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ABSTRACT
Coverage-guided fuzzing is considered one of the most e�cient bug-
�nding techniques, given its number of bugs reported. However,
coverage tracing provided by existing software-based approaches,
such as source instrumentation and dynamic binary translation,
can incur large overhead. Hindered by the signi�cantly lowered
execution speed, it also becomes less bene�cial to improve coverage
feedback by incorporating additional execution states.

In this paper, we propose SNAP, a customized hardware platform
that implements hardware primitives to enhance the performance
and precision of coverage-guided fuzzing. By sitting at the bottom of
the computer stack, SNAP leverages the existing CPU pipeline and
micro-architectural features to provide coverage tracing and rich
execution semantics with near-zero cost regardless of source code
availability. Prototyped as a synthesized RISC-V BOOM processor
on FPGA, SNAP incurs a barely 3.1% tracing overhead on the SPEC
benchmarks while achieving a 228⇥ higher fuzzing throughput
than the existing software-based solution. Posing only a 4.8% area
and 6.5% power overhead, SNAP is highly practical and can be
adopted by existing CPU architectures with minimal changes.
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• Security andprivacy! Software security engineering;Domain-
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1 INTRODUCTION
Historically, bugs have been companions of software development
due to the limitations of human programmers. Those bugs can
lead to unexpected outcomes ranging from simple crashes, which
render programs unusable, to exploitation toolchains, which grant
attackers partial or complete control of user devices. As modern
software evolves and becomes more complex, a manual search for
such unintentionally introduced bugs becomes unscalable. Various
automated software-testing techniques have thus emerged to help
�nd bugs e�ciently and accurately, one of which is fuzzing. Fuzzing
in its essence works by continuously feeding randomly mutated
inputs to a target program and watching for unexpected behavior. It
stands out from other software-testing techniques in that minimal
manual e�ort and pre-knowledge about the target program are
required to initiate bug hunting. Moreover, fuzzing has proved its
practicality by uncovering thousands of critical vulnerabilities in
real-world applications. For example, Google’s in-house fuzzing
infrastructure ClusterFuzz [24] has found more than 25,000 bugs in
Google Chrome and 22,500 bugs in over 340 open-source projects.
According to the company, fuzzing has uncovered more bugs than
over a decade of unit tests manually written by software develop-
ers. As more and more critical bugs are being reported, fuzzing is
unarguably one of the most e�ective techniques to test complex,
real-world programs.

An ideal fuzzer aims to execute mutated inputs that lead to bugs
at a high speed. However, certain execution cycles are inevitably
wasted on testing the ine�ective inputs that do not approach any
bug in practice. To save computing resources for inputs that are
more likely to trigger bugs, state-of-the-art fuzzers are coverage-
guided and favor mutation on a unique subset of inputs that reach
new code regions per execution. Such an approach is based on
the fact that the more parts of a program that are reached, the
better the chance an unrevealed bug can be triggered. In particular,
each execution of the target program is monitored for collecting
runtime code coverage, which is used by the fuzzer to cherry-pick
generated inputs for further mutation. For binaries with available
source code, code coverage information is traced via compile-time
instrumentation. For standalone binaries, such information is traced
through dynamic binary instrumentation (DBI) [4, 11, 44], binary
rewriting [15, 48], or hardware-assisted tracing [31, 36].

Nonetheless, coverage tracing itself incurs large overhead and
slows the execution speed, making fuzzers less e�ective. The re-
sulting waste of computing resources can extend further with a
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continuous fuzzing service scaling up to tens of thousands of ma-
chines [24, 47]. For example, despite its popularity, AFL [61] su�ers
from a tracing overhead of nearly 70% due to source code instru-
mentation and of almost 1300% in QEMU mode for binary-only
programs [48]. Source code instrumentation brings in additional in-
structions tomaintain the original register status at each basic block,
while DBI techniques require dynamic code generation, which is
notoriously slow. Although optimized coverage-tracing techniques
have been proposed to improve performance, especially for binary-
only programs, they impose di�erent constraints. RetroWrite [15]
requires the relocation information of position-independent code
(PIC) to improve performance for binary-only programs. Various
existing fuzzers [22, 26, 28] utilize Intel Processor Trace (PT) [36], a
hardware extension that collects general program execution infor-
mation. Nevertheless, Intel PT is not tailored for the lightweight
tracing required by fuzzing. The ad-hoc use of Intel PT in fuzzing
results in non-negligible slowdown caused by extracting useful
information (e.g., coverage) from encoded traces, allowing a merely
comparable execution speed as source instrumentation in the best
e�ort per large-scale pro�ling results [13, 33]. UnTracer [48] sug-
gests coverage-guided tracing, which only traces testcases incurring
new code paths. However, UnTracer adopts basic block coverage
without edge hit count and measures a less accurate program execu-
tion trace that misses information about control transfers and loops.
The overhead of software-based coverage tracing is inevitable be-
cause it requires extra information not available during the original
program execution. Moreover, the applicability of fuzzing heav-
ily depends on the availability of source code, given that existing
techniques commonly used for fuzzing standalone binaries are un-
acceptably slow and there is a need for faster alternatives.

In this paper, we propose SNAP, a customized hardware platform
that implements hardware primitives to enhance the performance
and precision of coverage-guided fuzzing. When running on SNAP,
fuzzing processes can achieve near-to-zero performance overhead.
The design of SNAP is inspired by three key properties observed
from the execution of a program at the hardware layer.

First, a hardware design can provide transparent support of
fuzzing without instrumentation, as coverage information can be
collected directly in the hardware layer with minimal software
intervention. By sitting at the bottom of the computer stack, SNAP
can assist fuzzers to fuzz any binary e�ciently, including third-party
libraries or legacy software, regardless of source code availability,
making fuzzing universally applicable.

Second, we �nd that the code tracing routine, including measur-
ing edge coverage and hit count, can be integrated seamlessly into
the execution pipeline of the modern CPU architecture, and a near-
zero tracing overhead can be achieved without the extra operations
inevitable in software-based solutions. 1 To enable such low-cost
coverage tracing, SNAP incorporates two new micro-architectural
units inside the CPU core: Bitmap Update Queue (BUQ) for gen-
erating updates to the coverage bitmap and Last Branch Queue
(LBQ) for extracting last branch records (§4.2). SNAP further adopts
two micro-architectural optimizations to limit the overhead on the
memory system from frequent coverage bitmap updates: memory
1While PHMon [14] as a security monitor also provides hardware-based tracing, we
signi�cantly outperform it with an optimized design more customized for fuzzing. See
§6 for more details.

request aggregation, which minimizes the number of updates, and
opportunistic bitmap update, which maximizes the utilization of free
cache bandwidth for such updates and reduces their cost (§4.3).

Third, rich execution semantics can be extracted at the micro-
architecture layer. One may think that the raw data gathered at the
hardware level largely loses detailed program semantics because the
CPU executes the program at the instruction granularity. Counter-
intuitively, we �nd that such low-level information not only enables
�exible coverage tracing, but also provides rich execution context
for fuzzing without performance penalty. For example, various
micro-architectural states are available in the processor pipeline
during program execution, such as last-executed branches (which
incur higher overhead to extract in software) and branch predictions
(which are entirely invisible to software). Using such rich micro-
architectural information, SNAP is able to provide extra execution
semantics, including immediate control-�ow context and approxi-
mated data �ows, in addition to code coverage (§4.5). SNAP also
supports setting address constraints on execution-speci�c micro-
architectural states prior to execution, providing users the �exibility
to selectively trace and test arbitrary program regions. Thus, fuzzers
on SNAP can utilize the runtime feedback that describes the actual
program state more precisely and make better mutation decisions.
SNAP hosts clean software interfaces for adoption by the existing
AFL-based fuzzers with a minimal change of less than 100 LoCs.

We prototype SNAP on top of the RISC-V BOOM core [6], which
has one of the most sophisticated designs among the open-source
processors. We also utilize a real hardware FPGA platform to evalu-
ate the performance of SNAP. In particular, the tracing overhead of
SNAP across the SPEC benchmarks is 3.1% on average, signi�cantly
outperforming the software-based tracing method adopted by AFL
and its descendants. In addition, we fuzz a real-world collection of
binary tools, Binutils v2.28 [21], with AFL assisted by SNAP. The
evaluation results show that SNAPmanages to achieve 228⇥ higher
fuzzing throughput compared to that of the existing DBI scheme
and outperforms the vanilla AFL in discovering new paths by 15.4%
thanks to the higher throughput. Furthermore, by improving cover-
age feedback with the rich execution semantics provided by SNAP,
we demonstrate that the modi�ed AFL running on SNAP is capable
of triggering a bug that can be barely reached by the vanilla AFL.
Last, our synthesized FPGA is practical, posing only a 4.8% area
and 6.5% power overhead.

In summary, this paper makes the following contributions:
• We propose hardware primitives to provide transparent
support of tracing and additional execution semantics for
fuzzing with minimal overhead.

• We develop a prototype, SNAP, which implements the de-
signed primitives on a real hardware architecture.

• We evaluate the system on the bene�ts of fuzzing perfor-
mance and precision, and demonstrate its ease of adoption.

SNAP is available at https://github.com/sslab-gatech/SNAP.

2 BACKGROUND
In this section, we provide an overview of coverage-guided fuzzing.
We also introduce recent e�orts in the research community to
improve the quality of coverage feedback. Finally, we provide a
brief introduction to the typical work�ow of modern processors.

https://github.com/sslab-gatech/SNAP


2.1 Coverage-Guided Fuzzing
Fuzzing has recently gained wide popularity thanks to its simplicity
and practicality. Fundamentally, fuzzers identify potential bugs by
generating an enormous number of randomly mutated inputs, feed-
ing them to the target program and monitoring abnormal behaviors.
To save valuable computing resources for inputs that approach real
bugs, modern fuzzers prioritize mutations on such inputs under the
guidance of certain feedback metrics, one of which is code coverage.
Coverage-guided fuzzers [26, 43, 52, 61] rely on the fact that the
more program paths that are reached, the better the chance that
bugs can be uncovered. Therefore, inputs that reach more code
paths are often favored. Coverage guidance has proved its power
by helping to discover thousands of critical bugs and has become
the design standard for most recent fuzzers [26, 43, 52, 61].

The common practice of measuring the code coverage of an input
is to count the number of reached basic blocks or basic block edges at
runtime. To retrieve the coverage information, fuzzers either lever-
age software instrumentation accomplished during compile-time
or use other techniques such as dynamic binary instrumentation
(DBI) [4, 11, 44], binary rewriting [15, 48], or hardware-assisted
tracing [31, 36] when source code is unavailable. For example, AFL
instruments every conditional branch and function entry while
compiling the target program and relies on QEMU assistance for
standalone binaries. The collected information is then stored in a
coverage bitmap, allowing e�cient comparison across various runs.
Although coverage feedback allows fuzzers to approach bugs more
e�ciently, coverage tracing itself incurs large overhead and slows
the execution speed, making fuzzers less e�ective. For instance,
AFL encounters a 70% performance overhead due to source code
instrumentation and a daunting 1300% performance overhead in
QEMU mode, making it unrealistic to fuzz large-scale binary-only
programs. To unleash the true power of coverage-guided fuzzing,
we aim to minimize the overhead caused by coverage tracing with-
out any constraint. Given the sizable computing resources used
by fuzzing services [24, 47], optimizing the performance allows
more tests against a buggy program in �nite time and renders an
immediate return in the form of a substantial cost reduction.

2.2 Better Feedback in Fuzzing
Feedback in fuzzing aims to best approximate the program execu-
tion states and capture the state changes a�ected by certain input
mutations. The more accurate the feedback is in representing the
execution states, the more useful information it can provide to guide
the fuzzer toward bugs. Despite the success achieved by coverage-
guided fuzzing, feedback that is solely based on the edges reached
by the generated inputs can still be coarse grained. Figure 1 depicts
an example of a buggy cxxfilt code snippet that reads an alphanu-
meric string from stdin (line 17-29) before demangling its contained
symbols based on the signatures (line 4-11). Speci�cally, BUG in the
program (line 13) results from a mangled pattern (i.e., SLLTS) in the
input. With a seed corpus that covers all the branch transfers within
the loop (line 4-11), the coverage bitmap will be saturated even with
the help of edge hit count, as shown in Algorithm 1, guiding the
fuzzer to blindly explore the bug without useful feedback.

To improve the quality of coverage feedback, much e�ort has
been directed to more accurately approximate program states

1 static void demangle_it (char *mangled) {
2 char *cur = mangled;
3 ...
4 while (*cur != ’\0’) {
5 switch (*cur) {
6 case ’S’: ... // static members
7 case ’L’: ... // local classes
8 case ’T’: ... // G++ templates
9 // more cases...
10 }
11 }
12 // buggy mangled pattern
13 if (has_SLLTS(mangled)) BUG();
14 }
15 int main (int argc, char **argv) {
16 ...
17 for (;;) {
18 static char mbuffer[32767];
19 unsigned i = 0;
20 int c = getchar();
21 // try to read a mangled name
22 while (c != EOF && ISALNUM(c) && i < sizeof(mbuffer)) {
23 mbuffer[i++] = c;
24 c = getchar();
25 }
26 mbuffer[i] = 0;
27 if (i > 0) demangle_it(mbuffer);
28 if (c == EOF) break;
29 }
30 return 0;
31 }

Figure 1: An illustrative example for the runtime information gath-
ered by SNAP. The code abstracts demangling in cxxfilt.

Algorithm 1: Edge encoding by AFL
Input :BBsrc ! BBdst , pre�Loc

1 curLoc = Random(BBdst )
2 bitmap[curLoc ˆ pre�Loc] += 1
3 pre�Loc = curLoc � 1
Output :pre�Loc – hash value for the next branch

with extra execution semantics. In particular, to achieve context
awareness, some fuzzers record additional execution paths if nec-
essary [13, 19, 26, 28], while others track data-�ow information
[3, 12, 18, 43, 52, 60] that helps to bypass data-driven constraints.
These techniques enrich the coverage feedback and help a fuzzer
approach the bugs in Figure 1 sooner; yet they can be expensive and
are thus limited. For example, traditional dynamic taint analysis
can under-taint external calls and cause tremendous memory over-
head. Although lightweight taint analysis for fuzzing [18] tries to
reduce the overhead by directly relating byte-level input mutations
to branch changes without tracing the intermediate data �ow, it can
still incur an additional 20% slowdown in the fuzzing throughput
of AFL across tested benchmarks.

2.3 Typical CPUWork�ow
To motivate how hardware support can minimize the overhead
of fuzzing, we explain the typical CPU work�ow. When a CPU
runs a program, it fetches and executes the instructions stored in
memory and constantly updates its program counter (PC), which
points to the current location being executed. A typical CPU core
consists of multiple pipeline stages, such as fetch, decode, execute,
and memory stages. Every instruction is processed in a speci�c way
throughout the pipeline stages based on its type. Among various in-
struction types, branch and jump instructions are notable since they
can change the control �ow of a program and thus alter the execu-
tion order of instructions. To handle the control-�ow instructions



1 # [Basic Block]:
2 # saving register context
3 mov %rdx, (%rsp)
4 mov %rcx, 0x8(%rsp)
5 mov %rax, 0x10(%rsp)
6 # bitmap update
7 mov $0x40a5, %rcx
8 callq __afl_maybe_log
9 # restoring register context
10 mov 0x10(%rsp), %rax
11 mov 0x8(%rsp), %rcx
12 mov (%rsp), %rdx

(a) AFL-gcc

1 # preparing 8 spare registers
2 push %rbp
3 push %r15
4 push %r14
5 ...
6 mov %rax, %r14
7 # [Basic Block]: bitmap update
8 movslq %fs:(%rbx), %rax
9 mov 0xc8845(%rip), %rcx
10 xor $0xca59, %rax
11 addb $0x1, (%rcx,%rax,1)
12 movl $0x652c, %fs:(%rbx)

(b) AFL-clang

Figure 2: Source-instrumented assembly inserted at each basic block
between compilers.

while achieving high performance, modern computer architectures
adopt speculative execution, which allows the CPU to predict the
branch target instruction and proceed with the program execution
based on the prediction result instead of stalling the pipeline until
a destination directed by a control-�ow instruction is decided. If
the branch prediction turns out to be wrong, the CPU �ushes its
pipeline to discard the execution on the wrong path and restores
the previous architecture states. Such a design reveals that every
control-�ow divergence during program execution is observed and
appropriately managed inside the CPU pipeline. Considering that
one essential task of fuzzing is to monitor control-�ow transfer and
manage code-coverage information, we discuss how to view fuzzing
from a hardware perspective and bene�t from possible advantages
available at the hardware level in §4.

3 DISSECTING AFL’S TRACING OVERHEAD
In this section, we provide a detailed examination of AFL, a state-
of-the-art coverage-guided fuzzer, on its excessive coverage tracing
overhead as a motivating example. Among the existing coverage-
guided fuzzers, AFL [61] is the most iconic one and has inspired
numerous fuzzing projects [10, 17, 45]. Despite the di�erences in the
adopted strategies for prioritizing seeds and generating testcases,
coverage-guided fuzzers mostly choose to monitor code coverage
at edge granularity. In general, edge coverage is preferred over
basic block coverage because of the additional semantics it embeds
to represent the program space. Speci�cally, a piece of code will
be injected at each branch location of the program to capture the
control-�ow transfer between a pair of basic blocks, along with
coarse-grained hit counts (i.e., number of times the branch is taken)
for repetitive operations (e.g., loops) if necessary. Algorithm 1 de-
picts the tracing logic adopted by AFL.

AFL injects the logic into a target program in two di�erent ways
based on the scenarios. When source code is available, AFL utilizes
the compiler or the assembler to directly instrument the program.
Otherwise, AFL relies on binary-related approaches such as DBI
and binary rewriting. While source code instrumentation is typi-
cally preferred due to its signi�cantly lower tracing overhead com-
pared to binary-related approaches, previous research indicates that
AFL can still su�er from almost a 70% slowdown under the tested
benchmarks [48]. Table 1 shows that the situation can worsen for
CPU-bound programs, with an average tracing overhead of 60%
from source code instrumentation and 260% from DBI (i.e., QEMU).
In the worst case, DBI incurs a 5⇥ slowdown. The tracing overhead
from DBI mostly comes from the binary translation of all applicable
instructions and trap handling for privileged operations. On the

Name Size (MB) Runtime Overhead (%)

baseline instrumented AFL-clang AFL-QEMU

perlbench 2.58 6.56 105.79 376.65
bzip2 0.95 1.20 63.66 211.14
gcc 4.51 15.73 57.15 257.76
mcf 0.89 0.95 66.30 92.52
gobmk 4.86 8.11 44.80 224.27
hmmer 1.51 2.57 39.34 340.03
sjeng 1.04 1.38 47.36 261.04
libquantum 1.10 1.23 47.95 186.63
h264ref 1.70 3.43 49.32 542.73
omnetpp 3.72 7.31 48.97 186.35
astar 1.10 1.39 43.57 124.93
xalancbmk 8.49 49.56 107.64 317.63

Mean 2.70 8.29 (207.04%) 60.15 260.14

Table 1: The cost of program size and runtime overhead for tracing
on an x86 platform across the SPEC benchmarks.

other hand, the overhead of source code instrumentation results
from the instructions inserted at each basic block that not only
pro�les coverage but also maintains the original register values to
ensure that the instrumented program correctly runs. Figure 2a
depicts the instrumentation conducted by afl-gcc, which requires
assembly-level rewriting. Due to the crude assembly insertion at
each branch, the instructions for tracing (line 7-8) are wrapped
with additional instructions for saving and restoring register con-
text (line 3-5 and line 10-12). Figure 2b shows the same processing
done by afl-clang, which allows compiler-level instrumentation
through intermediate representation (IR). The number of instruc-
tions instrumented for tracing can thus be minimized (line 8-12)
thanks to compiler optimizations. Nevertheless, the instructions
for maintaining the register values still exist and blend into the
entire work�ow of the instrumented program (line 2-6). Table 1
lists the increased program sizes resulting from instrumentation
by afl-clang, suggesting an average size increase of around 2⇥.
The increase of program size and the runtime overhead given by
afl-gcc can be orders of magnitude larger [62].

4 SNAP
Motivated by the expensive yet inevitable overhead of existing
coverage-tracing techniques, we propose SNAP, a customized hard-
ware platform that implements hardware primitives to enhance the
performance and precision of coverage-guided fuzzing. A fuzzer
coached by SNAP can achieve three advantages over traditional
coverage-guided fuzzers.
1 Transparent support of fuzzing. Existing fuzzers instrument
each branch location to log the control-�ow transfer, as explained
in §3. When source code is not available, the fuzzer has to adopt
slow alternatives (e.g., Intel PT and AFL QEMU mode) to conduct
coverage tracing, a much less favored scenario compared to source
code instrumentation. By sitting in the hardware layer, SNAP helps
fuzzers to construct coverage information directly from the proces-
sor pipeline without relying on any auxiliary added to the target
program. SNAP thus enables transparent support of fuzzing any
binary, including third-party libraries or legacy software, without
instrumentation, making fuzzing universally applicable.
2 E�cient hardware-based tracing. At the hardware level,
many useful resources are available with low or zero cost, most of
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Figure 3: Overview of SNAP with its CPU design. The typical work�ow involves the components from userspace, kernel, and hardware. The architecture
highlights the modi�ed pipeline stages for the desired features, including trace decision logic, Bitmap Update Queue (BUQ), and Last Branch Queue (LBQ).

which are not exposed to higher levels and cause excessive over-
head to be obtained through the software stack. For example, SNAP
provides the control-�ow information by directly monitoring each
branch instruction and the corresponding target address that has
already been placed in the processor execution pipeline at runtime,
eliminating the e�ort of generating such information that is unavail-
able in the original program execution from a software perspective.
This allows fuzzers to avoid program size increase and signi�cant
performance overhead due to the instrumentation mentioned in
Table 1. In addition, SNAP utilizes idle hardware resources, such as
free cache bandwidth, to optimize fuzzing performance.
3 Richer feedback information. To collect richer information
for better precision of coverage, many existing fuzzers require
performance-intensive instrumentation. Surprisingly, we observe
that the micro-architectural state information already embeds rich
execution semantics that are invisible from the software stack with-
out extra data pro�ling and processing. In addition to code coverage,
SNAP exposes those hidden semantics to construct better feedback
that can more precisely approximate program execution states with-
out paying extra overhead. Currently, SNAP provides the records
of last-executed branches and the prediction results to infer imme-
diate control-�ow context and approximated data �ows. We leave
the support of other micro-architectural states as future work.

Figure 3a shows an overview of SNAP in action, which includes
underlying hardware primitives, OS middleware for software sup-
port, and a general fuzzer provided by the user. While running on
SNAP, a fuzzer is allowed to con�gure the hardware and collect
desired low-level information to construct input feedback through
interfaces exposed by the OS. In addition, the fuzzer coached by
SNAP can perform other fuzzing adjustments directly through the
hardware level, such as de�ning code regions for dedicated test-
ing on speci�c logic or functionalities. Although SNAP considers
fuzzing a �rst-class citizen, it is designed with versatility in mind for
all use cases that demand rich information about program execution
states. We provide further discussion in §6.

Name Permission Description

BitmapBase Read/Write Base address of coverage bitmap
BitmapSize Read/Write Size of coverage bitmap

TraceEn Read/Write Switch to enable HW tracing
TraceStartAddr Read/Write Start address of traced code region
TraceEndAddr Read/Write End address of traced code region

LbqAddr[0-31] Read Only Target addresses of last 32 branches
LbqStatus Read Only Prediction result of last 32 branches

PrevHash Read/Write Hash of the last branch target inst.

Table 2: New control and status registers (CSRs) in SNAP.

4.1 Overview of Hardware Primitives
SNAP provides hardware primitives to transparently trace program
execution and maintain fuzzing metadata (e.g., coverage bitmap),
avoiding the overhead of existing software-based techniques.2 Fig-
ure 3b shows an overview of the proposed hardware platform,
highlighting the three new primitives blended into the processor
pipeline: 1 trace decision logic at the Fetch Stage to identify and tag
instructions that need to be traced (§4.2.1), 2 bitmap update queue
(BUQ) to manage coverage bitmap updates based on the tagged
instructions passing Execute Stage (§4.2.2), and 3 last branch queue
(LBQ) to collect information about the last-executed branches from
the Branch Unit for additional contextual feedback (§4.2.3). We
elaborate on each of the hardware units in §4.2.

SNAP also introduces new control and status registers (CSRs)
as con�guration interfaces between the hardware and the OS.
Table 2 contains the list of the new CSRs, each of 8 bytes in
size, and their access permissions. BitmapBase and BitmapSize are
used to set the base address and size of the coverage bitmap. The
tracing in hardware is enabled by TraceEn. TraceStartAddr and
TraceEndAddr serve to de�ne region-speci�c feedbackwhen needed.
LbqAddr[0-31] and LbqStatus store the branch target addresses and
prediction results of the last 32 branches by default. Note that these
two CSRs are read-only, as the kernel is not required to modify

2All of our hardware primitives use information originated from the existing CPU
pipeline – e.g., the Program Counter and the raw bytes of an instruction available in the
Fetch Stage, the branch-target address and branch-prediction results from the Branch
Unit in the Execute Stage, etc.
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Figure 4: Bitmap update operation in the Bitmap Update Queue.

their contents. Finally, PrevHash stores the hash of the last branch
target instruction to index the coverage bitmap, as described in §4.4.
During a context switch, the OS saves and restores this value to
ensure the correctness of the �rst bitmap update after the switch.

4.2 Implementation of Hardware Primitives
We design and implement SNAP based on the out-of-order BOOM
core [6], one of the most sophisticated open-source RISC-V pro-
cessors to match commercial ones with modern performance opti-
mizations. Figure 3b highlights the lightweight modi�cations on
key hardware components in SNAP.

4.2.1 Trace Decision Logic. In the front-end of the BOOM core (Fig-
ure 3b), instructions are fetched from the instruction cache (I-cache),
enqueued to the Fetch Bu�er, and then sent onward for further exe-
cution at every cycle. We extend the Fetch Controller by adding the
Trace Decision Logic ( 1 ), which determines whether an instruc-
tion inserted into the Fetch Bu�er needs to be traced by SNAP. The
trace decision results in tagging two types of instructions within
the code region to be traced (i.e., between TraceStartAddr and
TraceEndAddr) using two reserved bits, uses_buq and uses_lbq. The
uses_buq bit is used to tag the target instruction of every control-
�ow instruction (i.e., a branch or a jump) to help enqueue bitmap
update operations into the BUQ. Note that we choose to trace the
target instruction instead of the control-�ow instruction itself for
the bitmap update due to our newly devised trace-encoding algo-
rithm (described later in §4.4). The control-�ow instruction itself is
also tagged with the uses_lbq bit to help enqueue the correspond-
ing branch resolution information (i.e., the target address and the
prediction result) into the LBQ for additional contextual semantics
(described later in §4.5). Overall, the trace decision logic conducts
lightweight comparisons within a single CPU cycle in parallel to
the existing fetch controller logic and thus does not delay processor
execution or stall pipeline stages.

4.2.2 Bitmap Update�eue. The BUQ ( 2 ) is a circular queue re-
sponsible for bitmap updates invoked by the instructions following
control-�ow instructions. A new entry in the BUQ is allocated when
such an instruction tagged with uses_buq is dispatched during the
Execute Stage ( 4 ). Each entry stores the metadata for a single
bitmap update operation ( 5 ) and performs the update sequentially
through four states:

(1) s_init: The entry is �rst initialized with the bitmap location
to be updated, which is calculated using our trace encoding
algorithm described in §4.4.

(2) s_load: Subsequently, the current edge count at the bitmap
location is read from the appropriate memory address.

(3) s_store: Then, the edge count is incremented by one and
written to the same bitmap location stored in the entry.

(4) s_done: Once the entry reaches this state, it is deallocated
when it becomes the head of the BUQ.

Figure 4 depicts the bitmap update operation in the BUQdesigned
in a manner that imposes minimal overhead. Since the bitmap itself
is stored in user-accessible memory, its contents can be read and
written via load and store operations with the base address of the
bitmap and speci�c o�sets. To ensure the bitmap update opera-
tion does not stall the CPU pipeline, the load part of the update
operation is allowed to proceed speculatively in advance of the
store operation, which is only executed when the corresponding in-
struction is committed. However, in case there are store operations
pending for the same bitmap location from older instructions, such
speculative loads are delayed until the previous store completes to
prevent reading stale bitmap values. Moreover, each bitmap load
and store is routed through the cache hierarchy, which does not
incur the slow access latency of the main memory. Note that the
cache coherence and consistency of the bitmap updates can be en-
sured by the hardware in a manner similar to that for regular loads
and stores in the shared memory. Last, a full BUQ can result in back
pressure to the Execution Stage and cause pipeline stalls. To avoid
this, we su�ciently increase the BUQ; our 24-entry BUQ ensures
that such stalls are infrequent and incur negligible overhead.

4.2.3 Last Branch �eue. The LBQ ( 3 ) is a circular queue record-
ing the information of the last 32 branches as context-speci�c feed-
back used by a fuzzer, as we describe in §4.5. Speci�cally, each
entry of the LBQ stores the target address and the prediction result
for a branch (i.e., what was the branch direction and whether the
predicted direction from the branch-predictor was correct or not).
Such information is retrieved through the branch resolution path
from the branch unit ( 7 ), where branch prediction is resolved. To
interface with the LBQ, we utilize the CSRs described in Table 2.
Each LBQ entry is wired to a de�ned CSR and can be accessible from
software after each fuzzing execution using a CSR read instruction.

4.3 Micro-architectural Optimizations
Since the BUQ generates additional memory requests for bitmap
updates, it may increase cache port contention and cause non-trivial
performance overhead. To minimize the performance impact, we
rely on the fact that the bitmap update operation is not on the
critical path of program execution, independent of a program’s
correctness. Hence, the bitmap update can be opportunistically per-
formed during the lifetime of a process and also aggregated with
subsequent updates to the same location. Based on the observations,
we develop two micro-architectural optimizations.
Opportunistic bitmapupdate. At theMemory Stage in Figure 3b,
memory requests are scheduled and sent to the cache based on the
priority policy of the cache controller. To prevent normal memory
requests from being delayed, we assign the lowest priority to bitmap
update requests and send them to the cache onlywhen unused cache
bandwidth is observed or when BUQ is full. Combined with the
capability of the out-of-order BOOM core in issuing speculative
bitmap loads for the bitmap updates, this approach allows us to
e�ectively utilize the free cache bandwidth while also minimizing
the performance impact caused by additional memory accesses.



Algorithm 2: Edge encoding by SNAP
Input :BBsrc ! BBdst , pre�Loc

1 p = Address(BBdst )
2 inst_b�tes = InstB�tes(BBdst )
3 curLoc = p ˆ inst_b�tes[15 : 0] ˆ inst_b�tes[31 : 16]
4 bitmap[curLoc ˆ pre�Loc] += 1
5 pre�Loc = curLoc � 1
Output :pre�Loc – hash value for the next branch

Memory request aggregation. A memory request aggregation
scheme ( 6 ) is also deployed to reduce the number of additional
memory accesses. When the head entry of the BUQ issues a write
to update its bitmap location, it also examines the other existing
entries, which might share the same in�uencing address for subse-
quent updates. If found, the head entry updates the bitmap on behalf
of all the matched ones with the in�uence carried over, while the
represented entries are marked �nished and deallocated without
further intervention. This is e�ective, especially for loop statements,
where the branch instruction repeatedly jumps to the same target
address across iterations. The BUQ can thus aggregate the bitmap
update operations aggressively with fewer memory accesses.

4.4 Edge Encoding
Algorithm 1 describes howAFL [61] measures edge coverage, where
an edge is represented in the coverage bitmap as the hash of a pair
of randomly generated basic block IDs inserted during compile time.
To avoid colliding edges, the randomness of basic block IDs plays
an important role to ensure the uniform distribution of hashing
outputs. Rather than utilizing a more sophisticated hashing algo-
rithm or a bigger bitmap size to trade e�ciency for accuracy, AFL
chooses to keep the current edge-encoding mechanism, as its practi-
cality is well backed by the large number of bugs found. Meanwhile,
software instrumentation for coverage tracing requires excessive
engineering e�ort and can be error-prone, especially in the case of
complex COTS binaries without source code. Since it is non-trivial
to instrument every basic block with a randomly generated ID, one
viable approach is to borrow the memory address of a basic block
as its ID, which has proved e�ective in huge codebase [22]. Such
an approach works well on the x86 architecture where instructions
have variable lengths, usually ranging from 1 to 15 bytes, to pro-
duce a decent amount of entropy for instruction addresses to serve
as random IDs. In the case of the RISC-V architecture, however,
instructions are de�ned with �xed lengths. Standard RISC-V in-
structions are 32-bit long, while 16-bit instructions are also possible
only if the ISA compression extension (RVC) is enabled [54]. As a
result, RISC-V instructions are well-aligned in the program address
space. Reusing their addresses directly as basic block IDs for edge
encoding lacks enough entropy to avoid collisions.

To match the quality of edge encoding in AFL, we devise a
new mechanism (Algorithm 2) for SNAP that produces a su�cient
amount of entropy with no extra overhead compared to the naive
employment of memory addresses. Speci�cally, SNAP takes both
the memory address and the instruction byte sequence inside a ba-
sic block to construct its ID. A pair of such basic block IDs are then
hashed to represent the corresponding edge in the coverage bitmap.
By sitting at the hardware level, SNAP is able to directly observe
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bge a5, a4, 106cc
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+

Figure 5: An example of encoding a basic block ID.

and leverage the instruction bytes as a source of entropy without
overhead to compensate the lack of randomness due to the RISC-V
instruction alignment. To be compatible with both 16- and 32-bit
long RISC-V instructions, SNAP always fetches two consecutive
16-bit sequences starting at the instruction address and performs
bitwise XOR twice to produce a basic bock ID (line 3 in Algorithm 2,
also in Figure 5). Therefore, each ID contains the entropy from vari-
ous data �elds, including opcode, registers, and immediates, of either
an entire instruction or two compressed ones. In addition, SNAP
chooses to operate on the destination instruction of a branching op-
eration to construct a basic block ID, as it provides a larger variety
of instruction types (i.e., more entropy) than the branch instruction
itself. Similar to that of AFL, the encoding overhead of SNAP is
considered minimal, as the operation can be completed within one
CPU cycle. Note that Algorithm 2 can be easily converted to trace
basic block coverage by discarding prevLoc (line 5), which tracks
control transfers (i.e., edges), and performing bitmap update (line
4) solely based on curLoc (line 3).

4.5 Richer Coverage Feedback
As discussed in §2.2, edge coverage alone can be coarse-grained
and does not represent execution states accurately. Meanwhile, col-
lecting additional execution semantics via software-based solutions
always incurs major performance overhead. SNAP aims to solve
this dilemma from a hardware perspective. With various types of
micro-architectural state information available at the hardware
level, SNAP helps fuzzers to generate more meaningful feedback
that incorporates the immediate control �ow context and approxi-
mated data �ow of a program run without extra overhead.
Capturing immediate control-�ow context. Tracking long
control-�ow traces can be infeasible due to noise from overly sen-
sitive feedback and the performance overhead from comparing
long traces. Therefore, SNAP records only the last 32 executed
branches of a program run in the circular LBQ by default. Note that
SNAP provides the �exibility of con�guring branch entry number
and address �lters through software interfaces so that the hosted
fuzzer can decide to track the execution trace of an arbitrary pro-
gram space, ranging from a loop to a cross-function code region. A
unique pattern of the 32 branch target addresses recorded in LBQ
captures the immediate control-�ow context of a program execution,
such as the most recent sequence of executed parsing options inside
string manipulation loops. When the immediate control-�ow con-
text is included in coverage feedback, a fuzzer is inspired to further
mutate the inputs that share identical edge coverage but trigger
unseen branch sequences within the loop (Figure 1 line 4-11) that
will otherwise be discarded. As a result, the fuzzer is more likely to
generate the input that can reach the speci�c last-executed branch
sequence (i.e., SLLTS) for the buggy constraint (line 13).



while(*cur != ‘\0’){
switch (*cur) {
case ‘S’: ...
case ‘L’: ...
case ‘T’: ...

}
}
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Figure 6: An example of data �ow approximation between two runs
leveraging the branch predictions stored in LBQ.

Approximating data �ow via branch prediction. Data �ow
analysis has proved to be useful for fuzzers [12, 52, 60] to mu-
tate inputs more precisely (e.g., identify the input byte that a�ects
a certain data-dependent branch condition). However, recent re-
search [18] points out that traditional data-�ow analysis requires
too much manual e�ort (e.g., interpreting each instruction with
custom taint propagation rules) and is slow, making fuzzing less
e�ective. Surprisingly, SNAP is able to provide an approximation of
data �owwithout paying extra performance overhead by leveraging
the branch prediction results in the LBQ. A typical branch predictor,
such as the one used in RISC-V BOOM [7] and shown in Figure 6, is
capable of learning long branch histories and predicts the current
branch decision (i.e., taken vs. not-taken) based on the matching
historical branch sequence. Conversely, given the prediction results
of the recorded branch sequence in the LBQ, SNAP is able to infer
a much longer branch history than the captured one. Therefore, if
a mutated input byte causes a change in the prediction result of a
certain branch, the branch condition is likely related to the input
o�set, thus revealing dependency between them with near-zero
cost. Since most branch conditions are data-dependent [12, 18, 59],
the prediction result thus approximates the data �ow from the input
to any variables that a�ect the branch decision. In Figure 6, even if
the coverage map and the immediate control-�ow context remain
the same, the fuzzer can still rely on the approximated data �ows to
mutate further for the sequence of interest (i.e., line 13 in Figure 1)
when it is not captured by the LBQ.

4.6 OS Support
Besides the hardware modi�cation, kernel support is also critical
for SNAP to work as expected. We generalize it into three com-
ponents, including con�guration interface, process management,
and memory sharing between kernel and userspace. Rather than
testing the validity of modi�ed OS on the hardware directly, we also
provide the RISC-V hardware emulation via QEMU [4], allowing
easier debugging of the full system.
Con�guration interface. Among the privilege levels enabled by
the standard RISC-V ISA [54], we de�ne the newly added CSRs
(Table 2) in supervisor-mode (S-mode) with constraints to access
through the kernel. To con�gure the given hardware, SNAP pro-
vides custom and user-friendly system calls to trace a target pro-
gram by accessing the CSRs. For example, one can gather the last-
executed branches to debug a program near its crash site by en-
abling the branch record only. Others might request dedicated
fuzzing on speci�c code regions or program features by setting the

address range to be traced. Overall, SNAP is designed to be �exible
for various use cases.
Process management. Besides the software interface that allows
user programs to con�gure hardware through system calls, the
kernel also manages the tracing information of each traced process.
Speci�cally, we add new �elds to the process representation in the
Linux kernel (i.e., task_struct), including the address and the size
of the coverage bitmap, the address and the size of the branch queue,
the tracing address range, and the previous hash value. Those �elds
are initialized with zeros upon process creation and later assigned
accordingly by the system calls mentioned before. During a context
switch, if the currently executing process is being traced, the kernel
disables the tracing and saves the hash value and branch records
in the hardware queue. In another case, if the next process is to be
traced, the SNAP CSRs will be set based on the saved �eld values to
resume the last execution. Note that when fuzzing a multi-threaded
application, existing fuzzers typically do not distinguish code paths
from di�erent threads but record them into one coverage bitmap
to test the application as a whole. Although maintaining unique
bitmaps is supported, SNAP enables the kernel to copy all the SNAP-
related �elds of a parent process, except the address of the branch
queue, into its newly spawned child process by default. In addition,
when a target process exits, either with or without error, SNAP
relies on the kernel to clean up the corresponding �elds during the
exit routine of the process. However, the memory of the coverage
information and the branch queue will not be released immediately,
as it is shared with the designated user programs (i.e., fuzzers) to
construct the tracing information. Instead, the memory will be freed
on demand once the data have been consumed in the userspace.
Memory sharing. To share the memory created for the coverage
bitmap and the branch queue with the userspace program, SNAP
extends the kernel with two corresponding device drivers. In gen-
eral, the device drivers enable three �le operations: open(), mmap(),
and close(). A user program can create a kernel memory region
designated for either of the devices by opening the device accord-
ingly. The created memory will be maintained in a kernel array
until it is released by the close operation. Moreover, the kernel can
remap the memory to userspace if necessary. The overall design is
similar to that of kcov [37], which exposes kernel code coverage
for fuzzing.

5 EVALUATION
We perform empirical evaluations on the bene�ts of SNAP on
fuzzing metrics and answer the following questions:
• Performance. How much performance cost needs to be paid for
tracing on SNAP? (§5.2)

• Accuracy. How well can SNAP preserve traces against other
approaches of comparable CPU cycles throughout the lifetime of
processes? (§5.3)

• E�ectiveness. Can SNAP increase coverage for fuzzing in a
�nite amount of time? How do branch records and branch pre-
dictions provide more context-sensitive semantics? (§5.4)

• Practicality.How easy is it to support various fuzzers on SNAP?
How much power and area overhead does the hardware modi�-
cation incur? (§5.5)



Clock 75 MHz L1-I cache 32KB, 8-way
LLC 4MB L1-D cache 64KB, 16-way
DRAM 16 GB DDR3 L2 cache 512KB, 8-way

Front-end 8-wide fetch
16 RAS & 512 BTB entries
gshare branch predictor

Execution 3-wide decode/dispatch
96 ROB entries
100 int & 96 �oating point registers

Load-store unit 24 load queue & 24 store queue entries
24 BUQ & 32 LBQ entries

Table 3: Evaluated BOOM processor con�guration.

5.1 Experimental setup
We prototype SNAP on Amazon EC2 F1 controlled by FireSim [39],
an open-source FPGA-accelerated full-system hardware simulation
platform. FireSim simulates RTL designs with cycle-accurate system
components by enabling FPGA-hosted peripherals and system-level
interface models, including a last-level cache (LLC) and a DDR3
memory [8]. We synthesize and operate the design of SNAP at the
default clock frequency of LargeBoomConfig, which is applicable
to existing CPU architectures without signi�cant design changes.
While modern commercial CPUs tend to adopt a data cache (L1-D)
larger than the instruction cache (L1-I) for performance [30, 34, 35],
we mimic the setup with the default data cache size of 64 KB for
our evaluation. In general, the experiments are conducted under
Linux kernel v5.4.0 on f1.16xlarge instances with eight simulated
RISC-V BOOM cores, as con�gured in Table 3. Our modi�ed hard-
ware implementation complies with the RISC-V standard and has
been tested with the o�cial RISC-V veri�cation suite. The area
and power overhead of the synthesized CPU with our modi�ca-
tion are measured by a commercial EDA tool, Synopsys Design
Compiler [56].

We evaluate SNAP on the industry-standardized SPEC CPU2006
benchmark suite to measure its tracing overhead. We use the refer-
ence (ref ) dataset on the 12 C/C++ benchmarks compilable by the
latest RISC-V toolchain. To pro�le the encoding collisions, we col-
lect full traces from the benchmark as the ground truth for uniquely
executed edges before comparing with the encoded bitmaps. In par-
ticular, we enable user emulation of QEMU v4.1.1 in nochain mode
to force the non-caching of translated blocks so that the entire exe-
cution trace of each run is emitted. Meanwhile, we test AFL’s run-
time coverage increase and throughput with Binutils v2.28 [21], a
real-world collection of binary tools that have been widely adopted
for fuzzing evaluation [27, 40]. In general, we fuzz each binary for
24 hours with the default corpus from AFL in one experimental run
and conduct �ve consecutive runs to average the statistical noise
in the observed data.

5.2 Tracing Overhead by SNAP
We measure the tracing overhead imposed by SNAP and source in-
strumentation (i.e., AFL-gcc3) across the SPEC benchmarks. Table 4
shows that SNAP incurs a barely 3.14% overhead with the default
cache size of 64 KB, signi�cantly outperforming the comparable
software-based solution (599.77%). While we have excluded the

3We use AFL-gcc rather than AFL-clang because LLVM has compatibility issues in
compiling the SPEC benchmarks.

Name SNAP (%) AFL-gcc (%)
32 KB 64 KB 128 KB

perlbench 7.63 4.28 4.20 690.27
bzip2 2.32 2.21 2.10 657.05
gcc 7.85 5.11 4.97 520.81
mcf 1.75 1.54 1.54 349.83
gobmk 16.92 5.25 4.92 742.98
hmmer 0.72 0.60 0.54 749.56
sjeng 7.29 0.68 0.52 703.44
libquantum 0.80 0.67 0.44 546.67
h264ref 10.37 0.27 0.07 251.56
omnetpp 13.88 5.55 5.37 452.89
astar 0.37 0.30 0.30 422.96
xalancbmk 21.24 11.26 11.11 1109.24

Mean 7.59 3.14 3.00 599.77

Table 4: Tracing overhead from AFL source instrumentation and
SNAP with various L1-D cache sizes across the SPEC benchmarks.

Name Agg. Rate (%) L1 Cache Hit Rate (%)

Base SNAP �

perlbench 3.32 97.82 96.49 -1.33
bzip2 13.67 91.80 91.32 -0.47
gcc 25.14 68.53 67.42 -1.11
mcf 7.83 44.45 43.89 -0.56
gobmk 8.78 95.51 91.81 -3.70
hmmer 1.36 95.80 95.64 -0.17
sjeng 5.24 98.44 96.18 -2.26
libquantum 41.60 53.97 53.24 -0.73
h264ref 16.23 96.67 95.89 -0.78
omnetpp 4.69 82.10 79.68 -2.42
astar 3.77 87.39 87.09 -0.30
xalancbmk 30.04 82.94 77.17 -5.77

Mean 13.47 82.95 81.32 -1.63

Table 5: Memory request aggregation rates and L1 cache hit rates
between the baseline and SNAP across the SPEC benchmarks.

numbers for DBI solutions (e.g., AFL QEMU mode), the resulting
overhead is expected to be much heavier than source instrumenta-
tion, as explained in §3. The near-zero tracing overhead of SNAP
results from its hardware design optimizations, including oppor-
tunistic bitmap update and memory request aggregation (§4.3).
Table 5 shows that the bitmap update requests have been reduced
by 13.47% on average thanks to aggregation. In the best case, the re-
duction rate can reach above 40%, which e�ectively mitigates cache
contention from frequent memory accesses (e.g., array iteration)
and avoids unnecessary power consumption.

Further investigation shows that the performance cost of SNAP
might also result from cache thrashing at the L1 cache level. In
general, applications with larger memory footprints are more likely
to be a�ected. Since bitmap updates by the BUQ are performed in
the cache shared with the program, cache lines of the program data
might get evicted when tracing is enabled, resulting in subsequent
cache misses. Note that this problem is faced by all existing fuzzers
that maintain a bitmap. For instance, Table 5 points out that gobmk
and xalancbmk both su�er from comparably higher overhead (� 5%)
caused by reduced cache hit rates of over 3.5%. The impact of cache
thrashing can also be tested by comparing the tracing overhead of
SNAP con�gured with di�erent L1 D-cache sizes. Table 4 shows
that a larger cache exhibits fewer cache misses and can consistently
introduce lower tracing overhead across benchmarks. In particular,
the overhead can be reduced to 3% on average by increasing the
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Figure 7: Collisions from encoded trace edges among benchmarks. random indicates the baseline by AFL with random basic block IDs. The instb_*
family by SNAP adopts both memory addresses and instruction bytes as IDs. shift, rotate and bswap present the best collision rates achieved by bitwise
operations on memory addresses alone.

cache size to 128 KB. Alternatively, the extra storage can be repur-
posed as a dedicated bu�er for the coverage bitmap to avoid cache
misses due to bitmap update, which we leave for future work.

In addition, Table 4 shows that the tracing overhead of AFL-gcc
is much larger. With the CPU-bound benchmarks that best approx-
imate the extreme circumstances, the overhead is expected [62], as
discussed in §3. This �nding is generally consistent with the num-
bers from the x86 setup, which also incurs an average of 228.09%
overhead on the same testing suite by AFL-gcc. The extra slow-
down in the current RISC-V experiment is caused by the additional
instrumented locations in binaries due to the di�erence in ISAs. For
example, RISC-V does not de�ne a speci�c instruction for backward
edges (i.e., ret), which are often not tracked on instrumented x86
binaries. Thus, the RISC-V benchmarks have 58.51% more instru-
mentation than the x86 version, resulting in a 40.03% increase in the
binary size. Note that the cache size has negligible impact on the
tracing overhead for the software-based solution. Although bitmap
updates can still cause cache thrashing, the overhead mainly comes
from the execution cost of instrumented instructions.

5.3 Preserving Traces
Figure 7 shows the collision rates of various edge-encoding schemes
on the SPEC benchmarks with the reference workload. The colli-
sions are con�rmed by comparing full execution traces against their
resulting bitmaps accordingly. A lower collision rate implies that a
more complete code trace is preserved when a binary is fully tested.
Together with the result of gcc from a limited bitmap size (i.e., 64
KB), Algorithm 1 by AFL consistently generates the lowest collision
rates (11.47%) among all. With random basic block IDs inserted at
compile time, true randomness is introduced into the algorithm to
avoid collisions. In comparison, the approaches that directly adopt
the memory address of a basic block as its ID perform signi�cantly
worse. Even with the bitwise operations (i.e., logical shifts, circular
shifts, or endian swaps N bits of the block addresses before bitwise
XORing them), the impact from well-aligned RISC-V instructions
cannot be reduced. In particular, the most e�ective one, circular
shift, produces an average of 337 more colliding edges than AFL per
benchmark, with a worst case of a 5.29% increase (i.e., h264ref).

Name #Block Collision Rate (%)

random instb_16 instb_32 instb_48 instb_64

perlbench 18,612 13.06 16.91 14.61 14.60 14.44
bzip2 2,069 1.61 2.32 2.23 2.15 1.96
gcc 55,222 32.39 34.99 32.55 32.71 32.61
mcf 1,493 0.87 1.67 1.34 1.34 1.70
gobmk 19,762 13.58 16.08 14.40 13.80 14.35
hmmer 3,360 2.47 3.21 3.02 3.57 3.33
sjeng 3,351 2.45 3.49 3.01 3.28 3.07
libquantum 1,397 1.15 2.29 1.50 1.72 2.05
h264ref 7,365 5.53 6.93 6.19 5.90 5.94
omnetpp 10,321 7.04 8.41 7.84 8.05 7.82
astar 2,441 1.90 2.58 2.12 2.11 2.60
xalancbmk 27,169 18.06 18.82 18.51 18.45 18.47

Mean 12,713 8.34 9.81 8.94 8.97 9.03

Table 6: Collisions from encoded trace blocks among benchmarks.

On the other hand, Algorithm 2 by SNAP can achieve collision
rates (11.70%) similar to those of AFL. By leveraging the entropy
of RISC-V instruction(s) at the start of a basic block, SNAP signi�-
cantly outperforms the aforementioned approaches that solely rely
on memory addresses for encoding. Meanwhile, we cannot �nd a
consistent pattern of including more instruction bytes for fewer
collisions beyond 32 bits, as shown in Figure 7. Since most instruc-
tions are 32-bit long, gathering data �elds (e.g., opcode, registers,
and immediates) beyond one instruction might not be helpful in
practice.

Besides edge coverage, basic block coverage also serves as a met-
ric adopted by existing fuzzers [43, 52] to measure code coverage.
Table 6 shows the collisions from SNAP using basic block coverage
(§4.4) across the same benchmarks. The mechanism proposed by
SNAP (i.e., instb_32) reaches a collision rate of 8.94% on average,
similar to the rate by AFL (8.34%). Therefore, SNAP is considered
equally accurate in terms of preserving either block or edge traces.

5.4 Evaluating Fuzzing Metrics
To understand how SNAP improves fuzzing metrics, we evaluate it
on seven Binutils binaries. Given the default corpus, we compare
the code coverage and runtime throughput of AFL running for
24 hours under the existing DBI scheme (i.e., AFL-QEMU), source
instrumentation (i.e., AFL-gcc), and support of SNAP.



Figure 8: The average execution speed from fuzzing with AFL-
QEMU, AFL-gcc and AFL-SNAP for 24 hours across the Binutils bi-
naries. The numbers below the bars of AFL-QEMU show the number of
executions per second for the mechanism.

Fuzzing throughput. Figure 8 shows the fuzzing throughput
across the compared mechanisms. Speci�cally, AFL on SNAP can
achieve 228⇥ higher execution speed than AFL-QEMU, which is lim-
ited by the low clock frequency and its ine�cient RISC-V support.
The average throughput of AFL-QEMU (i.e., 0.18 exec/s) is consis-
tent with the previous �ndings in PHMon [14]. Note that SNAP im-
proves the throughput muchmore signi�cantly than PHMon, which
only achieves a 16⇥ higher throughput than AFL-QEMU. Despite
that the baseline BOOM core in SNAP is about 50% faster [65] than
the baseline Rocket core [5] adopted by PHMon, SNAP achieves a
14⇥ higher throughput-increase in comparison mainly due to its
design optimizations (e.g., opportunistic bitmap update and mem-
ory request aggregation). Compared to AFL-gcc, SNAP can still
achieve a 41.31% higher throughput on average across the bench-
marks. More throughput comparisons on x86 platforms are shown
in Appendix A.
Edge coverage. Figure 9 depicts the resulting coverage measure-
ment, where the con�dence intervals indicate the deviations across
�ve consecutive runs on each benchmark. Given an immature seed
corpus and a time limit, AFL with SNAP consistently covers more
paths than the others throughout the experiment. Since no change
to fuzzing heuristics (e.g., seed selection or mutation strategies)
is made, the higher throughput of SNAP is the key contributor to
its outperformance. On average, AFL-QEMU and AFL-gcc have
only reached 23.26% and 84.59% of the paths discovered by AFL-
SNAP, respectively. Although larger deviations can be observed
when the program logic is relatively simple (Figure 9f), SNAP in
general can help explore more paths in programs with practical
sizes and complexity thanks to its higher throughput. For example,
AFL with SNAPmanages to �nd 579 (16.74%), 237 (20.82%), and 378
(19.77%) more paths when fuzzing cxxfilt, objdump, and readelf,
respectively.
Adopting execution context. Given the last-executed branches
and their prediction results in LBQ, fuzzers on SNAP are equipped
with additional program states. To take the feedback, one can easily
follow the mechanisms introduced previously [13, 26, 28]. Our
prototype of AFL instead adopts a feedback encoding mechanism
similar to that in Algorithm 1 to showcase the usage. Speci�cally,
the highest signi�cant bit (HSB) of each 64-bit branch address is set
based on the respective prediction result (i.e., 1/0). To maintain the
order of branches, the records are iterated from the least recent to
the latest in the circular LBQ and right circular shift’ed (i.e., rotated)

(a) cxxfilt

(b) nm

(c) objdump

(d) readelf

(e) size

(f) strings

(g) strip

Figure 9: The overall covered paths from fuzzing seven Binutils bi-
naries for 24 hours. The solid lines represent the means, and the shaded
areas suggest the con�dence intervals of �ve consecutive runs.

by N bits based on their relative positions in the sequence before
being bitwise XOR’ed. The encoded value is �nally indexed into a
separate bitmap from the one for edge coverage (i.e., trace_bits).
Reproducing a known bug. Running on SNAP, the modi�ed
AFL is able to trigger CVE-2018-9138 discovered by the previous
work [13], which proposes using feedback similar to that provided
by our platform. As in Figure 1, the vulnerability occurs when
cxxfilt consumes a long consecutive input of "F"s, each indicat-
ing that the current mangled symbol stands for a function. The
corresponding switch case in the loop (line 5-10) tries to further
demangle the function arguments (i.e., demangle_args()) before
running into the next "F" to start a recursive call chain. Luckily,



Description Area (mm2) Power (mW )

BOOM core 9.2360 36.4707
SNAP core 9.6811 38.8513

Table 7: Estimates of area and power consumption.

SNAP o�ers the execution context by capturing branch sequences
triggered by mutated inputs. While a vanilla AFL cannot easily
reach the faulty program state with only edge coverage feedback,
our fuzzer can consistently achieve it within one fuzzing cycle, led
by the guidance.

5.5 Practicality of SNAP
Easy adoption. To show how SNAP can be easily adopted, we
have integrated a variety of fuzzers from FuzzBench [25], including
AFL [61], AFLFast [10], AFLSmart [51], FairFuzz [42], MOpt [45],
and WEIZZ [16]. The others are excluded from the list, not because
of fundamental challenges to adopt SNAP but due to the incom-
patibility of RISC-V. For example, HonggFuzz [26], libFuzzer [43],
Entropic [9], laf-intel [41], and Ankou [46] fail to compile on
Fedora/RISC-V due to the lack of support from LLVM, GO, and
their dependent libraries (e.g., libunwind). Otherwise, the adoption
of SNAP is straightforward, requiring only a change of less than
100 LoCs consistently. Around 55 LoCs are C code that issues the
system calls for creating shared bitmap and branch records, as well
as comparing execution context per testcase. The others are as-
sembly that compiles RISC-V binaries to work with forkserver (i.e.,
afl-gcc).
Area and power overhead. To estimate the area and power over-
head of SNAP, we synthesize our design using Synopsys Design
Compiler at 1GHz clock frequency. To obtain a realistic estimate
of the SRAM modules such as L1 D-cache, L1 I-cache, and branch
predictor (BPD) tables used in the BOOM core, we black-box all
the SRAM blocks and use analytical models from OpenRAM [29].
Our synthesis uses 45nm FreePDK libraries [55] to measure the
area and power consumption between the unmodi�ed BOOM core
and the modi�ed SNAP core. Table 7 shows that SNAP only incurs
4.82% area and 6.53% power overhead, more area-e�cient than
the comparable solution (16.5%) that enables hardware-accelerated
fuzzing [14]. When tracing is disabled, the power overhead can be
mostly avoided by clock gating through the switch CSR TraceEn.

6 DISCUSSION
Comparison with PHMon. PHMon [14] is a recently proposed
hardware-based security monitor that enforces expressive policy
rules. Despite its demonstration of basic hardware-assisted trac-
ing for fuzzing, PHMon is not speci�cally designed for this pur-
pose. In comparison, SNAP outperforms PHMon by a 14⇥ higher
fuzzing throughput thanks to the optimizations dedicated to light-
weight tracing, including opportunistic updates to utilize free cache
bandwidth, issuing speculative load operations to avoid delays, and
memory request aggregation to reduce operations. Moreover, SNAP
enables additional execution semantics as context-aware fuzzing
feedbackwithout extra performance cost by providing last-executed
branches and their branch prediction results. Together with the
cleverly encoded bitmap of low collision rates, SNAP helps fuzzers
explore more program states for more interesting mutations.

Usage beyond fuzzing. Although fuzzing is a �rst-class citizen
targeted by SNAP, other applications are also welcomed by the
general design. For example, SNAP can provide an e�cient coverage
estimation for unit testing, which incurs signi�cant hassle and
overhead with existing mechanisms such as gcov [20] and Intel
PT [36]. The information can also serve as an execution �ngerprint
for logging and forensic purposes. Last, partial feedback, such as
branch prediction results, can serve as approximated performance
metrics with pro�led cache misses in a speci�c code region.
Limitations and future directions. While SNAP is carefully de-
signed not to hinder the maximum clock frequency, we are limited
in our evaluation to a research-grade hardware setup with low
clock speed. We hope our work motivates future studies and adop-
tion on more powerful cores [58] and custom ASICs by processor
vendors [38]. Additionally, while SNAP does not support kernel
coverage �ltered by the privilege level, leveraging the hardware
for tracing kernel space is not fundamentally restricted. SNAP is
also not suitable to track dynamic code generation with reused
code pages, such as JIT and library loading/unloading, as it a�ects
the validity of the coverage bitmap. If needed, annotations with
�lters on the program space can be applied to reduce noise. Future
work could include repurposing a bu�er dedicated for coverage
bitmap storage to avoid extra cache misses, leveraging other micro-
architectural states from hardware, such as memory access patterns,
to identify dynamic memory allocations (e.g., heap) across program
runs, or adopting operands of comparing instructions for feedback
as suggested [41]. Alternatively, given �lters in the debug unit of
ARM’s CoreSight extension [2], the practicality of the design can
be further demonstrated without relying on custom hardware.

7 RELATEDWORK
Binary-only fuzzing. Runtime coverage tracing can be costly and
becomes even more complicated when handling closed-source tar-
gets, such as COTS binaries. In particular, a typical software-based
solution falls into either static or dynamic binary instrumentation,
each limited by di�erent constraints. For example, DynInst [57] is
not widely adopted, as the binary rewriting mechanism is error-
prone due to its complexity and thus cannot be applied to many
real-world use cases [15]. RetroWrite [15] requires relocation infor-
mation of position-independent code to soundly instrument bina-
ries. While most of the dynamic binary instrumentation schemes
[4, 11, 44, 49, 63] are more accessible to fuzzers thanks to their
ease of use, they typically su�er from signi�cant overhead due to
runtime translation or callback routines. Although UnTracer [48]
suggests coverage-guided tracing to achieve near-native execution
speed for most of the non-interesting fuzzing testcases, its current
design and evaluation are based on basic block coverage, which
represents a less accurate program execution trace in regard to
branch transfers and loops. Despite that a revised edge coverage
tracker (without edge count) has been proposed, the performance
impact of switching to the new solution is unclear due to the po-
tential increase of interesting testcases. In contrast, SNAP avoids
such hassles by tracing at the hardware level. It removes the gap be-
tween source-based and binary-only tracing while providing richer
execution feedback with near-zero performance overhead.



Hardware-assisted fuzzing. Besides the software-based solu-
tions, existing fuzzers [13, 26, 28, 53, 64] turn to available hardware
extensions [31, 32, 36] for guidance when fuzzing binaries without
source code. Intel PT [36] has been the most commonly adopted
one, exposing the full trace of an execution in a highly compressed
fashion for e�ciency. Despite its generality, the use of Intel PT
for fuzzing can be ad-hoc, as the feature was originally designed
for helping debug a program execution with accurate and detailed
traces without worrying about performance impact. Therefore, it
already incurs at least 20-40% combined overhead for tracing and
decoding before a fuzzer can incorporate the feedback for further
mutation [33, 48, 64]. Although PTrix [13] utilizes Intel PT to gather
traces under a parallel scheme without recovering the exact condi-
tional branches for edge coverage to avoid major decoding over-
head, it merely achieves a comparable execution speed as source
instrumentation. Similarly, since PHMon [14] is designed to suit dif-
ferent use cases, such as providing shadow stack and watchpoints
for a debugger, its usage for tracing is not optimized for fuzzing
either. In comparison, SNAP adopts a highly optimized design for
fuzzing and shows its advantage over the other approaches in §5.4.
Despite the barrier to entry for a customized architecture, the ben-
e�ts of SNAP under minimal changes to an existing CPU pipeline
can be intriguing to commodity hardware. Motivated by the ex-
isting hardware-accelerated infrastructures dedicated for machine
learning [1, 23, 50], along with the increasing industrial demand
of fuzzing services [24, 47], SNAP demonstrates the feasibility of
performance boost by hardware-assisted fuzzing, complementing
Intel PT for various use cases.

8 CONCLUSION
We present SNAP, a customized hardware platform that imple-
ments hardware primitives to enhance performance and precision of
coverage-guided fuzzing. SNAP is prototyped as a full FPGA imple-
mentation together with the necessary OS support. By leveraging
micro-architectural optimizations in the processor, our prototype
enables not only transparent tracing but also richer feedback on
execution states with near-zero performance cost. Adopted fuzzers,
such as AFL, can achieve 41% and 228⇥ faster execution speed
(and thus higher coverage) running on SNAP than with existing
tracing schemes, such as source instrumentation and DBI. The hard-
ware design only poses a 4.8% area and 6.5% power overhead and
thus is applicable to existing CPU architectures without signi�cant
changes.
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Figure 10: The average execution speed from fuzzing with AFL-gcc
and AFL-clang-fast for 12 hours across the Binutils binaries. The
numbers below the bars of AFL-gcc show the number of executions per
second for the mechanism.

A APPENDIX
A.1 AFL throughput on x86 platforms
Although the fuzzing throughput from AFL-clang on the RISC-V
platform is left out due to technical di�culties, a similar comparison
for the numbers on x86 platforms is gathered instead. In particular,
we compile the Binutils binaries through AFL-gcc and AFL-clang,
and conduct �ve consecutive fuzzing runs of 12 hours to reduce the
statistical noise. Figure 10 shows that AFL-clang takes consistent
advantage of the compiler-based optimizations over AFL-gcc, which
manually instruments at the assembly-level, and outperforms in all
evaluating cases by an average of 6.96% faster execution speed.

The �nding generally alignswith that of the AFLwhitepaper [62],
suggesting the performance gain of less than 10% for most binaries
other than CPU-bound benchmarks. The only exception occurs
when fuzzing strings (14.04%). This is because AFL’s feedback adopts
edge counters, driving the fuzzer to to search for longer inputs with
more printable strings, while the gain is magni�ed due to more
iterations and branch encounters consequentially. Thus, given the
relative edges over AFL-gcc (Figure 8 and Figure 10) and the posing
overhead on the SPEC benchmarks (Table 4 and Table 1), we would
expect SNAP to outperform AFL-clang on the RISC-V platformwith
higher fuzzing throughput.
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