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Abstract—
Physical Ising machines rely on nature to guide a dynamical

system towards an optimal state which can be read out as a
heuristical solution to a combinatorial optimization problem.
Such designs that use nature as a computing mechanism can lead
to higher performance and/or lower operation costs. Quantum
annealers are a prominent example of such efforts. However,
existing Ising machines are generally bulky and energy intensive.
Such disadvantages may be acceptable if these designs provide
some significant intrinsic advantages at a much larger scale in
the future, which remains to be seen. But for now, integrated
electronic designs of Ising machines allow more immediate
applications. We propose one such design that uses bistable nodes,
coupled with programmable and variable strengths. The design
is fully CMOS compatible for on-chip applications and demon-
strates competitive solution quality and significantly superior
execution time and energy.

Index Terms—Ising machine, optimization, CMOS accelera-
tors, nature-based computing, quantum annealing

I. INTRODUCTION

The power of computing machinery has improved by orders

of magnitude over the past decades. At the same time, the need

for computation has been spurred by the improvement and

continues to require better mechanisms to solve a wide array

of modern problems. For a long time, the industry focused on

improving general-purpose systems. In recent years, special-

purpose designs have been increasingly adopted for their

efficacy in certain type of tasks such as encryption and network

operations [1], [2] More recently, machine learning tasks have

become a new focus and many specialized architectures are

proposed to accelerate these operations [3], [4]. Much of this

work is to construct a more efficient architecture where the

control overhead as well as the cost of operation becomes

much lower than traditional designs.

In a related but different track of work, researchers are

trying to map an entire algorithm to physical processes such

that the resulting state represents an answer to the mapped

algorithm. Quantum computers marketed by D-Wave Systems

are prominent examples. Different from circuit model quantum

computers [5], [6], D-Wave machines perform quantum an-

nealing [7].1 The idea is to map a combinatorial optimization
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1Recent theoretical works have claimed increasingly strong equivalence
between the two modes of quantum computing [8], [9].

problem to a system of qubits such that the system’s energy

maps to the metric of minimization. Then, when the system

is controlled to settle down to the ground state, the state of

qubits can be read out, which corresponds to the solution of

the mapped problem.

It is as yet not definitive whether D-Wave’s systems can

reach some sort of quantum speedup. But one thing is clear:

machines like these can indeed find some good solutions to

an optimization problem, and in a very short amount of time

too. Indeed, a number of alternative designs have emerged

recently all showing good quality solutions for non-trivial sizes

(sometimes discovering better results than the best known

answer from all prior attempts) in milli- or micro-second

latencies [10]–[12]. These systems all share the property that

a problem can be mapped to the machine’s setup and then the

machine’s state evolves according to the physics of the system.

This evolution has the effect of optimizing a particular formula

called the Ising model (more on that later). Reading out the

state of such a system at the end of the evolution thus has the

effect of obtaining a solution (usually a very good one) to the

problem mapped.

For example, in some systems, the Hamiltonian is closely

related to the Ising formula. Naturally, the system seeks

to enter a low-energy state. In other systems, a Lyapunov

function of the system can be shown to be related to the

Ising formula. In general, these systems can be thought of

as optimizing an objective function (in the form of the Ising

formula) due to physics. Hence, they are generally referred to

as Ising machines. Clearly, unlike in a von Neumann machine,

there is no explicit algorithm to follow. Instead, nature is

effectively carrying out the computation. Ising machines have

been implemented in a variety of ways with very different

(and often complex) physics principles involved. It is unclear

(to us at least) whether any particular form has a fundamental

advantage that will manifest in a very large scale.

Note that these systems can not guarantee reaching the

ground state in practice.2 Nonetheless, some systems find a

good answer with high speed and a good energy efficiency,

as we shall see later with concrete examples. In this paper,

we propose a novel CMOS-compatible Ising machine which

uses circuit elements’ physical properties to achieve nature-

based computation. This design is completely different from

other efforts of using CMOS circuit to build machines that

2Theoretical guarantee in some ideal setup may exist. For instance, adiabatic
quantum computing theory says that when the annealing schedule is suffi-

ciently slow and in the absence of noise (zero kelvin) the system is guaranteed
to stay in the ground state [13].
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simulate an annealer. We perform a detailed analysis of the

design and show that it is a compelling design and superior

in many respects to existing Ising machines and accelerators

of simulated annealing.

II. BACKGROUND AND RELATED WORK

We first explain the background of Ising machines and

discuss the state of the art in implementations.

A. Ising model

The Ising model is used to describe the Hamiltonian of a

system of spins.3 The model is a general one that describes a

system with many nodes (e.g., atoms), each with a spin (σi)

which takes one of two values (+1, −1). The energy of the

system is a function of pair-wise coupling (Jij) of the spins

and each spin’s reaction (hi) to some external magnetic field

(µ). The resulting Hamiltonian is as follows:

H = −
∑

(i<j)

Jijσiσj − µ
∑

i

hiσi (1)

If we ignore the external field, the Hamiltonian simplifies to

H = −
∑

(i<j)

Jijσiσj (2)

This simplified version is more useful for the purpose of our

discussion. Henceforth, when we refer to the Ising model or

formula, we mean Eq. 2.

A physical system with such a Hamiltonian naturally tends

towards low-energy states and thus serves as a convenient

machine to solve a problem with a formulation equivalent

to the Ising formula – provided we can configure parameters

(e.g., Jij) to match that of the problem.

B. Optimization problems and mapping issues

A group of optimization problems naturally map to an Ising

machine. Perhaps the most straightforward problem to map is

(weighted) Max-Cut. Given a graph, G = (V,E), a cut is a

partition of vertices into two sets of, say, V + and V −, where

V − = V − V +.

The Max-Cut problem tries to find a cut such that the

combined weight of the edges spanning the two sets of vertices

is maximum. In other words, the maximum cut is

argmax
V +∈P(V )

(

∑

(i,j)∈E;

i∈V +; j∈V −

Wij

)

(3)

where Wij is the weight of edge (i, j). (We will refer to the

resulting
∑

Wij as the cut value in this paper.)

It is easy to see the resemblance between Eq. 2 and 3. In

fact, if we set the coupling weight (Jij) to be the negative of

edge weight (−Wij) then the Ising formula is simply twice the

negative cut value plus a problem-specific constant (
∑

Wij)

as follows (for notational simplicity, for i ≥ j we set Wij to

0):

3Though commonly called the Ising model, the model itself existed before
Ernst Ising (read “Easing”) solved analytically a one-dimensional system.

H = −
∑

Jijσiσj =
∑

σi=−σj

Wijσiσj +
∑

σi=σj

Wijσiσj

= −
∑

σi=−σj

Wij +
∑

σi=σj

Wij = −2
∑

σi=−σj

Wij +
∑

Wij

(4)

Hence if the machine finds the ground state of the Hamil-

tonian, we have the maximum cut. Finding out the maximum

cut of an arbitrary graph is an NP-hard problem. Practical

algorithms only try to find a good answer. Similarly, existing

Ising machines (including our design) are all Ising sampling

machines that typically provides a good sample of a low-

energy state, with no guarantee of optimality.

Because of the trivial mapping of the Max-Cut problem to

the Ising formula, designers of Ising machines, often focus

on this optimization problem. However, other optimization

problems can also be mapped to an Ising machine. Indeed,

every problem in the original NP-complete set [14] can be

expressed by an Ising formulation specifically designed for

that problem [15]. Note that Ising formulation may require

more nodes than that of the original formulation and usually

requires additional time to compute coupling coefficients in

the Ising formulation from the original formulation. This

transformation is largely straightforward and the need for it

is problem-dependent and thus shared by all Ising machines.

Another transformation, however, may be necessary depend-

ing on the machine’s coupling topology. While we will get into

the details as we discuss the machines, it is worth emphasising

up front the significant impact of the issue. If a machine

has only local connections, then spins mapped to nodes not

directly connected have to rely on additional, auxiliary spins.

An alternative description is that if a machine has a limited

connection topology, then the graph of a problem needs to

be transformed (e.g., using minor embedding [16]) into a new

graph that observes the limitation imposed by the machine.

Consequently, a graph of size N may contain many more

nodes (e.g., N2

2 ) after the transformation. Fig. 1 illustrates

these transformations in the process of solving a problem on

an Ising machine.

C. Quantum mechanical and optical Ising machines

There are many natural systems that can be described by

the Ising model. Take two existing systems with relatively

large footprints for example. D-Wave’s quantum annealers

use superconducting qubits as the basic building block. These

bits are then coupled together with couplers forming a con-

nection topology known as the Chimera graph. This is an

important architectural constraint that limits the typology of

the problem that can be mapped to the machine. As we

will see later, despite supporting nominally more than 2000

spins, many of our benchmarks can not be mapped to the

machine. Another disadvantage of the system is the cryogenic

operating condition (15mK) needed for the quantum annealer.

This requirement consumes a significant portion of the 25KW

power of the machine [17].
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Fig. 1. High-level overview of a generic Ising machine workflow solving (weighted) Max-Cut problem (box-1). Ising formulation (box-2) is a required
property for solving diverse problem sets. Minor-embedding (box-3) is a topology-dependent design factor and not required for all Ising machines. Box-4a
and -4b shows how an example embeded graph fits unto the machine. The yellow box represents the machine dynamics.

Coherent Ising machines (CIMs) are another recent example

of Ising sampling machines [10], [18]–[21]. In a CIM, an

optical device called OPO (optical parametric oscillator) is

used to generate and manipulate the signal to represent one

spin. Unlike in a D-Wave Ising machine, the coupling between

spins in CIM is relatively straightforward in principle. As a

result, CIM implementations have always supported all-to-all

coupling. The authors also emphasized that the 2000-node

CIM is therefore far more capable than D-Wave 2000Q which

can only map all-to-all problems of size 64 [22].

CIM is not without its disadvantages. To support 2000 spins,

kilometers of fibers are needed. Temperature stability of the

system is thus an acute engineering challenge. Efforts to scale

beyond the currently achieved size (of about 2000) have not

been successful as the system runs into stability problems.

Also worth noting is that the coupling between nodes is – at

least in the current incarnation – implemented via computation

external to the optical cavity. There is a rather intensive

computational demand (100s of GFLOPS) [23]. Every pulse’s

amplitude and phase are detected and its interaction with all

other pulses calculated on an auxiliary computer (FPGA). The

computation is then used to modulate new pulses that are

injected back into the cavity. Strictly speaking, the current

implementation is a nature-simulation hybrid Ising machine.

Thus, beyond the challenge of constructing the cavity, CIM

also requires a significant supporting structure that involves

fast conversions between optical and electrical signals.

These room-sized Ising machines are certainly worthwhile

creations for the sake of science. In particular, investigations

are needed to see whether the theoretical underpinning for

these machines is relevant in practice. As we shall see later,

both models have significant room for improvements.

D. Electronic oscillator-based Ising machines

A network of coupled oscillators is another physical im-

plementation of an Ising machine. After sufficient time, the

coupled oscillators will synchronize forming stable relative

phase relationship.4 While many factors (e.g., amplitude,

stochastic noise) will influence the phase of each oscillator,

the following formula is a simplified steady-state description

of phase relationship for N oscillators:

d

dt
φi(t) =

N
∑

j=1

Jijsin
(

φj(t)− φi(t)
)

(5)

Note that this simplified model ignores certain elements (e.g.,

diffusion due to noise) and is thus an approximation of a

more complicated reality. Given such a differential equation

describing a dynamic system, it can be shown that a Lyapunov

function in the following form exists [11]:

H
(

Φ(t)
)

= −
∑

i<j

Jijcos
(

φj(t)− φi(t)
)

(6)

This means that the system will generally evolve along a

trajectory that minimizes the Lyapunov function [25]. As a

result, the system’s stable states represent good solutions that

minimize the right hand side of Eq. 6. On a closer inspection,

we see the resemblance of Eq. 6 and the Ising model (Eq.

2). Specifically, when all phases (φi) are either 0 or π, the

two formulae are the same.5 A number of oscillator-based

Ising machines have been recently proposed [11], [26], [27].

4The observation of such synchronization dates back to at least the 17th
century when Huygens observed synchronization of two pendulums [24].
Synchronization phenomenon is the subject of research efforts in a wide
variety of fields. Large-scale synchronization of firefly flashings and rhythmic
applause in a large crowd of audiences are but two examples in the general
underlying principles beyond mechanical objects.

5In fact, the formulation of Eq. 6 is similar to the classic XY spin model
(again ignoring external field): each spin can point to any direction along an
“XY” plane and thus can be represented by a phase (φi). Ising model is thus a
special case of the XY model. In other words, a system of coupled oscillators
form an “XY machine” (not an Ising machine). An XY state can be quantized
into an Ising state (φi = 0, π) in a number of different ways. For the sake of
this paper, let us simply imagine direct quantization which rounds the phase
to the nearest multiple of π.
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All these examples use LC tank oscillators. While this is a

common practice for analog circuit designers and relatively

straightforward for discrete-element prototypes, the use of LC

tanks introduce non-trivial practical challenges in integrated

circuit (IC) designs. The lack of high quality inductors and

the usually high area costs of incorporating them are common

challenges for integrated RF circuitry. These desktop Ising

machines are a significant improvement (at least in size)

over room-sized Ising machines. But, for genuine wide-spread

applications, we believe a clean-slate IC-focused design is a

valuable direction to pursue. Needless to say, we believe there

will be significant cross-pollination of different approaches

and future practice may very well be a confluence of multiple

styles of Ising machines.

E. Accelerated simulated annealing

Finally, a set of chips have been designed to accelerate

simulated annealing [28] or a variant of the classic algorithm.

These chips are often described as having tens of thousands

of spins [29], [30]. In these designs, the spins are virtual in

that they are bits in memory and manipulated by an algorithm

(simulated annealing). These machines are specially built to

accelerate that algorithm. Hence we refer to such a machine

as an Accelerated Simulated Annealer or ASA for short.

These ASAs differ fundamentally from physical Ising ma-

chines. In a physical Ising machine, nature guides the spins

to a preferable state according to physical laws. Thus, the

machine can achieve ultimate speed and energy efficiency

in principle – though it is entirely possible that a particular

physics exploited is slow or energy-intensive to control; or it

may be expensive to enable the physics, such as in creating

the cryogenic environment required for quantum annealing.

F. Taxonomy

Existing Ising machines can be categorized based on

whether they use physical or virtual spins. Note that this aspect

is more of a continuum than a binary distinction. In the case

of CIM, for instance, the interaction of the spins happens

physically in the fiber. But the appropriate amplitude of

feedback is controlled using external calculation. Fig. 2 shows

this high-level classification, where the horizontal dimension

summarizes the contrast between physical and virtual systems.

A second important differentiator of Ising machines is

the connection topology. As discussed before, with a local

connection, there is a limitation on the kind of problems

that can be mapped to the machine. When a problem does

not map directly, a transformation is needed to convert the

problem, usually by requiring many auxiliary nodes. The

nominal number of spins a machine provides is therefore a

very poor representation of the machine’s capability. We will

provide a quantitative analysis on this point in Sec. IV. At this

point, we qualitatively place existing Ising machines based on

their connection topology on the vertical axis in Fig. 2.

III. ARCHITECTURE OF THE PROPOSED ISING MACHINE

In this section, we start with a simplified system to provide

some intuition about how common electronics can also make
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Fig. 2. High-level taxonomy of Ising machine design space showing a
continuum of capabilities. ASAα and ASAβ refer to machines in works [29]
and [30] respectively.

a physical Ising machine (Sec. III-A); then describe in more

detail the system architecture (Sec. III-B); and finally present

theoretical analysis of the system’s optimum-seeking behavior

(Sec. III-C).

A. Overview & intuition

As already discussed before, existing physical Ising ma-

chine have different strengths and weaknesses. The room-sized

machines are vehicles for continued scientific exploration of

the underlying principles. It is particularly useful to show the

difference between ideal theoretical capabilities and what can

be achieved in practice. For instance, according to quantum

adiabatic theory, the system’s Hamiltonian needs to be changed

sufficiently slowly to guarantee that the system stays in ground

state. In practice, D-Wave’s quantum annealer appears to offer

a fixed annealing schedule.6 Operated as such, the quantum

annealer predictably provides sub-optimal solutions, as we will

show later.

The question then becomes: can we build better (smaller,

less power-intensive) physical Ising machines. And the

answer is: yes, with electronics. In digital designs, electronic

devices are often thought of as no more than the building

blocks of functional units. But their behavior is also subject to

physical laws that can be leveraged to perform nature-based

computation. As it turns out, practical physical Ising machines

can be built out of common devices such as capacitors and

resistors. We start with one such simple design to show

the working principle. Of course, this design is not yet a

high-performance system. But as we will show later, with

a proper architecture and careful design of key elements, a

physical Ising machine built out of electronics is much more

compelling than existing proposals. Additionally, it can be

fabricated entirely in a CMOS process.

Intuition: In the Ising model, when two nodes (say, i, and

j) are strongly and positively coupled (i.e., Jij is large and

6We are unable to find ways of adjusting this schedule.
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positive), their spins are likely to be parallel (σi = σj). In

this way, the term −Jijσiσj will contribute to lowering the

energy. Conversely, a strong negative coupling (Jij is large

and negative) will likely lead to anti-parallel spins (σi = −σj).

Finally, weak coupling (|Jij | is small) suggests that the two

spins are more likely to be independent.

This behavior can be easily mimicked with resistively cou-

pled capacitors. Consider representing a node with a capacitor,

where the polarity of the voltage across it represents the spin

of the node. More specifically, in Fig. 3, if a node has a

spin of “-1”, the voltage at the upper terminal (top plate of

the capacitor, labeled “+”) is lower than that of the lower

terminal (bottom plate of the capacitor). We can then connect

nodes with different resistors. A strong coupling means high

conductance (or low resistance), so that voltages of two nodes

can more easily equilibrate. So, we set Rij ∝ 1/Jij . The

sign of coupling can also be achieved by connecting either

the same or opposite polarity in the corresponding capacitors.

Fig. 3 shows a simple 4-node system mapped from a logical

graph of a Max-Cut problem with the labeled edge weights.
7 It is not difficult to see that the solution should separate

the nodes into {1, 4} and {2, 3}. Let’s see how the machine

functions.

The graph translates to couplings in a straightforward man-

ner: Rij = R/Jij = −R/Wij , where the sign indicates

polarity of coupling. For instance, nodes 1 and 4 (W1,4 = −1)

are parallel/positively coupled (R1,4 = −R/W1,4 = R).

So a resistor R connects the upper terminals of nodes 1

and 4 and another connects the two lower terminals. Nodes

1 and 3 (W1,3 = +0.5) are antiparallel/negatively coupled

(R1,3 = −R/W1,3 = −2R), so a 2R resistor connects the

upper terminal of Node 1 and the lower terminal of Node 3,

and another 2R resistor connects their remaining terminals.

+
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N
o
d
e
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+
C

N
o
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e
 2

R

R

+
C 2R

2R

N
o
d
e
 3

+
C R

N
o
d
e
 4

R
0.

33
R

0.
33

R

BRIM

Mapping

1 4

3 2

−1

+0.5 +3+1

Graph

Fig. 3. Sample Max-Cut problem mapping to a 4-node resistive Ising machine
(left) and corresponding solution, cut value of +4.5, (right).

Once initialized with random polarities, these coupled ca-

pacitors can indeed seek some equilibrium as shown in Fig. 3

(right). In this example, the polarity of the capacitors at

equilibrium indeed gives the best solution to the Max-Cut

problem.

While this oversimplified design confirms the intuition that

it can find a solution, it is far from a robust design. For

7Recall the coupling and edge weight relation, Jij = −Wij , in the Ising
formula.

example, depending on the initial state and system scale,

the voltages at equilibrium can be 0V or just too low for

reliable readout. The equilibrium is also temporary because

leakage will make all nodes decay to 0V eventually, rather

than staying at the desired voltage levels. Nevertheless, the

resistively-coupled capacitor network is at the core of our

proposed Ising machine. To induce and maintain the nodes at

equilibrium, we can introduce a local feedback unit to make

the node voltages bistable. For brevity, we will refer to such

a Bistable, Resistively-coupled Ising Machine as BRIM.

B. Architecture of an integrated design

We now discuss the architecture of a more complete system

designed for integrated circuits. The system is illustrated in

Fig. 4 and consists of: ① bistable nodes (N1 to N4) and their

digital interface (DFF 1-4); ② coupling units connecting the

nodes (CUij); ③ programming units to configure coupling

weights (including: memory, multiplexers, digital-to-analog

converters, and the column control systems); and ④ annealing

control. We discuss each in turn as follows:

DFF
1

DFF
2

DFF
3

DFF
4

Annealer
Control

Coupling UnitsNode Units Programming Units

N1

N2

N3

N4

MUX

MUX

MUX

MUX

Column Selector

DAC

DAC

DAC

DAC

clk

sig

clk

MEM
1j

MEM
4j

MEM
2j

MEM
3j

Logic

CU
3,1

CU
2,1

CU
4,1

CU
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Fig. 4. Block diagram of BRIM system components. Nodes are Ni and
coupling units CUij . The multi-colored interconnecting links are wires.

1) Nodes: The bistable nodes Ni are shown at the left

side of Fig. 4. In Fig. 5 we show a more detailed illustration

of one node. Recall that in the simplified circuit (Fig. 3) the

capacitor’s voltage can be too low (even zero) as compared to

electronic noise level to reliably indicate the node’s spin. A

feedback circuit is therefore needed to stabilize the voltages at

the desired levels (e.g., ±Vdd). Two conditions are required:

① the capacitor should be charged according to its polarity

when the voltage is between −Vdd and +Vdd, and discharged

when the voltage exceeds this range; and ② at low voltages,

the feedback circuit should supply a low current in order not

to overwhelm signals coupled from other nodes.

Combining these considerations, we can design a feedback

circuit with the current-voltage (IV) curve as shown in Fig. 5.

Because of the slanted “Z” shape of the IV curve, we call such

sub-system a ZIV diode. As seen in the IV curve, for capacitor

voltages between −Vdd and Vdd, the ZIV diode acts as an

active element charging its voltage closer to ±Vdd. Conversely,
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As explained in Sec. II (box 3 of Fig. 1), machines without

all-to-all coupling (D-Wave and ASA) require preprocessing

of input graph through minor embedding [16]. This process

currently takes significant time on a conventional computer

(more details in Sec. IV-D) and can often fail for larger

graphs. ASA uses the King’s graph which is even more limited

than the Chimera graph in D-Wave, the minor embedding

process takes even longer time to complete and results in more

physical nodes needed. In our high-level analysis, we ignore

the significant time needed for this preprocessing.

BRIM is modeled using Eq. 7. We perform simulations

using MATLAB’s nonstiff, single step, 5th-order differential

solver (ode45). Finally, we also performed the classic Sim-

ulated Annealing (SA) [35] algorithm as a reference using

MATLAB. The execution time is measured on server cluster

nodes of Intel Xeon Platinum 8268 CPUs at 2.9GHz with

371GB of RAM.

B. Benchmarks

To compare these systems, we use a set of popular graphs

called “Gset” (and their derivatives) with diverse node sizes

and edge densities. These graphs are just weighted, undirected

graphs and not associated with any specific problem. They nat-

urally correspond to an Ising formula. Thus, we are comparing

different machines optimizing the same set of Ising formulae.

Because of the direct mapping between an Ising formula

and the Max-Cut problem, and that many algorithms have

been developed for optimizing Max-Cut, it is convenient for

researchers, especially Ising machine designers, to interpret

these graphs as specifying a Max-Cut problem, which we

follow in this paper. Note that this does not mean we can

only solve a Max-Cut problem as already discussed in Sec. II.

The graphs we use can be divided into the following groups:

1) Regular graphs: We use the original Gset graphs from

Stanford [36]. These graphs have between 800 and

20,000 nodes. The edges as well as the weights of

such edges, were generated probabilistically, sometimes

between +1 and -1, and sometimes all +1. We only

use those graphs with less than 2000 nodes in our

experiments.

2) Small graphs: Although supporting nominally 2048

spins, D-Wave’s machine can not map even the smallest

graph in Gset. We therefore generate graphs with smaller

node sizes (e.g., 120) and/or edge densities so that

they can be successfully map onto D-Wave. For this

purpose, we used rudy, a machine-independent graph

generator [37], which is the same generator used to

produce the “Gset” graph suite.

3) Tiny graphs: Finally, we also generated fully-connected

graphs with random edge weights, and node sizes rang-

ing from 16 to 32 (in increments of 4). Each node size

has 20 sample graphs, for a total of 100 graphs. For

these graphs, we are able to enumerate all possible spin

combinations to determine actual maximum cut.

C. High-level comparison

It is important to keep in mind that Ising machines are

far from mature. Early designs and prototypes are necessarily

experimental in nature and thus lack the polish of, say, a

conventional architecture. Much of the performance difference

may be due to the art of prototyping rather than the fundamen-

tal science of the mechanism being exploited. This is perhaps

especially the case for D-Wave, as in our comparison, it is the

only actual hardware that we have access to. (CIM and OIM

both have hardware prototypes but are not accessible to us.)

We start with a crude, high-level comparison of different

Ising machines. There are several practical factors that make

this comparison crude and incomplete. First, there is no single

problem that can be measured on all machines. This is primar-

ily because CIM only reported raw data on a very specific set

of benchmarks and we are unaware of any reliable model of

the physics that is publicly available. Second, the workload

of optimization usually allows tradeoff between speed and

quality of the solution. Ideally, we will fix one metric (say,

execution time) and compare the other (quality of solution).

But in some cases, such control is unavailable to us. Third, the

execution result depends on initial conditions. So any single

run is subject to random chances. The common practice of

using these machines is doing multiple runs and taking the

best solution, which we follow. But this value should still be

regarded as a random variable.

1) Room-sized machines: With these caveats in mind, Ta-

ble I shows the estimated power, chip area (when applicable),

and the execution time and solution quality of a few work-

loads. The cut value itself changes a lot with the workload.

Therefore, for solution quality, we use the distance from the

(presumed) ground-state solution (the lower the distance the

better). This is a much more stable metric. We use the best

reported cut value anywhere as the (presumed) ground-state.

TABLE I
HIGH-LEVEL COMPARISON OF DIFFERENT ISING MACHINES. Time IS

ANNEALING TIME. Dist. IS SOLUTION DISTANCE FROM BEST. SMALL

GRAPHS AVERAGE SOLUTION: 374. TINY GRAPHS AVERAGE SOLUTION:
23. G22 AND G39 BEST SOLUTIONS: 13359 [38]; 2408 [39].

Parameters D-Wave CIM OIM ASA BRIM

Power (W) 25K 210 - ≈ 1 ≈ 250m

Area (mm2) - - - 4.3× 5.5 ≈ 5

Effective Spins 126 2000 - 160 2000

G22 Dist. - 46 56 - 46

Time - 5ms 6ms - 0.25µs

G39 Dist. - 47 66 - 46

Time - 5ms 6ms - 0.25µs

Tiny Graphs Dist. 6 - 0 0 0

Time 20µs - 20µs 20µs 20µs

Small Graphs Dist. 12 - 0 7 0

Time 20µs - 20µs 20µs 20µs

Avg. Gset Dist. - - 9.7 - 2.6
Time - - 0.8ms - 2.2µs

First, we look at CIM using G22 and G39 because these are

tested on CIM and reported (Fig. 3 of reference [10]). These

graphs cannot be mapped on D-Wave. For other machines,

we try to match CIM’s solution quality and show execution
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