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ABSTRACT

Spatial networks represent crucial data structures where the nodes
and edges are embedded in a geometric space. Nowadays, spatial
network data is becoming increasingly popular and important, rang-
ing from microscale (e.g., protein structures), to middle-scale (e.g.,
biological neural networks), to macro-scale (e.g., mobility networks).
Although, modeling and understanding the generative process of
spatial networks are very important, they remain largely under-
explored due to the significant challenges in automatically modeling
and distinguishing the independency and correlation among vari-
ous spatial and network factors. To address these challenges, we
first propose a novel objective for joint spatial-network disentan-
glement from the perspective of information bottleneck as well as a
novel optimization algorithm to optimize the intractable objective.
Based on this, a spatial-network variational autoencoder (SND-
VAE) with a new spatial-network message passing neural network
(S-MPNN) is proposed to discover the independent and dependent
latent factors of spatial and networks. Qualitative and quantitative
experiments on both synthetic and real-world datasets demonstrate
the superiority of the proposed model over the state-of-the-arts by
up to 66.9% for graph generation and 37.3% for interpretability.
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Figure 1: Spatial networks contain not only network and spatial in-
formation but also information describing their close interactions.
The three real-world examples of spatial networks show the dif-
ferent patterns needed for different spatial networks: (1) a protein
tertiary structure graph is invariant to the rotation in a geometric
space; (2) two cities’ absolute locations indicate key spatial hetero-
geneity information in their mobility networks; and (3) people who
live nearer are more likely to be friend in social networks.
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1 INTRODUCTION

Spatial and network data are both popular types of high-dimensional
complex data that are being used in a wide variety of applications
in the big data era. The study of spatial data usually focuses on the
properties of continuous spatial entities under specific geometric
patterns (Fig. 1(a)), while the analysis of network data concentrates
on the properties of discrete objects and their pairwise relation-
ships (Fig. 1(b)). Spanning these two data types, spatial networks
represent a crucial data structure where the nodes and edges are em-
bedded in a geometric space (Fig. 1 (c)). Nowadays, spatial network
data is becoming increasingly popular and important, ranging from
micro-scale (e.g., protein structures), to middle-scale (e.g., biological
neural networks), to macro-scale (e.g., mobility networks). Spatial
networks cannot be modeled using either spatial or network infor-
mation individually, but require the simultaneous characterization
of both the data and their interactions, which results in various
patterns [5]. For example, a protein structure can be formalized as
a spatial network with patterns that are invariant to rotation and
translation. But in a mobility network, the absolute locations of the
nodes are meaningful to indicate spatial heterogeneity for different
nodes (e.g., cities) of networks, as shown in Fig. 1(d). Moreover, the
interactions between the patterns of network topology and spatial
features are also very important, as shown in the example of a social
network in Fig. 1(d), where the edge formation can be dependent
on the geodesic distance.
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(b) Variation of two dependent semantic factors of spatial/network (e.g.,
density of network/distance between nodes increase as human grows)
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(c) Variation of a semantic factor of network (e.
changes for different functional tasks)

Figure 2: Visualizing the variations of three groups of semantic
factors of (1) spatial, (2) spatial network, and (3) network for the
spatial network example of brain network.

Modeling and understanding the generative process of spatial
networks are vital for a wide variety of important applications,
such as protein structure generative modeling [3, 18, 39], biologi-
cal neural nets [1], and mobility network analysis [24]. Until now,
the commonly-used models extend graph theory into spatial net-
works [5], resulting in models such as geometric graphs [38] and
spatial small-world graphs [28]. These typically rely on a set of
network generation principles predefined by human heuristics and
knowledge. Such methods usually fit the properties that have been
covered by the predefined principles very well, but are not as effec-
tive for those that have not been. Unfortunately, in many domains,
the network properties and generation principles remain largely
unknown, such as models that explain the mechanisms of mental
diseases in brain networks like functional connectivity [1] and pro-
tein structure folding. This motivates us to find ways to directly
learn the underlying spatial and graph-structure distribution pat-
terns from the data without the needs to predefine the generation
rules manually.

Recent advanced deep generative models, such as variational
auto-encoders (VAE) [31], have made important progress towards
modeling and understanding complex data, such as spatial data
(e.g., point clouds) and graph data (e.g., molecules). The goal here
is to first learn the underlying (low-dimensional) distribution of
the objects and then generate the data by sampling this learned
distribution. Despite many deep generative models that have been
proposed for dealing with either spatial data or graph data individu-
ally, as yet the deep generative models for spatial networks remain
to be explored which cannot be handled by existing techniques
due to several significant challenges: (1) Difficulty in capturing
and separating various types of semantic factors: There are
three groups of semantic factors to be captured: one is related to
spatial information that is independent from networks, such as the
rotation of the brain network, as shown in Fig. 2(a); one is related to
network information that is independent from spatial information,
such as functional connectivity of brain network when people are
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doing different tasks, shown in Fig. 2(c); and one contains the se-
mantic factors spanning both spatial and network dimensions that
encompass the interactions between geometry and networks, such
as the joint changes of size, shape, and connectivity of human brain
network when growing, shown in Fig. 2(b). (2) Difficulty in cap-
turing the distribution that models the interaction between
spatial and networks: it is often necessary to capture the com-
plex and various interaction patterns between spatial and network
dimensions. For example, network features like friendship between
two people may have mutual correlation with their spatial loca-
tions. Many real-world networks are planar which require that their
edges do not cross in a plane. How to jointly learn the shared latent
dimensions for both the continuous-valued spatial information and
discrete-valued graph information is extremely challenging. (3) Dif-
ficulty in preserving all the information in spatial networks.
As illustrated in Fig. 1, spatial network generative models are re-
quired to capture all the information available in spatial, network,
and their joint dimensions. For example, both rotation invariant
and rotation variant properties need to be modeled. Similarly, both
transformation invariant and variant properties need also be char-
acterized. Graph-structured information and their interaction with
spatial information need also be covered in the model. This not only
challenges the spatial network encoder and decoder, but also call
for effective strategies in optimizing the information bottlenecks.
To address all the above challenges, here we for the first time
propose a novel disentangled deep generative model for spatial
networks. Specifically, a novel objective for spatial-network joint
disentanglement is derived and proposed based on the variational
autoencoder (VAE) from the perspective of an information bottle-
neck. To optimize the intractable objective, a novel Spatial-Network

Disentangled Variational Auto-encoder (SND-VAE) model is pro-

posed to discover the independent and dependent latent factors

of spatial and networks. To deal with the information bottlenecks
affecting spatial, network, and spatial-network-joint factors, a novel
optimization strategy is proposed with a theoretical analysis. Finally,

a new spatial-network message passing neural network (S-MPNN)

is proposed that is capable of both learning the spatial-network

joint embedding and preserving geometric graph information. The
contributions of this paper are summarized as follows:

e Anovel spatial network generative model and its learning
objective are proposed. The proposed model learning objective
is derived from the perspective of the information bottleneck and
are able to capture three semantic factors including that merely
explaining spatial patterns, merely explaining network patterns,
and the one that spans spatial-network-joint patterns.

e A novel spatial network generative model inference algo-
rithm is proposed with theoretical guarantees. To optimize
the information bottlenecks for spatial, network, and spatial-
network-joint semantic factors, a model inference algorithm
with a two-loop optimization strategy is proposed.

e A new spatial network message passing neural network
is proposed. The proposed spatial message passing neural net-
works conduct the two/three-order message transmissions fea-
tured by angle and dihedral distances for 2D/3D spatial networks.

e Comprehensive experiments were conducted. Qualitative
and quantitative experiments on two synthetic and two real-
world datasets demonstrate that SND-VAE and its extensive
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models are indeed capable of learning disentangled factors for
different types of spatial networks.

2 RELATED WORKS

Deep Generative Models on Network Data. Graph generation
involves learning the distributions of given graphs and gener-
ating more novel graphs. Most of the existing deep generative
models for network/graph data are based on variational autoen-
coders(VAE) [16, 21, 41], generative adversarial nets (GANs) [19],
and others [20]. For example, graphRNN builds an auto-regressive
generative model on these sequences utilizing LSTM model [47];
while graphVAE [41] represents each graph in terms of its adjacent
matrix and feature vector and utilizes the VAE model to learn the
distribution of the graphs conditioned on a latent representation at
the graph level. Graphite [16] encode the nodes of each graph into
node-level embedding and predict the links between each pair of
nodes to generate a graph. However, these existing graph genera-
tion methods do not consider the geometry space of the network
during the generation process.

Deep Generative Models on Spatial Data. State-of-the-art
deep learning methods have shown a remarkable capacity to model
complex spatial data, including 3D objects [15, 32, 42, 48], and
geospatial data [29]. Generative models of 3D objects exists in
a variety of forms, including ordered [36] and unordered point
clouds [4, 42], voxels [12], and manifolds [37, 40]. As deep graph
convolution continues to develop, several groups have begun to
extend the applications of graph neural network into the generation
of 3D objects [43]. Most of these methods construct the nearest
neighbor graphs from the 3D point clouds thus transforming the
point cloud generation problem into a graph generation problem.

Spatial Graph Convolution Neural Networks. Graph neural
networks (GNNS) are currently attracting considerable attention
in multiple domains. Recently, to accommodate both graph con-
stitution and graph geometry, there have been efforts to extend
GNNss by incorporating 3D/2D node coordinates in graph convo-
lutions [13, 25, 30, 44, 46]. One line of inquiry treats the spatial
information of the nodes as node features and then conducts the
spatial graph convolution via a conventional GNN [44, 46], which,
however, are not invariant to graph rotation and translation. An-
other approach that has been proposed utilizes the mutual distances
to store geometric information, with some being domain-specific.
For example, Klicpera et al [30] proposed a 2D geometry graph
convolution for molecular representations that used the directional
information by transforming messages based on the angles between
edges. Some works are generic [9, 11] only considering the adjacent
nodes in describing the 3D/2D structure without considering the
and angles dihedrals that feature the geometry of nodes.

Disentanglement Representation Learning. Disentangled
representation learning has gained considerable attention, in partic-
ular in the field of image representation learning [2, 10, 17, 23, 26].
The goal here is to learn representations that separate out the un-
derlying explanatory factors responsible for variations in the data.
Such representations have been shown to be relatively resilient
to the complex variants involved [6], and can be used to enhance
generalizability as well as improve robustness against adversarial
attack [2]. This has prompted a number of approaches that modify

507

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

the VAE objective by adding, removing, or altering the weight of in-
dividual terms in the task of interpretable data generation [10, 26].
Disentanglement representation and generation on spatial data
have been explored recently in the domain of point clouds [4, 42],
mesh [15, 32] and manifolds [37, 40]. Meanwhile, the exploration
of the interpretable representation learning of graphs, which ex-
pose the semantic factors of nodes and edges is also starting to
bear fruit [14, 22, 34]. However, learning representations that dis-
entangle the latent factors of a spatial network remains largely
unexplored.

3 METHODOLOGY

In this section, the problem formulation is first provided before
moving on to derive the overall objective from the perspective of
the information bottleneck, following which a novel optimization
algorithm to optimize the intractable proposed objective is proposed.
Finally, the overall architecture as well as the novel spatial network
message passing operations are introduced.

3.1 Problem Formulation

Define an input spatial network as X = (S, G), where S = (V, L)
represents the geometric information of the set of nodes V. L €
RN*% or L € RN denote to the 2D/3D geometric coordinates
of nodes, respectively. N refers to the number of nodes. G =
(V, &, F, E) refers to a network [5], where £ € V X V is the set of
edges. E € RN*N

the topology. F € RN denote to the node feature and f is the
length of each node feature vector. It is worth noting that the spa-
tial information S cannot be simply represented as a node feature
in the network since this form of representation can not capture
the patterns that are invariant to rotation and translation of the
network in the geometric space.

The goal of learning disentangled generative models for a spa-
tial network is to learn the conditional distribution p(S, G|Z) of
the spatial network (S, G) given three groups of generative latent
variables Z = (z5 € ]RLI,zg € RLz,ng € RLS), where Ly, Ly, and
Ls are the number of variables in each group, in order to captures
the three types of semantic factors. Specifically, zs is required to
capture just the independent spatial semantic factors; z, is required
to capture just the independent network factors; and zgg is required
to capture just the correlated spatial and network factors. Three
challenges must be overcome to achieve this goal: (1) The lack of a
co-decoder for the generation of a spatial network that is capable
of jointly generating both the spatial and network data; (2) the diffi-
culty of capturing the joint patterns of spatial and network, which
exposes the correlated spatial and network semantic factors; and
(3) the difficulty of enforcing the structured latent representations
that separate the independent and dependent semantic factors of
the spatial and network data.

refers to the edge weights or adjacent matrix of

3.2 The objective on spatial graphs generation

3.2.1 The derivation of the overall objective. As defined in the prob-
lem formulation, the goal here is to learn the conditional distribu-
tion of X given Z, namely, to maximize the marginal likelihood of
the observed spatial network X in expectation over the distribution
of the latent variable set (z, zg, 25¢) as Ep,(2) (po(X|zs, 2, 254))-
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For a given observation of spatial network X = (S, G), we describe
the prior distribution of the latent representation as p(zs, zg, zsg),
which, however, is intractable to infer. We propose solving it based
on variational inference, where the posterior needs to be approx-
imated by another distribution g (zs, zg, 254 |G, S). So, the goal is
also to minimize the Kullback-Leibler (KL) divergence between the
true prior and the approximate posteriors. In order to encourage
this disentangling property of gy (zs, 2, z54|G, S), we introduce a
constraint by trying to match the inferred posterior configurations
of the latent factors to the prior p(zs, zg, 2s4). This can be achieved
if we set each prior to be an isotropic unit Gaussian, i.e.,A’(0, 1),
leading to the constrained optimization problem as:

IB?/)X ES,G~D[Eq¢(Z|S,G)logPG(Gs Slzs, Zgs ng)]

5

(1)

s.t. ES,G~D[DKL(‘](/> (ZS)Zg) ngls,G)Hp(Zs, Zgs ng)] <lI

where D refers to the observed dataset of the spatial networks.
First, we decompose the main objective term based on the as-
sumption that S L G|(zs,zg,259) and S L z5 and G L z, (since z
only captures information on S and z4 only captures information
on G), where L indicates an independent relationship. We then
obtain:
Ieqb(le,G) [log po(G, S|z, Zg ng)]
= I['quﬁ(ZlS,G) [log po(G|zs. Zgs ng) +log po(S|zs. Zg ng)]

= Eq¢(Z|S,G)[10gP9(G|Zg)ng) +log pg(S|zs, ng)l

2

Next, we decompose the constraint term based on the assumption
that p(z,), p(z4), and p(zs4) are independent given S and G as:

S,G).  (3)

Py (25 Zg, ng|5, G) = p(ﬁ(zs |S)P¢ (Zg |G)P¢ (ng

Then the objective is written as:
Hgl?/yx I[*:S,G~DE<M,(Z|S,G) [log po(G |Zg) Zsg) + log po(Slzs, ng)]

Es~p[Drr(qg(zs19)]1p(25)] < I.
EG~p[Dkr(q¢(241G)|1p(24)] < Iy
ES,G~D[DKL(q¢(ng|SaG)||P(ng):| < Isg,

where we decompose I into three separate parts of the informa-
tion capacity to control each group of latent variables, so that the
variables inside each group of latent variables are disentangled.
As stated in the problem formulation, the latent zg should capture
just the independent spatial factors and zg4 should capture just the
correlated spatial/graph factors. However, the above objective only
ensures that zg, captures all the correlated spatial/graph factors, and
cannot enforce z; captures all the independent spatial factors, which
means that there is a chance that some of the independent spatial
factors can also be captured by zs,. Similarly, there is a chance that
some of independent graph factors can also be captured by zg.
To address this issue, we first interpret the constraints based on
the information bottleneck theory, as stated by Burgess et al.[8].
The posterior distribution gg(zs|S) and gg(zs4|S,G) are inter-
preted as an information bottleneck for the reconstruction task
Eq¢(z|x)logp9(5|zs, 2sg). Similarly, g (24| G) and g4 (254 S, G) are
interpreted as the information bottleneck for the reconstruction task
Eq,(z|x)l0ogpo(G|zg, zs4). We then propose that, by constraining
the information flow through zg, to be less than the maximum in-
formation (entropy) Csq of the correlated factors, namely Is; < Cgg,

s.t.
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the latent zgy will only capture information on correlated factors
when well-optimized. Thus, the final objective is expressed as:

max Es.G~pEqy(7|6)[logpe(Glzg, z54) + logpe(Szs. z54)]

s.t. ]E5~D|:DKL(Q</J (zsI9)1p(2s)] < I,
EG~p[Dxr(q¢(241G)||p(24)] < Iy,
ESG~D[DKL(q¢(ZSg S, G)l |P(ng)] < Isg,
Isg = Cyq

The above objective is derived based on the concept that by
constraining the information flow through zy, to be less than the
maximum information (entropy) of the correlated semantic factors,
the latent zg; will only capture information on correlated factors
when well-optimized. Thus, the independent semantic factors of
spatial and network will be forced into zs and zy, as the following
theorem which is proved in Appendix A.

)

THEOREM 1. Given that (1) I; and I, are large enough to contain
the information on the independent graph and spatial factors, and (2)
Isg < Csq. hence to achieve the maximum objective, the information
captured by zsy needs to be all on the correlated semantic factors.

Algorithm 1 Two-loop Optimization for SND-VAE

Input: The initialized parameter set WV; the initialized Iyy, = 0 (I54 ¢
W); the increase step y for optimizing Is; the max value Cpqx as stop
criterion; the number of epochs P of optimization for each updated Ig.

Output: The optimized parameter set VW.
while I < Cpy0x do

for epoch =1: P do
Compute the gradient of VW via Back Propagation.
Update WV based on gradient with I fixed.
end for
Ly :=Isg +y
end while

3.3 Optimization Strategy

To optimize the overall objective, we transform the inequality con-
straint into an tractable formulation. Given that I; and I are con-
stants, the first two constraints in Eq. 4 are rewritten based on the
Lagrangian algorithm under KKT condition [35] as:

R = PiDir(qg(zs1)|p(2s) + B2Dk1(99 (291G p(2g).  (5)
where the Lagrangian multipliers f; and f; is the regularization
coefficients that constrains the capacity of the latent information
channels z; and z,, respectively, and puts implicit independence
pressure on the learned posterior.

In the third constraint, Isg is a trainable parameter since the
fourth constraint requires that Iy; < Cgy. Thus, it can be rewritten
as a Lagrangian under the KKT condition as:

Rz = B3(Drr(qg(zs4|S, G)I1p(zsg)) = Isg)-
Thus, the overall objective is formalized as:

(6)

r{01%/)7(]}-?15,G~D [Eq¢(Z|G)[10gp9(G|Zg, ng) + 10§P9(5|25) zsg)] -Ri-R

st Isg < Cgg
Since Csq is unknown, it is hard to optimize this objective. To deal
with this, we introduce a novel optimization strategy that utilizes a
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(a) Architecture of SND-VAE
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Figure 3: The proposed SND-VAE: (a) The overall architecture, which consists of a spatial encoder, a network encoder and a spatial network
encoder, as well as a spatial decoder and a network decoder; (b) The S-MPNN; (c) the message passing operations for 2D S-MPNN in the
spatial-network encoder; (d) the message passing operations for 3D S-MPNN in the spatial-network encoder.

two-loop optimization strategy: one loop is for the optimization of
Isg, and the other loop is for the optimization of the model, as shown
in Algorithm 1. We propose to gradually increase Iy, by y every P
epoch, until it reaches Cy;, 4y, where Cy,, 4y is a hyper-parameter.

The most important advantage of the proposed model is that
the optimization result is not sensitive to Cp,qy for the following
reasons: (1) if  Cax < Csg, we have Iy < Csg, where the con-
straint is satisfied; and (2) if =~ Cqx > Csy, during the optimization
process where Is; < Cgg, all the correlated spatial and network
information will flow into zg and 24, respectively, based on Theo-
rem 1. During the optimization process where Is; > Csq, though
the condition of Theorem 1 is no longer met, it is proved that fur-
ther increasing the value of Iy will not change the assignment of
information on each latent representation, as defined in Theorem 2,
which is proved in Appendix C.

THEOREM 2. During training process, if (1) zs and z; have captured
the information of all the independent semantic factors of spatial and
network respectively, and (2) zsy captured all the correlated semantic
factors of spatial and network, increasing the value of Iy will not
change the information assignment of independent semantic factors
of spatial and network, and correlated semantic factors of spatial
network to the zs, z; and zsg.

3.4 Spatial Network Encoders and Decoders

Based on the above inference for the objective, we are proposing
our new Spatial-Network Disentangled VAE model (SND-VAE). In
addition, to capture the correlated semantic factors within the spa-
tial and network information, we propose a novel spatial network
message passing neural network (S-MPNN) as one component in
SND-VAE. Both will be described in detail in this section.

3.4.1 Architecture of SND-VAE. The architecture of the proposed
model is shown in Fig. 3. The overall framework is based on a
conventional VAE, where encoders learn the mean and standard
deviation of the latent representation of the input and the decoder
decodes the sampled latent representation vector to reconstruct
the input. The proposed framework has three encoders, each of
which models one of the distributions g4(2s|S), q¢(24|G), and
44 (25415, G); and two novel decoders to model pg(G|zy, z54) and
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P6(S|zs, z54), that jointly generate the graph and spatial based on
the three types of latent representations. Each type of represen-
tations is sampled using its own inferenced mean and standard
derivation. For example, the representation vectors zg are sampled
as z; = 5 +5 *€, where € follows a standard normal distribution.
There are three encoders and two decoders in the overall archi-
tecture (shown in Fig. 3(a)). Specifically, for the spatial encoder, we
utilize a convolution neural network. For the graph encoder, we
utilize the typical graph convolution neural network [27]. For the
spatial-network encoder, we propose a novel Spatial-Network Mes-
sage Passing Neural Network (S-MPNN) (shown in Fig. 3(b)) which
is detailed in the following. For the spatial decoder, we utilize the
typical convolution neural network. For the graph decoder, we uti-
lize a similar graph decoder to that proposed in NED-VAE [19]. The
details of all the encoders and decoders are provided in Appendix D.

3.4.2  S-MPNN for 2D Graphs. In this section, we introduce the
S-MPNN for the 2-D spatial network by first introducing a novel
expression of geometry information of spatial network and then
the two-order message passing layers of S-MPNN.

Expression of 2D geometry information. Normally, the ge-
ometry of 2-D graphs is specified in terms of the Cartesian coordi-
nates of nodes, but doing so means that the specification depends on
the (arbitrary) choice of origin and is thus too general for specifying
a geometry that is invariant to both the rotation and translations in
the graph. Thus, we propose to representing the spatial information
by the distances between all pairs of nodes and the angles between
all pair of edges. Specifically, we first define the edge distance as
the distance between two nodes connected together and the angle
as the angle formed between three nodes across two edges, as illus-
trated by . j ; in Fig. 3(c). To adopts a unified scheme (distance)
and reflects pairwise node interactions and their generally local
nature, we introduce the angle distances to represent angles in
the spatial network. The angle distance (e.g., d. j ;) is the distance
between the end nodes of an angle (e.g., a. j ;).

Two-order Message Passing. The key point for message pass-
ing operation is to define which nodes will influence and can pass
messages to the target node. For each node in 2D graphs, its geom-
etry information will be featured or determined not only by its first
order neighbors, but also by its second order neighbors, as well as
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the angle distance between its first and the relevant second order
neighbors. For example, as shown in Fig. 3 (c), the connectivity and
geometry of target node v; can be described at least by its first-order
neighboring node v, second order neighboring nodes vy as well

as the angle distances dk ¢. Thus, the message passing process at
each layer for each node in 2D spatial network involves three steps:
(1) the second-order nodes transmit the message into the first-order
nodes carrying the angle distances information; (2) the first-order
nodes collect all the received messages and transmit them to the
target node; and (3) the embedding of target node is updated based
on the messages. The detailed operations are shown as follows.
First, featured by its relevant angle distance, each second-order

(I+1

message (e.g., my_ . ; i ) is flown from a second-order neighbor (e.g.,
node ) to its relevant first-order neighbor (e.g., node v;) regarding
the target node (e.g., v;) at the (I + 1)-th layer as:

(1+1)

edge
mk,j,l

angle

= M(KL B B d550€, a9,

™

where hg refers to the latent embedding of node i at the I-th layer,

E; j refers to the edge weights (if applicable) of edge e; ;. dzfiig ¢

refers to the distance between node vy and v;.
Next, based on the messages from all the second neighbors,

(I1+1)

the first-order message (e.g., m; ; ') is flown from the first-order
neighbor (e.g., node v;) to the target node (e.g., v;) as:

edge
= O W di5 ™) iy

At last, after calculating the first-order messages passing onto
the target node, the embedding of target node v; is updated as:

(l+1) (1+1

mk]t

®)

(I+1) (l+1)
Y = Uy )- ©
The functions M(+), O(-) and U(-) can be implemented by the
Multi-Later Perceptions (MLPs).

3.4.3 S-MPNN for 3D Graphs. Here we introduce the the S-MPNN
for the 3-D spatial network by first introducing a novel expression
of geometry information of 3D spatial network and then a three-
order message passing layer.

Expression of 3D geometry information Compared to 2D
spatial network, the geometry of a 3D graph is fully specified not
only with edge and angles distances, but also dihedral distance. A
dihedral is the angle between the plane formed by the target node
v}, its first-order neighbor v; and its second-order neighbor vy, and
the plane formed by its ﬁrst order neighbor v}, the second-order
neighbor vy and the third-order neighbor v,,. Thus, the dihedral
distance is to represent dihedral in the spatial graph and denotes
the distance between the target node v; and its third-order neighbor

0p. as illustrated by d % in Fig. 3 (d).

Three-order Message Passing. For each target node v; in 3D
spatial networks, its connectivity and geometry will be featured not
only by its first and second order neighbors, but also the relevant
angle and dihedral distances, as shown in Fig. 3 (d). Thus, the
message passing process of 3D spatial network involves four steps.

First, featured by its relevant dihedral distances, the third-order

(1+1)
message m,

associated second-order neighbor vy regarding the target node v;

is flown from a third-order neighbor v, to its
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and first order node v; at the [ + 1-th layer as:

(I+1) edge
tokji = lp (10)

Next, given the messages from the third-order neighbors, featured

(1+1)

by the angle distance, the second-order message m;, i
from the second-order neighbor to the first-order neighbor as:

Zke./\/(k) (1)

Then, given the messages from the second-order neighbors, fea-

tured by the edge distance, the first-order message o](cl;.ril)

from the second-order neighbor to the first-order neighbor as:
(l+1) edge
= Olhi by diy ™. ) vy (12)
At last, the node embedding of the target node v; is updated as:
ht=UhLy (13)

The functions T(-) can also be implemented by MLPs.

ddihedrul)

= T(hls h hk’ hP’d pk.jsi

is flown

(1+1)

edge
M ji

angle
k]l

I+1

1
=M(hi,h hkd tpk_/z

is flown

I+1
mk]t

l+1)
Jen (i) O

4 EXPERIMENT

This section reports the results of both qualitative and quantitative
experiments that are carried out to test the performance of SND-
VAE and its extensions on two synthetic and one real-world datasets.
All experiments are conducted on a 64-bit machine with an NVIDIA

GPU (GTX 1070, 1683 MHz, 16 GB GDDRS5)".

4.1 Dataset

Waxman graphs. The Waxman random graph model places n
nodes uniformly at random in a rectangular domain [45]. There
are three types of factors. The independent graph factor b (control-
ling node attributes), the independent spatial factor p (controlling
the overall node positions) and the graph-spatial correlated factor
s (controlling both graph and spatial density). There are 80,000
samples for training and 80, 000 for testing.

Random geometric graph. The random geometric graph model
places n nodes uniformly at random in a rectangular domain [7].
There are three types of factors. The independent graph factor
b (controlling node attributes), the independent spatial factor p
(controlling the overall node positions) and the graph-spatial cor-
related factor s (controlling both graph and spatial density). There
are 80,000 samples for training and 80, 000 for testing.

Protein Structure dataset. Protein structures can be formu-
lated as graph structured data where each amino acid is a node and
the geo-spatial distances between them are edges. The density of
graphs (contact maps) and the folding degree of protein (reflected by
locations of amino acids) are correlated graph-spatial factors. There
are 38, 000 samples for training and 38, 000 samples for testing.

4.2 Comparison Methods
The comparison methods can be divided into three categories as:

e To validate the significance of the proposed disentanglement
objective and the optimization strategy, the proposed model is
compared with (1) beta-VAE [23]; (2) beta-TC-VAE [10]; (3) DIP-
VAE [31]; and (4) NED-IPVAE [22], where the overall architectures

"The code and details of datasets are available at: https://github.com/xguo7/SGD-VAE
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Table 1: The evaluation results for the generated spatial graphs for different dataset (kld_cls refers to the KLD of graph clus-
tering coefficient. kld_connect refers to for KLD of node connectivity. kld_dense refers to for KLD of graph density.

Datasel Method Node MSE ~ Spatial MSE ~ Edge ACC kld cls kld dense kld connect | avgMI
beta-VAE 0.22 3.01 66.83% 0.67 1.23 1.61 1.44

Waxman graph beta-TCVAE 0.84 4.80 61.62% 0.40 1.12 1.56 1.85
NED-IPVAE 2.28 1.80 66.73% 1.33 2.00 2.68 1.56

SGD-VAE(geo-GCN) 6.12 31.20 64.59% 2.70 2.83 2.88 1.65

SGD-VAE(pos-GCN) 6.84 34.80 64.61% 2.92 3.16 3.25 1.66

SGD-VAE (single) 0.24 34.80 64.67% 0.20 0.32 0.29 N/A

SGD-VAE 0.12 0.18 67.40% 0.39 0.50 0.53 1.10

beta-VAE 6.84 34.80 71.29% 2.87 3.27 3.40 1.65

Random Geometry graph beta-TCVAE 6.96 34.21 59.76% 1.55 231 2.37 1.73
NED-IPVAE 1.44 1.80 76.65% 0.67 0.65 1.15 142

SGD-VAE(geo-GCN) 6.80 31.20 71.32% 3.04 3.10 3.57 1.65

SGD-VAE(pos-GCN) 6.75 33.21 71.27% 3.06 3.84 3.34 1.64

SGD-VAE (single) 0.36 0.22 79.90% 0.28 0.46 0.61 N/A

SGD-VAE 0.36 0.19 80.80% 0.79 1.48 1.85 0.89

beta-VAE N/A 0.06 99.76% 2.09 291 3.69 0.93

Protein structure beta-TCVAE N/A 0.78 91.40% 3.05 3.27 4.81 0.97
NED-IPVAE N/A 0.25 99.54% 2.31 2.36 4.01 0.91

SGD-VAE(geo-GCN) N/A 0.08 99.24% 1.78 2.37 3.49 1.02

SGD-VAE(pos-GCN) N/A 0.07 99.25% 1.97 1.86 3.26 1.01

SGD-VAE (single) N/A 0.01 99.63% 1.78 1.51 2.39 N/A

SGD-VAE N/A 0.06 99.95% 1.58 1.46 2.71 0.77

of comparison models are the same to the proposed SND-VAE,

except for the disentanglement objective.

To validate the superiority of proposed spatial message passing

neural netwotk (S-MPNN), the proposed model is compared with

two existing spatial graph convolution network: (1) geo-GCN [13]

(2) pos-GCN [25] by replacing the spatial-network joint encoder

with these two networks respectively.

e A baseline model (named as SND-VAE (single)), which has the
same decoders to those of SND-VAE but with only one encoder
(i-e. the proposed S-MPNN) is utilized to validate the necessity of
structured latent representation for spatial network generation.

4.3 Evaluation on Spatial Network Generation

To evaluate the reconstruction performance of different generation
models on both datasets, we calculate the MSE (mean squared
error) between the generated and real node attributes or spatial
locations, and calculate the accuracy of edge prediction. To evaluate
the generation performance of the different models, we calculate
the Kullback-Leibler divergence (KLD) between the generated and
real spatial graphs to measure the similarity of their distributions
in terms of: (1) density; (2) average clustering coefficient; and (3)
the average node connectivity of networks.

4.3.1 Evaluation for Waxman graphs. The evaluation results of dif-
ferent models on generating Waxman graphs are shown in Table 1.
The proposed SND-VAE outperforms the beta-VAE, beta-TCVAE
and NED-VAE by about 65% in terms of reconstruction performance
and about 47.6% in terms of generation performance. This validates
the superiority of the proposed objective for disentangled structured
latent representation as well as the effectiveness of the proposed
optimization algorithm. The proposed SND-VAE outperforms the
SND-VAE (geo-GCN) and SND-VAE (pos-GCN) by about 66.93% in
terms of reconstruction performance and about 82.6% in terms of
generation performance, showing the big advantage of the S-MPNN
over the comparison spatial graph neural networks.
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4.3.2  Evaluation results for Random Geometric graphs. The evalua-
tion results of different models on generating Random Geometric
graphs are shown in Table 1. The proposed SND-VAE outperforms
the beta-VAE, beta-TCVAE and NED-VAE by about 68.97% in terms
of reconstruction performance. This validate the superiority of the
proposed objective for disentangled structured latent representation
as well as the effectiveness of the proposed optimization algorithm.
The proposed SND-VAE outperforms the SND-VAE (geo-GCN) and
SND-VAE (pos-GCN) by about 94.7% in terms of reconstruction
performance and about 3.9% in terms of generation performance.
This validates the proposed S-MPNN is better at captuing the inter-
action patterns of spatial and networks over the comparison spatial
graph convolution neural network.

4.3.3  Evaluation results for Protein structure generation. The eval-
uation results of different models on protein structure dataset are
shown in Table 1. The proposed SND-VAE outperforms the beta-
VAE, beta-TCVAE and NED-VAE by about 42.8% in terms of re-
construction performance and about 38.8% in terms of generation
performance. This validate the superiority of the proposed objec-
tive for disentangled structured latent representation as well as the
effectiveness of the proposed optimization algorithm. The proposed
SND-VAE outperforms the SND-VAE (geo-GCN) and SND-VAE
(pos-GCN) by about 10.5% in terms of reconstruction performance
and about 22.1% in terms of generation performance. This validates
the superiority of the proposed SGCN over the comparison spatial
graph convolution neural network.

4.4 Evaluation on Disentangled
Representations

We evaluate the proposed models and comparison models in the
task of disentangled representation learning and provide both the
quantitative evaluation and qualitative evaluation results.
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(a) Waxman Graph
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(b) Random Geometric Graph
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Figure 4: Visualizing the variations of generated spatial network regarding three groups of semantic factors on (1) Waxman graphs and (2)

Random geometry graphs.

(a) Protein chain folding (coordinate of CA residual atom)

\/\/&\Q\ﬁxhk 2

(b) Protein contact graph

AL e L

zt,
Figure 5: Visualizing the variations of generated protein structures in terms of the joint related semantic factors of (a) proteln chain folding
and (b) the density of contact graphs. The more black blanks in a contact graph, the higher density it has.

4.4.1 Quantitative Evaluation. As defined in the problem formu-
lation, the main target of disentangled representation learning
is to disentangle and capture the spatial-independent, network-
independent and spatial-network correlated semantic factors by
the structured latent representation z, z; and zsg. Thus, if the goal
is fully satisfied, the standard mutual information matrix between
three groups of semantic factors and three groups of latent rep-
resentation will be a unit diagonal matrix (ground truth). Thus,
we utilize avgMI [33] as metric which denotes to the distance be-
tween the real standard mutual information matrix and the ground
truth matrix. The last column in Table 1 shows the avgMI eval-
uated on different models regarding different datasets that have
the ground truth semantic factors. As shown in the results, the
proposed SND-VAE achieves the best performance in disentangling
the three groups of semantic factors into three pre-defined latent
representation with the smallest avgMI. Specifically, the proposed
SND-VAE have smaller avgMI than all the comparison methods by
about 32.6%, 44.7%, and 20.5% on controlling the Waxman graphs,
geometry graphs and protein structures, respectively. This is be-
cause the architecture of the proposed SND-VAE naturally enforce
the disentangled z; and 2 to capture the spatial and network seman-
tic factors, respectively. Moreover, the proposed objective enforce
the information of correlated spatial and network semantic factors
flows into the latent representation zgg.

4.4.2 Qualitative Evaluation. To measure the level of disentan-
glement achieved by different models, we search to qualitatively
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demonstrate that our proposed SND-VAE model consistently dis-
cover more latent factors and disentangles them in a cleaner fashion.
As the same to the conventional qualitative evaluation in disentan-
glement representation learning [10, 23], by changing the value of
one variable continuously while fixing the remaining variables, we
can visualize the variation of the corresponding semantic factors
in the generated spatial networks.

Fig. 4 shows the generated Waxman graphs and random geome-
try graphs when traversing the relevant latent variables in zg, z,
and zsy. The values of the latent variables range in [~2, 2]. The
first line shows the variation of graph-related semantic factors (i.e.,
mean of node feature b), as reflected by the color of nodes. There are
clear variation of the color of nodes in both generated waxman and
random geomrty graphs. The second line shows the variation of the
spatial-network joint related semantic factors. It can be easily ob-
served that both the mutual distances between nodes and density of
networks of the generated Waxman and random geometry graphs
decrease when traversing one of latent variables in zy,. To highlight
the variation of the absolute locations of the whole spatial network,
alarger coordinate system is utilized, as shown in the bottom line of
Fig. 4. The overall location of the generated Waxmanx and random
geometry graphs continously change from the left-bottom to the
upper right corner. These qualitative evaluation results validate the
effectiveness of the proposed SND-VAE in learning a structured
latent representation, each of which has successful captured the
relevant semantic factors of spatial network.
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Fig. 5 shows the generated protein structure and contact maps
when traversing the relevant latent in zsg. The values of the latent
variables range in [—2,2]. As shown in Fig. 5, while traversing the
values of latent variable, the folding degree of the protein structure
increases and the density of the contact maps also increase accord-
ingly. Thus, the proposed SND-VAE shows great capabilities in
discovering the correlated semantic factors of spatial and network
information in the protein structure data.

5 CONCLUSION

We have introduced SND-VAE, a novel and the first method for
disentangling on spatial networks as far as we know. Moreover, we
propose a generic framework and objectives to learn a structured
latent representation, which explicitly disentangle the independent
and correlated spatial and network semantic factors. The derived
objective is analyzed from the perspective of information bottleneck
and optimized by a novel optimization algorithm. Comprehensive
experiments are conducted on the tasks of data generation and dis-
entangled representation learning qualitatively and quantitatively.
The comparison with five comparison models and a baseline model
validates the effectiveness of the spatial network disentanglement
architecture and the necessities of separately learning three types
of latent representations.
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A PROOF OF THEOREM 1

Proor. To assist the proof, we introduce four groups of semantic
factors. The spatial data is assumed to be simulated via two types
of semantic factors as S = Sim(s",s”) and the network data is
also assumed to be simulated via two parts of semantic factors as
G = Sim( g+, g~ ), which follows the conventional definition in the
domain of disentangled representation learning [10, 23, 26]. Here
st LsT,9g" Lg,s" Lg",ands™ 4 g”.Thatis,s” Landg" L
refers to the independent semantic factors of spatial and network
data, respectively. s~ L andg L refers to the correlated semantic
factors of spatial and network data.

First, the objective can be rewrite based on the information
bottleneck principle(see the derivation process in Appendix 2) as :

I‘SI}’X I(z5,254; S) + 1(2g, 254: G) (14)

st I(S;zs) < I,
s.t. I(G;zg) <1,
st 1(S;zsg) + 1(G;z5g) < Igg,

where I(zs, Zsgs S) refers to the mutual information between p(zs, zsg)
and p(S) and I(zy, z4; G) refers to the mutual information between
p(zg, 2s4) and p(G). Considering z; L zs5 and z5 L zgy, we have
I(z5, 2543 S) = I(25;S) + I(2s4;S) and I(zg, 2543 G) = I(z4;G) +
I(zs4; G). Considering the graph G and spatial information S are
generated based on four categories of semantic factors, namely
independent spatial factors st independent graph factors g+, and
the correlated spatial and graph factors g~ and s~ , we have p(S) =
p(s+)p(s_) and p(G) = p(g+)p(g_). We also have s* L g+.
Thus, we can have

1(25,8) + (254, S) = I(z5,5" ) + (25,5 ) + (25,5 ) + (25g,5 )

(2, G) + (254, G) = 120, 9™ ) + 1(25,9") + I(z59, 9" ) + I(259,97)

Sincezy L zgands™ 4 g, wehavel(zs,s ) = 0OandI(z5,9 ) =
0, thus, the objective can be rewritten as:
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By summarizing the inequalities Eq 16 and Eq. 17, we have:
I(zg;s™) +2 % I(zsg;s+) +(zsgis )+
+I(zs;g+) + 2% I(zsg;g+) +1(zsg:9 )
<H(s") +Coy +H(g), (18)
which can be further written as:
I(zg:s) + I(zsg;s+) +1(zsgis )+
+I1(zg") + I(z5g; g+ (zsg:9 )
SH( )+ Cog + H(g") = zsgis™) = (2397 ). (19)
Since I(zgg; s7) = 0and I(zsg;g+) >0,and H(s") and H(g") are
constants, the left side of Inequality (13) achieves its maximum
when I(zsg;s+) =0and I(zsg;g+) = 0. Thus, to achieve the most

optimal objective, z;4 need to only capture the information from
correlated semantic factors s* and g+. O

B THE ASSISTANT DERIVATION OF
THEOREM 1

In this section, we derive the process how the initial objective for
spatial graph generation (as shown in Eq. (4)) can be written as the
information bottleneck format (as shown in Eq. (15)).

Specifically, for the first part of Eq. (4), we have:

ES,G~DEq(Z|S,G)[10gP(G|Zg) ng) + IOgP(S|ZS)ng)]

= Ep(Z,S,G)[lOgP(Glzg) ng) + IOgP(5|ZS)ng)]

P(G|Zg: ng)
p(G)

S|z, zs,
%] +Eps) log p(S)]

= I(Zs,ng;S) +I(ng ng;G) (20)

= Ep(z,.2,4.G)[log 1+ Ep(c)logp(G)]

+ Ep(zg,zsg,S) log

For the first constraint, we have:

Es-p[Dkr(q(zs|5)|p(zs)] (21)

max  I(z, s+)+I(zsg, s+ (zsg, s ) + 1(zg, g+ 1(zgg, g+ (25,9 )= Es~pEq(z, |s)[log q(zslS)]

(15)
s.t. I(s+;zs) <I
st 1(S;z59) + 1(Gs 259) < Igg
s.t. I(g+;zg) <l

since zg L z5 and z5 L sg4, the information of s* captured by

zs has no intersection with the information of st captured by zgg,
thus we can have:

H(zs;s") + 1(zsgss™ ) < I(s75s7) = H(s™)
Hzg:g") + (zsg:9") < 1(9":97) = H(g"). (16)

Based on the second constrainand s™ L s~ andg* L g, we also
have

-_ + -
I(zsg;s+) +1(zsgss ) +1(zsg59 ) +1(2zsg39 ) < Cog.  (17)
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P(Zs)
a(a:1S) qlz)
q(zs) p(zs)

_ q(z]S)
= Es-pEqy(z,|s)[log N

= Es-pEqy(z,|s)[log

o8 5251

= Es~p[Dkr(q(zs19)[q(25)] + Es~pEqg(z,|s)[log

C](Zs)]
p(zs)
= I(ZS|S) + I['Eq(zs)l:log AZEZ% ]

= I(z|S) + Dxr.(q(zs)|1p(zs)

Considering Dk (p(zs)||g(zs) is a constant that has nothing to
do with the parameters 0 and ¢, thus the first constrain is rewritten

as: I(S;z5) < I.. Since I, is a hyper-parameter which is select
before training, for simplicity, we still use I as the right side of
the constraint. We can have the same derivation for the second
constraints in Eq.5.
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Table 2: Encoders and decoders architectures (Each layers
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is expressed in the format as <filter size><layer

type><Num_channel><Activation function><stride size>. FC refers to the fully connected layers). c-deconv and c-conv
refers to the cross edge deconvolution and convolution respectively. The activation functions after each layer are all ReLU

except the last layers.

Spatial Encoder Joint Encoder | Network encoder Network decoder(for edge) Network decoder(for node) Spatial Decoder

Input: L € R” Input: E, L Input: E € R > 5,F cR” Input:zg € Rluu,zsq e R Input:zg € ]Rwo,zsq € Rmo Input:zg € Rlou,zsq e R
5 conv1D.10. stride 1 S-MPNN.20 GCN.10 FC.500 FC.500 FC.500

5 conv1D.10. stride 1 | S-MPNN.50 GCN.20 5 X 5 deconv.50. stride 1 5 conv1D.50. stride 1 5 conv1D.50. stride 1

5 conv1D.20. stride 1 | FC.200. FC.100. 5 X 5 deconv.20. stride 1 5 conv1D.20. stride 1 5 conv1D.20. stride 1

FC.100. FC.200 FC.100 FC.1 FC.1 5 conv1D.10. stride 1

FC.100 FC.2

Next, we consider the third constraint in Eq. (4). Given S L G| Zsg,
We can have:

Es.6~p[Pk1(q(zs91S. G)p(zs9)] @2)
- Esontestsor ot L o

= Es G~DEqy(z,,|5G) log CI(;&:%;‘(]) q(zsq) 108 ;((2_:;

= Es5G~DEq(z,,15.6) log % —EsG-~plog %
R

‘J(5|ng)q(G|ng)

as)gc) | 10)

= Es,6~pEq(z,,5,6) log

_DKL(P(ng)”q(ng))
=1I(S, ng) + I(Gézsg) - I(S;G) - DKL(P(ng)”CI(ng))

Considering Dy (p(zs)|1q(zs) and I(S; G) is a constant that has
nothing to do with the parameters 0 and ¢, thus the third constrain
is rewritten as: I(S; zsg) +1(G; zsg) < Iég.

C PROOF OF THEOREM 2

Proor. To assist the proof, we introduce four groups of semantic
factors. The spatial data is assumed to be simulated via two types
of semantic factors as S = Sim(s",s”) and the network data is
also assumed to be simulated via two parts of semantic factors as
G = Sim( g+, g~ ), which follows the conventional definition in the
domain of disentangled representation learning [10, 23, 26]. Here
st LsT,9g" Lg,s" Lg",ands™ 4 g~ Thatis,s” Landg" L
refers to the independent semantic factors of spatial and network
data, respectively. s~ L andg L refers to the correlated semantic
factors of spatial and network data.

(1) Given the situation that zs and z; have already captured all
the independent semantic factors s and g+, we have I(zs, s+) =
I(s",s") and 1(zg, g") = I1(¢g".¢"). Given the situation that Zsg
captured all the dependent semantic factors s~ and g , we can have
I(zsg,s+) = 0 and I(zsg,g+) = 0. We also can have I(z5,s ) =
I(s”,s" ) and I(zs5,9" ) =1(g ,g ). Thus, the value of the current
loss is equal to: IG5, s +1(s7,s7) + I(g+,g+) +1(9 ,9 ).
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(2) Next, we come back to the original objective function, which
is expressed as:

maxI(zs,s") + I(zgg, s+ (zeg,s ) + I(zg,g+)

+I(ng)9+) + I(ng)g_)~ (23)

Since zs L z55 and z; L zg4, we have:
I(z5,s") +1(zgg, sy <1(s",sT) (24)
I(zg.9") +(z59.9") < 1(g".9"). (25)

We also have I(zgg,s ) < I(s™,s" ) and I(zeg,9" ) < I(g9 .g ).
Thus, the value of the most optimal loss is I, sT)+1(s7,s7) +

+ o+ - -
I(g".9") +1(9 .9 ).
As a summary, given the situation that z; and z, have already

captured all the independent semantic factors s* and g+ and zg4

captured all the dependent semantic factors s~ and g™, the loss has
already achieved the optimal one. As the [, increases, though the
constraint is removed, the loss can not be maximized anymore no
matter how the assignment of information change through zg, z,
and zgy. Thus, training while increasing Cgy will not change the
current status of information flow. O

D ARCHITECTURE AND
HYPER-PARAMETERS

The detailed setting of the encoders and decoders in the model for
the experiment are provided in Table 2.

The network decoder have two parts: one is for nodes and one
is for edges, which are detailed as follows. The nodes feature/labels
are generated by a set of conventional 1D convolution layers. The
edge weights/adjacent matrix are generated based on a set of edge
deconvolution layers and fully connected layers. The input is the
concatenation of both the network representation z; and the spa-
tial network representation zgg. First, the input vector is mapped
into a node-level feature vector through a fully connected layer
and is converted into a matrix by being replicated. The same node
assignment vector S is also concatenated to this feature matrix.
The hidden edge latent representation matrices are then generated
by the node-to-edge deconvolution layer [19] by decoding each
of the node-level representations, where the principle is that each
node’s representation can make contributions to the generation of
its related edges latent representation. Thirdly, the edge weights
oradjacent matrix E is generated through the edge-edge deconvolu-
tion layer, where the principle is that each hidden edge feature can
contribute to the generation of its adjacent edges.





