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Abstract—Generalized from image and language translation, 
graph translation aims to generate a graph in the target domain 
by conditioning an input graph in the source domain. This 
promising topic has attracted fast-increasing attentions recently. 
Existing works are limited to either merely predicting the node 
attributes of graphs with fixed topology or predicting only 
the graph topology without considering node attributes, but 
cannot simultaneously predict both of them, due to substantial 
challenges: 1) difficulty in characterizing the interactive, iterative, 
and asynchronous translation process of both nodes and edges 
and 2) difficulty in discovering and maintaining the inherent 
consistency between the node and edge in predicted graphs. 
These challenges prevent a generic, end-to-end framework for 
joint node and edge attributes prediction, which is a need for real- 
world applications such as malware confinement in IoT networks 
and structural-to-functional network translation. These real- 
world applications highly depend on hand-crafting and ad-hoc 
heuristic models, but cannot sufficiently utilize massive historical 
data. In this paper, we termed this generic problem “multi- 
attributed graph translation” and developed a novel framework 
integrating both node and edge translations seamlessly. The 
novel edge translation path is generic, which is proven to be a 
generalization of the existing topology translation models. Then, 
a spectral graph regularization based on our non-parametric 
graph Laplacian is proposed in order to learn and maintain the 
consistency of the predicted nodes and edges. Finally, extensive 
experiments on both synthetic and real-world application data 
demonstrated the effectiveness of the proposed method.

Index Terms—Multi-attributed graphs; graph translation. I.

I . I n t r o d u c t i o n

Many problems regarding structured predictions are encoun­
tered in the process of ’’translating” an input data (e.g., images, 
texts) into a corresponding output data, which is to learn 
a translation mapping from the input domain to the target 
domain. For example, many problems in image processing 
and computer vision can be seen as a ’’translation” from 
an input image into a corresponding output image. Similar 
applications can also be found in language translation [1]—[3], 
where sentences (sequences of words) in one language are 
translated into corresponding sentences in another language. 
Such generic translation problem, which is important yet 
has been extremely difficult in nature, has attracted rapidly- 
increasing attention in recent years. The conventional data 
translation problem typically considers the data under special 
topology. For example, an image is a type of grid where each 
pixel is a node and each node has connections to its spatial

neighbors. Texts are typically considered as sequences where 
each node is a word and an edge exists between two contextual 
words. Both grids and sequences are special types of graphs. 
In many practical applications, it is required to work on data 
with more flexible structures than grids and sequences, and 
hence more powerful translation techniques are required in 
order to handle more generic graph-structured data. This has 
been widely applied into many applications, e.g. predicting 
future states of a system in the physical domain based on 
the fixed relations (e.g. gravitational forces) among nodes [4] 
and the traffic speed forecasting on the road networks [5], 
[6]. Though they can work on generic graph-structured data, 
they assume that the graphs from the input domain and target 
domain share the same graph topology but cannot model or 
predict the change of the graph topology.

To address the above issues where the topology can change 
during translation, deep learning-based graph translation prob­
lem has debuted in the very recent years. This problem is 
promising and critical to the domains where the variations of 
the graph topology are possible and frequent such as social 
network and cyber-network. For example, in social networks 
where people are the nodes and their contacts are the edges, the 
contact graph among them vary dramatically across different 
situations. For example, when the people are organizing a riot, 
it is expected that the contact graph to become denser and 
several special “hubs” (e.g., key players) may appear. Hence, 
accurately predicting the contact network in a target situation 
is highly beneficial to situational awareness and resource 
allocation. Existing topology translation models [7], [8] predict 
the graph topology (i.e., edges) in a target domain based on 
that in an input domain. They focus on predicting the graph 
topology but assume that the node attributes value are fixed 
or do not exist.

Therefore, existing works either predict node attributes upon 
fixed topology or predict edge attributes upon fixed node 
attributes. However, in many applications, both node attributes 
and edge attributes can change. In this paper, such generic 
problem is named as multi-attributed graph translation, with 
important real-world applications ranging from biological 
structural to functional network translation [9] to network in­
tervention research [10]. For example, the process of malware
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Fig. 1: Given the network at time t (shown in the left graph), 
malware confinement is conducted to predict the most optimal 
status at time t +  7 shown in the right, where Devices 2 and 3 
are protected by cutting the links (edges) to the compromised 
Device 1, while the Device 4 is propagated by malware without 
cutting link.

confinement1 over IoT (Internet of Things) is typically a graph 
translation problem as shown in Fig. 1. It takes the initial status 
of IoT as input, and predicts the target graph which is ideally 
the optimal status of the network with modified connections 
(i.e., edges) and devices (i.e., nodes) state that helps to 
limit malware propagation and maintain network throughput. 
Epidemic controlling can also be considered as a multi- 
attributed graph translation problem, which is to estimate how 
the initial disease contact network (i.e., multi-attributed edges) 
and the human health stage (i.e., multi-attribute nodes) are 
jointly changed after the specific interventions. Since multi- 
attributed graph translation problem is highly sophisticated, 
there is no generic framework yet, but only ad-hoc methods 
for few specific domains, which heavily rely on intensive hand­
crafting and domain-specific mechanistic models that could be 
extremely time- and resource- consuming to run in large scale. 
Hence, a generic, efficient, and end-to-end framework for 
general multi-attributed graph translation problems is highly in 
demand. Such framework needs to be able to comprehensively 
learn the translation mapping, remedy human bias by enjoying 
the large historical data, and achieve efficient prediction.

In this paper, we focus on the generic problem of multi- 
attributed graph translation, which cannot be handled by 
the existing methods because of the following challenges:
1) Translation of node and edge attributes are mutually 
dependent. The translation of edge attributes should not only 
consider edges, but also the node attributes. For example, 
in Fig. 1, two links are cut down since their linked Device 
1 is compromised, which exemplifies the interplay between 
nodes and edges. Similarly, node translation also needs to 
jointly consider both nodes and edges, e.g., Device 4 is 
infected due to its link to Device 1. All the above issues need 
to be jointly considered but no existing works can handle.
2) Asynchronous and iterative changes of node and edge 
attributes during graph translation. The multi-attributed 
graph translation process may involve a series of iterative

device infected in an IoT network can propagate to other nodes 
connected to it, leading to contaminating the whole network, such as MiraiBot 
attack. As such, it is non-trivial to confine the malware to limit the infection 
and also equally important to maintain overall network connectivity and 
performance.

changes in both edge and node attributes. For example in Fig.l, 
the translation could take several steps since the malware 
propagation is an iterative process from one device to the 
others. The links to a device may be cut (i.e., edge changes) 
right after it is compromised (i.e, node attribute change). These 
orders and dependencies of how node and edge attributes 
change during the translation are very important, yet difficult 
to be learned. 3) Difficulty in discovering and enforcing 
the correct consistency between node attributes and graph 
spectra. Although the predicted node and edge attributes are 
two different outputs, they should be highly dependent on each 
other instead of being irrelevant. For example, as shown in 
Fig. 1, the reason why Devices 2 and 3 on the right graph 
are not compromised is that they have no links with the 
compromised Device 1 anymore. It is highly challenging to 
learn and maintain the consistency of node and edge attributes, 
which are very sophisticated and domain-specific patterns.

To the best of our knowledge, this is the first work that 
addresses all the above challenges and provides a generic 
framework for the multi-attributed graph translation problem. 
This paper propose an Node-Edge Co-evolving Deep Graph 
Translator (NEC-DGT) with novel architecture and compo­
nents for joint node and edge translation. Multi-block network 
with novel interactive node and edge translation paths are 
developed to translate both node and edge attributes, while 
skip-connection is utilized among different blocks to allow 
the non-synchronicity of changes in node and edge attributes. 
A novel spectral graph regularization is designed to ensure 
the consistency of nodes and edges in generated graphs. The 
contributions of this work are summarized as follows:

• The development of a new framework for multi- 
attributed graph translation. We formulate, for the 
first time, a multi-attributed graph translation problem 
and propose the NEC-DGT to tackle this problem. The 
proposed framework is generic for different applications 
where both node and edge attributes can change after 
translation.

• The proposal of novel and generic edge translation 
layers and blocks. A new edge translation path is 
proposed to translate the edge attributes from the input 
domain to the output domain. Existing edge translation 
methods were proven to be special cases of ours, which 
can handle broad multi-attribute edges and nodes.

• The proposal of a spectral-based regularization that 
ensures consistency of the predicted nodes and edges. 
In order to discover and maintain the inherent relation­
ships between predicted nodes and edges, a new non­
parametric graph Laplacian regularization with a graph 
frequency regularization is proposed and leveraged.

• The conduct of extensive experiments to validate the 
effectiveness and efficiency of the proposed model. 
Extensive experiments on four synthetic and four real- 
world datasets demonstrated that NEC-DGT is capable 
of generating graphs close to ground-truth target graphs 
and significantly outperforms other generative models.
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II . R e l a t e d  W o r k s

Graph neural networks learning. In recent years, there 
has been a surge in research focusing on graph neural net­
works, which are generally divided into two categories: Graph 
Recurrent Networks [11]—[13] and Graph Convolutional
Networks [14]—[21]. Graph Recurrent Networks originates 
from the early works of graph neural networks proposed by 
Gori et al. [11] and Scarselli et al. [12] based on recursive 
neural networks. Another line of research is to generalize 
convolutional neural networks from grids (e.g., images) to 
generic graphs. Bruna et al. [22] first introduced the spectral 
graph convolutional neural networks, and then it was extended 
by Defferrard et al. [16] using fast localized convolutions, 
which is further approximated for an efficient architecture for 
a semi-supervised setting [20].

Graph generation. Most of the existing GNN based graph 
generation for general graphs have been proposed in the last 
two years and are based on VAE [23], [24] and generative 
adversarial nets (GANs) [25], among others [26], [27]. Most 
of these approaches generate nodes and edges sequentially to 
form a whole graph, leading to the issues of being sensitive 
to the generation order and very time-consuming for large 
graphs. Differently, GraphRNN [27] builds an autoregressive 
generative model on these sequences with LSTM model and 
has demonstrated its good scalability.

Graph structured data translation. The existing Graph 
structured data translation either deal with the node attributes 
prediction or translate the graph topology. Node attributes 
prediction aims at predicting the node attributes given the 
fixed graph topology [4]—[6], [28]. Li et al. [5] propose a 
Diffusion Convolution Recurrent Neural Network (DCRNN) 
for traffic forecasting which incorporates both spatial and 
temporal dependency in the traffic flow. Yu et al. [6] for­
mulated the node attributes prediction problem of graphs 
based on the complete convolution structures. Graph topology 
translation considers the change of graph topology from one 
domain distributions to another. Guo et al. [7] proposed and 
tackled graph topology translation problem by proposing a 
generative model consisting of a graph translator with graph 
convolution and deconvolution layers and a new conditional 
graph discriminator. Sun et al. [8] proposed a graphRNN based 
model which generates a graph’s topology based on another 
graph.

III. P r o b l e m  F o r m u l a t i o n  

This paper focuses on predicting a target multi-attributed 
graph based on an input multi-attributed graph by learning 
the graph translation mapping between them. The following 
provides the notations and mathematical problem formulation.

Define an input graph as G(Vq,Sq, Eq, Fo) where Vo is 
the set of N  nodes, and So ç  Vo x Vo is the set of M  
edges, e ij  G Sq is an edge connecting nodes г G Vo and 
j  G Vo. £0 contains all pairs of nodes while the existence 
of e ij  is reflected by its attributes. Eq g m_NxNxK  is the 
edge attributes tensor, where E q̂ j  g M1xA" denotes the 
edge attributes of edge e^j and К  is the dimension of edge

TABLE I: Important notations and descriptions

Notations Descriptions
G(V0 , 8 o , E 0 ,Fo) Input graph with node set Vo, edge set Eq, edge 

attributes tensor Eq and node attributes matrix Fq
G ( V ' ,E ' ,E ' ,F ' ) Target graph with node set V', edge set E', edge 

attributes tensor E '  and node attributes matrix F'
C Contextual information vector
N Number of nodes
M Number of edges
D Dimension of node attributes
К Dimension of edge attributes
c Dimension of contextual information vector
s Number of translation blocks

attributes. Fq g WNxD refers to the node attribute matrix, 
where Fq̂  g K1xD is the node attributes of node г and D 
is the dimension of the node attributes. Similarly, we define 
the target graph as G(V', S' ,E ' ,F '). Note that the target and 
input graphs are different both in their node attributes as 
well as edge attributes. Moreover, vector C  provides some 
contextual information on the translation process. Therefore, 
multi-attributed graph translation is defined as learning a 
mapping: T  : G(Vo,£o,E0,F0)-,C ->■ G (V ,S ',E ',F ') .

Source domain Target domain

(a) Edges-to-edges interaction

Source domain Target domain

(c) Nodes-to-nodes interaction

(e) Graph Spectral property

Source domain Target domain

ф  Compromised device (node)
I Uncompromised device (node)

П  Protection against attacks
High-secure requirement devices

Fig. 2: Five types of interactions during graph translation 
in the example of malware confinement. Node attributes are 
indications of malware attacks of IoT devices and edges 
represent the connections between devices.

For example, considering the malware confinement case 
where the nodes refer to IoT devices and the edges reflect the 
communication links between two devices. The node attributes 
include the malware-infection status and the properties of that 
device (i.e., specification and anti-virus software features). 
A single IoT device (i.e., node) that is compromised has 
the potential to spread malware infection across the network, 
eventually compromising the network or even ceasing the 
network functionality. In contrast, in order to avoid malware 
spreading as well as maintain the performance of the net­
work, the network connectivity (i.e., graph topology) should 
be modified through malware confinement, thus to change 
the device status (i.e., node attributes) accordingly. Hence, 
malware confinement can be considered as predicting the
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optimal topology as well as the corresponding node and edge 
attributes of the target graph, where both malware prevention 
and device performance are maximized.

Multi-attributed graph translation problem requires to high­
light several unique considerations as depicted in Fig.2: 1) 
Edges-to-edges interaction: In target domain, the edge at­
tributes E[ - of an edge e^· can be influenced by its incident 
edges’ attributes and ^o,k,j in input domain. For exam­
ple, in Fig. 2 (a), if Devices 1 and 3 must be prevented from 
infection, then the edges between the compromised Device 1 
and Device 2 need to be cut, due to the paths among them 
in input domain. 2) Nodes-to-edges interaction: In target 
domain, the attributes E[^ of edge eitj  can be influenced 
by its incident nodes’ attributes Fq̂  and Fqj in the input 
domain. As shown in Fig. 2 (b), if Device 2 is compromised 
in input domain, then in target domain, only its connections 
to Devices 1 and 3 need to be removed but the connection 
between Devices 1 and 3 can be retained because they are 
not compromised. 3) Nodes-to-nodes interaction: For a given 
node i, its attribute Fq̂  in input domain may directly influence 
its attribute F( in target domain. As shown in Fig. 2 (c), 
Device 3 with effective anti-virus protection (e.g. firewall) 
may not be easily compromised in target domain. 4) Edges- 
to-nodes interaction: For a given node i, its related edge 
attributes E q̂ j  in input domain may affect its attributes F[ 
in target domain. As shown in Fig. 2 (d), Device 1 which has 
more connections with compromised devices in input domain 
is more likely to be infected in target domain. 5) Spectral 
Graph Property: There exist relationships between nodes 
and edges in one graph as reflected by the graph spectrum. 
These relationships are claimed to have some persistent or 
consistent patterns across input and target domains, which 
have also been verified in many real-world applications such 
as brain networks [9]. For example, as shown in Fig. 2 (e), the 
devices that are densely connected as a sub-community tend 
to be in the same node status, which is a shared pattern for 
relationships between nodes and edges in different domains.

Multi-attributed graph translation should consider all the 
above properties, which cannot be comprehensively handled 
by existing methods because: 1) Lack of a generic framework 
to simultaneously characterize and automatically infer all of 
the above node-edge interactions during translation process. 
2) Difficulty in automatically discovering and characterizing 
the inherent spectral relationship between the nodes and edges 
in each graph, and ensuring consistent spectral patterns in 
graphs across input and target domains. 3) All the above 
interactions could be imposed repeatedly, alternately, and 
asynchronously during the translation process. It is difficult 
to discover and characterize such important yet sophisticated 
process.

IV. T h e  P r o p o s e d  M e t h o d : NEC-DGT
In this section, we propose the Node-Edge Co-evolving 

Deep Graph Translator (NEC-DGT) to model the multi- 
attributed graph translation process. First, an introduction of 
the overall architecture and the loss functions is given. Then,

Fig. 3: The proposed NEC-DGT consists of multiple blocks. 
Each block has edge and node translation paths which are 
co-evolved and combined by a graph regularization during 
training process.

the elaborations of three modules on edge translation, node 
translation, and graph spectral regularization are presented.

A. Overall architecture
Multi-block asynchronous translation architecture. The

proposed NEC-DGT learns the distribution of graphs in the 
target domain conditioning on the input graphs and contextual 
information. However, such a translation process from input 
graph to the final target graph may experience a series of 
interactions of different types among edges and nodes. Also, 
such a sophisticated process is hidden and needs to be learned 
by a sufficiently flexible and powerful model. To address this, 
we propose the NEC-DGT as shown in Fig. 3. Specifically, 
the node and edge attributes of input graphs are inputted into 
the model and the model output the generated target graphs’ 
node attributes and edge attributes after several blocks. The 
skip-connection architecture (black dotted lines in Fig. 3) 
implemented across different blocks aims to deal with the 
asynchrony property of different blocks, which ensures that 
the final translated results fully utilize various combinations 
of blocks’ information. To train the deep neural network to 
generate the target graph G(E', F ') conditioning on the input 
graph G(Eq. F0) and contextual information C, we minimize 
the loss function as follows:

CT = C(T(G(E0,F0),C ),G (E ',F '))  (1)

where the nodes set Vo and V' as well as edges set Eq and E' 
can be reflected in F q and F ', as well as E q and E '.

Node and edge translation paths. To jointly tackle various 
interactions among nodes and edges, respective translation 
paths are proposed for each block. In node translation path 
(in upper part of detailed structure in Fig. 3), node attributes 
are generated considering the ”nodes-to-nodes” and ”edges-to- 
nodes” interactions. In edge translation path (in lower part of 
detailed structure in Fig. 3), edge attributes are generated fol­
lowing the ”edges-to-edges” and ”node-to-edges” interactions.

Spectral graph regularization. To discover and charac­
terize the inherent relationship between nodes and edges of
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each graph, the frequency domain properties of the graph is 
learned, based on which the interactions between node and 
edge attributes are jointly regularized upon non-parametric 
graph Laplacian. Moreover, to maintain consistent spectral 
properties throughout the translation process, we enforce the 
shared patterns among the generated nodes and edges in 
different blocks by regularizing their relevant parameters in 
the frequency domain. The regularization of the graphs is 
formalized as follows:

TZ(G(E, F)) =  Ko(G(Es, Fa)) + ΤΖ(Θ) (2)

where S  refers to the number of blocks, and Θ refers to the 
overall parameters in the spectral graph regularization. E s 
and Fs refer to the generated edge attributes tensor and node 
attributes matrix in the sth block. Thus G (E s,F s) is the 
generated target graph. Then the final loss function can be 
summarized as follows:

£  =  C(T(G(Eo,F0),C ),G (E ' ,F ')) + / 3 7 F)) (3)

where β is the trade-off between the Cq- and spectral graph 
regularization. The model is trained by minimizing the mean 
squared error of E s  with E f, and Fs with F f, enforced by 
the regularization. Optimization methods (e.g. Stochastic gra­
dient descent (SGD) and Adam) based on Back-propagation 
technique can be utilized to optimize the whole model.

Subsequently, the details of a single translation block 
are introduced: edge translation path in Section IY-B, node 
translation path in Section IV-C and graph spectral-based 
regularization in Section IV-D.

B. Edge Translation Path
Edge translation path aims to model the nodes-to-edges and 

edges-to-edges interactions, where edge attributes in the target 
domain can be influenced by both nodes and edges in the 
input domain. Therefore, we propose to first jointly embed 
both node and edge information into influence vectors and 
then decode it to generate edges attributes. Specifically, the 
edge translation path of each block contains two functions, 
influence-on-edge function which encodes each pair of edge 
and node attributes into the influence for generating edges, and 
the edge updating function which aggregates all the influences 
related to each edge into an integrated influence and decodes 
this integrated influence to generate each edge’ attributes. Fig. 
4 shows the operation of the two functions in a single block 
by translating the current input of graph G(ES1FS) to output 
graph G (£s+i,.Fs+i).

Influence-on-edge layers. As shown in Fig. 4, the input 
graph G(ES,FS) is first organized in unit of several pairs of 
node and edge attributes. For each pair of nodes v and u, 
we concatenate their edge attributes E S:UjV and their node 
attributes: F8iU and F8iV as: B 8,UiV =  [F8iU,E 8tUiV,F 8iV] 
(as circled in black rectangles in Fig. 4). Then B SjUtV G 
jĵ i X (2D-\-K) js inputted into the influence-on-edge function: a 
constrained MLP (Multilayer Perceptron) φ which is used to 
calculate the influence ß(Bs û v̂)  G Mlxgr from the pair of the

Fig. 4: Details of edge translation path for one edge (i.e. ео,з) 
in a single block.

nodes и and v. q refers to the dimension of the final influence 
on edges, φ for edge translation path is expressed as follows:

Φ(Χ; WE,bE) =σΜ(···{σ0(Χ ■
S-t.,Wg^.D =  ^ e\d+K)-.(2D+K)

(4)
where We  and Ъе are weights and bias for φ in 

edge translation path. M  refers to the number of lay­
ers of φ and {σοг ..ам} refers to the activation func­
tions. For undirected graph, we add a weight constraint 
We \.d =  ^ ε \ό+κ )·{2Ώ+κ ) to ensure that the influence of 
B s,u,v is the same as the influence of B s,ViU, which means 
that the first D rows (related to the attributes of node и ) and 
the last D  rows (related to the attributes of node v) of w ffl  
are shared. The influence on edges of each pair is computed 
through the same function with the same weights. Thus the 
NEC-DGT can handle various size of graphs.

Edge updating layers. After calculating the influence of 
each pair of nodes and edge, the next step is to assigning 
each pairs’ influences to its related edge to get the integrated 
influence for each edge (as shown of φ  operation in Fig.4). 
This is because each edge is generated depending on both its 
two related nodes and its incident edges (like the pairs circled 
in the orange rectangle and purple rectangle related to node 0 
and node 3 respectively in Fig.4). Here we define the integrated 
influence on one edge attribute E s+ as: C8+i,i,j £ Ш1хд, 
which is computed as follows:

= У 2  0(Bs,iM ]WE,bE) +
* - ^ k i  £N(i) ^

F k2eN(j)^ B^ WE^

where N(i) refers to the neighbor nodes of node i. Then the 
edge attributes E s+ i s  generated by ф([Е0^ ,  Cs+i,i,j, C]), 
where E q̂ j refers to the input edge attributes of edge e^j. 
C refers to the contextual information for the translation. The 
function ijj is implemented by an MLP.

Relationship with other edge convolution networks. Edge 
convolution network is the most typical method to handle 
the edge embedding in graphs, which was first introduced as 
BrainNetCNN [17] and later explored in many studies [7], 
[29], [30]. Our edge translation path is a highly flexible and 
generic mechanism to handle multi-attributed nodes and edges. 
Several existing edge convolution layers and their variants can
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be considered as special cases of our method, as demonstrated 
in the following theorem2:

Theorem 1. The influence-on-edge function φ in edge trans­
lation path of NEC-DGT is a generalization of conventional 
edge convolution networks.

C. Node Translation Path
Node translation aims to learn the “nodes-to-nodes” and 

“edges-to-nodes” interactions, where translation of one node’s 
attributes depends on the edge attributes related to this 
node and its own attributes. The node translation path of 
each block contains two functions, influence-on-node function 
which learns the influence from each pair of nodes, and node 
updating function which generates the new node attributes by 
aggregating all the influences from pairs containing this node. 
Fig. 5 shows how to translate a node in a single block.

Fig. 5: Details of node translation path for one node (i.e. node 
0) in a single block.

Influence-on-node layers. As shown in Fig. 5, the input 
graph G{ES,F S) is first organized in the unit of pairs of nodes, 
where each pair is B 8jUtV G Mlx (2D+K) which is similar to 
the edge translation path (as circled in the black rectangle 
in Fig. 5). Then B S}UjV is inputted into the influence-on-node 
function, which is implemented by contrained MLP φ as Equa­
tion (4), to compute the influence ф(Ва,иу, Wp, bp) G R lxh 
to nodes (as shown in the grey bar after φ in Fig. 5), where 
h is the dimension of the influence on nodes.

Node updating layers. After computing the influences of 
each node pair, the next step is to generate node attributes. 
For node i, an assignment step is required to aggregate all 
the influences from pairs containing node г (as shown of 
φ  operation in Fig. 5). Thus, all the influences for node г 
are aggregated and input into the updating function, which is 
implemented by a MLP model φ to calculate the attributes of 
node i as: Fa+l,i =  Φ № 0,i> J2jeN(i) Ф(В 8,г,В Wf , C])·

D. Graph spectral-based regularization
Based on the edge and node translation path introduced 

above, we can generate node and edge attributes, respectively. 
However, since these generated node and edge attributes are 
predicted separately in different paths, their patterns may not 
be consistent and harmonic. To ensure the consistency of the 
edge and node patterns mentioned in Section III, we propose 
a novel adaptive regularization based on non-parametric graph 
Laplacian, and a graph frequency regularization.

Non-parametric Graph Laplacian Regularization. First, 
we recall the property of the multi-attributed graphs where

2The proof process is available athttps://github.com/xguo7/NEC-DGT

node information can be smoothed over the graph via 
some form of explicit graph-based regularization, namely, 
by the well-known graph Laplacian regularization term [20]:

(d)TL(k)F (d) _ ,E\(fc) I p(d) _ p  
s,i s,j

(d) where G
R N x 1 is the node attribute vector for the dth node attribute and 
E ^  G R NxN  is the edge attribute matrix for kth attribute gen­
erated in the sth block. L8k  ̂— D8k  ̂— E 8k  ̂ denotes the graph 
Laplacian for the kth edge attributes matrix. The degree matrix 
D T ] € R NxN  is computed as: = Εί% ·

However, the above traditional graph Laplacian can only im­
pose an absolute smoothness regularization over all the nodes 
by forcing the neighbor nodes to have similar attribute values, 
which is often over-restrictive for many situations such as in 
signed networks and teleconnections. In the real world, the 
correlation among the nodes is much more complicated than 
purely ’’smoothness” but should be a mixed pattern of different 
types of relations. To address this, we propose an end-to- 
end framework of non-parametric graph Laplacian which can 
automatically learn such node correlation patterns inherent in 
specific types of graphs, with rigorous foundations on spectral 
graph theory. In essence, we propose the non-parametric graph 
Laplacian based on the parameter Θ as: ge(Lik>>). is the
normalized Laplacian computed as L P  = 2L f̂c)Z^fc) 2 
and can be diagonalized by the Fourier basis U8k  ̂ G R NxN,
such that =  U8® A ^ U 8® where G l iVxJV is a di­
agonal matrix storing the graph frequencies. For example,

( к )  ’is the frequency value of the first Fourier basis Ug {. Then we

got д , 0 Р )  =  βθ( υ ^ Α ^ υ ^ )Τ) = и ^ д в{ А ^ ) и ^ Т . 
Therefore, we have the regularization as follows:

Ke(G(Es, f t))  = Y f k=i Σ ° =1 ftM4 (*W A «)t/< fc>Tf t«

where д е (А ^ )  is a non-paramteric Laplacian eigenvalues 
that will be introduced subsequently.

Scalable approximation. де(А ^) is a non-parametric 
vector whose parameters are all free; It can be defined as: 
ge{A8k )̂ — diag(9^ ) ,  where the parameter θψ^ G R N is a 
vector of Fourier coefficients for a graph. However, optimizing 
the parametric eigenvalues has the learning complexity of 
О (IV), the dimensionality of the graphs, which is not scalable 
for large graphs. To reduce the learning complexity of O(N) 
to 0 (1), we propose approximating ge(A8k )̂ by a normalized 
truncated expansion in terms of Chebyshev polynomials [31]. 
The Chebyshev polynomial Tp{x) of order p may be computed 
by the stable recurrence relation Tp(x) — 2xTp-i(x )  — 
Тр_2(ж) with Ti =  1 and T2 =  x. The eigenvalues of the 
approximated Laplacian filter can thus be parametric as the 
truncated expansion:

ge(A^) = Yfp=1 eSr,(A<«)/ Σ ρ=1 «Й (6)

for P  orders, where Tp(A ^ ) G R NxNis the Chebyshev 
polynomial of order p evaluated at A ^  =  2 A ^ /A i% ax — I, 
a diagonal matrix of scaled eigenvalues that lie in [—1,1]. The
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As,max refers to the largest element in A{k\  Θ £ jjSxPxä: 
denotes the parameter tensor for all S  blocks, θψ], is the pth 
element of Chebyshev coefficients vector £ Mp for the 
Mi edge attribute. Each θΨΙ is normalized by dividing the sum 
of all the coefficients in 0̂  to avoid the situation where 
is trained as zero. Thus, the laplacian computation can then be 
written as g eÿ ffl)  =  Σ ρ=ι Θ̂ ρΤρ0 ^ ) /  Έρ=1 where
Тр0 к )̂ £ MNy'N is the Chebyshev polynomial of order p

- I .evaluated at the scaled Laplacian L ®  =  2 /A^L·
For efficient computation, we further approximate As,max ~  
1.5, as we can expect that the neural network parameters Θ 
will adapt to this change in scale during training.

Graph frequency regularization. To ensure that the spec­
tral graph patterns are consistent throughout the translation 
process across different blocks, we utilize a graph frequency 
regularization to not only maintain the similarity but also 
allow the exclusive properties of each block’s patterns to 
be reserved to some degree. Specifically, regarding all the 
frequency pattem basis of form L, some are important in 
modeling the relationships between nodes and graphs while 
some are not, resulting in the sparsity pattem of Θ. Thus, 
inspired by the multi-task learning, we learn the consistent 
sparsity pattern of ΘΒ by using the £ 2,1 norm as regularization:

д(*Г
I ,P (7)

E. Complexity Analysis
The proposed NEC-DGT requires Ο {Ν'2) operations in 

time complexity and 0 ( N 2) space complexity in terms of 
number of nodes in the graph. It is more scalable than most of 
the graph generation methods. For example, GraphVAE [23] 
requires 0 { N i ) operations in the worst case and Li et al [26] 
uses graph neural networks to perform a form of message 
passing with 0 { M N 2) operations to generate a graph.

V. E x p e r im e n t s

In this section, we present both the quantitative and quali­
tative experiment results on NEC-DGT as well as the com­
parison models. All experiments are conducted on a 64- 
bit machine with Nvidia GPU (GTX 1070, 1683 MHz, 8 
GB GDDR5). The model is trained by ADAM optimization 
algorithm3.

A. Experimental Setup
1) Datasets: We performed experiments on four synthetic 

datasets and four real-world datasets with different graph sizes 
and characteristics. All the dataset contain input-target pairs.

Synthetic dataset: Four datsets are generated based on 
different types of graphs and translation mles. The input 
graphs of the first three datasets (named as Syn-I, Syn-II, 
and Syn-III) are Erdos-Renyi (E-R) graphs generated by the 
Erdos Renyi model [32] with the edge probability of 0.2 and 
graph size of 20, 40, and 60 respectively. The target graph

3The code of the model and additional experiment results are available 
at:https://github.com/xguo7/NEC-DGT

topology is the 2-hop connection of the input graph, where 
each edge in the target graph refers to the 2-hop reachability 
in the input graph (e.g. if node i is 2-hop reachable to node 
j  in the input graph, then they are connected in the target 
graph). The input graphs of the fourth dataset (named as 
Syn-IV) are Barabâsi-Albert (В-A) graphs generated by the 
Barabâsi-Albert model [33] with 20 nodes, where each node 
is connected to 1 existing node. In Syn-IV, topology of target 
graph is the 3-hop connection of the input graph. For all the 
four datasets, the edge attributes Es,i,j £ [0,1] denotes the 
existence of the edge. For both input and target graphs, the 
node attributes are continuous values computed following the 
polynomial function: f (x ) : y =  ax2 +  bx +  c(a =  0, b =  
1 ,c  =  5), where x is the node degree and f{x)  is the node 
attribute. Each dataset is divided into two subsets, each of 
which has 250 pairs of graphs. Validation is conducted where 
one subset is used for training and another for testing, and 
then exchange them for another validation. The average result 
of the two validations is regarded as the final result.

Malware confinement dataset: Malware dataset are used 
for measuring the performance of NEC-DGT for malware 
confinement prediction. There are three sets of IoT nodes 
at different amount (20, 40 and 60) encompassing tempera­
ture sensors connected with Intel ATLASEDGE Board and 
Beagle Boards (BeagleBone Blue), communicating via Blue­
tooth protocol. Benign and malware activities are executed 
on these devices to generate the initial attacked networks as 
the input graphs. Benign activities include MiBench [34] and 
SPEC2006 [35], Linux system programs, and word processor. 
The nodes represent devices and node attribute is a binary 
value referring to whether the device is compromised or 
not. Edge represents the connection of two devices and the 
edge attribute is a continuous value reflecting the distance 
of two devices. The real target graphs are generated by the 
classical malware confinement methods: stochastic controlling 
with malware detection [10], [36], [37]. We collected 334 pairs 
of input and target graphs with different contextual parameters 
(infection rate, recovery rate, and decay rate) for each of the 
three datasets. Each dataset is divided into two subsets: one 
has 200 pairs and another has 134 pairs. The validation is 
conducted in the same way as the synthetic dataset.

Molecule reaction dataset: We apply our NEC-DGT to one 
of the fundamental problems in organic chemistry, thus pre­
dicting the product (target graph) of chemical reaction given 
the reactant (input graph). Each molecular graph consists of 
atoms as nodes and bond as edges. The input molecule graph 
has multiple connected components since there are multiple 
molecules comprising the reactants. The reactions used for 
training are atom-mapped so that each atom in the product 
graph has a unique corresponding atom in the reactants. We 
used reactions from USPTO granted patents, collected by 
Lowe [38]. we obtained a set of 5,000 reactions (reactant- 
product pair) and divided them into 2,500 and 2,500 for 
training and testing. Atom (node) features include its elemental 
identity, degree of connectivity, number of attached hydrogen 
atoms, implicit valence, and aromaticity. Bond (edge) features
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include bond type (single, double, triple, or aromatic), and 
whether it is connected.

2) Comparison methods: Since there is no existing method 
handling the multi-attributed graph translation problem, NEC- 
DGT is compared with two categories of methods: 1) graph 
topology generation methods, and 2) graph node attributes 
prediction methods.

Graph topology generation methods: 1) GraphRNN [27] 
is a recent graph generation method based on sequential gener­
ation with LSTM model; 2) Graph Variational Auto-encoder 
(GraphVAE) [23] is a VAE based graph generation method 
for small graphs; 3) Graph Translation-Generative Adversarial 
Networks (GT-GAN) [7] is a new graph topology translation 
method based on graph generative adversarial network.

Node attributes prediction methods: 1) Interaction Net­
work (IN) [4] is a node state updating network considering the 
interaction of neighboring nodes; 2) DCRNN [5] is a node 
attribute prediction network for tranffic flow prediction; 3) 
Spatio-Temporal Graph Convolutional Networks (STGCN) [6] 
is a node attribute prediction model for traffic speed forecast.

Furthermore, to validate the effectiveness of the graph 
spectral-based regularization, we conduct a comparison model 
(named as NR-DGT) which has the same architecture of NEC- 
DGT but without the graph regularization.

3) Evaluation metrics: A set of metrics are used to measure 
the similarity between the generated and real target graphs in 
terms of node and edge attributes. To measure the attributes 
which are Boolean values, the Acc (accuracy) is utilized to 
evaluate the ratio of nodes or edges that are correctly predicted 
among all the nodes or possible node pairs. To measure the 
attributes which are continuous values, MSE (mean squared 
error), R2 (coefficient of determination score), Pearson and 
Spearman correlation are computed between attributes of 
generated and real target graphs. N — < metric >  represents 
metrics evaluated on node attributes and E — < metric > 
represents metrics evaluated on edge attributes.

B. Performance

1 ) Metric-based evaluation for synthetic graphs: For syn­
thetic datasets, we compare the generated and real target 
graphs on various metrics and visualize the patterns captured 
in the generated graphs. Table II summarizes the effectiveness 
comparison for four synthetic datasets. The node attributes 
are continuous values evaluated by N-MSE, N-R2, N-P, and 
N-SP. The edge attributes are binary values evaluated by the 
accuracy of the correctly predicted edges. The results in Table 
Π demonstrate that the proposed NEC-DGT outperforms other 
methods in both node and edge attributes prediction and is 
the only method to handle both. Specifically, in terms of 
node attributes, the proposed NEC-DGT get smaller N-MSE 
value than all the node attributes prediction methods by 85%, 
71%, 95% and 95% on average for four dataset respectively. 
Also, NEC-DGT outperforms the other methods by 46%, 36%, 
44% and 58% on average for four dataset respectively on N- 
R2, N-P, and N-SP. This is because all the node prediction

methods only consider a fixed graph topology while NEC- 
DGT allows the edges to vary. In terms of edges, the proposed 
NEC-DGT get the highest E-ACC than all the other graph 
generation methods. It also has higher E-ACC than graph 
topology translation method: GT-GAN by 7% on average since 
NEC-DGT considers both edge and node attributes in learning 
the translation mapping while GT-GAN only considers edges. 
The proposed NEC-DGT outperforms the NR-DTG by around 
3% on average in terms of all metrics, which demonstrates the 
effectiveness of the graph spectral-based regularization.

TABLE II: Evaluation of Generated Target Graphs for Syn­
thetic Dataset (N for node attributes, E for edge attributes, P 
for Pearson correlation, SP for Spearman correlation and Acc 
for accuracy).

dataset Method N-MSE N-R2 N-P N-Sp Method E-Acc
IN 5.97 0.06 0.48 0.44 GraphRNN 0.6212
DCRNN 51.36 0.12 0.44 0.45 GraphVAE 0.6591
STGCN 15.44 0.19 0.42 0.56 GT-GAN 0.7039

Syn-I NR-DGT 2.13 0.87 0.90 0.89 NR-DGT 0.7017
NEC-DGT 1.98 0.76 0.93 0.91 NEC-DGT 0.7129

IN 1.36 0.85 0.77 0.87 GraphRNN 0.5621
DCRNN 71.07 0.11 0.39 0.37 GraphVAE 0.4639
STGCN 33.11 0.21 0.15 0.15 GT-GAN 0.7005

Syn-II NR-DGT 1.43 0.91 0.94 0.97 NR-DGT 0.7016
NEC-DGT 1.91 0.93 0.97 0.97 NEC-DGT 0.7203

IN 35.46 0.31 0.59 0.56 GraphRNN 0.4528
DCRNN 263.23 0.09 0.41 0.39 GraphVAE 0.3702
STGCN 43.34 0.22 0.48 0.47 GT-GAN 0.5770

Syn-Ш NR-DGT 5.90 0.90 0.94 0.92 NR-DGT 0.6259
NEC-DGT 4.56 0.93 0.97 0.96 NEC-DGT 0.6588

IN 4.63 0.10 0.53 0.51 GraphRNN 0.5172
DCRNN 63.03 0.12 0.22 0.16 GraphVAE 0.3001
STGCN 6.52 0.08 0.11 0.10 GT-GAN 0.8052

Syn-IV NR-DGT 4.49 0.12 0.55 0.54 NR-DGT 0.6704
NEC-DGT 1.86 0.73 0.93 0.89 NEC-DGT 0.8437

2) Evaluation of the learned translation mapping for syn­
thetic graphs: To evaluate whether the inherent relationship 
between node and edge (reflected by node degree) attributes 
is learned and maintained by NEC-DGT, we draw the dis­
tributions of the node attribute versus node degree of each 
node in the generated graphs to visualize their relationship. 
For comparison, a ground-truth correlation is drawn according 
to the predefined rule of generating the dataset, namely, each 
node’s degree and attribute follows the function y  =  x +  5. 
Fig. 6 shows four example distributions of nodes in terms 
of node attributes and degree with the black line as ground- 
truth. As shown in Fig. 6, the nodes are located closely on the 
ground-truth, especially for the syn-I and syn-IV, where around 
85% nodes are correctly located. This is largely because 
the proposed graph spectral-based regularization successfully 
discovers the patterns: the densely connected nodes all tend to 
have large node attributes and in reverse.

3) Metric-based Evaluation for malware datasets: Table 
ΙΠ shows the evaluation of NEC-DGT by comparing the 
generated and real target graphs. For malware graphs, the 
node attributes are evaluated by N-ACC by calculating the 
percentage of nodes whose attributes are correctly predicted 
in all nodes. The edge attributes are continuous value evaluated
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TABLE III: Evaluation of Generated Target Graphs for Mal­
ware Dataset (N for node attributes, E for edge attributes, P 
for Pearson correlation, SP for Spearman correlation and Acc 
for accuracy).

Malware-I
Method E-Acc E-MSE E-R2 E-P Method N-Acc
GraphRNN 0.6107 1831.43 0.52 0.00 IN 0.8786
GraphVAE 0.5064 2453.61 0.00 0.04 DCRNN 0.8786
GT-GAN 0.6300 1718.02 0.42 0.11 STGCN 0.9232
NR-DGT 0.9107 668.57 0.82 0.91 NR-DGT 0.9108
NEC-DGT 0.9218 239.79 0.78 0.91 NEC-DGT 0.9295

Malware-II
Method E-Acc E-MSE E-R2 E-P Method N-Acc
GraphRNN 0.7054 1950.46 0.44 0.29 IN 0.8828
GraphVAE 0.6060 2410.57 0.73 0.16 DCRNN 0.8790
GT-GAN 0.9033 462.73 0.13 0.81 STGCN 0.9330
NR-DGT 0.9117 448.48 0.68 0.83 NR-DGT 0.8853
NEC-DGT 0.9380 244.40 0.81 0.91 NEC-DGT 0.9340

Fig. 6: Relation visualizations between node attributes and 
node degrees for samples from four synthetic graphs

by E-MSE, E-R2 and E-P. We also use Е-Acc to evaluate the 
correct existence of edges among all pairs of nodes. The results 
in Table III demonstrates that NEC-DGT performs the best for 
all the three datasets. In terms of Е-Acc, the graph generation 
methods (GraphRNN and GraphVAE) cannot handle the graph 
translation work and got low Е-Acc of around 0.6 at Mai- 
1,Mal-Π, and 0.8 at Mal-Ш. GT-GAN achieves high E-ACC, 
but its E-MSE is about 2 folds larger than that of the proposed 
NEC-DGT on average. NEC-DGT successfully handle the 
translation tasks with high Е-Acc above 0.9, and the smallest 
E-MSE. In terms of N-Acc, NEC-DGT outperforms other 
methods by around 5% on the first two datasets. In summary, 
the proposed NEC-DGT can not only jointly predict the node 
and edges attributes, but also performs the best in most of 
metrics. The superiority of NEC-DGT over the NR-DGT in 
terms of E-MSE demonstrates that the graph spectral-based 
regularization indeed improve modeling translation mapping.

4) Case study for malware dataset: Fig. 7 investigates three 
cases of input, real target and generated target graph by NEC- 
DGT. The green nodes refer to the uncompromised devices 
while the red nodes refer to the compromised devices. The 
width of each edge reflects the distance between two devices. 
In the first case, both in generated and real target graphs, 
Devices 4 and 6 are restored to normal, while Device 19 get 
attacked and is isolated from the other devices. It validates 
that our NEC-DGT successfully finds the rules of translating 
nodes and performs like the true confinement process. In the 
second case, Device 8 propagates the malware to Device 38, 
which is also modeled by NEC-DGT in generated graphs. In 
addition, the NEC-DGT not only correctly predicts the nodes 
attributes, but also discovers the change in edge attributes, e.g. 
in the third case, most of the connections of compromised 
Device 10 were cut both in generated and real target graphs.

5) Metric-based Evaluation for Molecule Reaction 
datasets: In this task, the NEC-DGT is compared to the 
Weisfeiler-Lehman Difference Network (WLDN) [39], which

Malware-III
Method E-Acc E-MSE E-R2 E-P Method N-Acc
GraphRNN 0.8397 1775.58 0.16 0.23 IN 0.8738
GraphVAE 0.8119 2109.64 0.39 0.32 DCRNN 0.8738
GT-GAN 0.9453 550.30 0.63 0.80 STGCN 0.9375
NR-DGT 0.9543 341.10 0.76 0.88 NR-DGT 0.8773
NEC-DGT 0.9604 273.67 0.81 0.90 NEC-DGT 0.9002

Input graph Real target graph Generated target graph

Fig. 7: Cases of Malware translation by NEC-DGT

is a graph learning model specially for reaction prediction. 
Table IV shows the performance of our NEC-DGT on the 
reaction dataset on five metrics, which are the same with the 
synthetic datasets. The proposed NEC-DGT outperforms both 
the translation model GT-GAN and the WLDN by 5% on 
average. Though the atoms do not change during reaction, 
we evaluate the capacity of our NEC-DGT to copy the input 
node features. As shown in Table IV, The NEC-DGT get the 
smallest N-MSE and get higher N-R2 than other comparison 
methods by around 18%. This shows that our NEC-DGT can 
deal with a wide range of real-world applications, whether 
the edges and nodes need change or keep stable.

VI. C o n c l u s i o n  a n d  F u t u r e  W o r k

This paper focuses on a new problem: multi-attributed 
graph translation. To achieve this, we propose a novel NEC- 
DGT consisting of several blocks which translates a multi-
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TABLE IV: Evaluation of Generated Target Graphs for 
Molecule Dataset: N for node attributes, E for edge attributes

Method N-MSE N-R2 N-P N-Sp Method E-Acc
IN 0.0805 0.46 0.13 0.12 GT-GAN 0.8687
STGCN 0.0006 0.98 0.99 0.97 WLDN 0.9667
NR-DGT 0.0008 0.97 0.99 0.99 NR-DGT 0.9918
NEC-DGT 0.0004 0.99 0.99 0.99 NEC-DGT 0.9925

attributed input graph to a target graph. To jointly tackle 
the different types of interactions among nodes and edges, 
node and edge translation paths are proposed in each block 
and the graph spectral-based regularization is proposed to 
preserve the consistent spectral property of graphs. Extensive 
experiments have been conducted on the synthetic and real- 
world datasets. Experiment results show that our NEC-DGT 
can discover the ground-truth translation rules and significantly 
outperform comparison methods in terms effectiveness. This 
paper provides a further step of research for graph translation 
problems in more general scenarios.
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