Online and Distributed Robust Regressions with
Extremely Noisy Labels

SHUO LEI, Virginia Tech

XUCHAO ZHANG, NEC Laboratories America

LIANG ZHAO, Emory University

ARNOLD P. BOEDIHARDJO, Maxar Technologies Inc.
CHANG-TIEN LU, Virginia Tech

In today’s era of big data, robust least-squares regression becomes a more challenging problem when consid-
ering the extremely corrupted labels along with explosive growth of datasets. Traditional robust methods can
handle the noise but suffer from several challenges when applied in huge dataset including (1) computational
infeasibility of handling an entire dataset at once, (2) existence of heterogeneously distributed corruption, and
(3) difficulty in corruption estimation when data cannot be entirely loaded. This article proposes online and
distributed robust regression approaches, both of which can concurrently address all the above challenges.
Specifically, the distributed algorithm optimizes the regression coefficients of each data block via heuristic
hard thresholding and combines all the estimates in a distributed robust consolidation. In addition, an on-
line version of the distributed algorithm is proposed to incrementally update the existing estimates with new
incoming data. Furthermore, a novel online robust regression method is proposed to estimate under a biased-
batch corruption. We also prove that our algorithms benefit from strong robustness guarantees in terms of
regression coefficient recovery with a constant upper bound on the error of state-of-the-art batch methods.
Extensive experiments on synthetic and real datasets demonstrate that our approaches are superior to those
of existing methods in effectiveness, with competitive efficiency.

CCS Concepts: « Computing methodologies — Machine learning algorithms; « Theory of computa-
tion — Online learning algorithms;

Additional Key Words and Phrases: Robust regression, extremely noisy labels, online robust regression,
distributed optimization

ACM Reference format:

Shuo Lei, Xuchao Zhang, Liang Zhao, Arnold P. Boedihardjo, and Chang-Tien Lu. 2021. Online and Dis-
tributed Robust Regressions with Extremely Noisy Labels. ACM Trans. Knowl. Discov. Data. 16, 3, Article 41
(October 2021), 24 pages.

https://doi.org/10.1145/3473038

Authors’ addresses: S. Lei and C.-T. Lu, Department of Computer Science, Virginia Tech, Falls Church, VA 22043; emails: {slei,
ctluj@vt.edu; X. Zhang (corresponding author), NEC Laboratories America, Princeton, NJ 08540; email: xuczhang@nec-
labs.com; L. Zhao, Department of Computer Science, Emory University, Atlanta, GA 30307; email: liang.zhao@emory.edu;
A. P. Boedihardjo, Maxar Technologies Inc., Herndon, VA 20171; email: arnold.p.boedihardjo@vt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1556-4681/2021/10-ART41 $15.00

https://doi.org/10.1145/3473038

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

https://doi.org/10.1145/3473038
mailto:permissions@acm.org
https://doi.org/10.1145/3473038

41:2 S. Lei et al.

1 INTRODUCTION

In the era of data explosion, the fast-growing amount of data makes processing entire datasets at
once remarkably difficult. For instance, urban Internet of Things (IoT) systems [32] can produce
millions of data records every second in monitoring air quality, energy consumption, and traffic
congestion. The presence of noise and corruption in real-world data can be inevitably caused by
accidental outliers [27], transmission loss [28], or even adversarial data attacks [7]. As the most
popular statistical approach, the traditional least-squares regression method is vulnerable to out-
lier observations [22] and not scalable to large datasets [24, 37]. By considering both robustness
and scalability in a least-squares regression model, we study scalable robust least-squares re-
gression (SRLR) [1, 4] to handle the problem of learning a reliable set of regression coefficients
given a large dataset with several corruptions in its response vector. Due to the ubiquitousness
of data corruption and explosive data growth, SRLR has become a critical component of several
important real-world applications in various domains such as economics [2], signal processing
[33, 40], and network processing [17].

The goal of SRLR problem is to recover the true regression coefficients under the assumption
that both the observed response y and data matrix X are too large to be handled simultaneously.
A commonly adopted model from existing robust regression methods [4, 34] assumes that the ob-
served response is obtained from the generative model y = X' B, + u + &, where B, is the true
regression coeflicients that we wish to recover, u is the corruption vector with arbitrary values,
and ¢ represents the additive dense noise. Three different corruption distributions are considered
in this article: (1) distributed corruption assumes samples in mini-batches are arbitrarily corrupted
with the corrupted ratio no more than 50%; (2) batched corruption assumes that up to k of mini-
batches in the online data batch set are arbitrarily corrupted, which contain an overwhelmingly
amount of corrupted samples (more than 50%); and (3) biased-batch corruption assumes that up to
k of mini-batches in the online data batch set are biased corrupted with uniform distribution, like
concentrated in the front, middle, or back of the sequence.

Existing robust learning methods typically focus on modeling the entire dataset at once; how-
ever, they may meet the bottleneck in terms of computation and memory as more and more
datasets are becoming too large to be handled integrally. For those seeking to address this is-
sue, the major challenges can be summarized as follows: (1) Computational infeasibility of
handling the entire dataset at once. Existing robust methods typically generate the predic-
tor by learning on the entire training dataset. However, the explosive growth of data makes
it infeasible to handle the entire dataset up to a terabyte or even petabyte at once. Therefore,
a scalable algorithm is required to handle the robust regression task for massive datasets. (2)
Existence of heterogeneously distributed corruption. Due to the unpredictability of cor-
ruptions, the corrupted samples can be arbitrarily distributed in the whole dataset. Consider-
ing the entire dataset as the combination of multiple mini-batches, some batches may contain
large amounts of outliers. Thus, simply applying the robust method on each batch and averag-
ing all the estimates together is not an ideal strategy, as some estimates will be arbitrarily poor
and break down the overall performance of robustness. (3) Difficulty in corruption estima-
tion when data cannot be entirely loaded. Most robust methods assume the corruption ra-
tio of input data is a known parameter; however, if a small batch of data can be loaded as in-
puts for robust methods, it is infeasible to know the corruption ratio of all the mini-batches.
Moreover, simply using a unified corruption ratio for all the mini-batches is clearly not an
ideal solution as corrupted samples can be regarded as uncorrupted, and vice versa. In addi-
tion, even though some robust methods can estimate the corruption ratio based on data obser-
vations, it is also infeasible to estimate the ratio when corruption in one mini-batch is greater

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

Online and Distributed Robust Regressions with Extremely Noisy Labels 41:3

than 50%. However, the situation can be very common when corruption is heterogeneously dis-
tributed.

In order to simultaneously address all these technical challenges, this article presents a novel
Distributed Robust Least-squares Regression (DRLR) method and its two online versions,
named Online Robust Least-squares Regression (ORLR) and Online Robust Least-squares
Regression under Biased-batch Corruption (ORLR-BC). These two online methods are pro-
posed to handle the scalable robust regression problem in large datasets with heterogeneously
distributed corruption. In DRLR, the regression coefficient of each mini-batch is optimized via
heuristic hard thresholding, and then all the estimates are combined in distributed robust con-
solidation. Based on DRLR, the ORLR algorithm incrementally updates the existing estimates by
replacing old corrupted estimates with those of new incoming data, which is more efficient than
DRLR in handling new data and reflects the time-varying characteristics. To solve the biased-batch
data corruption that cannot be handled by ORLR algorithm, we propose a new ORLR-BC algorithm.
Specifically, the ORLR-BC algorithm considers not only the sequence of data corruption but also
existing estimates to reduce the impact of the sequence of mini-batches, which is more efficient
than ORLR, especially when corrupted batches concentratedly arrive at first. In addition, we prove
that the proposed algorithms preserve the overall robustness of regression coefficients in the entire
dataset. The main contributions of this article are as follows:

— Formulating a framework for the SRLR problem. A framework is proposed for SRLR
problem where the amount of the entire data with extremely noisy labels is too large to store
in memory at once. Specifically, given a large dataset with large-scale corruptions, a reliable
set of regression coefficients is learned with limited memory.

— Proposing online and distributed algorithms to handle the uniform label corrup-
tion. By utilizing robust consolidation methods, we propose both online and distributed
algorithms to obtain overall robustness even though the corruption is arbitrarily distributed.
Moreover, the online algorithm performs more efficiently in handling new incoming data
and presents the time-varying characteristics of regression coefficients.

— Designing an online algorithm to handle the biased-batch corruption. Considering
not only the relevance to previous regression coefficients but the sequence of data, we extend
the online algorithm to handle the biased-batch corruption, which is the worst scenarios for
our online algorithm.

— Providing a rigorous robustness guarantee for regression coefficient recovery. We
prove that our online and distributed algorithms recover the true regression coefficient with
a constant upper bound on the error of state-of-the-art batch methods under the assumption
that corruption can be heterogeneously distributed. Specifically, the upper bound of online
algorithm will be infinitely close to distributed algorithm when the number of mini-batches
is large.

— Conducting extensive experiments for performance evaluations. The proposed meth-
ods were evaluated on both synthetic data and real-world datasets with various corruption
and data-size settings. The results demonstrate that the proposed approaches consistently
outperform existing methods along multiple metrics with a competitive running time.

This article is a systematic extension of [38]. Compared to the preliminary version, we propose a
new adversarial online robust regression method for the biased-batch corruption estimation task.
Additional discussions and empirical results are presented. The rest of this article is organized as
follows: Section 2 reviews background and related work, and Section 3 introduces the problem
setup. The proposed online and distributed robust regression algorithms are presented in Section
4. Section 5 presents the proof of recovery guarantee in regression coefficients. The experiments

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

41:4 S. Lei et al.

on both synthetic and real-world datasets are presented in Section 6, and this article concludes
with a summary of the research in Section 7.

2 RELATED WORK

The work related to this article is summarized in two categories below.

Robust regression model: A large body of literature on the robust regression problem has
been built over the last few decades. Most of studies focus on handling stochastic noise or small
bounded noise [6, 20, 26], but these methods, modeling the corruption on stochastic distributions,
cannot be applied to data that may exhibit biased-batch corruption [7]. Some studies assume the
adversarial label corruption in the data, but most of them lack the strong guarantee of regression
coeflicients recovery under the arbitrary corruption assumption [7, 24]. Chen et al. [7] proposed
a robust algorithm based on a trimmed inner product, but the recovery boundary is not tight to
ground truth in a massive dataset. McWilliams et al. [24] proposed a sub-sampling algorithm for
large-scale corrupted linear regression, but their recovery result is not close to an exact recovery
[4]. To pursue exact recovery results for robust regression problem, some studies focused on L;
penalty based convex formulations [25, 31]. However, these methods imposed severe restrictions
on the data distribution such as row-sampling from an incoherent orthogonal matrix[25].

Currently, most research in this area requires the corruption ratio parameter, which is difficult
to determine under the assumption that the dataset can be arbitrarily corrupted. For instance,
She and Owen [30] rely on a regularization parameter to control the size of the uncorrupted set
based on soft-thresholding. Instead of a regularization parameter, Chen et al. [7] require the upper
bound of the outliers number, which is also difficult to estimate. Bhatia et al. [4] proposed a hard-
thesholding algorithm with a strong guarantee of coeflicient recovery under a mild assumption
on input data. However, its recovery error can be more than doubled in size if the corruption ratio
is far from the true value. Recently, Zhang et al. [39] proposed a robust algorithm that learns the
optimal uncorrupted set via a heuristic method. However, all of these approaches require the entire
training dataset to be loaded and learned at once, which is infeasible to apply in massive and fast
growing data.

Online and distributed learning: Most of the existing online learning methods optimize sur-
rogate functions such as stochastic gradient descent [13, 18, 21] to update estimates incrementally.
For instance, Duchi et al. [13] proposed a new, informative subgradient method that dynamically
incorporates the geometric knowledge of the data observed in earlier iterations. Some adaptive
linear regression methods such as recursive least squares [15] and online passive aggressive
algorithms (OPAAs) [8] provide an incremental update on the regression model for new data to
capture time-varying characteristics. However, these methods cannot handle the outlier samples
in the streaming data. For distributed learning [5, 23], most approaches such as MapReduce [10]
focus on distributed solutions for large-scale problems that are not robust to noise and corruption
in real-world data.

The existing distributed robust optimization methods can be divided into two categories: those
that use moment information [12, 19] and those that utilize directly on the probability distributions
[3, 9, 14]. For instance, Delage et al. [11] proposed a model that describes uncertainty in both
the distribution form and moments in a distributed robust stochastic program. However, these
methods assume either the moment information or probability distribution as prior knowledge,
which is difficult to know in practice. In robust online learning, few methods have been proposed in
the past few years. For instance, Sharma et al. [29] proposed an online smoothed passive-aggressive
algorithm to update estimates incrementally in a robust manner. However, the method assumes
the corruption is in stochastic distributions, which is infeasible for data with extremely corrupted
labels. Recently, Feng et al. [16] proposed an online robust learning (ORL) approach that gives

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

Online and Distributed Robust Regressions with Extremely Noisy Labels 41:5

Distributed Corruption

Batch Corruption

Biased-batch Corruption

Fig. 1. lllustrations of the distributed corruption model, batched corruption model, and the biased-batch
corruption model.

a provable robustness guarantee under the assumption that data corruption is heterogeneously
distributed. However, the method requires that the corruption ratio of each data batch be given as
parameters, which is not practical for users to estimate.

3 PROBLEM FORMULATION

In the setting of online and distributed learning, we consider the samples to be provided in a
sequence of mini-batches as {X(l), - ,X(m)}, where X() e RP*n represents the sample data for
the ith batch. We assume the corresponding response vector y') € R™! is generated using the
following model:

. 1T . .
y = [XO] B, +u + &, (1)

where B, € RP*! is the ground truth coefficients of the regression model and u'?) is the sparse
corruption vector of the ith mini-batch. £ represents the additive dense noise for the ith mini-
batch, where gj(.i) ~ N(0,c?).

When the entire dataset is too large to be handled simultaneously, it is usually processed by
multiple mini-batches. Due to the unpredictability of corruptions, the corrupted samples can be
arbitrarily distributed in the whole dataset. For example, some batches may contain large amounts
of outliers and some batches may have few corrupted data. Since the online learning methods are
sensitive to the data sequence, modeling different corrupted data sequence scenarios is non-trivial.
Here, we consider three types of corrupted data distributions: distributed corruption, batched
corruption, and biased-batch corruption. Specifically, distributed corruption models the situation
where the corrupted data are arbitrarily distributed in mini-batches and the corrupted ratio of each
batch is less than half. Batch corruption considers the situation where the corrupted ratio of some
mini-batches are more than half. In other words, the corrupted data in the whole dataset are con-
centrated mainly in a small number of mini-batches. When the corrupted ratio of the mini-batch is
more than half, it is called corrupted batches. Furthermore, if the corrupted batches concentrated
in the data streaming and the corrupted data inside has an uniform distribution, it is defined as
biased-batch corruption. We illustrate these corruption models in Figure 1, where the blue parts
denote the uncorrupted data and the pink parts denote the corrupted data.

Definition 3.1 (Distributed Corruption). Samples in mini-batches are arbitrarily corrupted with
the corrupted ratio no more than half.

Definition 3.2 (Batch Corruption). Given a sequence of mini-batches (XM, ..., XM} kout of
m mini-batches are arbitrarily corrupted batches. Here, if the amount of corrupted samples in the
batch X are more than half, X¥) is called corrupted batch.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

41:6

Table 1. Math Notations

Notations Explanations

X e RP*" | collection of data samples of the ith mini-batch
y) e R™! | response vector of the ith mini-batch

B e RP¥! | estimated regression coefficient of the ith batch
ﬂii) € RP' | ground truth regression coefficient of the ith batch
u® € R™! | corruption vector of the ith batch

r e R™! | residual vector of the ith batch

£ e R™! | dense noise vector of the ith batch

ZW C [n] estimated uncorrupted set of the ith batch

Z9 c [n] ground truth uncorrupted set, where Z) = supp(u®)
S C[m-n] | estimated uncorrupted set of entire dataset

S. Lei et al.

Definition 3.3 (Biased-batch Corruption). Given a sequence of mini-batches {X", ..., X(™} k
out of m mini-batches are corrupted batches with uniform distribution.

The goal of addressing our problem is to recover the regression coefficients /.‘} and determine
the uncorrupted set S for the entire dataset. The problem is formally defined as follows:

.3 =argmin”ys —Xgﬂ”j
B.S : @)
st. se{Q(z)|vism: 1z 22"

We define Z() as the estimated uncorrupted set for the ith mini-batch and Z = {Z O, ..., zmy
as the collection of uncorrupted sets for all the mini-batches. The size of set Z(?) is represented
as |Z®|. The function Q(-) consolidates the estimates of all the mini-batches in terms of the
distributed or online setting. yg restricts the row of y to indices in S, and X signifies that the
columns of X are restricted to indices in S. Therefore, we have ys € RIS and X5 € RP*ISI,
where p is the number of features and |S| is the size of the uncorrupted set S C [m - n]. The
notation Z") = supp(u)) represents the true set of uncorrupted points in the ith mini-batch. The
constraint of Z(® is |ZD| > IZ,Ei)I; however, it is infeasible to get the ground truth uncorrupted
set Zii). Thus, the function h(-) is designed to estimate the size of the uncorrupted set of each
mini-batch according to the residual vector (), The residual vector () € R" of the ith mini-batch
is defined as r(= y® — [X(i)]Tﬂ. We use the notation r(Zi) to represent the |Z()|-dimensional
residual vector containing the components in ZY. The uncorrupted set of each mini-batch is
consolidated by function Q(-) in both online and distributed approaches. The details of the
heuristic function h(-) and consolidation function Q(-) are explained in Section 4. The notations
used in this article are summarized in Table 1.

The problem defined above is challenging in the following three aspects. First, the least-squares
function can be naively solved by taking the derivative to zero. However, as the data samples of all
m mini-batches are too large to be loaded into memory simultaneously, it is impossible to calculate
P from all the batches directly by this method. Moreover, based on the fact that the corruption
ratio can be varied for each mini-batch, we cannot simply estimate the corruption set by using
a fixed ratio for each mini-batch. In addition, since corruption is not uniformly distributed, some
mini-batches may contain an overwhelmingly amount of corrupted samples. The corresponding
estimates of regression coefficients can be arbitrarily poor and break down the overall result. In

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

Online and Distributed Robust Regressions with Extremely Noisy Labels 41:7

the next section, we present both online and distributed robust regression algorithms based on
heuristic hard thresholding and robust consolidation to address all three challenges.

4 METHODOLOGY

In this section, we propose both online and distributed robust regression algorithms to handle large
datasets in multiple mini-batches. To handle each single mini-batch among these mini-batches,
a heuristic robust regression (HRR) method is proposed in Section 4.1. Based on HRR, a new
approach, DRLR, is presented in Section 4.2 to process multiple mini-batches in distributed manner.
In Section 4.3, a novel online version of DRLR, namely ORLR, is proposed to incrementally update
the estimate of regression coefficients with new incoming data.

4.1 Single-Batch Heuristic Robust Regression

In order to efficiently solve the single batch problem when m = 1 in Equation (2), we propose a
robust regression algorithm, HRR, based on heuristic hard thresholding. The algorithm heuristi-
cally determines the uncorrupted set Z() for the ith mini-batch according to its residual vector
r). Specifically, a novel heuristic function h(-) is proposed to estimate the lower-bound size of
the uncorrupted set Z () for each mini-batch, which is formally defined as

(i)
(OR 2”(?(70))

= s

@y .—
h(r'V) := argmax 7 = s.t. T o(r) o

TeZt,7<n
where the residual vector of ith mini-batch is denoted by r(? = y() — [X(i)]Tﬂ(i), and r;i()k) repre-
sents the kth elements of r(*) in ascending order of magnitude. The variable 7, in the constraint is
defined as)

TR A
To = argmin ||r) - ——— | 4)
[n/21<7<n ¢ T

where 7’ = 7 — [n/2] and Z is the position set containing the smallest 7’ elements in residual
r@®,

The design of the heuristic estimator follows a natural intuition that data points with unbounded
corruption have a residual higher in magnitude than that of uncorrupted data. The constraint in
Equation (3) ensures the residual of the largest element 7 in our estimation cannot be larger than
the residual of a smaller element z,. If the element 7, is too small, some uncorrupted elements
will be excluded from our estimation, but if the element is too large, some corrupted elements
will be included. The formal definition of 7, is shown in Equation (4), in which 7, is defined as
(i)
z

a value whose squared residual is closest to |7’ ||§/1", where 7’ is less than the ground truth

threshold 7. This design ensures that IZ,Ei) N Zt(i) | > 7—n/2, which means at least 7 —n/2 elements

are correctly estimated in Zt(i). In addition, the precision of the estimated uncorrupted set can be
easily achieved when fewer elements are included in the estimation, but with low recall value. To
increase the recall of our estimation, the objective function in Equation (3) chooses the maximum
uncorrupted set size.

Applying the uncorrupted set size generated by h(-), the heuristic hard thresholding is defined
as follows:

Definition 4.1 (Heuristic Hard Thresholding). Defining ¢, (i) as the position of the ith element
in residual vector r’s ascending order of magnitude, the heuristic hard thresholding of r is defined
as

H(r) = {i € [n] : 9, (i) < h(r)}. ®)

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

41:8 S. Lei et al.

ALGORITHM 1: HRR ALGORITHM
Input: Corrupted data samples X € RP*" and response vector y € R for single mini batch,
tolerance € _
Output: solution g, Z
1 Zp=[n],t <0

2 repeat

s | B e (Xz,XT)T Xz,yz,

4 ritl |y_XTﬁt+1|

5 Ziy1 — H(r't!), where H (-) is defined in Equation (5).
6 te—t+1

7 until ||rZr+11 - r§[||2 <en

s return 1, Z, 4y

The optimization of Z(?) is formulated as solving Equation (5), where the set returned by H (r()
will be used to determine regression coefficients g9

The details of the HRR algorithm are shown in Algorithm 1, which follows an intuitive strategy
of updating regression coefficient) to provide a better fit for the current estimated uncorrupted
set Z; in Line 3, and updating the residual vector in Line 4. The uncorrupted set Z;; is estimated
via heuristic hard thresholding in Line 5 based on residual vector r in the current iteration. The
algorithm continues until the change in the residual vector falls within a small range.

4.2 Distributed Robust Regression

Given data samples {(X(l), y(l)), o, (X(’"), y(m))} in a sequence of mini-batches, a distributed ro-
bust regression algorithm, named DRLR, is proposed to optimize the robust regression coefficients
in distributed approach without loading entire data at one time. Before we dive into the details of
the DRLR algorithm, we provide some key definitions.

Definition 4.2 (Estimate Distance). Defining) and) as the estimate of the regression coef-
ficients for the ith and jth mini-batches, respectively, the distance between the two estimates is
defined as

dij = 1B = BYl.. (6)
Based on the definition of estimate distance, we define the di_stance vector of the ith mini-batch
as d'Y) € R™, where m is the total number of batches and d](.l) represents the distance from the

estimate of the ith batch to the jth batch (1 < j < m). We also define o (d?”) and 8 (d?) as the
value and index of the kth smallest value in distance vector d!, respectively. For instance, if the
third batch is the fifth smallest distance in d?) with dgl) = 0.3, then we have o5(d?)) = 0.3 and
85(dD) = 3.

Definition 4.3 (Pivot Batch). Given a set of mini-batch estimates {ﬁ“), e, ﬁ(’")} and defining
d'" as the distance vector of the ith batch, the pth batch is defined as pivot batch if it satisfies:

p = argmin oz (d(i)), (7)
i
where m = |m/2] + 1 is the upper number of half batches. By using the definition of pivot batch,
we define the deterministic set as follows:

Definition 4.4 (Deterministic Set). Given a set of mini-batch estimates {("),..., ™} and
defining d®) as the distance vector of the pivot batch, the deterministic set ¥ is defined as

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

Online and Distributed Robust Regressions with Extremely Noisy Labels 41:9

- =

- @ S e e 4.
- B b Detérmn\nlstlc Set¥

Fig. 2. Example of deterministic set detection.

ALGORITHM 2: DRLR ALGORITHM
Input: Corrupted data {(XV),y™), ..., (X(™) (™))} in m mini batches, where X() € RP*" and
(i) R¥1
y'e .
Output: solution
1 fori=1.mdo
2 L B — HRR(X®), y(1)

3 p=argmin; o, (d(i)) ; // Optimize pivot batch p
1 ¥ = {5k (d(p))ll <k< ﬁl} R // Find deterministic set ¥
5 f} = argming {% -Zq;”ﬁ(i) - ﬁllz} ; // Robust consolidation
i€
6 returnf}
follows:
¥ = {8 (dP)I1 < k < 1}, ®)

The deterministic set ¥ selects the smallest iz batches from the distance vector d®) of the pivot
batch, which makes a small distance between the pivot batch and any batch j € V. Figure 2 shows
the process of detecting the deterministic set in mini-batches. In Figure 2, the red circle node
presents the pivot batch and the green dotted circle denotes the deterministic set ¥, which contains
m batches represented by orange circle nodes. And the property will be used later in the proof of
Lemma 5.4. Then, we define the general robust consolidation of a set of regression coefficients as
follows:

Definition 4.5 (Robust Consolidation). Given a set of mini-batch estimates {81, ..., ™} and
using ¥ to denote its deterministic set, the robust consolidation of the given estimates /é is defined
as follows:

f=agmin {2 3150 - pl. . ©)
B T ie¥

The DRLR algorithm, shown in Algorithm 2, uses m mini-batches’ data as input and outputs the
consolidated estimate of regression coefficients ,é First, the algorithm optimizes the coefficient
estimate ﬂ(i) of each mini-batch in Line 1-2, then it combines all the estimates of mini-batches in
terms of overall robustness via distributed robust consolidation. Specifically, the algorithm deter-
mines the pivot batch based on all the estimates in Line 3 and generates the deterministic set ¥ in
Line 4. Finally, all the batch estimates are combined via robust consolidation in Line 5. Figure 3(a)
shows an example of distributed robust consolidation. The domination set ¥ contains m closest
batches to pivot batch p and the green circle node denotes the uncorrupted batch whose distance

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

41:10 S. Lei et al.

i

e, © o © N A 4
T, BT N, o
RREEEE P PPPEEE L N—— . —
Uncorrupted Batch Set lIJ* Dominating Set

(a) Example for Distributed Robust Least-squares Regres-
sion.

(c) Case 2 for Online Robust Least-squares Regression. (d) Case 3 for Online Robust Least-squares Regression.

Fig. 3. Examples for DRLR and ORLR.

to ground truth coefficients f. is less than a small error bound ¢. We call the set containing all
the green circle nodes as uncorrupted batch set ¥*. The example shows a case that only one un-
corrupted batch b is contained in ¥, which determines the distance between f, and pivot batch p.
The distance between f, and /} is upper bounded by the summation of distance dg,_, and d i

4.3 Online Robust Regression

The DRLR algorithm, proposed in Section 4.2, provides a distributed approach when a large amount
of data has been collected. In this section, we present an online robust regression algorithm, named
ORLR, that incrementally updates the robust estimate based on new incoming data. Specifically,
suppose the regression coefficients of the previous m mini-batches {8V, ..., 8™} have been es-
timated by DRLR, the ORLR algorithm achieves an incremental update of robust consolidation [}
when new incoming mini-batch data X* € RP*" and y* € R™! are given.

The details of algorithm ORLR are shown in Algorithm 3. In Line 1, the regression coefficients
B of the new data is optimized by HRR algorithm. The index of swapped estimate s is generated in
Line 2 by selecting the minimum value from [m] \ ¥, which represents the set of estimates that are
not included in deterministic set ¥. Since new estimates are appended to the tail of II, the usage
of minimum index ensures that the oldest corrupted estimate can be swapped out. In Line 3, the
selected estimate B°) is removed from IT while the new estimate B* is appended to the tail of II.
Lines 4 through 6 re-consolidate all the estimates based on newly updated II in the same steps as
the DRLR algorithm. It is important to note that the distance vectors used in Lines 4 and 5 are also
updated corresponding to the new II. Also, the ORLR algorithm can be invoked repeatedly for the
incoming mini-batches, where the outputs IT and ¥ of the previous invocation can be used as the
input of the next one.

Figure 3 shows three cases for ORLR algorithm. The first case shows the condition that the new
estimate f* € ¥ but not belongs to ¥*, and estimate s is removed. Although the estimate b
is excluded from ¥*, the distance dg_,+ can still be determined by the position of b. The error

between f. and ﬁ can be increased, but still upper bounded by dg,_,+ and dﬁ = In the second case,
BT € {¥" N P*}. Because the farthest node d in ¥ is replaced by f*, the error between . and
P can be decreased, but it still upper bounded by the position of pivot batch p*. The third case is

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

Online and Distributed Robust Regressions with Extremely Noisy Labels 41:11

ALGORITHM 3: ORLR ALGORITHM
Input: New incoming corrupted data X+ € RP*" and y* € R™!. Previous m mini-batch estimates
II= {ﬂ(l), e, ﬂ(m)} and their corresponding ¥.
Output: solution [% I, ¥
1 B* « HRR(X",y")

2 s « min([m] \ ¥) // Select removed estimate s
3 =T\ (B} U (")

4 p* = argmin; o (d®) // Optimize new pivot batch p*
5 Pt = {5k (d(p+))|l <k< rh} // Find new deterministic set ¥*
6 [? =arg minﬁ {% eyt ||ﬂ(i) - ﬁ||2} // Robust consolidation

7 return ﬁ I+, vt

BT ¢ {¥* U ¥}, which is shown in Figure 3(d). The case is similar to the above two cases except
a new estimate is added outside of ¥* and ¥. However, the change will not impact the result of f.

4.4 Online Robust Least-Squares Regression under Biased-Batch Corruption

The ORLR algorithm updates the robust estimate based on new incoming data by removing the
oldest one from [m] \ ¥, which represents the set of estimates that are not included in determin-
istic set ¥. In general, it can deal with the batched corruption, where corrupted mini-batches are
arbitrarily distributed in the mini-batch set. However, when the data corruption is biased-batch
corruption, it is infeasible to estimate by using ORLR. Table 3 shows the performance of regression
coeflicient recovery in different settings of biased-batch corruption. From Table 3, we find that the
sequence of corrupted mini-batches is important to ORLR. When uncorrupted mini-batches arrive
at first, it can establish better deterministic set. However, when corrupted mini-batches concen-
tratedly arrive at first, it will establish the wrong deterministic set and cannot update it efficiently,
which will effect the performance of the remaining data. Concretely, suppose more than half of
the previous m mini-batches data are corrupted and concentratedly arrive at first, the previous
pivot batch p and deterministic set IT will be established by corrupted data by using ORLR. Un-
der the extreme circumstance, the regression coefficients cannot be updated due to new incoming
mini-batch estimate g* ¢ {¥* U ¥*}, which is the third case shown in Figure 3.

To solve these problems, we propose an online robust regression algorithm under biased-batch
corruption, named ORLR-BC, which updates the deterministic set IT over time. Specifically, when
determining the removed estimate, it considers the relevance to the deterministic set and the se-
quence of data as well. The residual value v; of the estimate () is defined as follows:

1B = BDl) (i)
P = - Ty g (10)
° ”(Zieryﬂﬂ' - B, iyl

where IT" = ITU {f*}, u is a pivot related hyperparameter, A is a time related hyperparameter, and

ﬁ is the robust consolidation in previous mini-batch.
The details of algorithm ORLR-BC are shown in Algorithm 4. In Line 1, the regression coef-
ficients B* of the new data is optimized by HRR algorithm. In Line 3, the robust consolidation

ﬁ’ is obtained from previous mini-batch set II. Lines 4 and 5 calculate the residual value of each
estimate). The index of swapped estimate s is generated in Line 6 by selecting the minimum
value from set V = {vy,...,v,}. Since new estimates are appended to the tail of II, the usage of
selective method ensures that the corrupted estimate can be swapped out. In Line 7, the selected

estimate B¢ is removed from IT while the new estimate f* is appended to the tail of II. Lines

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

41:12 S. Lei et al.

ALGORITHM 4: ORLR-BC ALGORITHM
Input: New incoming corrupted data X+ € R?*" and y* € R™!. Previous m mini-batch estimates
= {gW,..., ™)} and their corresponding ¥. Pivot related hyperparameters y and time
related hyperpatameters A
Output: solution ﬁ, IL, ¥
1 T« HRR(X*,y")
2 I/ =TTV {B*}
3 [é’ = argming {% g‘\y”ﬁ(i) - [3||2} // Robust consolidation B’ in previous mini-batch
1

4 fori=1..mdo

g g1 ;
5 L v = p(IB—B"1l,)+ A(=%—) // Update the residual value for each data sample.

Zicw 1B-BD1l Lt
6 s < min(V) // Select removed estimate s
7 " =11\ (B} U (B*)
s pt = argmin; o (d(i)) // Optimize new pivot batch p*
9 P = {5k(d(p+))|l <k< rh} // Find new deterministic set ¥+
10 ﬁ = argming {% Z\“w”ﬁ(i) _ ﬁ”z} // Robust consolidation
i€

11 return ﬁ I, et

8 through 10 re-consolidate all the estimates based on newly updated II in the same steps as the
DRLR algorithm. It is important to note that the distance vectors used in Lines 3, 5, and 10 are also
updated corresponding to the new II. Also, the ORLR-BC algorithm can be invoked repeatedly for
the incoming mini-batches, where the outputs IT and ¥ of the previous invocation can be used as
the input of the next one.

4.5 Complexity Analysis

In the HRR algorithm, for each iteration, f is computed for an estimated uncorrupted set, re-
sulting in O(p>® + np?) time complexity, where n is the number of samples in the set and p is
the number of features. Then, computing r has a time complexity of O(np). Finally, when up-
dating the uncorrupted set Z;.1, the time complexity of H(-) is O(n). Therefore, if after ¢ iter-

ations HRR algorithm yields an e-accurate solution, it results in O(t(p® + np®)) time complex-

D)
ity, where t = O(log1 ”:‘(FT”Z) is proofed in Theorem 5.2 in Section 5. For DRLR algorithm, the
n

estimated regression coefficient set is computed by HRR(:) over each mini-batch, resulting in
O(mt(p®+np?)) complexity, where m is the number of mini-batches. Optimizing pivot batch results
in O(m*p + mlog, m) and robust consolidation has a time complexity of O(p). Thus, the compu-
tational complexity of DRLR algorithm is O(mt(p® + np?) + m®p). Since ORLR and ORLR-BC are
online algorithms, we analyse the computational complexity of each batch in the data streaming.
For a new incoming data batch, estimated regression coefficient) is computed by HRR(-) and
results in an O(t(p> + np?) + m?p) time complexity.

5 THEORETICAL RECOVERY ANALYSIS

In this section, the recovery properties of regression coefficients for the proposed distributed and
online algorithms are presented in Theorems 5.5 and 5.6, respectively. Before that, the recovery
property of HRR is presented in Theorem 5.2.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

Online and Distributed Robust Regressions with Extremely Noisy Labels 41:13

To prove the theoretical recovery of regression coeflicients for a single mini-batch, we require
that the least-squares function satisfies the Subset Strong Convexity (SSC) and Subset Strong
Smoothness (SSS) properties, which are defined as follows:

Definition 5.1 (SSC and SSS Properties). The least-squares function f(f) = llys —XSTﬂHg satisfies
the 2}, -SSC property and 2k, -SSS property if the following holds:

1
&I 5§v2f5(ﬁ) <kyI for ¥S€S,. (11)

Note that Equation (11) is equivalent to

. T T
évy < grég: Amin(XSXS) < gréas)y(Amax(XSXS) < Ky, (12)

where A, and 4,4, denote the smallest and largest eigenvalues of matrix X, respectively.

THEOREM 5.2 (HRR RECOVERY PROPERTY). Let X)) € RP*" be the given data matrix of the ith
mini-batch and the corrupted response vector y') = [X(i)]Tﬁ* +u® + O with ||[uD |y = yn. Let 3,
be an invertible matrix such that X\ = Zal/zX(i);f(ﬁ) = IIyél) - Xél)ﬁllg satisfies the SSC and SSS

0
properties at level &, y with 2{y,, and 2k, . If the data satisfies 2L < 3. aftert = O(log# ”'1/_7”2)

Vga
ClleD,

iterations, Algorithm 1 yields an e-accurate solution ﬂ;i) with || B, — ﬁgi)llz Set = for some
C>o.

The proof of Theorem 5.2 can be found in the supplementary material.! The theoretical analyses
of regression coefficients recovery for Algorithms 2 and 3 are as follows:

LEmMMA 5.3. Suppose Algorithm 1 yields an e-accurate solution B with corruption ratio yo, and m
mini-batches of data have a corruption ratio less than yo/2, more than | % | + 1 batches can yield an
e-accurate solution by Algorithm 1.

Proor. Let ¥, denote the set of mini-batches that yield e-accurate solutions and y; represent
the corruption ratio for the ith mini-batch. Then, we have

(a)
Z yin < ym:%-m-n (13)
ie[m]\¥. i

(b)
(ron + Dm = %)) < 2 m-n

Inequality (a) is based on }.1" yin = X;cy, yin + Xie[m)\w, Yin. And inequality (a) follows each
corrupted mini-batch that contains at least yyn + 1 corrupted samples. Applying simple algebra
steps, we have

Yo Yo
Zmn Lmn
|¥,| > m— -2 sm-2— > 2 (14)
Yon +1 Yon 2
Since |¥.| is an integer, then we have [¥.| > [5] + 1. O

LEMMA 5.4. Given a set of mini-batch estimates {ﬂ(l), e ﬁ(m)} withm = |m/2] + 1, defining the
p' batch as its pivot batch, then we have o,;(d®)) < 2e.

https://goo.gl/HRwZsp.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

https://goo.gl/HRwZsp

41:14 S. Lei et al.

PROOF. Suppose kth mini-batch is in the uncorrupted set ¥,, we have || %) — B,|, < e. Similarly,
for Vi € ¥,, we have ||) — B.|, < €. According to the triangle inequality, for Vi € ., it satisfies:

18D — XN, — 1B® — Bull, <IBD — Bull, < €

. 15
189 - B, <26 19

Since |¥.| > rm, we have 0,;(d*)) < 2e. According to the definition of pivot batch p =
arg min; o7 (d?), we have 0,5 (d?)) < 6;7,(d%) < 2e. |

THEOREM 5.5 (DRLR RECOVERY PROPERTY). Given data samples in m mini-batches {(X,
yW), ..., (X" (™Y} with a corruption ratio of y,/2, Algorithm 2 yields an e-accurate solution

B with || B = B.l, < 5e.

Proor. Let ¥, denotes the set of mini-batches that yield e-accurate solutions. According to
Lemma 5.3, we have |¥,| > I_%J + 1. Because of Lemma 5.4, we have Vi € [1,m], o; (d(P)) < 2e,
where p is the index of pivot batch and rm = [m/2] + 1. Using ¥ = {Jk (dP)|1 < k < rn} defined
in Algorithm 2, we have Vi, j € ¥, IIﬂ(i) - ﬂU)Ilz < 2e. As |V 2 [7] + 1, we have [¥. N¥| > 1.
For any k € {¥, N ¥}, we have the following two properties of the kth mini-batch: (1) Vi € ¥,
1R — B, < 2¢; and (2) [|BX) - B, < e. Applying these properties, we get the error bound
of III% — B.ll, as follows:

1B =Bl =118 - BX + P — B.1,
- pP1, + 18% — B,

(b)1
= > N6~ BVl + —leﬁ(’ — Pl +e (16)
lE‘I’ ie¥
()1 .
2= ST ~ O, + 3¢ < 5e
m
ie¥

Inequahty (a) is based on the triangle inequality of the L, norm, and inequality (b) follows
1B - BPN, = £ Sicwllf - BO + B — BWO|I,. Inequity (c) follows the definition of f, which

makes ¥;cyllf — BON < TicyllBR — B, O

THEOREM 5.6 (ORLR RECOVERY PROPERTY). Given m mini-batch estimates of regression coeffi-
cients I = {BW, ..., B, their corresponding deterministic set ¥, and incoming corrupted data
Xt € RP*" andy* € R™, Algorithm 3 yields an e-accurate solution B with || — B.ll, < 5¢ + %.

Proor. Let e and s denote the index of added and removed mini-batch, respectively. According
to Line 2 in Algorithm 3, the removed batch s ¢ Y. As [¥ N ¥,| > 1, there exists a mini-batch

k € {¥ N'¥,} that satisfies: (1) Vi € ¥, || %) — B ||, < 2¢;and (2) Vj € {¥* \ e}, [|BX) = DI, < 2e.
So we have

18- BN, = Zuﬁ B+ Y~ Bl

lE‘I’Jr
LS B+~ 10 - g, (17)
eyt eyt
Z 18 = B,
16‘1’4r

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

Online and Distributed Robust Regressions with Extremely Noisy Labels 41:15

Inequality (a) is based on the trlangle inequality of the L, norm, and inequality () follows the
definition of[)’ which has) ; g+ ||ﬁ BN < Ticy+ IR - gD

Two cond1t10n§ exist for added mini-batch e. For the condition e ¢ ¥, the new deterministic
set ¥t =¥.So || - BP|, < % Zieqfllﬁ(i) — BW||, < 4e. For condition e € ¥*, we have

18- BN, < = Z 18~ Bl

IG‘IH'
(c)2 .
< %(nﬁ"‘) -B9l+ Y, 1B - ﬁ(k)Hz)
(¥ 0v) : (18)

(d)4e

<—(m-1)+ —(Ilﬂ("’ BN+ 187 ~ ﬂ“)uz)
(e)4e | 8¢ 4e
<—(m-1)+ — < 4de+ —

m m m

Inequality (c) expands the set ¥* into the new mini-batch e and set {¥* N¥}. Inequality (d) uses
the fact that Vi € ¥, ||%) — (||, < 2¢ and the triangle inequality of B*), where p is the pivot
batch corresponding to II. As max(||ﬁ(k) - ﬁ(P)HZ, ||ﬁ(P) ﬁ(e)llz) < 2¢, inequality (e) is satisfied.
Combining two conditions, we conclude || /% - ﬂ(k)llz < 4e + %€ Therefore, the error bound of

IIﬁ — B:ll; is as follows:

1B = Belly <118 = BOIl + 18 - Bl
) 4e 4e : (19)
<4e+ —+e€ <56+ —
m m
Inequality (f) utilizes the fact that II,B(k) —B.:ll, < e.Note thatif m is large enough, IIﬁ—,B* I, < 5e,
which is the same as the error bound in Theorem 5.5.
O

6 EXPERIMENT

In this section, the proposed algorithms DRLR, ORLR, and ORLR-BC are evaluated on both synthetic
and real-world datasets. After the experiment setup has been introduced in Section 6.1, we present
results on the effectiveness of the methods against several existing methods on both synthetic and
real-world datasets, along with an analysis of efficiency for all the comparison methods. All the
experiments were conducted on a 64-bit machine with an Intel(R) Core(TM) quad-core processor
(Xeon W-2125@4.00GHz) and 64.0 GB memory. Details of both the source code and datasets used
in the experiment can be downloaded here.?

6.1 Experiment Setup

6.1.1 Datasets and Labels. Our dataset is composed of synthetic and real-world data. For the
synthetic data, the data samples were randomly generated according to the model in Equation (1)
for each mini-batch, sampling a regression coefficient §, € R as a random unit norm vector. The
covariance data X¥) for each mini-batch was drawn independently and identically distributed from
x; ~ N(0,1,) and the uncorrupted response variables were generated as y o = [X (i)]T B. + &0,
where the additive dense noise was 6 ~ N(0,0?). The corrupted response vector for each mini-

M4 u(’), where the corruption vector u?) was sampled from the

batch was generated as y(’) =y,
Zhttps://goo.gl/b5qqYK.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

https://goo.gl/b5qqYK

41:16 S. Lei et al.

uniform distribution [—Sllyii) [loo> 5||y,(f) loo]- The set of uncorrupted points Z,Ei) was selected as a
uniformly random y¥ n-sized subset of [n], where y(?) is the corruption ratio of the ith mini-
batch. We define y as the corruption ratio of the total m mini-batches; y¥) is randomly chosen in
the condition of y = 3™y, where y should be less than 1/2 to ensure the number of uncorrupted
samples is greater than the number of corrupted ones. For biased-batch corruption, we synthesize
the worst scenarios, in which the corrupted response vector for each mini-batch was generated as
y'® =y 4w where the corrupted vector u’() = [X(i)] Tﬁ,ﬁ + &) was generated to make the
corrupted data have the uniform distribution, which mostly distracts the model.

The real-world datasets we use contain house rental transaction data from New York City and Los
Angeles on Airbnb? website from January 2015 to October 2016. The datasets can be downloaded
here.* For the New York City dataset, we use the first 321,530 data samples from January 2015 to
December 2015 as training data and the remaining 329,187 samples from January to October 2016
as testing data. For the Los Angeles dataset, the first 106,438 samples from May 2015 to May 2016
are chosen as training data, and the remaining 103,711 samples are used as testing data.

6.1.2 Evaluation Metrics. For the synthetic data, we measured the performance of the regres-
sion coefficients recovery using the averaged L, error

R EAR

where ﬁ represents the recovered coeflicients for each compared method and . is the ground
truth regression coefficients. To compare the scalability of each method, the CPU running time
for each of the competing methods was also measured. For the real-world dataset, we use the
mean absolute error (MAE) to evaluate the performance of rental price prediction. Defining y
and y as the predicted price and ground truth price, respectively, the MAE between ¢ and y can
be presented as follows:

A

Yi —Yi

. 1
MAE@.y) =~)

i=1

6.1.3 Implementation Details. For our proposed methods, we used DRLR and ORLR to evaluate
our methods in both distributed and online settings. We evaluated ORLR-BC in biased-batch cor-
ruption online settings. For ORLR, we set the number of previous mini-batch estimates to seven if
not specified. All the results from comparison methods were averaged over 10 runs. In each real-
world dataset, after removing duplicated and missing records, we totally collected 650,717 rental
transaction records for the New York City dataset and 210,149 records for the Los Angeles dataset.
Furthermore, there are two types of features in the two datasets: categorical features and continu-
ous features. We maintained all continuous features from original data and transferred all categor-
ical features to integer type, including “neighborhood_cleansed”, “property_type”, “room_type”,
and “bed_type”. In this way, we collected 21 features for each record.

6.2 Comparison Methods

The following methods are included in the performance comparison presented here: The averaged
ordinary least-squares (OLS-AVG) method takes the average over the regression coefficients of
each mini-batch, which is computed by the ordinary least-squares method. RLHH-AVG applies a
robust method, Robust Least squares regression algorithm via Heuristic Hard thresholding
(RLHH) [39], on each mini-batch and averages the regression coefficients of all the mini-batches.

Shttps://www.airbnb.com/.
*http://insideairbnb.com/get-the-data html.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

https://www.airbnb.com/
http://insideairbnb.com/get-the-data.html

Online and Distributed Robust Regressions with Extremely Noisy Labels 41:17

= OLS-AVG 4= OLS-AVG

1.75
1.501|-¢-
1.25

. 1.00 N
~ . .
T V—- ~
= 0.75
0.50 1
— —_
i QP e e o et okt “‘1
of=s | Bl e | 3o-¥°
0.00 [
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Corruption Ratio Corruption Ratio Corruption Ratio

(a) p=100, n=5K, b=10, dense noise (b) p=100, n=10K, b=10, dense noise (c) p=400, n=10K, b=10, dense noise

1.2{[5- osavc - OLSAVG
oS RLIHAVG e S\RLHHAVG
1,04 macrave 3.0|=x= racT-AVG
-4 serb <4 SPRL
= opan® 2.5]| = opas
0.81| =+ ORLH ~ =+ ORLH 3
~ ORL* v Ny— ~20 ORL* AN
N DRLR ., K4 e DRLR N —w _ - .
@ 0.61|~e= oRLR Ny Ql 5 |l onr o~ v S Sy—-¥
1 1 1.
204 a
- 1.0 R
- '/’ 0.5 /
0.2 e 0.5 —a— o
T T g ey g ATtz
Lt B oEE L pnreedssE== oS8 ESE Pebeh b T ot Tk Clad ke
0.0 0.0 0.0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Corruption Ratio Corruption Ratio Corruption Ratio

(d) p=100, n=10K, b=30, dense noise (e) p=100, n=5K, b=10, no dense noise (f) p=200, n=10K, b=20, no dense noise

Fig. 4. Performance on regression coefficients recovery for different corruption ratios in uniform distribution.

Different from OLS-AVG, RLHH-AVG can estimate the corrupted samples in each mini-batch by
a heuristic method. Robust regression via Adaptive Corruption Thresholding (RACT) [35]
is an adaptive variation method for the robust least-squares regression problem. It improves the
efficiency by estimating the corruption ratio based on adaptive searching steps without computing
heuristic values for all the data samples. Self-paced robust learning (SPRL) algorithm [36] is a
recently proposed self-paced learning method, which trains the model in a process from more
reliable (clean) data instances to less reliable (noisy) ones under the supervision of well-labeled
data. Since the corrupted samples are arbitrarily distributed among mini-batches, it is hard to
choose the reliable data. We simply set the first two mini-batches as reliable data. The OPAA [8] is
an online algorithm for adaptive linear regression, which updates the model incrementally for each
new data sample. We set the threshold parameter &, which controls the inaccuracy sensitively, to 22.
We also compared our method to an ORL approach [16], which addresses both the robustness and
scalability issues in the regression problem. As the method requires a parameter for the corruption
ratio, which is difficult to estimate in practice, we chose two versions with different parameter
settings: ORL™ and ORL-H. ORL" uses the true corruption ratio as its parameter, and ORL-H sets
the outlier fraction A to 0.5, which is a recommended setting in [16] if it is unknown.

6.3 Recovery of Regression Coefficients

We selected seven competing methods with which to evaluate the recovery performance of all the
mini-batches: OLS-AVG, RLHH-AVG, OPAA, ORL-H, ORL”, DRLR, and ORLR. Figure 4 shows the
performance of coefficients recovery for different corruption ratios in uniform distribution. Specif-
ically, Figures 4(a) and (b) show the recovery performance for different data sizes when the feature
number is fixed. Looking at the results, we can conclude: (1) The DRLR and ORLR methods out-
perform all the competing methods, including ORL*, whose corruption ratio parameter uses the
ground truth value. Also, the error of the ORLR method has a small difference compared to DRLR,
which indicates that the online robust consolidation performs as well as the distributed one. (2) The
results of the ORL methods are significantly affected by their corruption ratio parameters; ORL-H

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

41:18 S. Lei et al.

performs almost three times as badly as ORL* when the corruption ratio is less than 25%. When
the corruption ratio increases, the error of ORL-H decreases because the actual corruption ratio
is closer to 0.5, which is the estimated corruption ratio of ORL-H. However, both DRLR and ORLR
perform consistently throughout, with no impact of the parameter. (3) RLHH-AVG and RACT-AVG
have very competitive performance when the corruption ratio is less than 30% because almost
no mini-batch contains corrupted samples larger than 50% when the corruption samples are ran-
domly chosen. However, when the corruption ratio increases, some of the batches may contain
large amounts of outliers, which makes some estimates be arbitrarily poor and break down the
overall performance. Thus, although RLHH-AVG and RACT-AVG work well on mini-batches with
fewer outliers, it cannot handle the case when the corrupted samples are arbitrarily distributed.
(4) SPRL underperforms ORL* because SPRL is affected by the reliability of the initial data. When
the first mini-batch contains corrupted data, the model will be disguised and more noisy data will
be introduced. However, it is hard to guarantee the initial data batch is clean when the corrupted
samples are arbitrarily distributed. (5) OPAA generally exhibits worse performance than the other
algorithms because the incremental update for each data sample makes it very sensitive to outliers.
Figures 4(c) and (d) show the similar performance when the number of features and batches in-
creases. Figures 4(e) and (f) show that both the DRLR and ORLR methods still outperform the other
methods without dense noise, with both achieving an exact recovery of ground truth regression
coefficients f..

6.4 Performance on Different Corrupted Mini-Batches

Table 2 shows the performance of regression coefficient recovery in different settings of corrupted
mini-batches, ranging from 0 to 8 corrupted mini-batches out of 20 mini-batches in total. Each cor-
rupted mini-batch used in the experiment contains 90% corrupted samples and each uncorrupted
mini-batch has 10% corrupted samples. We show the result of averaged L, error || /.‘} — Bl in 10 dif-
ferent synthetic datasets with randomly ordered mini-batches. From the result in Table 2, we con-
clude: (1) When some mini-batches are corrupted, the DRLR method outperforms all the competing
methods, and ORLR achieves the best performance compared to other online methods. (2) RLHH-
AVG performs the best when no mini-batch is corrupted, but its recovery error is dramatically
increased when the number of corrupted mini-batches increases. However, our methods perform
consistently when the number of corrupted mini-batches increases. (3) ORL™ has competitive per-
formance in different settings of corrupted mini-batches. However, its recovery error still increases
two times when the number of corrupted mini-batches increases from two to eight. (4) When the
corruption mini-batches are larger than one, SPRL outperforms the other competing methods ex-
cept for DRLR and ORLR, because little corrupted data is contained in the initial mini-batch.

6.5 Performance on Different Settings of Biased-Batch Corruption

Table 3 shows the performance of biased-batch corruption coefficient recovery in different se-
quence of data mini-batches, and the corruption ratio was from 0% to 40% in total. As for the
sequence settings, it was mainly divided into three parts: corrupted mini-batches arriving last,
randomly, and first. Each corrupted mini-batch used in the experiment contains 90% corrupted
samples and each uncorrupted mini-batch has 10% corrupted samples. We show the result of aver-
aged L error || /f;’ — P:ll, in 10 different synthetic datasets. From the result in Table 3, we conclude:
(1) When some mini-batches are corrupted, the DRLR method outperforms all the competing meth-
ods, and ORLR-BC achieves the best performance compared to other online methods. (2) Although
ORLR has competitive performance in the corrupted batches arriving last settings, its recovery er-
ror increases dramatically when the corrupted batches arrive first. It is reasonable that ORLR has

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

Online and Distributed Robust Regressions with Extremely Noisy Labels 41:19

Table 2. Performance on Regression Coefficients Recovery
in Different Corrupted Mini-Batches

0/20 1/20 2/20 4/20 6/20 8/20

OLS-AVG 0.120 0.136 0.142 0.172 0.188 0.211
RLHH-AVG 0.011 0.181 0.238 0.357 0.424 0.479
RACT-AVG 0.012 0.176 0.215 0.336 0.392 0.474
SPRL 0.043 0.048 0.067 0.059 0.076 0.110
OPAA 1.271 1398 1393 1431 1.489 1.532
ORL-H 0.347 0.357 0362 0.387 0412 0.434
ORL* 0.078 0.080 0.089 0.139 0.226 0.347
ORLR 0.025 0.026 0.027 0.026 0.026 0.026
DRLR 0.015 0.015 0.015 0.015 0.015 0.015

Bold indicates the best performance among all methods.

Table 3. Performance on Regression Coefficients Recovery in Different Settings
of Biased-Batch Corruption

corrupted last random order corrupted first

0% 10% 20% 30% 40% 0% 10% 20% 30% 40% 0% 10% 20% 30% 40%

OLS-AVG 0.089 0.109 0.108 0.108 0.107 0.071 0.127 0.186 0.241 0.296 0.071 0.125 0.178 0.232 0.297
RLHH-AVG 0.055 0.098 0.168 0.228 0.300 0.034 0.100 0.168 0.234 0.300 0.034 0.100 0.163 0.226 0.301
RACT-AVG 0.055 0.097 0.167 0.228 0.301 0.033 0.098 0.165 0.235 0.300 0.033 0.099 0.165 0.237 0.303
SPRL 0.089 0.112 0.107 0.107 0.112 0.071 0.125 0.182 0.242 0.298 0.070 0.126 0.181 0.245 0.301
OPAA 5.181 5.145 5.166 5.158 5.161 5.153 5221 5.141 5.193 5203 5.140 5.147 5247 5.134 5.165
ORL-H 0.280 0.295 0.294 0.291 0.292 0.278 0.298 0.316 0.357 0.397 0.273 0.284 0.298 0.312 0.343
ORL* 0.108 0.142 0.186 0.190 0.229 0.083 0.113 0.154 0.224 0.341 0.083 0.094 0.107 0.149 0.248
ORLR 0.042 0.043 0.143 0.167 0.203 0.038 0.038 0.038 0.237 0.168 0.042 0.043 0.705 0.704 0.703
DRLR 0.035 0.035 0.035 0.035 0.035 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.035 0.035 0.035
ORLR-BC 0.044 0.042 0.042 0.042 0.042 0.037 0.037 0.038 0.037 0.038 0.038 0.038 0.038 0.038 0.038

Bold indicates the best performance among all methods.

time-vary characteristic. But the error of the ORLR-BC method has a small difference compared to
DRLR, which means it depends less on the sequence of data flow. (3) Both ORL* and OLS-AVG have
competitive performance in different settings of biased-batch corruption, but their recovery error
is dramatically increased when the number of corrupted batches increases. However, our methods
perform consistently when the number of corrupted batches increases. (4) RLHH-AVG and RACT-
AVG are not sensitive to the sequence of corrupted data because they estimate the coefficient of
each mini-batch independently. However, their recovery error is dramatically increased when the
corrupted ratio is larger than 30%. (5) SPRL achieves competitive performance in the corrupted last
setting but has poor performance in the other two settings. Since SPRL applies prior knowledge to
the self-paced training process, it relies on the quality of the initial data. In contrast, our methods
can adapt to new coming data even if corrupted batches arrive first.

6.6 Performance on Biased-Batch Corruption with Different Corruption Ratios

Table 4 shows the performance of regression coefficient recovery on biased-batch corruption with
different corruption ratios. Each corrupted mini-batch used in the experiment contains 90% cor-
rupted samples and each uncorrupted mini-batch has 10% corrupted samples. We show the result
of averaged L, error || ﬁ — Bl in 10 different synthetic datasets with corrupted-first ordered mini-
batches, which is the worst scenario in our online setting. From the result in Table 4, we conclude:
(1) When some batches are biased-batch corrupted, the DRLR method outperforms all the com-
peting methods, and ORLR-BC achieves the best performance compared to other online methods.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

41:20 S. Lei et al.

Table 4. Performance on Regression Coefficients Recovery on Biased-Batch Corruption
with Different Corruption Ratios

p=100,n=5K,b =20 p=100,n=5K,b =30

5% 10% 20% 30% 40% 5% 10% 20% 30% 40%
OLS-AVG 0.099 0.127 0.185 0.241 0.298 0.090 0.125 0.182 0.245 0.299
RLHH-AVG 0.068 0.101 0.168 0.235 0.302 0.057 0.100 0.166 0.238 0.302
RACT-AVG 0.068 0.101 0.164 0.233 0300 0.056 0.090 0.165 0.237 0.301
SPRL 0.101 0.129 0.180 0.239 0296 0.090 0.125 0.183 0.245 0.299
OPAA 5656 5.555 5.504 5571 5525 5453 5378 5.423 5469 5432
ORL-H 0.403 0404 0.423 0441 0451 0389 0401 0.413 0.429 0.445
ORL* 0.104 0.119 0.149 0218 0335 0.093 0.105 0.137 0.207 0.330
ORLR 0.042 0.043 0.705 0.704 0.703 0.043 0.042 0.695 0.716 0.705
DRLR 0.037 0.037 0.037 0.037 0.037 0.036 0.036 0.036 0.036 0.036
ORLR-BC 0.041 0.043 0.044 0.044 0.043 0.042 0.042 0.043 0.042 0.043
p =100, n = 10K, b = 20 p=100,n=5K,b =40

5% 10% 20% 30% 40% 5% 10% 20% 30% 40%
OLS-AVG 0.102 0.122 0.185 0.236 0.294 0.097 0.128 0.191 0.232 0.287
RLHH-AVG 0.068 0.098 0.168 0.230 0.298 0.067 0.101 0.172 0.227 0.292
RACT-AVG 0.067 0.097 0.166 0.229 0.297 0.066 0.100 0.172 0.226 0.291
SPRL 0.102 0.122 0.185 0.237 0295 0.098 0.129 0.192 0.232 0.288
OPAA 5285 5.264 5310 5307 5316 5304 5333 5315 5325 5397
ORL-H 0403 0.296 0317 0324 0353 0391 0392 0.407 0.414 0437
ORL* 0.099 0.099 0.122 0.159 0.253 0.089 0.097 0.128 0.197 0.313
ORLR 0.038 0.039 0.703 0.689 0.695 0.043 0.709 0.731 0.679 0.677
DRLR 0.035 0.036 0.035 0.035 0.035 0.036 0.035 0.035 0.036 0.036
ORLR-BC 0.037 0.039 0.037 0.038 0.038 0.044 0.041 0.042 0.044 0.044
p = 100, n = 20K, b = 20 p = 1000, n = 5K, b = 20

5% 10% 20% 30% 40% 5% 10% 20% 30% 40%

OLS-AVG 0.099 0.131 0.187 0.240 0.303 0.090 0.132 0.188 0.243 0.298
RLHH-AVG 0.063 0.095 0.155 0.213 0.279 0.082 0.110 0.175 0.240 0.306
RACT-AVG 0.062 0.094 0.155 0.213 0.279 0.081 0.109 0.174 0.239 0.306
SPRL 0.098 0.131 0.187 0.24 0304 0.107 0.131 0.189 0.244 0.300
OPAA 5.114 5.098 5.142 5.133 5.084 6.782 6.795 6.776 6.817 6.806
ORL-H 0.203 0.209 0.221 0.239 0.276 0.779 0.786 0.788 0.795 0.796
ORL* 0.087 0.093 0.103 0.131 0.197 0.234 0.298 0.438 0.576 0.701
ORLR 0.035 0.035 0.647 0.634 0.651 0.100 0.100 0.706 0.704 0.704
DRLR 0.034 0.034 0.034 0.034 0.034 0.067 0.067 0.067 0.068 0.068
ORLR-BC 0.035 0.035 0.034 0.035 0.035 0.100 0.100 0.101 0.100 0.101

Bold indicates the best performance among all methods.

(2) When the number of corrupted mini-batches is smaller, the performance of ORLR is compet-
itive. But when the number of corrupted batches increases, its recovery error is dramatically in-
creased. Instead, ORLR-BC performs consistently when the number of corrupted batches increases.
(3) ORL*, RLHH-AVG, RACT-AVG, and SPRL have competitive performance in different settings of
corrupted batches. However, their recovery error still increases two times when the number of cor-
rupted batches increases from two to eight. (4) When the number of feature increases, all methods
have higher recovery error. However, the performance of DRLR and ORLR-BC were still best and
the recovery error increased slowly.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

Online and Distributed Robust Regressions with Extremely Noisy Labels 41:21

Table 5. MAE of Rental Price Prediction

New York City (Corruption Ratio)

5% 10% 20% 30% 40% Avg.
OLS-AVG 3.256 + 0.449 3.519 +0.797 3.976 + 0.786 4.230 + 1.292 4.356 + 1.582 3.867 + 0.981
RLHH-AVG 2.823 + 0.000 2.824 £ 0.000 13.092 + 25.354 35.184 +£37.426 42.713 + 19.304 19.327 + 16.417
RACT-AVG 2.823 +0.001 2.822 £ 0.001 12.351 £ 23.984 33.823 £ 34.259 39.548 + 20.728 18.273 + 15.795

SPRL 5.076 = 0.391 5.524 £ 0.573 5.594 + 0.420 5.843 £ 0.387 5.957 +0.703 5.599 + 0.495
OPAA 91.287 +£51.475 100.864 + 72.239 121.087 + 64.618 92.735 + 38.063 152.479 + 57.553 || 111.690 + 56.790
ORL-H 6.832 &+ 0.004 6.828 + 0.007 6.732 + 0.240 6.803 + 0.107 6.573 = 0.189 6.754 + 0.109
ORL* 6.538 + 0.293 6.384 + 0.274 6.394 + 0.208 6.406 + 0.180 6.471 = 0.190 6.439 + 0.229
DRLR 2.824 £ 0.000 2.824 + 0.000 2.823 + 0.000 3.185 £ 0.523 4.342 + 1.784 3.200 £ 0.461
ORLR 2.824 + 0.001 2.824 + 0.000 2.823 + 0.000 2.883 + 0.187 3.563 + 0.935 2.983 + 0.225

Los Angeles (Corruption Ratio)
5% 10% 20% 30% 40% Avg.
OLS-AVG 4.641 + 0.664 4.876 + 0.948 5.607 + 1.349 6.199 + 1.443 6.797 + 2.822 5.624 £ 1.445

RLHH-AVG 3.994 + 0.002 3.998 + 0.003 4.092 + 0.290 28.788 +47.322 30.414 + 35.719 14.257 + 16.667
RACT-AVG 3.994 + 0.002 3.997 + 0.041 4.079 = 0.470 25.502 + 42.743 27.485 + 33.428 13.011 £ 15.329

SPRL 5.012 + 0.351 5.571 £ 0.528 5.627 + 0.839 5.912 + 0.641 5.803 + 0.423 6.084 + 0.593
OPAA 150.668 + 52.344 209.298 + 124.058 113.267 + 44.270 121.880 + 55.938 146.425 + 104.995 || 148.308 + 76.321
ORL-H 6.819 & 0.045 6.745 + 0.039 6.667 + 0.084 6.619 + 0.300 6.317 + 0.394 6.633 +0.172
ORL* 6.257 £ 0.497 6.303 + 0.304 6.415 + 0.172 6.308 + 0.377 6.186 + 0.531 6.294 + 0.376
DRLR 3.995 + 0.005 3.999 + 0.008 3.993 + 0.003 4.837 + 1.108 6.336 + 2.388 4.632 + 0.702
ORLR 3.997 £+ 0.008 3.999 + 0.009 3.994 + 0.004 4.466 + 1.141 5.802 + 1.990 4.452 + 0.630

Bold indicates the best performance among all methods.

Running Time(s)
Running Time(s)
Running Time(s)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 2 4 6 8
Corruption Ratio Data Size Per Batch(K)

(a) p=200, n=5K, b=10, no dense noise (b) p=100, cr=0.4, b=10, dense noise (c) p=100, cr=0.4, n=5K, dense noise

10

Fig. 5. Running time for different corruption ratios and data sizes.

6.7 Result of Rental Price Prediction

To evaluate the robustness of our proposed methods in a real-world dataset, we compared the
performance of rental price prediction in different corruption settings, ranging from 5% to 40%.
The additional corruption was sampled from the uniform distribution [—0.5|y;|, 0.5|y;|], where
ly;| represents the absolute price value of the ith sample data. Table 5 shows the MAE of rental
price prediction and its corresponding standard deviation from 10 runs in the New York City and Los
Angeles datasets. From the result, we can conclude: (1) The DRLR and ORLR methods outperform
all the other methods in different corruption settings except when the corruption ratio is less than
10%. (2) The RLHH-AVG method performs the best when the corruption ratio is less than or equal
to 10%. However, as the corruption ratio rises, the error increases dramatically because some mini-
batches are entirely corrupted. (3) The OLS-AVG method has a very competitive performance in
all the corruption settings because the deviation of sampled corruption is small, which is less than
50% from the labeled data. (4) SPRL performs almost two times worse than ORLR because it is
affected by the corrupted data contained in the first mini-batch.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

41:22 S. Lei et al.

6.8 Efficiency

To evaluate the efficiency of our proposed method, we compared the performance of all the compet-
ing methods for three different data settings: different corruption ratios, data sizes per mini-batch,
and batch numbers. In general, as Figure 5 shows, we can conclude: (1) The OPAA method outper-
forms the other methods in the three different settings because it does not consider the robustness
of the data. Also, the ORL-H and ORL” methods have performed similarly to OPAA method, as
they use fixed corruption ratios without taking additional steps to estimate the corruption ratio.
(2) The DRLR and ORLR methods have very competitive performance even though they take addi-
tional corruption estimation and robust consolidation steps for each mini-batch. Moreover, with
increases of the corruption ratio, data size per batch, and batch number, the running time of both
the DRLR and ORLR methods increases linearly, which is an important characteristic for the two
methods to be extended to a large scale problem. (3) Our methods outperform the RLHH method
although it only estimates the corruption for each mini-batch but ignores the overall robustness,
which indicates that the corruption estimation step in our method performs more efficiently than
that in RLHH. (4) The running time for SPRL increases dramatically when the data size or batch
number increases, which means our methods are more efficient than the self-paced-learning ap-
proach.

7 CONCLUSION

In this article, distributed and two online robust regression algorithms, DRLR, ORLR, and ORLR-BC,
are proposed to handle the scalable least-squares regression problem in the presence of extremely
noisy labels. To achieve this, we proposed a heuristic hard thresholding method to estimate the
corruption set for each mini-batch and designed both online and distributed robust consolidation
methods to ensure the overall robustness. We demonstrate that our algorithms can yield a con-
stant upper bound on the coeflicient recovery error of state-of-the-art robust regression methods.
Extensive experiments on both synthetic data and real-world rental price data demonstrated that
the proposed algorithms outperform the effectiveness of other comparable methods with compet-
itive efficiency.

REFERENCES

[1] Jean-Yves Audibert and Olivier Catoni. 2011. Robust linear least squares regression. The Annals of Statistics 39, 5 (2011),
2766-2794.

[2] Markus Baldauf and J. M. C. Santos Silva. 2012. On the use of robust regression in econometrics. Economics Letters
114, 1 (2012), 124-127.

[3] Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. 2013. Robust solutions
of optimization problems affected by uncertain probabilities. Management Science 59, 2 (2013), 341-357.

[4] Kush Bhatia, Prateek Jain, and Purushottam Kar. 2015. Robust regression via hard thresholding. In Proceedings of the
28th International Conference on Neural Information Processing Systems. 721-729.

[5] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011. Distributed optimization and statis-
tical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning 3, 1
(2011), 1-122.

[6] Yudong Chen and Constantine Caramanis. 2013. Noisy and missing data regression: Distribution-oblivious support
recovery. In Proceedings of the 30th International Conference on International Conference on Machine Learning. PMLR,
383-391.

[7] Yudong Chen, Constantine Caramanis, and Shie Mannor. 2013. Robust sparse regression under adversarial corruption.
In Proceedings of the 30th International Conference on Machine Learning. PMLR, 774-782.

[8] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. 2006. Online passive-aggressive
algorithms. Journal of Machine Learning Research 7, Mar (2006), 551-585.

[9] C.Cromvik and M. Patriksson. 2010. On the robustness of global optima and stationary solutions to stochastic math-
ematical programs with equilibrium constraints, Part 1: Theory. Journal of Optimization Theory and Applications 144,
3(2010), 461-478.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

Online and Distributed Robust Regressions with Extremely Noisy Labels 41:23

[10] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Communications
of the ACM 51, 1 (2008), 107-113.

[11] Erick Delage and Yinyu Ye. 2010. Distributionally robust optimization under moment uncertainty with application to
data-driven problems. Operations Research 58, 3 (2010), 595-612. DOI : https://doi.org/10.1287/opre.1090.0741

[12] Xuan Vinh Doan, Serge Kruk, and Henry Wolkowicz. 2012. A robust algorithm for semidefinite programming. Opti-
mization Methods and Software 27, 4-5 (2012), 667-693.

[13] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research 12, Jul (2011), 2121-2159.

[14] Jitka Dupacova and Milo§ Kopa. 2012. Robustness in stochastic programs with risk constraints. Annals of Operations
Research 200, 1 (2012), 55-74.

[15] Yaakov Engel, Shie Mannor, and Ron Meir. 2004. The kernel recursive least-squares algorithm. IEEE Transactions on
Signal Processing 52, 8 (2004), 2275-2285.

[16] Jiashi Feng, Huan Xu, and Shie Mannor. 2017. Outlier robust online learning. arXiv:1701.00251. Retrieved from http:
//arxiv.org/abs/1701.00251.

[17] Chao Huang, Baoxu Shi, Xuchao Zhang, Xian Wu, and Nitesh V. Chawla. 2019. Similarity-aware network embed-
ding with self-paced learning. In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management. 2113-2116.

[18] Chao Huang, Xian Wu, Xuchao Zhang, Chuxu Zhang, Jiashu Zhao, Dawei Yin, and Nitesh V. Chawla. 2019. Online pur-
chase prediction via multi-scale modeling of behavior dynamics. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2613-2622.

[19] Seong-Cheol Kang, Theodora S. Brisimi, and Ioannis Ch Paschalidis. 2015. Distribution-dependent robust linear opti-
mization with applications to inventory control. Annals of Operations Research 231, 1 (2015), 229-263.

[20] Po-Ling Loh and Martin J. Wainwright. 2011. High-dimensional regression with noisy and missing data: Provable
guarantees with non-convexity. In Proceedings of the 24th International Conference on Neural Information Processing
Systems. 2726-2734.

[21] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. 2010. Online learning for matrix factorization and
sparse coding. Journal of Machine Learning Research 11, Jan (2010), 19-60.

[22] R. A.R. D. Maronna, R. Douglas Martin, and Victor Yohai. 2006. Robust Statistics. John Wiley & Sons, Chichester.

[23] G.Mateos, J. A. Bazerque, and G. B. Giannakis. 2010. Distributed sparse linear regression. IEEE Transactions on Signal
Processing 58, 10 (Oct 2010), 5262-5276. DOI : https://doi.org/10.1109/TSP.2010.2055862

[24] Brian McWilliams, Gabriel Krummenacher, Mario Lucic, and Joachim M. Buhmann. 2014. Fast and robust least squares
estimation in corrupted linear models. In Proceedings of the 27th International Conference on Neural Information Pro-
cessing Systems. 415-423.

[25] Nam H. Nguyen and Trac D. Tran. 2013. Exact recoverability from dense corrupted observations via L1-Minimization.
IEEE Transactions on Information Theory 59, 4 (2013), 2017-2035.

[26] Mathieu Rosenbaum and Alexandre B. Tsybakov. 2010. Sparse recovery under matrix uncertainty. The Annals of Sta-
tistics 38, 5 (2010), 2620-2651.

[27] Peter J. Rousseeuw and Annick M. Leroy. 2005. Robust Regression and Outlier Detection. Vol. 589, John Wiley & Sons.

[28] B.Saltzberg. 1967. Performance of an efficient parallel data transmission system. IEEE Transactions on Communication

Technology 15, 6 (1967), 805-811.

Shekhar Sharma, Swanand Khare, and Biao Huang. 2016. Robust online algorithm for adaptive linear regression param-

eter estimation and prediction. Journal of Chemometrics 30, 6 (2016), 308-323. DOI : https://doi.org/10.1002/cem.2792

[30] Yiyuan She and Art B. Owen. 2011. Outlier detection using nonconvex penalized regression. Journal of the American
Statistical Association 106, 494 (2011), 626-639. Retrieved from http://www.jstor.org/stable/41416397.

[31] John Wright and Yi Ma. 2010. Dense error correction via L1-minimization. I[EEE Transactions on Information Theory
56, 7 (July 2010), 3540-3560. DOI : https://doi.org/10.1109/TIT.2010.2048473

[32] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele Zorzi. 2014. Internet of things for
smart cities. IEEE Internet of Things Journal 1, 1 (2014), 22-32.

[33] Xuchao Zhang, Yifeng Gao, Jessica Lin, and Chang-Tien Lu. 2020. Tapnet: Multivariate time series classification with
attentional prototypical network. In Proceedings of the AAAI Conference on Artificial Intelligence. 6845-6852.

[34] Xuchao Zhang, Shuo Lei, Liang Zhao, Arnold Boedihardjo, and Chang-Tien Lu. 2018. Robust regression via online
feature selection under adversarial data corruption. In Proceedings of the 2018 IEEE International Conference on Data
Mining. IEEE, 1440-1445.

[35] Xuchao Zhang, Shuo Lei, Liang Zhao, Arnold P. Boedihardjo, and Chang-Tien Lu. 2019. Robust regression via heuristic
corruption thresholding and its adaptive estimation variation. ACM Transactions on Knowledge Discovery from Data
13,3 (2019), 1-22.

[29

—

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

https://doi.org/10.1287/opre.1090.0741
http://arxiv.org/abs/1701.00251
https://doi.org/10.1109/TSP.2010.2055862
https://doi.org/10.1002/cem.2792
http://www.jstor.org/stable/41416397
https://doi.org/10.1109/TIT.2010.2048473

41:24 S. Lei et al.

[36] Xuchao Zhang, Xian Wu, Fanglan Chen, Liang Zhao, and Chang-Tien Lu. 2020. Self-paced robust learning for lever-
aging clean labels in noisy data. In Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34, 6853-6860.

[37] Xuchao Zhang, Liang Zhao, Arnold P. Boedihardjo, and Chang-Tien Lu. 2017. Online and distributed robust regres-
sions under adversarial data corruption. In Proceedings of the 2017 IEEE International Conference on Data Mining.
625-634. DOI: https://doi.org/10.1109/ICDM.2017.72

[38] Xuchao Zhang, Liang Zhao, Arnold P. Boedihardjo, and Chang-Tien Lu. 2017. Online and distributed robust regres-
sions under adversarial data corruption. In Proceedings of the 2017 IEEE International Conference on Data Mining.
625-634.

[39] Xuchao Zhang, Liang Zhao, Arnold P. Boedihardjo, and Chang-Tien Lu. 2017. Robust regression via heuristic hard
thresholding. In Proceedings of the 26th International Joint Conference on Artificial Intelligence . AAAL Retrieved from
http://dl.acm.org/citation.cfm?id=3060832.3060872.

[40] A. M. Zoubir, V. Koivunen, Y. Chakhchoukh, and M. Muma. 2012. Robust estimation in signal processing: A tutorial-
style treatment of fundamental concepts. IEEE Signal Processing Magazine 29, 4 (July 2012), 61-80. DOI : https://doi.
org/10.1109/MSP.2012.2183773

Received October 2020; revised April 2021; accepted June 2021

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 41. Publication date: October 2021.

https://doi.org/10.1109/ICDM.2017.72
http://dl.acm.org/citation.cfm?id=3060832.3060872
https://doi.org/10.1109/MSP.2012.2183773

