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In today’s era of big data, robust least-squares regression becomes a more challenging problem when consid-

ering the extremely corrupted labels along with explosive growth of datasets. Traditional robust methods can

handle the noise but suffer from several challenges when applied in huge dataset including (1) computational

infeasibility of handling an entire dataset at once, (2) existence of heterogeneously distributed corruption, and

(3) difficulty in corruption estimation when data cannot be entirely loaded. This article proposes online and

distributed robust regression approaches, both of which can concurrently address all the above challenges.

Specifically, the distributed algorithm optimizes the regression coefficients of each data block via heuristic

hard thresholding and combines all the estimates in a distributed robust consolidation. In addition, an on-

line version of the distributed algorithm is proposed to incrementally update the existing estimates with new

incoming data. Furthermore, a novel online robust regression method is proposed to estimate under a biased-

batch corruption. We also prove that our algorithms benefit from strong robustness guarantees in terms of

regression coefficient recovery with a constant upper bound on the error of state-of-the-art batch methods.

Extensive experiments on synthetic and real datasets demonstrate that our approaches are superior to those

of existing methods in effectiveness, with competitive efficiency.
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1 INTRODUCTION

In the era of data explosion, the fast-growing amount of data makes processing entire datasets at
once remarkably difficult. For instance, urban Internet of Things (IoT) systems [32] can produce
millions of data records every second in monitoring air quality, energy consumption, and traffic
congestion. The presence of noise and corruption in real-world data can be inevitably caused by
accidental outliers [27], transmission loss [28], or even adversarial data attacks [7]. As the most
popular statistical approach, the traditional least-squares regression method is vulnerable to out-
lier observations [22] and not scalable to large datasets [24, 37]. By considering both robustness
and scalability in a least-squares regression model, we study scalable robust least-squares re-

gression (SRLR) [1, 4] to handle the problem of learning a reliable set of regression coefficients
given a large dataset with several corruptions in its response vector. Due to the ubiquitousness
of data corruption and explosive data growth, SRLR has become a critical component of several
important real-world applications in various domains such as economics [2], signal processing
[33, 40], and network processing [17].

The goal of SRLR problem is to recover the true regression coefficients under the assumption
that both the observed response y and data matrix X are too large to be handled simultaneously.
A commonly adopted model from existing robust regression methods [4, 34] assumes that the ob-
served response is obtained from the generative model y = XT β∗ + u + ε , where β∗ is the true
regression coefficients that we wish to recover, u is the corruption vector with arbitrary values,
and ε represents the additive dense noise. Three different corruption distributions are considered
in this article: (1) distributed corruption assumes samples in mini-batches are arbitrarily corrupted
with the corrupted ratio no more than 50%; (2) batched corruption assumes that up to k of mini–
batches in the online data batch set are arbitrarily corrupted, which contain an overwhelmingly
amount of corrupted samples (more than 50%); and (3) biased-batch corruption assumes that up to
k of mini-batches in the online data batch set are biased corrupted with uniform distribution, like
concentrated in the front, middle, or back of the sequence.

Existing robust learning methods typically focus on modeling the entire dataset at once; how-
ever, they may meet the bottleneck in terms of computation and memory as more and more
datasets are becoming too large to be handled integrally. For those seeking to address this is-
sue, the major challenges can be summarized as follows: (1) Computational infeasibility of

handling the entire dataset at once. Existing robust methods typically generate the predic-
tor by learning on the entire training dataset. However, the explosive growth of data makes
it infeasible to handle the entire dataset up to a terabyte or even petabyte at once. Therefore,
a scalable algorithm is required to handle the robust regression task for massive datasets. (2)
Existence of heterogeneously distributed corruption. Due to the unpredictability of cor-
ruptions, the corrupted samples can be arbitrarily distributed in the whole dataset. Consider-
ing the entire dataset as the combination of multiple mini-batches, some batches may contain
large amounts of outliers. Thus, simply applying the robust method on each batch and averag-
ing all the estimates together is not an ideal strategy, as some estimates will be arbitrarily poor
and break down the overall performance of robustness. (3) Difficulty in corruption estima-

tion when data cannot be entirely loaded. Most robust methods assume the corruption ra-
tio of input data is a known parameter; however, if a small batch of data can be loaded as in-
puts for robust methods, it is infeasible to know the corruption ratio of all the mini-batches.
Moreover, simply using a unified corruption ratio for all the mini-batches is clearly not an
ideal solution as corrupted samples can be regarded as uncorrupted, and vice versa. In addi-
tion, even though some robust methods can estimate the corruption ratio based on data obser-
vations, it is also infeasible to estimate the ratio when corruption in one mini-batch is greater
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than 50%. However, the situation can be very common when corruption is heterogeneously dis-
tributed.
In order to simultaneously address all these technical challenges, this article presents a novel

Distributed Robust Least-squares Regression (DRLR) method and its two online versions,
named Online Robust Least-squares Regression (ORLR) and Online Robust Least-squares

Regression under Biased-batch Corruption (ORLR-BC). These two online methods are pro-
posed to handle the scalable robust regression problem in large datasets with heterogeneously
distributed corruption. In DRLR, the regression coefficient of each mini-batch is optimized via
heuristic hard thresholding, and then all the estimates are combined in distributed robust con-
solidation. Based on DRLR, the ORLR algorithm incrementally updates the existing estimates by
replacing old corrupted estimates with those of new incoming data, which is more efficient than
DRLR in handling new data and reflects the time-varying characteristics. To solve the biased-batch
data corruption that cannot be handled byORLR algorithm, we propose a newORLR-BC algorithm.
Specifically, the ORLR-BC algorithm considers not only the sequence of data corruption but also
existing estimates to reduce the impact of the sequence of mini-batches, which is more efficient
than ORLR, especially when corrupted batches concentratedly arrive at first. In addition, we prove
that the proposed algorithms preserve the overall robustness of regression coefficients in the entire
dataset. The main contributions of this article are as follows:

— Formulating a framework for the SRLR problem. A framework is proposed for SRLR
problemwhere the amount of the entire data with extremely noisy labels is too large to store
in memory at once. Specifically, given a large dataset with large-scale corruptions, a reliable
set of regression coefficients is learned with limited memory.

— Proposing online and distributed algorithms to handle the uniform label corrup-

tion. By utilizing robust consolidation methods, we propose both online and distributed
algorithms to obtain overall robustness even though the corruption is arbitrarily distributed.
Moreover, the online algorithm performs more efficiently in handling new incoming data
and presents the time-varying characteristics of regression coefficients.

— Designing an online algorithm to handle the biased-batch corruption. Considering
not only the relevance to previous regression coefficients but the sequence of data, we extend
the online algorithm to handle the biased-batch corruption, which is the worst scenarios for
our online algorithm.

— Providing a rigorous robustness guarantee for regression coefficient recovery. We
prove that our online and distributed algorithms recover the true regression coefficient with
a constant upper bound on the error of state-of-the-art batch methods under the assumption
that corruption can be heterogeneously distributed. Specifically, the upper bound of online
algorithm will be infinitely close to distributed algorithm when the number of mini-batches
is large.

— Conducting extensive experiments for performance evaluations. The proposed meth-
ods were evaluated on both synthetic data and real-world datasets with various corruption
and data-size settings. The results demonstrate that the proposed approaches consistently
outperform existing methods along multiple metrics with a competitive running time.

This article is a systematic extension of [38]. Compared to the preliminary version, we propose a
new adversarial online robust regression method for the biased-batch corruption estimation task.
Additional discussions and empirical results are presented. The rest of this article is organized as
follows: Section 2 reviews background and related work, and Section 3 introduces the problem
setup. The proposed online and distributed robust regression algorithms are presented in Section
4. Section 5 presents the proof of recovery guarantee in regression coefficients. The experiments
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on both synthetic and real-world datasets are presented in Section 6, and this article concludes
with a summary of the research in Section 7.

2 RELATEDWORK

The work related to this article is summarized in two categories below.
Robust regression model: A large body of literature on the robust regression problem has

been built over the last few decades. Most of studies focus on handling stochastic noise or small
bounded noise [6, 20, 26], but these methods, modeling the corruption on stochastic distributions,
cannot be applied to data that may exhibit biased-batch corruption [7]. Some studies assume the
adversarial label corruption in the data, but most of them lack the strong guarantee of regression
coefficients recovery under the arbitrary corruption assumption [7, 24]. Chen et al. [7] proposed
a robust algorithm based on a trimmed inner product, but the recovery boundary is not tight to
ground truth in a massive dataset. McWilliams et al. [24] proposed a sub-sampling algorithm for
large-scale corrupted linear regression, but their recovery result is not close to an exact recovery
[4]. To pursue exact recovery results for robust regression problem, some studies focused on L1
penalty based convex formulations [25, 31]. However, these methods imposed severe restrictions
on the data distribution such as row-sampling from an incoherent orthogonal matrix[25].
Currently, most research in this area requires the corruption ratio parameter, which is difficult

to determine under the assumption that the dataset can be arbitrarily corrupted. For instance,
She and Owen [30] rely on a regularization parameter to control the size of the uncorrupted set
based on soft-thresholding. Instead of a regularization parameter, Chen et al. [7] require the upper
bound of the outliers number, which is also difficult to estimate. Bhatia et al. [4] proposed a hard-
thesholding algorithm with a strong guarantee of coefficient recovery under a mild assumption
on input data. However, its recovery error can be more than doubled in size if the corruption ratio
is far from the true value. Recently, Zhang et al. [39] proposed a robust algorithm that learns the
optimal uncorrupted set via a heuristic method. However, all of these approaches require the entire
training dataset to be loaded and learned at once, which is infeasible to apply in massive and fast
growing data.
Online and distributed learning:Most of the existing online learning methods optimize sur-

rogate functions such as stochastic gradient descent [13, 18, 21] to update estimates incrementally.
For instance, Duchi et al. [13] proposed a new, informative subgradient method that dynamically
incorporates the geometric knowledge of the data observed in earlier iterations. Some adaptive
linear regression methods such as recursive least squares [15] and online passive aggressive

algorithms (OPAAs) [8] provide an incremental update on the regression model for new data to
capture time-varying characteristics. However, these methods cannot handle the outlier samples
in the streaming data. For distributed learning [5, 23], most approaches such as MapReduce [10]
focus on distributed solutions for large-scale problems that are not robust to noise and corruption
in real-world data.
The existing distributed robust optimization methods can be divided into two categories: those

that use moment information [12, 19] and those that utilize directly on the probability distributions
[3, 9, 14]. For instance, Delage et al. [11] proposed a model that describes uncertainty in both
the distribution form and moments in a distributed robust stochastic program. However, these
methods assume either the moment information or probability distribution as prior knowledge,
which is difficult to know in practice. In robust online learning, fewmethods have been proposed in
the past few years. For instance, Sharma et al. [29] proposed an online smoothed passive-aggressive
algorithm to update estimates incrementally in a robust manner. However, the method assumes
the corruption is in stochastic distributions, which is infeasible for data with extremely corrupted
labels. Recently, Feng et al. [16] proposed an online robust learning (ORL) approach that gives
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Fig. 1. Illustrations of the distributed corruption model, batched corruption model, and the biased-batch

corruption model.

a provable robustness guarantee under the assumption that data corruption is heterogeneously
distributed. However, the method requires that the corruption ratio of each data batch be given as
parameters, which is not practical for users to estimate.

3 PROBLEM FORMULATION

In the setting of online and distributed learning, we consider the samples to be provided in a

sequence of mini-batches as {X (1), . . . ,X (m) }, where X (i ) ∈ Rp×n represents the sample data for

the ith batch. We assume the corresponding response vector y (i ) ∈ Rn×1 is generated using the
following model:

y (i ) =
[
X (i )

]T
β∗ +u

(i ) + ε (i ), (1)

where β∗ ∈ Rp×1 is the ground truth coefficients of the regression model and u (i ) is the sparse

corruption vector of the ith mini-batch. ε (i ) represents the additive dense noise for the ith mini-

batch, where ε (i )j ∼ N (0,σ 2).
When the entire dataset is too large to be handled simultaneously, it is usually processed by

multiple mini-batches. Due to the unpredictability of corruptions, the corrupted samples can be
arbitrarily distributed in the whole dataset. For example, some batches may contain large amounts
of outliers and some batches may have few corrupted data. Since the online learning methods are
sensitive to the data sequence, modeling different corrupted data sequence scenarios is non-trivial.
Here, we consider three types of corrupted data distributions: distributed corruption, batched
corruption, and biased-batch corruption. Specifically, distributed corruption models the situation
where the corrupted data are arbitrarily distributed in mini-batches and the corrupted ratio of each
batch is less than half. Batch corruption considers the situation where the corrupted ratio of some
mini-batches are more than half. In other words, the corrupted data in the whole dataset are con-
centrated mainly in a small number of mini-batches. When the corrupted ratio of the mini-batch is
more than half, it is called corrupted batches. Furthermore, if the corrupted batches concentrated
in the data streaming and the corrupted data inside has an uniform distribution, it is defined as
biased-batch corruption. We illustrate these corruption models in Figure 1, where the blue parts
denote the uncorrupted data and the pink parts denote the corrupted data.

Definition 3.1 (Distributed Corruption). Samples in mini-batches are arbitrarily corrupted with
the corrupted ratio no more than half.

Definition 3.2 (Batch Corruption). Given a sequence of mini-batches {X (1), . . . ,X (m) }, k out of
m mini-batches are arbitrarily corrupted batches. Here, if the amount of corrupted samples in the

batch X (i ) are more than half, X (i ) is called corrupted batch.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.



41:6 S. Lei et al.

Table 1. Math Notations

Notations Explanations

X (i ) ∈ Rp×n collection of data samples of the ith mini-batch

y (i ) ∈ Rn×1 response vector of the ith mini-batch

β (i ) ∈ Rp×1 estimated regression coefficient of the ith batch

β (i )
∗ ∈ Rp×1 ground truth regression coefficient of the ith batch

u (i ) ∈ Rn×1 corruption vector of the ith batch

r (i ) ∈ Rn×1 residual vector of the ith batch

ε (i ) ∈ Rn×1 dense noise vector of the ith batch

Z (i ) ⊆ [n] estimated uncorrupted set of the ith batch

Z (i )
∗ ⊆ [n] ground truth uncorrupted set, where Z (i )

∗ = supp (u (i ) )
S ⊆ [m · n] estimated uncorrupted set of entire dataset

Definition 3.3 (Biased-batch Corruption). Given a sequence of mini-batches {X (1), . . . ,X (m) }, k
out ofm mini-batches are corrupted batches with uniform distribution.

The goal of addressing our problem is to recover the regression coefficients β̂ and determine

the uncorrupted set Ŝ for the entire dataset. The problem is formally defined as follows:

β̂, Ŝ = argmin
β,S

���yS − XT
S β

���22
s .t . S ∈

{
Ω
(
Z
) ��� ∀i ≤ m : |Z (i ) | ≥ |Z (i )

∗ |
}. (2)

We define Z (i ) as the estimated uncorrupted set for the ith mini-batch and Z = {Z (1), . . . ,Z (m) }
as the collection of uncorrupted sets for all the mini-batches. The size of set Z (i ) is represented

as |Z (i ) |. The function Ω(·) consolidates the estimates of all the mini-batches in terms of the
distributed or online setting. yS restricts the row of y to indices in S , and XS signifies that the
columns of X are restricted to indices in S . Therefore, we have yS ∈ R |S |×1 and XS ∈ Rp×|S | ,
where p is the number of features and |S | is the size of the uncorrupted set S ⊂ [m · n]. The
notation Z (i )

∗ = supp (u (i ) ) represents the true set of uncorrupted points in the ith mini-batch. The

constraint of Z (i ) is |Z (i ) | ≥ |Z (i )
∗ |; however, it is infeasible to get the ground truth uncorrupted

set Z (i )
∗ . Thus, the function h(·) is designed to estimate the size of the uncorrupted set of each

mini-batch according to the residual vector r (i ) . The residual vector r (i ) ∈ Rn of the ith mini-batch

is defined as r (i ) = y (i ) − [X (i )]
T
β . We use the notation r (i )

Z
to represent the |Z (i ) |-dimensional

residual vector containing the components in Z (i ) . The uncorrupted set of each mini-batch is
consolidated by function Ω(·) in both online and distributed approaches. The details of the
heuristic function h(·) and consolidation function Ω(·) are explained in Section 4. The notations
used in this article are summarized in Table 1.
The problem defined above is challenging in the following three aspects. First, the least-squares

function can be naively solved by taking the derivative to zero. However, as the data samples of all
mmini-batches are too large to be loaded into memory simultaneously, it is impossible to calculate
β from all the batches directly by this method. Moreover, based on the fact that the corruption
ratio can be varied for each mini-batch, we cannot simply estimate the corruption set by using
a fixed ratio for each mini-batch. In addition, since corruption is not uniformly distributed, some
mini-batches may contain an overwhelmingly amount of corrupted samples. The corresponding
estimates of regression coefficients can be arbitrarily poor and break down the overall result. In
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the next section, we present both online and distributed robust regression algorithms based on
heuristic hard thresholding and robust consolidation to address all three challenges.

4 METHODOLOGY

In this section, we propose both online and distributed robust regression algorithms to handle large
datasets in multiple mini-batches. To handle each single mini-batch among these mini-batches,
a heuristic robust regression (HRR) method is proposed in Section 4.1. Based on HRR, a new
approach,DRLR, is presented in Section 4.2 to process multiple mini-batches in distributed manner.
In Section 4.3, a novel online version of DRLR, namely ORLR, is proposed to incrementally update
the estimate of regression coefficients with new incoming data.

4.1 Single-Batch Heuristic Robust Regression

In order to efficiently solve the single batch problem when m = 1 in Equation (2), we propose a
robust regression algorithm, HRR, based on heuristic hard thresholding. The algorithm heuristi-

cally determines the uncorrupted set Z (i ) for the ith mini-batch according to its residual vector

r (i ) . Specifically, a novel heuristic function h(·) is proposed to estimate the lower-bound size of

the uncorrupted set Z (i ) for each mini-batch, which is formally defined as

h(r (i ) ) := argmax
τ ∈Z+,τ ≤n

τ s .t . r (i )
φ (τ )
≤

2τr (i )
φ (τo )

τo
, (3)

where the residual vector of ith mini-batch is denoted by r (i ) = y (i ) − [X (i )]
T
β (i ) , and r (i )

φ (k )
repre-

sents the kth elements of r (i ) in ascending order of magnitude. The variable τo in the constraint is
defined as

τo = argmin
�n/2�≤τ ≤n

�������
(
r (i )
φ (τ )

)2
−
‖r (i )

Zτ ′
‖22

τ ′

�������
, (4)

where τ ′ = τ − �n/2� and Zτ ′ is the position set containing the smallest τ ′ elements in residual

r (i ) .
The design of the heuristic estimator follows a natural intuition that data points with unbounded

corruption have a residual higher in magnitude than that of uncorrupted data. The constraint in
Equation (3) ensures the residual of the largest element τ in our estimation cannot be larger than
the residual of a smaller element τo . If the element τo is too small, some uncorrupted elements
will be excluded from our estimation, but if the element is too large, some corrupted elements
will be included. The formal definition of τo is shown in Equation (4), in which τo is defined as

a value whose squared residual is closest to ‖r (i )
Zτ ′
‖22/τ ′, where τ ′ is less than the ground truth

threshold τ∗. This design ensures that |Z (i )
∗ ∩Z

(i )
t | ≥ τ −n/2, which means at least τ −n/2 elements

are correctly estimated in Z (i )
t . In addition, the precision of the estimated uncorrupted set can be

easily achieved when fewer elements are included in the estimation, but with low recall value. To
increase the recall of our estimation, the objective function in Equation (3) chooses the maximum
uncorrupted set size.
Applying the uncorrupted set size generated by h(·), the heuristic hard thresholding is defined

as follows:

Definition 4.1 (Heuristic Hard Thresholding). Defining φ−1r (i ) as the position of the ith element
in residual vector r ’s ascending order of magnitude, the heuristic hard thresholding of r is defined
as

H (r ) = {i ∈ [n] : φ−1r (i ) ≤ h(r )}. (5)
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ALGORITHM 1: Hrr Algorithm

Input: Corrupted data samples X ∈ Rp×n and response vector y ∈ Rn×1 for single mini batch,

tolerance ϵ
Output: solution β̂ , Ẑ

1 Z0 = [n], t ← 0

2 repeat

3 βt+1 ← (XZtX
T
Zt

)−1XZtyZt
4 r t+1 ← |y − XT βt+1 |
5 Zt+1 ←H (r t+1), whereH (·) is defined in Equation (5).

6 t ← t + 1

7 until ‖r t+1
Zt+1
− r t

Zt
‖2 < ϵn

8 return βt+1, Zt+1

The optimization ofZ (i ) is formulated as solving Equation (5), where the set returned byH (r (i ) )
will be used to determine regression coefficients β (i ) .

The details of the HRR algorithm are shown in Algorithm 1, which follows an intuitive strategy

of updating regression coefficient β (i ) to provide a better fit for the current estimated uncorrupted
set Zt in Line 3, and updating the residual vector in Line 4. The uncorrupted set Zt+1 is estimated
via heuristic hard thresholding in Line 5 based on residual vector r in the current iteration. The
algorithm continues until the change in the residual vector falls within a small range.

4.2 Distributed Robust Regression

Given data samples {(X (1),y (1) ), . . . , (X (m),y (m) )} in a sequence of mini-batches, a distributed ro-
bust regression algorithm, named DRLR, is proposed to optimize the robust regression coefficients
in distributed approach without loading entire data at one time. Before we dive into the details of
the DRLR algorithm, we provide some key definitions.

Definition 4.2 (Estimate Distance). Defining β (i ) and β (j ) as the estimate of the regression coef-
ficients for the ith and jth mini-batches, respectively, the distance between the two estimates is
defined as

di, j = ‖β (i ) − β (j ) ‖2. (6)

Based on the definition of estimate distance, we define the distance vector of the ith mini-batch

as d (i ) ∈ Rm×1, wherem is the total number of batches and d (i )
j represents the distance from the

estimate of the ith batch to the jth batch (1 ≤ j ≤ m). We also define σk (d
(i ) ) and δk (d

(i ) ) as the
value and index of the kth smallest value in distance vector d (i ) , respectively. For instance, if the

third batch is the fifth smallest distance in d (i ) with d (i )
3 = 0.3, then we have σ5 (d (i ) ) = 0.3 and

δ5 (d (i ) ) = 3.

Definition 4.3 (Pivot Batch). Given a set of mini-batch estimates {β (1), . . . , β (m) } and defining

d (i ) as the distance vector of the ith batch, the pth batch is defined as pivot batch if it satisfies:

p = argmin
i

σm̃ (d (i ) ), (7)

where m̃ = �m/2� + 1 is the upper number of half batches. By using the definition of pivot batch,
we define the deterministic set as follows:

Definition 4.4 (Deterministic Set). Given a set of mini-batch estimates {β (1), . . . , β (m) } and
defining d (p ) as the distance vector of the pivot batch, the deterministic set Ψ is defined as
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Fig. 2. Example of deterministic set detection.

ALGORITHM 2: Drlr Algorithm

Input: Corrupted data {(X (1) ,y (1) ), . . . , (X (m) ,y (m) )} inm mini batches, where X (i ) ∈ Rp×n and

y (i ) ∈ Rn×1.
Output: solution β̂

1 for i = 1..m do

2 β (i ) ← HRR(X (i ) ,y (i ) )

3 p = argmini σm̃ (d (i ) ) ; // Optimize pivot batch p

4 Ψ =
{
δk (d

(p ) ) |1 ≤ k ≤ m̃
}
; // Find deterministic set Ψ

5 β̂ = argminβ
{
1
T

∑
i ∈Ψ
‖β (i ) − β ‖2

}
; // Robust consolidation

6 return β̂

follows:
Ψ =

{
δk (d

(p ) ) |1 ≤ k ≤ m̃
}
. (8)

The deterministic set Ψ selects the smallest m̃ batches from the distance vector d (p ) of the pivot
batch, which makes a small distance between the pivot batch and any batch j ∈ Ψ. Figure 2 shows
the process of detecting the deterministic set in mini-batches. In Figure 2, the red circle node
presents the pivot batch and the green dotted circle denotes the deterministic setΨ, which contains
m̃ batches represented by orange circle nodes. And the property will be used later in the proof of
Lemma 5.4. Then, we define the general robust consolidation of a set of regression coefficients as
follows:

Definition 4.5 (Robust Consolidation). Given a set of mini-batch estimates {β (1), . . . , β (m) } and
using Ψ to denote its deterministic set, the robust consolidation of the given estimates β̂ is defined
as follows:

β̂ = argmin
β

{
1

T

∑
i ∈Ψ
‖β (i ) − β ‖2

}
. (9)

The DRLR algorithm, shown in Algorithm 2, usesm mini-batches’ data as input and outputs the

consolidated estimate of regression coefficients β̂ . First, the algorithm optimizes the coefficient

estimate β (i ) of each mini-batch in Line 1–2, then it combines all the estimates of mini-batches in
terms of overall robustness via distributed robust consolidation. Specifically, the algorithm deter-
mines the pivot batch based on all the estimates in Line 3 and generates the deterministic set Ψ in
Line 4. Finally, all the batch estimates are combined via robust consolidation in Line 5. Figure 3(a)
shows an example of distributed robust consolidation. The domination set Ψ contains m̃ closest
batches to pivot batch p and the green circle node denotes the uncorrupted batch whose distance

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.



41:10 S. Lei et al.

Fig. 3. Examples for DRLR and ORLR.

to ground truth coefficients β∗ is less than a small error bound ε . We call the set containing all
the green circle nodes as uncorrupted batch set Ψ∗. The example shows a case that only one un-
corrupted batch b is contained in Ψ, which determines the distance between β∗ and pivot batch p.

The distance between β∗ and β̂ is upper bounded by the summation of distance dβ∗,p and d
β̂,p

.

4.3 Online Robust Regression

TheDRLR algorithm, proposed in Section 4.2, provides a distributed approachwhen a large amount
of data has been collected. In this section, we present an online robust regression algorithm, named
ORLR, that incrementally updates the robust estimate based on new incoming data. Specifically,

suppose the regression coefficients of the previousm mini-batches {β (1), . . . , β (m) } have been es-

timated by DRLR, the ORLR algorithm achieves an incremental update of robust consolidation β̂
when new incoming mini-batch data X+ ∈ Rp×n and y+ ∈ Rn×1 are given.

The details of algorithm ORLR are shown in Algorithm 3. In Line 1, the regression coefficients
β+ of the new data is optimized byHRR algorithm. The index of swapped estimate s is generated in
Line 2 by selecting the minimum value from [m]\Ψ, which represents the set of estimates that are
not included in deterministic set Ψ. Since new estimates are appended to the tail of Π, the usage
of minimum index ensures that the oldest corrupted estimate can be swapped out. In Line 3, the

selected estimate β (s ) is removed from Π while the new estimate β+ is appended to the tail of Π.
Lines 4 through 6 re-consolidate all the estimates based on newly updated Π in the same steps as
the DRLR algorithm. It is important to note that the distance vectors used in Lines 4 and 5 are also
updated corresponding to the new Π. Also, the ORLR algorithm can be invoked repeatedly for the
incoming mini-batches, where the outputs Π and Ψ of the previous invocation can be used as the
input of the next one.
Figure 3 shows three cases for ORLR algorithm. The first case shows the condition that the new

estimate β+ ∈ Ψ+ but not belongs to Ψ∗, and estimate s is removed. Although the estimate b
is excluded from Ψ+, the distance dβ∗,p+ can still be determined by the position of b. The error

between β∗ and β̂ can be increased, but still upper bounded by dβ∗,p+ and dβ̂,p+ . In the second case,

β+ ∈ {Ψ∗ ∩ Ψ+}. Because the farthest node d in Ψ+ is replaced by β+, the error between β∗ and

β̂ can be decreased, but it still upper bounded by the position of pivot batch p+. The third case is
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ALGORITHM 3: Orlr Algorithm

Input: New incoming corrupted data X+ ∈ Rp×n and y+ ∈ Rn×1. Previousm mini-batch estimates

Π = {β (1) , . . . , β (m) } and their corresponding Ψ.

Output: solution β̂ , Π, Ψ
1 β+ ← HRR(X+,y+)

2 s ← min([m] \ Ψ) // Select removed estimate s

3 Π+ = Π \ {β (s ) } ∪ {β+}
4 p+ = argmini σm̃ (d (i ) ) // Optimize new pivot batch p+

5 Ψ+ =
{
δk (d

(p+ ) ) |1 ≤ k ≤ m̃
}

// Find new deterministic set Ψ+

6 β̂ = argminβ
{
1
m̃

∑
i ∈Ψ+ ‖β (i ) − β ‖2

}
// Robust consolidation

7 return β̂ ,Π+,Ψ+

β+ � {Ψ∗ ∪ Ψ+}, which is shown in Figure 3(d). The case is similar to the above two cases except

a new estimate is added outside of Ψ∗ and Ψ. However, the change will not impact the result of β̂ .

4.4 Online Robust Least-Squares Regression under Biased-Batch Corruption

The ORLR algorithm updates the robust estimate based on new incoming data by removing the
oldest one from [m] \ Ψ, which represents the set of estimates that are not included in determin-
istic set Ψ. In general, it can deal with the batched corruption, where corrupted mini-batches are
arbitrarily distributed in the mini-batch set. However, when the data corruption is biased-batch
corruption, it is infeasible to estimate by using ORLR. Table 3 shows the performance of regression
coefficient recovery in different settings of biased-batch corruption. From Table 3, we find that the
sequence of corrupted mini-batches is important to ORLR. When uncorrupted mini-batches arrive
at first, it can establish better deterministic set. However, when corrupted mini-batches concen-
tratedly arrive at first, it will establish the wrong deterministic set and cannot update it efficiently,
which will effect the performance of the remaining data. Concretely, suppose more than half of
the previous m mini-batches data are corrupted and concentratedly arrive at first, the previous
pivot batch p and deterministic set Π will be established by corrupted data by using ORLR. Un-
der the extreme circumstance, the regression coefficients cannot be updated due to new incoming
mini-batch estimate β+ � {Ψ∗ ∪ Ψ+}, which is the third case shown in Figure 3.

To solve these problems, we propose an online robust regression algorithm under biased-batch
corruption, named ORLR-BC, which updates the deterministic set Π over time. Specifically, when
determining the removed estimate, it considers the relevance to the deterministic set and the se-

quence of data as well. The residual value vi of the estimate β (i ) is defined as follows:

vi = μ�	
‖β̂ ′ − β (i ) ‖2∑

i ∈Π′ ‖β̂ ′ − β (i ) ‖2


� + λ

�
	

i∑m
i=1 i



�, (10)

where Π′ = Π ∪ {β+}, μ is a pivot related hyperparameter, λ is a time related hyperparameter, and

β̂ is the robust consolidation in previous mini-batch.
The details of algorithm ORLR-BC are shown in Algorithm 4. In Line 1, the regression coef-

ficients β+ of the new data is optimized by HRR algorithm. In Line 3, the robust consolidation

β̂ ′ is obtained from previous mini-batch set Π. Lines 4 and 5 calculate the residual value of each

estimate β (i ) . The index of swapped estimate s is generated in Line 6 by selecting the minimum
value from set V = {v1, . . . ,vn }. Since new estimates are appended to the tail of Π, the usage of
selective method ensures that the corrupted estimate can be swapped out. In Line 7, the selected

estimate β (s ) is removed from Π while the new estimate β+ is appended to the tail of Π. Lines
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ALGORITHM 4: ORLR-BC Algorithm

Input: New incoming corrupted data X+ ∈ Rp×n and y+ ∈ Rn×1. Previousm mini-batch estimates

Π = {β (1) , . . . , β (m) } and their corresponding Ψ. Pivot related hyperparameters μ and time

related hyperpatameters λ

Output: solution β̂ , Π, Ψ
1 β+ ← HRR(X+,y+)

2 Π′ = Π ∪ {β+}
3 β̂ ′ = argminβ

{
1
m

∑
i ∈Ψ
‖β (i ) − β ‖2

}
// Robust consolidation β̂ ′ in previous mini-batch

4 for i = 1. . .m do

5 vi = μ(
‖ β̂−β (i ) ‖2∑

i∈Π′ ‖ β̂−β (i ) ‖2
) + λ( i∑m

i=1 i
) // Update the residual value for each data sample.

6 s ← min(V ) // Select removed estimate s

7 Π+ = Π \ {β (s ) } ∪ {β+}
8 p+ = argmini σm̃ (d (i ) ) // Optimize new pivot batch p+

9 Ψ+ =
{
δk (d

(p+ ) ) |1 ≤ k ≤ m̃
}

// Find new deterministic set Ψ+

10 β̂ = argminβ
{
1
m̃

∑
i ∈Ψ+
‖β (i ) − β ‖2

}
// Robust consolidation

11 return β̂,Π+,Ψ+

8 through 10 re-consolidate all the estimates based on newly updated Π in the same steps as the
DRLR algorithm. It is important to note that the distance vectors used in Lines 3, 5, and 10 are also
updated corresponding to the new Π. Also, the ORLR-BC algorithm can be invoked repeatedly for
the incoming mini-batches, where the outputs Π and Ψ of the previous invocation can be used as
the input of the next one.

4.5 Complexity Analysis

In the HRR algorithm, for each iteration, β is computed for an estimated uncorrupted set, re-
sulting in O (p3 + np2) time complexity, where n is the number of samples in the set and p is
the number of features. Then, computing r has a time complexity of O (np). Finally, when up-
dating the uncorrupted set Zt+1, the time complexity of H (·) is O (n). Therefore, if after t iter-
ations HRR algorithm yields an ϵ-accurate solution, it results in O (t (p3 + np2)) time complex-

ity, where t = O (log 1
η

‖u (i ) ‖2√
nϵ

) is proofed in Theorem 5.2 in Section 5. For DRLR algorithm, the

estimated regression coefficient set is computed by HRR (·) over each mini-batch, resulting in
O (mt (p3+np2)) complexity, wherem is the number of mini-batches. Optimizing pivot batch results
in O (m2p +m log2m) and robust consolidation has a time complexity of O (p). Thus, the compu-
tational complexity of DRLR algorithm is O (mt (p3 + np2) +m2p). Since ORLR and ORLR-BC are
online algorithms, we analyse the computational complexity of each batch in the data streaming.

For a new incoming data batch, estimated regression coefficient β (i ) is computed by HRR (·) and
results in an O (t (p3 + np2) +m2p) time complexity.

5 THEORETICAL RECOVERY ANALYSIS

In this section, the recovery properties of regression coefficients for the proposed distributed and
online algorithms are presented in Theorems 5.5 and 5.6, respectively. Before that, the recovery
property of HRR is presented in Theorem 5.2.
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To prove the theoretical recovery of regression coefficients for a single mini-batch, we require
that the least-squares function satisfies the Subset Strong Convexity (SSC) and Subset Strong

Smoothness (SSS) properties, which are defined as follows:

Definition 5.1 (SSC and SSS Properties). The least-squares function f (β ) = ‖yS −XT
S β ‖

2
2 satisfies

the 2ζγ -SSC property and 2κγ -SSS property if the following holds:

ζγ I �
1

2
�2 fS (β ) � κγ I for ∀S ∈ Sγ . (11)

Note that Equation (11) is equivalent to

ζγ ≤ min
S ∈Sγ

λmin (XSX
T
S ) ≤ max

S ∈Sγ
λmax (XSX

T
S ) ≤ κγ , (12)

where λmin and λmax denote the smallest and largest eigenvalues of matrix X , respectively.

Theorem 5.2 (HRR Recovery Property). Let X (i ) ∈ Rp×n be the given data matrix of the ith

mini-batch and the corrupted response vector y (i ) = [X (i )]
T
β∗ +u (i ) + ε (i ) with ‖u (i ) ‖0 = γn. Let Σ0

be an invertible matrix such that X̃ (i ) = Σ−1/20 X (i ) ; f (β ) = ‖y (i )
S
− X̃ (i )

S
β ‖22 satisfies the SSC and SSS

properties at level α , γ with 2ζα,γ and 2κα,γ . If the data satisfies
φα ,γ√
ζα
< 1

2 , after t = O (log 1
η

‖u (i ) ‖2√
nϵ

)

iterations, Algorithm 1 yields an ϵ-accurate solution β (i )
t with ‖β∗ − β (i )

t ‖2 ≤ ϵ + C ‖ε (i ) ‖2√
n

for some

C > 0.

The proof of Theorem 5.2 can be found in the supplementary material.1 The theoretical analyses
of regression coefficients recovery for Algorithms 2 and 3 are as follows:

Lemma 5.3. Suppose Algorithm 1 yields an ϵ-accurate solution β̂ with corruption ratio γ0, andm
mini-batches of data have a corruption ratio less than γ0/2, more than �m2 � + 1 batches can yield an

ϵ-accurate solution by Algorithm 1.

Proof. Let Ψ∗ denote the set of mini-batches that yield ϵ-accurate solutions and γi represent
the corruption ratio for the ith mini-batch. Then, we have

∑
i ∈[m]\Ψ∗

γin
(a)
≤

m∑
i

γin =
γ0
2
·m · n (13)

(γ0n + 1) (m − |Ψ∗ |)
(b )
≤ γ0

2
·m · n.

Inequality (a) is based on
∑m

i γin =
∑

i ∈Ψ∗ γin +
∑

i ∈[m]\Ψ∗ γin. And inequality (a) follows each
corrupted mini-batch that contains at least γ0n + 1 corrupted samples. Applying simple algebra
steps, we have

|Ψ∗ | ≥ m −
γ0
2 mn

γ0n + 1
≥ m −

γ0
2 mn

γ0n
≥ m

2
. (14)

Since |Ψ∗ | is an integer, then we have |Ψ∗ | ≥ �m2 � + 1. �

Lemma 5.4. Given a set of mini-batch estimates {β (1), . . . , β (m) } with m̃ = �m/2� + 1, defining the
pth batch as its pivot batch, then we have σm̃ (d (p ) ) ≤ 2ϵ .

1https://goo.gl/HRwZsp.
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Proof. Suppose kth mini-batch is in the uncorrupted set Ψ∗, we have ‖β (k )−β∗‖2 ≤ ϵ . Similarly,

for ∀i ∈ Ψ∗, we have ‖β (i ) − β∗‖2 ≤ ϵ . According to the triangle inequality, for ∀i ∈ Ψ∗, it satisfies:

‖β (i ) − β (k ) ‖2 − ‖β (k ) − β∗‖2 ≤ ‖β (i ) − β∗‖2 ≤ ϵ

‖β (i ) − β (k ) ‖2 ≤ 2ϵ
. (15)

Since |Ψ∗ | ≥ m̃, we have σm̃ (d (k ) ) ≤ 2ϵ . According to the definition of pivot batch p =
argmini σm̃ (d (i ) ), we have σm̃ (d (p ) ) ≤ σm̃ (d (k ) ) ≤ 2ϵ . �

Theorem 5.5 (DRLR Recovery Property). Given data samples in m mini-batches {(X (1),
y (1) ), . . . , (X (m),y (m) )} with a corruption ratio of γ0/2, Algorithm 2 yields an ϵ-accurate solution

β̂ with ‖β̂ − β∗‖2 ≤ 5ϵ .

Proof. Let Ψ∗ denotes the set of mini-batches that yield ϵ-accurate solutions. According to

Lemma 5.3, we have |Ψ∗ | ≥ �m2 � + 1. Because of Lemma 5.4, we have ∀i ∈ [1,m̃], σi (d (p ) ) ≤ 2ϵ ,

where p is the index of pivot batch and m̃ = �m/2� + 1. Using Ψ = {δk (d (p ) ) |1 ≤ k ≤ m̃} defined
in Algorithm 2, we have ∀i, j ∈ Ψ, ‖β (i ) − β (j ) ‖2 ≤ 2ϵ . As |Ψ∗ | ≥ �m2 � + 1, we have |Ψ∗ ∩ Ψ| ≥ 1.
For any k ∈ {Ψ∗ ∩ Ψ}, we have the following two properties of the kth mini-batch: (1) ∀i ∈ Ψ,
‖β (k ) − β (i ) ‖2 ≤ 2ϵ ; and (2) ‖β (k ) − β∗‖2 ≤ ϵ . Applying these properties, we get the error bound

of ‖β̂ − β∗‖2 as follows:

‖β̂ − β∗‖2 = ‖β̂ − β (k ) + β (k ) − β∗‖2
(a)
≤ ‖β̂ − β (k ) ‖2 + ‖β (k ) − β∗‖2
(b )
≤ 1

m̃

∑
i ∈Ψ
‖β̂ − β (i ) ‖2 +

1

m̃

∑
i ∈Ψ
‖β (i ) − β (k ) ‖2 + ϵ

(c )
≤ 1

m̃

∑
i ∈Ψ
‖β (k ) − β (i ) ‖2 + 3ϵ ≤ 5ϵ

. (16)

Inequality (a) is based on the triangle inequality of the L2 norm, and inequality (b) follows

‖β̂ − β (k ) ‖2 = 1
T

∑
i ∈Ψ‖β̂ − β (i ) + β (i ) − β (k ) ‖2. Inequity (c) follows the definition of β̂ , which

makes
∑

i ∈Ψ‖β̂ − β (i ) ‖ ≤ ∑i ∈Ψ‖β (k ) − β (i ) ‖. �

Theorem 5.6 (ORLR Recovery Property). Given m mini-batch estimates of regression coeffi-

cients Π = {β (1), . . . , β (m) }, their corresponding deterministic set Ψ, and incoming corrupted data

X+ ∈ Rp×n and y+ ∈ Rn×1, Algorithm 3 yields an ϵ-accurate solution β̂ with ‖β̂ − β∗‖2 ≤ 5ϵ + 4ϵ
m̃
.

Proof. Let e and s denote the index of added and removed mini-batch, respectively. According
to Line 2 in Algorithm 3, the removed batch s � Ψ. As |Ψ ∩ Ψ∗ | ≥ 1, there exists a mini-batch

k ∈ {Ψ∩Ψ∗} that satisfies: (1) ∀i ∈ Ψ, ‖β (k ) −β (i ) ‖2 ≤ 2ϵ ; and (2) ∀j ∈ {Ψ+ \e}, ‖β (k ) −β (j ) ‖2 ≤ 2ϵ .
So we have

‖β̂ − β (k ) ‖2 =
1

m̃

∑
i ∈Ψ+
‖β̂ − β (i ) + β (i ) − β (k ) ‖2

(a)
≤ 1

m̃

∑
i ∈Ψ+
‖β̂ − β (i ) ‖2 +

1

m̃

∑
i ∈Ψ+
‖β (i ) − β (k ) ‖2

(b )
≤ 2

m̃

∑
i ∈Ψ+
‖β (i ) − β (k ) ‖2

. (17)
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Inequality (a) is based on the triangle inequality of the L2 norm, and inequality (b) follows the

definition of β̂ , which has
∑

i ∈Ψ+ ‖β̂ − β (i ) ‖ ≤ ∑i ∈Ψ+ ‖β (k ) − β (i ) ‖.
Two conditions exist for added mini-batch e . For the condition e � Ψ+, the new deterministic

set Ψ+ = Ψ. So ‖β̂ − β (k ) ‖2 ≤ 2
m̃

∑
i ∈Ψ‖β (i ) − β (k ) ‖2 ≤ 4ϵ . For condition e ∈ Ψ+, we have

‖β̂ − β (k ) ‖2 ≤
2

m̃

∑
i ∈Ψ+
‖β (i ) − β (k ) ‖2

(c )
≤ 2

m̃

(
‖β (k ) − β (e ) ‖2 +

∑
i ∈{Ψ+∩Ψ }

‖β (i ) − β (k ) ‖2
)

(d )
≤ 4ϵ

m̃
(m̃ − 1) + 2

m̃

(
‖β (k ) − β (p ) ‖2 + ‖β (p ) − β (e ) ‖2

)

(e )
≤ 4ϵ

m̃
(m̃ − 1) + 8ϵ

m̃
≤ 4ϵ +

4ϵ

m̃

. (18)

Inequality (c) expands the set Ψ+ into the new mini-batch e and set {Ψ+∩Ψ}. Inequality (d) uses
the fact that ∀i ∈ Ψ, ‖β (k ) − β (i ) ‖2 ≤ 2ϵ and the triangle inequality of β (p ) , where p is the pivot

batch corresponding to Π. As max(‖β (k ) − β (p ) ‖2, ‖β (p ) − β (e ) ‖2) ≤ 2ϵ , inequality (e) is satisfied.

Combining two conditions, we conclude ‖β̂ − β (k ) ‖2 ≤ 4ϵ + 4ϵ
m̃
. Therefore, the error bound of

‖β̂ − β∗‖2 is as follows:

‖β̂ − β∗‖2 ≤ ‖β̂ − β (k ) ‖2 + ‖β (k ) − β∗‖2
(f )
≤ 4ϵ + 4ϵ

m̃
+ ϵ ≤ 5ϵ +

4ϵ

m̃

. (19)

Inequality (f) utilizes the fact that ‖β (k )−β∗‖2 ≤ ϵ . Note that ifm̃ is large enough, ‖β̂−β∗‖2 � 5ϵ ,
which is the same as the error bound in Theorem 5.5.

�

6 EXPERIMENT

In this section, the proposed algorithmsDRLR,ORLR, andORLR-BC are evaluated on both synthetic
and real-world datasets. After the experiment setup has been introduced in Section 6.1, we present
results on the effectiveness of the methods against several existing methods on both synthetic and
real-world datasets, along with an analysis of efficiency for all the comparison methods. All the
experiments were conducted on a 64-bit machine with an Intel(R) Core(TM) quad-core processor
(Xeon W-2125@4.00GHz) and 64.0 GB memory. Details of both the source code and datasets used
in the experiment can be downloaded here.2

6.1 Experiment Setup

6.1.1 Datasets and Labels. Our dataset is composed of synthetic and real-world data. For the
synthetic data, the data samples were randomly generated according to the model in Equation (1)
for each mini-batch, sampling a regression coefficient β∗ ∈ Rp as a random unit norm vector. The

covariance dataX (i ) for eachmini-batchwas drawn independently and identically distributed from

xi ∼ N (0, Ip ) and the uncorrupted response variables were generated as y (i )
∗ = [X (i )]

T
β∗ + ε (i ) ,

where the additive dense noise was ε (i )i ∼ N (0,σ 2). The corrupted response vector for each mini-

batch was generated as y (i ) = y (i )
∗ + u

(i ) , where the corruption vector u (i ) was sampled from the

2https://goo.gl/b5qqYK.
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uniform distribution [−5‖y (i )
∗ ‖∞, 5‖y

(i )
∗ ‖∞]. The set of uncorrupted points Z (i )

∗ was selected as a

uniformly random γ (i ) n-sized subset of [n], where γ (i ) is the corruption ratio of the ith mini-

batch. We define γ as the corruption ratio of the totalm mini-batches; γ (i ) is randomly chosen in

the condition of γ =
∑m

i γ (i ) , whereγ should be less than 1/2 to ensure the number of uncorrupted
samples is greater than the number of corrupted ones. For biased-batch corruption, we synthesize
the worst scenarios, in which the corrupted response vector for each mini-batch was generated as

y ′(i ) = y (i )
∗ +u

′(i ) , where the corrupted vector u ′(i ) =
[
X (i )

]T
β ′∗ + ε

(i ) was generated to make the

corrupted data have the uniform distribution, which mostly distracts the model.
The real-world datasets we use contain house rental transaction data fromNew York City and Los

Angeles on Airbnb3 website from January 2015 to October 2016. The datasets can be downloaded
here.4 For the New York City dataset, we use the first 321,530 data samples from January 2015 to
December 2015 as training data and the remaining 329,187 samples from January to October 2016
as testing data. For the Los Angeles dataset, the first 106,438 samples from May 2015 to May 2016
are chosen as training data, and the remaining 103,711 samples are used as testing data.

6.1.2 Evaluation Metrics. For the synthetic data, we measured the performance of the regres-
sion coefficients recovery using the averaged L2 error

e = ‖β̂ − β∗‖2

where β̂ represents the recovered coefficients for each compared method and β∗ is the ground
truth regression coefficients. To compare the scalability of each method, the CPU running time
for each of the competing methods was also measured. For the real-world dataset, we use the
mean absolute error (MAE) to evaluate the performance of rental price prediction. Defining ŷ
and y as the predicted price and ground truth price, respectively, the MAE between ŷ and y can
be presented as follows:

MAE(ŷ,y) =
1

n

n∑
i=1

���ŷi −yi ���
6.1.3 Implementation Details. For our proposed methods, we used DRLR and ORLR to evaluate

our methods in both distributed and online settings. We evaluated ORLR-BC in biased-batch cor-
ruption online settings. For ORLR, we set the number of previous mini-batch estimates to seven if
not specified. All the results from comparison methods were averaged over 10 runs. In each real-
world dataset, after removing duplicated and missing records, we totally collected 650,717 rental
transaction records for the New York City dataset and 210,149 records for the Los Angeles dataset.
Furthermore, there are two types of features in the two datasets: categorical features and continu-
ous features. We maintained all continuous features from original data and transferred all categor-
ical features to integer type, including “neighborhood_cleansed”, “property_type”, “room_type”,
and “bed_type”. In this way, we collected 21 features for each record.

6.2 Comparison Methods

The followingmethods are included in the performance comparison presented here: The averaged
ordinary least-squares (OLS-AVG) method takes the average over the regression coefficients of
each mini-batch, which is computed by the ordinary least-squares method. RLHH-AVG applies a
robust method, Robust Least squares regression algorithm via Heuristic Hard thresholding

(RLHH) [39], on each mini-batch and averages the regression coefficients of all the mini-batches.

3https://www.airbnb.com/.
4http://insideairbnb.com/get-the-data.html.
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Fig. 4. Performance on regression coefficients recovery for different corruption ratios in uniform distribution.

Different from OLS-AVG, RLHH-AVG can estimate the corrupted samples in each mini-batch by
a heuristic method. Robust regression via Adaptive Corruption Thresholding (RACT) [35]
is an adaptive variation method for the robust least-squares regression problem. It improves the
efficiency by estimating the corruption ratio based on adaptive searching steps without computing
heuristic values for all the data samples. Self-paced robust learning (SPRL) algorithm [36] is a
recently proposed self-paced learning method, which trains the model in a process from more
reliable (clean) data instances to less reliable (noisy) ones under the supervision of well-labeled
data. Since the corrupted samples are arbitrarily distributed among mini-batches, it is hard to
choose the reliable data. We simply set the first two mini-batches as reliable data. The OPAA [8] is
an online algorithm for adaptive linear regression, which updates themodel incrementally for each
new data sample.We set the threshold parameter ξ , which controls the inaccuracy sensitively, to 22.
We also compared our method to an ORL approach [16], which addresses both the robustness and
scalability issues in the regression problem. As the method requires a parameter for the corruption
ratio, which is difficult to estimate in practice, we chose two versions with different parameter
settings: ORL* and ORL-H. ORL* uses the true corruption ratio as its parameter, and ORL-H sets
the outlier fraction λ to 0.5, which is a recommended setting in [16] if it is unknown.

6.3 Recovery of Regression Coefficients

We selected seven competing methods with which to evaluate the recovery performance of all the
mini-batches: OLS-AVG, RLHH-AVG, OPAA, ORL-H, ORL*, DRLR, and ORLR. Figure 4 shows the
performance of coefficients recovery for different corruption ratios in uniform distribution. Specif-
ically, Figures 4(a) and (b) show the recovery performance for different data sizes when the feature
number is fixed. Looking at the results, we can conclude: (1) The DRLR and ORLR methods out-
perform all the competing methods, including ORL*, whose corruption ratio parameter uses the
ground truth value. Also, the error of the ORLR method has a small difference compared to DRLR,
which indicates that the online robust consolidation performs as well as the distributed one. (2) The
results of the ORL methods are significantly affected by their corruption ratio parameters; ORL-H
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performs almost three times as badly as ORL* when the corruption ratio is less than 25%. When
the corruption ratio increases, the error of ORL-H decreases because the actual corruption ratio
is closer to 0.5, which is the estimated corruption ratio of ORL-H. However, both DRLR and ORLR

perform consistently throughout, with no impact of the parameter. (3) RLHH-AVG and RACT-AVG
have very competitive performance when the corruption ratio is less than 30% because almost
no mini-batch contains corrupted samples larger than 50% when the corruption samples are ran-
domly chosen. However, when the corruption ratio increases, some of the batches may contain
large amounts of outliers, which makes some estimates be arbitrarily poor and break down the
overall performance. Thus, although RLHH-AVG and RACT-AVG work well on mini-batches with
fewer outliers, it cannot handle the case when the corrupted samples are arbitrarily distributed.
(4) SPRL underperforms ORL* because SPRL is affected by the reliability of the initial data. When
the first mini-batch contains corrupted data, the model will be disguised and more noisy data will
be introduced. However, it is hard to guarantee the initial data batch is clean when the corrupted
samples are arbitrarily distributed. (5) OPAA generally exhibits worse performance than the other
algorithms because the incremental update for each data sample makes it very sensitive to outliers.
Figures 4(c) and (d) show the similar performance when the number of features and batches in-
creases. Figures 4(e) and (f) show that both the DRLR and ORLRmethods still outperform the other
methods without dense noise, with both achieving an exact recovery of ground truth regression
coefficients β∗.

6.4 Performance on Different Corrupted Mini-Batches

Table 2 shows the performance of regression coefficient recovery in different settings of corrupted
mini-batches, ranging from 0 to 8 corrupted mini-batches out of 20 mini-batches in total. Each cor-
rupted mini-batch used in the experiment contains 90% corrupted samples and each uncorrupted

mini-batch has 10% corrupted samples. We show the result of averaged L2 error ‖β̂−β∗‖2 in 10 dif-
ferent synthetic datasets with randomly ordered mini-batches. From the result in Table 2, we con-
clude: (1)When somemini-batches are corrupted, theDRLRmethod outperforms all the competing
methods, and ORLR achieves the best performance compared to other online methods. (2) RLHH-
AVG performs the best when no mini-batch is corrupted, but its recovery error is dramatically
increased when the number of corrupted mini-batches increases. However, our methods perform
consistently when the number of corrupted mini-batches increases. (3) ORL* has competitive per-
formance in different settings of corruptedmini-batches. However, its recovery error still increases
two times when the number of corrupted mini-batches increases from two to eight. (4) When the
corruption mini-batches are larger than one, SPRL outperforms the other competing methods ex-
cept for DRLR and ORLR, because little corrupted data is contained in the initial mini-batch.

6.5 Performance on Different Settings of Biased-Batch Corruption

Table 3 shows the performance of biased-batch corruption coefficient recovery in different se-
quence of data mini-batches, and the corruption ratio was from 0% to 40% in total. As for the
sequence settings, it was mainly divided into three parts: corrupted mini-batches arriving last,
randomly, and first. Each corrupted mini-batch used in the experiment contains 90% corrupted
samples and each uncorrupted mini-batch has 10% corrupted samples. We show the result of aver-

aged L2 error ‖β̂ − β∗‖2 in 10 different synthetic datasets. From the result in Table 3, we conclude:
(1)When somemini-batches are corrupted, theDRLRmethod outperforms all the competing meth-
ods, and ORLR-BC achieves the best performance compared to other online methods. (2) Although
ORLR has competitive performance in the corrupted batches arriving last settings, its recovery er-
ror increases dramatically when the corrupted batches arrive first. It is reasonable that ORLR has
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Table 2. Performance on Regression Coefficients Recovery

in Different Corrupted Mini-Batches

0/20 1/20 2/20 4/20 6/20 8/20

OLS-AVG 0.120 0.136 0.142 0.172 0.188 0.211
RLHH-AVG 0.011 0.181 0.238 0.357 0.424 0.479
RACT-AVG 0.012 0.176 0.215 0.336 0.392 0.474

SPRL 0.043 0.048 0.067 0.059 0.076 0.110
OPAA 1.271 1.398 1.393 1.431 1.489 1.532
ORL-H 0.347 0.357 0.362 0.387 0.412 0.434
ORL* 0.078 0.080 0.089 0.139 0.226 0.347
ORLR 0.025 0.026 0.027 0.026 0.026 0.026

DRLR 0.015 0.015 0.015 0.015 0.015 0.015

Bold indicates the best performance among all methods.

Table 3. Performance on Regression Coefficients Recovery in Different Settings

of Biased-Batch Corruption

corrupted last random order corrupted first

0% 10% 20% 30% 40% 0% 10% 20% 30% 40% 0% 10% 20% 30% 40%
OLS-AVG 0.089 0.109 0.108 0.108 0.107 0.071 0.127 0.186 0.241 0.296 0.071 0.125 0.178 0.232 0.297

RLHH-AVG 0.055 0.098 0.168 0.228 0.300 0.034 0.100 0.168 0.234 0.300 0.034 0.100 0.163 0.226 0.301
RACT-AVG 0.055 0.097 0.167 0.228 0.301 0.033 0.098 0.165 0.235 0.300 0.033 0.099 0.165 0.237 0.303

SPRL 0.089 0.112 0.107 0.107 0.112 0.071 0.125 0.182 0.242 0.298 0.070 0.126 0.181 0.245 0.301
OPAA 5.181 5.145 5.166 5.158 5.161 5.153 5.221 5.141 5.193 5.203 5.140 5.147 5.247 5.134 5.165
ORL-H 0.280 0.295 0.294 0.291 0.292 0.278 0.298 0.316 0.357 0.397 0.273 0.284 0.298 0.312 0.343
ORL* 0.108 0.142 0.186 0.190 0.229 0.083 0.113 0.154 0.224 0.341 0.083 0.094 0.107 0.149 0.248
ORLR 0.042 0.043 0.143 0.167 0.203 0.038 0.038 0.038 0.237 0.168 0.042 0.043 0.705 0.704 0.703
DRLR 0.035 0.035 0.035 0.035 0.035 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.035 0.035 0.035

ORLR-BC 0.044 0.042 0.042 0.042 0.042 0.037 0.037 0.038 0.037 0.038 0.038 0.038 0.038 0.038 0.038

Bold indicates the best performance among all methods.

time-vary characteristic. But the error of the ORLR-BC method has a small difference compared to
DRLR, which means it depends less on the sequence of data flow. (3) Both ORL* and OLS-AVG have
competitive performance in different settings of biased-batch corruption, but their recovery error
is dramatically increased when the number of corrupted batches increases. However, our methods
perform consistently when the number of corrupted batches increases. (4) RLHH-AVG and RACT-

AVG are not sensitive to the sequence of corrupted data because they estimate the coefficient of
each mini-batch independently. However, their recovery error is dramatically increased when the
corrupted ratio is larger than 30%. (5) SPRL achieves competitive performance in the corrupted last
setting but has poor performance in the other two settings. Since SPRL applies prior knowledge to
the self-paced training process, it relies on the quality of the initial data. In contrast, our methods
can adapt to new coming data even if corrupted batches arrive first.

6.6 Performance on Biased-Batch Corruption with Different Corruption Ratios

Table 4 shows the performance of regression coefficient recovery on biased-batch corruption with
different corruption ratios. Each corrupted mini-batch used in the experiment contains 90% cor-
rupted samples and each uncorrupted mini-batch has 10% corrupted samples. We show the result

of averaged L2 error ‖β̂ −β∗‖2 in 10 different synthetic datasets with corrupted-first ordered mini-
batches, which is the worst scenario in our online setting. From the result in Table 4, we conclude:
(1) When some batches are biased-batch corrupted, the DRLR method outperforms all the com-
peting methods, and ORLR-BC achieves the best performance compared to other online methods.
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Table 4. Performance on Regression Coefficients Recovery on Biased-Batch Corruption

with Different Corruption Ratios

p = 100, n = 5K, b = 20 p = 100, n = 5K, b = 30

5% 10% 20% 30% 40% 5% 10% 20% 30% 40%
OLS-AVG 0.099 0.127 0.185 0.241 0.298 0.090 0.125 0.182 0.245 0.299

RLHH-AVG 0.068 0.101 0.168 0.235 0.302 0.057 0.100 0.166 0.238 0.302
RACT-AVG 0.068 0.101 0.164 0.233 0.300 0.056 0.090 0.165 0.237 0.301

SPRL 0.101 0.129 0.180 0.239 0.296 0.090 0.125 0.183 0.245 0.299
OPAA 5.656 5.555 5.504 5.571 5.525 5.453 5.378 5.423 5.469 5.432
ORL-H 0.403 0.404 0.423 0.441 0.451 0.389 0.401 0.413 0.429 0.445
ORL* 0.104 0.119 0.149 0.218 0.335 0.093 0.105 0.137 0.207 0.330
ORLR 0.042 0.043 0.705 0.704 0.703 0.043 0.042 0.695 0.716 0.705
DRLR 0.037 0.037 0.037 0.037 0.037 0.036 0.036 0.036 0.036 0.036

ORLR-BC 0.041 0.043 0.044 0.044 0.043 0.042 0.042 0.043 0.042 0.043
p = 100, n = 10K, b = 20 p = 100, n = 5K, b = 40

5% 10% 20% 30% 40% 5% 10% 20% 30% 40%
OLS-AVG 0.102 0.122 0.185 0.236 0.294 0.097 0.128 0.191 0.232 0.287

RLHH-AVG 0.068 0.098 0.168 0.230 0.298 0.067 0.101 0.172 0.227 0.292
RACT-AVG 0.067 0.097 0.166 0.229 0.297 0.066 0.100 0.172 0.226 0.291

SPRL 0.102 0.122 0.185 0.237 0.295 0.098 0.129 0.192 0.232 0.288
OPAA 5.285 5.264 5.310 5.307 5.316 5.304 5.333 5.315 5.325 5.397
ORL-H 0.403 0.296 0.317 0.324 0.353 0.391 0.392 0.407 0.414 0.437
ORL* 0.099 0.099 0.122 0.159 0.253 0.089 0.097 0.128 0.197 0.313
ORLR 0.038 0.039 0.703 0.689 0.695 0.043 0.709 0.731 0.679 0.677
DRLR 0.035 0.036 0.035 0.035 0.035 0.036 0.035 0.035 0.036 0.036

ORLR-BC 0.037 0.039 0.037 0.038 0.038 0.044 0.041 0.042 0.044 0.044
p = 100, n = 20K, b = 20 p = 1000, n = 5K, b = 20

5% 10% 20% 30% 40% 5% 10% 20% 30% 40%
OLS-AVG 0.099 0.131 0.187 0.240 0.303 0.090 0.132 0.188 0.243 0.298

RLHH-AVG 0.063 0.095 0.155 0.213 0.279 0.082 0.110 0.175 0.240 0.306
RACT-AVG 0.062 0.094 0.155 0.213 0.279 0.081 0.109 0.174 0.239 0.306

SPRL 0.098 0.131 0.187 0.24 0.304 0.107 0.131 0.189 0.244 0.300
OPAA 5.114 5.098 5.142 5.133 5.084 6.782 6.795 6.776 6.817 6.806
ORL-H 0.203 0.209 0.221 0.239 0.276 0.779 0.786 0.788 0.795 0.796
ORL* 0.087 0.093 0.103 0.131 0.197 0.234 0.298 0.438 0.576 0.701
ORLR 0.035 0.035 0.647 0.634 0.651 0.100 0.100 0.706 0.704 0.704
DRLR 0.034 0.034 0.034 0.034 0.034 0.067 0.067 0.067 0.068 0.068

ORLR-BC 0.035 0.035 0.034 0.035 0.035 0.100 0.100 0.101 0.100 0.101

Bold indicates the best performance among all methods.

(2) When the number of corrupted mini-batches is smaller, the performance of ORLR is compet-
itive. But when the number of corrupted batches increases, its recovery error is dramatically in-
creased. Instead,ORLR-BC performs consistently when the number of corrupted batches increases.
(3) ORL*, RLHH-AVG, RACT-AVG, and SPRL have competitive performance in different settings of
corrupted batches. However, their recovery error still increases two times when the number of cor-
rupted batches increases from two to eight. (4) When the number of feature increases, all methods
have higher recovery error. However, the performance of DRLR and ORLR-BC were still best and
the recovery error increased slowly.
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Table 5. MAE of Rental Price Prediction

New York City (Corruption Ratio)

5% 10% 20% 30% 40% Avg.
OLS-AVG 3.256 ± 0.449 3.519 ± 0.797 3.976 ± 0.786 4.230 ± 1.292 4.356 ± 1.582 3.867 ± 0.981

RLHH-AVG 2.823 ± 0.000 2.824 ± 0.000 13.092 ± 25.354 35.184 ± 37.426 42.713 ± 19.304 19.327 ± 16.417
RACT-AVG 2.823 ± 0.001 2.822 ± 0.001 12.351 ± 23.984 33.823 ± 34.259 39.548 ± 20.728 18.273 ± 15.795

SPRL 5.076 ± 0.391 5.524 ± 0.573 5.594 ± 0.420 5.843 ± 0.387 5.957 ± 0.703 5.599 ± 0.495
OPAA 91.287 ± 51.475 100.864 ± 72.239 121.087 ± 64.618 92.735 ± 38.063 152.479 ± 57.553 111.690 ± 56.790
ORL-H 6.832 ± 0.004 6.828 ± 0.007 6.732 ± 0.240 6.803 ± 0.107 6.573 ± 0.189 6.754 ± 0.109
ORL* 6.538 ± 0.293 6.384 ± 0.274 6.394 ± 0.208 6.406 ± 0.180 6.471 ± 0.190 6.439 ± 0.229
DRLR 2.824 ± 0.000 2.824 ± 0.000 2.823 ± 0.000 3.185 ± 0.523 4.342 ± 1.784 3.200 ± 0.461
ORLR 2.824 ± 0.001 2.824 ± 0.000 2.823 ± 0.000 2.883 ± 0.187 3.563 ± 0.935 2.983 ± 0.225

Los Angeles (Corruption Ratio)

5% 10% 20% 30% 40% Avg.
OLS-AVG 4.641 ± 0.664 4.876 ± 0.948 5.607 ± 1.349 6.199 ± 1.443 6.797 ± 2.822 5.624 ± 1.445

RLHH-AVG 3.994 ± 0.002 3.998 ± 0.003 4.092 ± 0.290 28.788 ± 47.322 30.414 ± 35.719 14.257 ± 16.667
RACT-AVG 3.994 ± 0.002 3.997 ± 0.041 4.079 ± 0.470 25.502 ± 42.743 27.485 ± 33.428 13.011 ± 15.329

SPRL 5.012 ± 0.351 5.571 ± 0.528 5.627 ± 0.839 5.912 ± 0.641 5.803 ± 0.423 6.084 ± 0.593
OPAA 150.668 ± 52.344 209.298 ± 124.058 113.267 ± 44.270 121.880 ± 55.938 146.425 ± 104.995 148.308 ± 76.321
ORL-H 6.819 ± 0.045 6.745 ± 0.039 6.667 ± 0.084 6.619 ± 0.300 6.317 ± 0.394 6.633 ± 0.172
ORL* 6.257 ± 0.497 6.303 ± 0.304 6.415 ± 0.172 6.308 ± 0.377 6.186 ± 0.531 6.294 ± 0.376
DRLR 3.995 ± 0.005 3.999 ± 0.008 3.993 ± 0.003 4.837 ± 1.108 6.336 ± 2.388 4.632 ± 0.702
ORLR 3.997 ± 0.008 3.999 ± 0.009 3.994 ± 0.004 4.466 ± 1.141 5.802 ± 1.990 4.452 ± 0.630

Bold indicates the best performance among all methods.

Fig. 5. Running time for different corruption ratios and data sizes.

6.7 Result of Rental Price Prediction

To evaluate the robustness of our proposed methods in a real-world dataset, we compared the
performance of rental price prediction in different corruption settings, ranging from 5% to 40%.
The additional corruption was sampled from the uniform distribution [−0.5|yi |, 0.5|yi |], where
|yi | represents the absolute price value of the ith sample data. Table 5 shows the MAE of rental
price prediction and its corresponding standard deviation from 10 runs in theNewYork City and Los
Angeles datasets. From the result, we can conclude: (1) The DRLR and ORLR methods outperform
all the other methods in different corruption settings except when the corruption ratio is less than
10%. (2) The RLHH-AVG method performs the best when the corruption ratio is less than or equal
to 10%. However, as the corruption ratio rises, the error increases dramatically because some mini-
batches are entirely corrupted. (3) The OLS-AVG method has a very competitive performance in
all the corruption settings because the deviation of sampled corruption is small, which is less than
50% from the labeled data. (4) SPRL performs almost two times worse than ORLR because it is
affected by the corrupted data contained in the first mini-batch.
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6.8 Efficiency

To evaluate the efficiency of our proposedmethod, we compared the performance of all the compet-
ing methods for three different data settings: different corruption ratios, data sizes per mini-batch,
and batch numbers. In general, as Figure 5 shows, we can conclude: (1) The OPAAmethod outper-
forms the other methods in the three different settings because it does not consider the robustness
of the data. Also, the ORL-H and ORL* methods have performed similarly to OPAA method, as
they use fixed corruption ratios without taking additional steps to estimate the corruption ratio.
(2) The DRLR and ORLR methods have very competitive performance even though they take addi-
tional corruption estimation and robust consolidation steps for each mini-batch. Moreover, with
increases of the corruption ratio, data size per batch, and batch number, the running time of both
the DRLR and ORLR methods increases linearly, which is an important characteristic for the two
methods to be extended to a large scale problem. (3) Our methods outperform the RLHH method
although it only estimates the corruption for each mini-batch but ignores the overall robustness,
which indicates that the corruption estimation step in our method performs more efficiently than
that in RLHH. (4) The running time for SPRL increases dramatically when the data size or batch
number increases, which means our methods are more efficient than the self-paced-learning ap-
proach.

7 CONCLUSION

In this article, distributed and two online robust regression algorithms,DRLR,ORLR, andORLR-BC,
are proposed to handle the scalable least-squares regression problem in the presence of extremely
noisy labels. To achieve this, we proposed a heuristic hard thresholding method to estimate the
corruption set for each mini-batch and designed both online and distributed robust consolidation
methods to ensure the overall robustness. We demonstrate that our algorithms can yield a con-
stant upper bound on the coefficient recovery error of state-of-the-art robust regression methods.
Extensive experiments on both synthetic data and real-world rental price data demonstrated that
the proposed algorithms outperform the effectiveness of other comparable methods with compet-
itive efficiency.
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