.99 0.97 WLDN 0.9667
NR-DGT 0.0008 0.97 0.99 0.99 NR-DGT 0.9918
NEC-DGT 0.0004 0.99 0.99 0.99 NEC-DGT 0.9925

attributed input graph to a target graph. To jointly tackle
the different types of interactions among nodes and edges,
node and edge translation paths are proposed in each block
and the graph spectral-based regularization is proposed to
preserve the consistent spectral property of graphs. Extensive
experiments have been conducted on the synthetic and real-
world datasets. Experiment results show that our NEC-DGT
can discover the ground-truth translation rules and significantly
outperform comparison methods in terms effectiveness. This
paper provides a further step of research for graph translation
problems in more general scenarios.

A c k n o w l e d g e m e n t

This work was supported by the National Science Foun­
dation grant: #1755850, #1841520, #1907805, Jeffress Trust
Award, and NVIDIA GPU Grant.

R e f e r e n c e s

[1] K. Xu, L. Wu, Z. Wang, Y. Feng, M. Witbrock, and V. Sheinin,
“Graph2seq: Graph to sequence learning with attention-based neural
networks,” arXiv preprint arXiv:1804.00823, 2018.

[2] K. Xu, L. Wu, Z. Wang, M. Yu, L. Chen, and V. Sheinin, Exploiting
rich syntactic information for semantic parsing with graph-to-sequence
model,” arXiv preprint arXiv:1808.07624, 2018.

[3] W. L. W. Z. Xu, Kun et a l, “Sql-to-text generation with graph-to-
sequence model,” arXiv preprint arXiv:1809.05255, 2018.

[4] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende et a l, “Interaction
networks for learning about objects, relations and physics,” in Advances
in neural information processing systems, 2016, pp. 4502-4510.

[5] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional re­
current neural network: Data-driven traffic forecasting,” arXiv preprint
arXiv:1707.01926, 2017.

[6] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” arXiv
preprint arXiv:1709.04875, 2017.

[7] X. Guo, L. Wu, and L. Zhao, “Deep graph translation,” arXiv preprint
arXiv:1805.09980, 2018.

[8] M. Sun and P. Li, “Graph to graph: a topology aware approach for
graph structures learning and generation,” in The 22nd International
Conference on Artificial Intelligence and Statistics, 2019, pp. 2946­
2955.

[9] F. Abdelnour, M. Dayan et a l, “Functional brain connectivity is pre­
dictable from anatomic network’s laplacian eigen-structure,” Neurolm-
age, vol. 172, pp. 728-739, 2018.

[10] H. Sayadi, N. Patel et a l, Ensemble learning for hardware-based
malware detection: A comprehensive analysis and classification,” in
ACM/EDAA/IEEE Design Automation Conference, 2018.

[11] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning
in graph domains,” in Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., vol. 2. IEEE, 2005, pp. 729—
734.

[12] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61-80, 2008.

[13] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[14] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in ICML, 2016, pp. 2014-2023.

[15] S. F. Mousavi, M. Safayani, A. Mirzaei, and H. Bahonar, “Hierarchical
graph embedding in vector space by graph pyramid,” Pattern Recogni­
tion, vol. 61, pp. 245-254, 2017.

[16] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in neural information processing systems, 2016, pp. 3844-3852.

[17] J. Kawahara, C. J. Brown, S. P. Miller, B. G. Booth, V. Chau, R. E.
Grunau, J. G. Zwicker, and G. Hamameh, Erainnetcnn: convolutional
neural networks for brain networks; towards predicting neurodevelop­
ment,” Neuroimage, vol. 146, pp. 1038-1049, 2017.

[18] G. Nikolentzos, P. Meladianos et a l, “Kemel graph convolutional neural
networks,” arXiv preprint arXiv:1710.10689, 2017.

[19] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph
representations,” in Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[21] L. Wu, I. E.-H. Yen, Z. Zhang, K. Xu, L. Zhao, X. Peng, Y. Xia, and
C. Aggarwal, “Scalable global alignment graph kernel using random
features: From node embedding to graph embedding,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 2019, pp. 1418-1428.

[22] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:I312.6203,
2013.

[23] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of
small graphs using variational autoencoders,” in International Confer­
ence on Artificial Neural Networks. Springer, 2018, pp. 412-422.

[24] B. Samanta, A. De, N. Ganguly, and M. Gomez-Rodriguez, “Designing
random graph models using variational autoencoders with applications
to chemical design,” arXiv preprint arXiv:1802.05283, 2018.

[25] A. Bojchevski, O. Shchur, D. Ziigner, and S. Günnemann, “Netgan:
Generating graphs via random walks,” arXiv preprint arXiv:1803.00816,
2018.

[26] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, ‘Learning deep
generative models of graphs,” arXiv preprint arXiv:1803.03324, 2018.

[27] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “Graphmn:
Generating realistic graphs with deep auto-regressive models,” arXiv
preprint arXiv:1802.08773, 2018.

[28] Y. Gao, X. Guo, and L. Zhao, “Local event forecasting and synthesis
using unpaired deep graph translations,” in Proceedings o f the 2nd ACM
SIGSPAHAl. Workshop on Analytics for Local Events and News. ACM,
2018, p. 5.

[29] B. B. Kivilcim, I. O. Ertugrul et a l, “Modeling brain networks with
artificial neural networks,” in Graphs in Biomedical Image Analysis and
Integrating Medical Imaging and Non-Imaging Modalities. Springer,
2018, pp. 43-53.

[30] P. Sturmfels, S. Rutherford et a l, “A domain guided cnn architec­
ture for predicting age from structural brain images,” arXiv preprint
arXiv:1808.04362, 2018.

[31] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Applied and Computational Harmonic
Analysis, vol. 30, no. 2, pp. 129-150, 2011.

[32] P. Erdôs and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sei, vol. 5, no. 1, pp. 17-60, 1960.

[33] A.-L. Barabâsi et a l, Emergence of scaling in random networks,”
science, vol. 286, no. 5439, pp. 509-512, 1999.

[34] M. R. Guthaus, J. S. Ringenberg et a l, “Mibench: A free, commercially
representative embedded benchmark suite,” in Workload Characteriza­
tion, 2001. WWC-4. 2001 IEEE International Workshop on. IEEE,
2001, pp. 3-14.

[35] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1-17, 2006.

[36] H. S. e. a. P. D. Sai Manoj, ‘Lightweight node-level malware de­
tection and network-level malware confinement in IoT networks,” in
ACM/EDAA/IEEE Design Automation and Test in Europe (DATE), 2019.

[37] H. Sayadi and H. M. et al, “2SMaRT: A two-stage machine learning-
based approach for run-time specialized hardware-assisted malware
detection,” in ACM/EDAA/IEEE Design Automation and Test in Europe
(DATE), 2019.

[38] D. Lowe, “Patent reaction extraction: downloads,” 2014.
[39] W. Jin, C. Coley, R. Barzilay, and T. Jaakkola, “Predicting organic

reaction outcomes with weisfeiler-lehman network,” in NeurlPS, 2017,
pp. 2607-2616.

259

Authorized licensed use limited to: George Mason University. Downloaded on December 05,2021 at 03:35:44 UTC from IEEE Xplore. Restrictions apply.

