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A B S T R A C T   

Seasonal or chronic nutrient limitations in the photic zone limit large-scale cultivation of seaweed (macroalgae) 
in much of the world’s oceans, hindering the development of macroalgae as a biofuel feedstock. One possible 
solution is to supply nutrients using a diel depth-cycling approach, physically moving the macroalgae between 
deep nutrient-rich water at night and shallow depths within the photic zone during the day. This study tested the 
effects of depth-cycling on the growth, morphology, and chemical composition of the giant kelp Macrocystis 
pyrifera, a target species for renewable biomass production. Giant kelp grown under depth-cycling conditions had 
an average growth rate of 5% per day and produced four times more biomass (wet weight) than individuals 
grown in a kelp bed without depth-cycling. Analysis of tissue from the depth-cycled kelp showed elevated levels 
of protein, lower C:N ratios, and distinct δ15N and δ13C values suggesting that the depth-cycled kelp were not 
nitrogen-deficient and assimilated nutrients from deep water. Depth-cycled kelp also exhibited smaller and 
thicker-walled pneumatocysts and larger blades. Overall, this study supports further investigation of depth- 
cycling as a macroalgal farming strategy.   

1. Introduction 

Global climate change caused by the accumulation of anthropogenic 
greenhouse gases has created an urgency to develop renewable energy 
alternatives [1,2]. Biofuels developed from primary producers are an 
attractive choice because of their potential to be carbon neutral – carbon 
dioxide is released when biofuels are burned but is also removed from 
the atmosphere during feedstock growth. Furthermore, biofuels are 
compatible with existing infrastructure, and are the only low-carbon 
fuels with the energy density required for transportation over long dis
tances [3]. Unfortunately, current biofuel feedstocks have significant 
drawbacks. In particular, farming and fertilization of biofuel crops is 
often carbon intensive, and the expansion of terrestrial biofuel crops 
may come at the expense of food crops or other vegetation and compete 
for land and fresh water [4]. The use of marine macroalgae (or seaweed) 

feedstocks circumvents these issues and thus represents a promising 
alternative [5,6]. Compared to terrestrial feedstocks, the lack of 
ligno-cellulose in brown macroalgae also simplifies the conversion of 
biomass into fuel [7]. Considering the vast expanse of the world’s ocean, 
the potential for large-scale ocean farming of macroalgae seems plau
sible and should be considered as a potential sustainable and 
cost-effective source of renewable biofuel feedstock. 

Recognizing the potential to decrease dependence on fossil fuels, the 
U.S. Department of Energy’s Advanced Research Projects Agency- 
Energy (ARPA-E) recently invested $22 M to develop mechanisms to 
increase marine biomass production through the Macroalgae Research 
Inspiring Novel Energy Resources (MARINER) program. Macroalgae 
were previously explored as a biofuel feedstock in the U.S. during the 
1970–80s under the Ocean Food and Energy Project [8] and Marine 
Biomass Program [9], which greatly advanced our understanding of 
both the potential and challenges of developing this resource. These 
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programs were eventually discontinued in an environment of low oil 
prices; however, there is now a renewed worldwide interest in macro
algal fuels [10,11]. Several viable pathways for the conversion of 
biomass into fuels [12] currently exist and include hydrothermal 
liquefaction, which generates a bio-crude from wet biomass that can be 
processed using existing refinery technology and fed into traditional 
distribution channels, thus eliminating the need for new infrastructure. 
Accordingly, the limiting factor in developing macroalgae as a biofuel 
feedstock is the need for large-scale and year-round production of ma
rine biomass at a price comparable to terrestrial bioenergy feedstocks 
and fossil fuels. 

Giant kelp, Macrocystis pyrifera (Laminariales), has long been 
considered one of the most promising macroalgal species for biomass 
production due to its large size, rapid growth rates, and life cycle stra
tegies. Macrocystis is commonly found in temperate subtidal marine 
ecosystems where it forms a dense underwater habitat, and can grow at a 
rate of up to 35 cm per day [13]. Mature individuals are capable of 
producing hundreds of fronds (the entirety of a single stipe and all its 
associated blades) that are constantly turning over, with older longer 
fronds senescing and shorter new fronds forming near the base or 
holdfast of the individual [14]. This growth pattern allows for the har
vest of biomass from older fronds while individuals continue producing 
new fronds (for one to several years), potentially increasing the effi
ciency of production cycles. Fronds can reach lengths of over 30 m [15], 
often forming large floating canopies at the sea surface (the result of 
pneumatocysts, gas-filled vesicles that develop at the base of all 
non-reproductive blades). Additionally, the life history of Macrocystis 
includes a haploid gametophyte stage that is easily maintained and 
cultured in the laboratory, allowing for the development of a germplasm 
bank of known genotype and phenotype [16]. 

While the ocean offers a large area for potential cultivation (the U.S. 
Exclusive Economic Zone alone spans >11 million km2), there are sig
nificant challenges to growing macroalgae in deep open-ocean envi
ronments [17]. The distribution of giant kelp is confined to cool 
temperate seas and is restricted by the availability of light, nutrients, 
and hard substrate for attachment, limiting its growth to shallow reefs 
that experience seasonal upwelling. Giant kelp are typically found at 
depths of 5–20 m, though they have been found in deeper depths where 
conditions allow for deeper light penetration [18]. In contrast, the 
average depth of the open ocean is ~4000 m, with the photic zone 
limited to the upper ~100–300 m and the majority of photosynthetically 
active radiation (PAR) within 50 m of the surface [19]. In the open 
ocean, nutrient concentrations are typically very low near the surface 
due to rapid uptake by phytoplankton, but then increase with depth 
below the photic zone as organic matter is re-mineralized [20]. Deep 
water has been shown to provide the key nutrients for Macrocystis 
growth [21]. Consequently, cultivation of kelp in the open ocean re
quires both an artificial substrate to maintain the kelp within the upper 
photic zone and some mechanism to deliver deep-water nutrients. 

A possible solution to surface nutrient limitation is the development 

of depth-cycling farms that submerge kelp to nutrient-rich deep water at 
night and surface kelp to shallower sunlit depths during the day. The 
success of such farms would rely on the ability of species such as Mac
rocystis to thrive under depth-cycling conditions. In particular, giant 
kelp would have to tolerate substantial daily changes in pressure during 
each transition between shallow and deep water which could damage its 
gas-filled pneumatocysts [22] and have other detrimental physiological 
consequences. Kelp would also need to assimilate nutrients in the 
absence of light, a metabolic process that appears to be either dependent 
on or facilitated by light in some macroalgal species [23–27], but not 
others [28]. 

Here, we describe the results from an in situ experiment testing the 
biological response of Macrocystis to daily depth-cycling between 
nutrient poor surface waters and nutrient rich deeper water. Depth- 
cycling was accomplished using an anchored buoy-elevator system 
which cycled the kelp between ~9 m and ~80 m daily for 90 days. 
Results from the experiment demonstrated that the amount of Macro
cystis biomass produced under daily depth-cycling conditions was 
significantly greater than individuals from a natural kelp bed, and 
warrant further consideration of depth-cycling as a macroalgal farming 
strategy. 

2. Methods 

2.1. Experimental sites 

Three experimental sites were established in the waters off Santa 
Catalina Island (Figs. 1A-C and 2), located 20 miles offshore from Los 
Angeles in the Southern California Bight (SCB): 1) An automated Buoy- 
Elevator (B-E) installation in relatively deep water (169 m) used to test 
the biological response of Macrocystis to depth-cycling, 2) a fixed 
installation on the benthos (~9 m) on the northern edge of a kelp bed at 
Parsons Landing (PL) used for comparison of depth-cycled kelp to kelp 
grown in its natural habitat, and 3) a fixed-depth installation (9 m) at Big 
Fisherman’s Cove (BFC, max depth ~20 m) where kelp were suspended 
in the water column as is typical of current kelp mariculture operations. 
Though the in situ nature of this study precluded traditional controls, PL 
and BFC serve as comparative sites to the B-E. All three sites are located 
within the SCB and thus experience similar mesoscale conditions char
acteristic of this region, but also display unique characteristics described 
below. 

B-E (33◦28′12.78′′N, 118◦29′33.30′′W) is a sandy bottom site 
approximately 169 m deep, located ~3 km north of the town of Two 
Harbors on Catalina Island and exposed to currents and swell conditions 
in the San Pedro Channel (Fig. 2) [29,30]. The B-E site was chosen for 
depth-cycling as an accessible location subject to open-ocean like con
ditions with low concentrations of nutrients at the surface and high 
concentrations below the thermocline [20]. A 2.5 m diameter buoy 
equipped with a solar-powered winch was moored at the site to raise and 
lower a submerged tetrahedron structure consisting of fiberglass beams 
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suspended from stainless steel cables at a rate of 7 cm sec-1 (Fig. S1). The 
longest side of the tetrahedron is 12 m and was used as the attachment 
point for PVC pipes populated with wild-collected juvenile Macrocystis 
used for the depth-cycling trial. The winch was programmed to raise and 
lower the tetrahedron between ~9 m and ~80 m daily at 0500 and 1900 
Pacific Time, respectively (Fig. 1A). 

PL (33◦28′25.5′′N 118◦33′06.3′′W) is a rocky subtidal reef located 
near the western end of Catalina Island that commonly harbors Macro
cystis [31] (Fig. 2). Typical Southern California kelp forest herbivores 
such as sea urchins, abalone, and snails can be found at this location. PL 
was the collection site for juvenile kelp used at all experimental sites, 
and transplants back to PL were used to compare the growth, survival, 
and chemical composition of depth-cycled kelp at B-E to individuals 
grown in their native habitat. To secure the transplanted kelp at PL, two 
eyebolts were attached onto rocks using Z-Spar underwater epoxy and 
placed ~30 m apart from each other at a depth of ~9 m at the western 
edge of a naturally occurring kelp bed (Fig. 1B). A 3-mm lead (Pb) line 
was secured to the eyebolts and served as the attachment point for 
horizontal PVC pipes populated with juvenile giant kelp transplants. 

BFC (33◦26′41.8′′N 118◦29′08.5′′W) is located inside the Blue 
Cavern Onshore State Marine Conservation Area and relatively sheltered 
from swell and current conditions [32] (Fig. 2). BFC was used to assess 
the growth of kelp transplanted to a shallow fixed depth suspended in 
the water column. The experimental site in BFC is a sandy bottom 
environment with a depth of ~20 m. Approximately 18 m of 

polypropylene line was secured using two moorings at a depth of ~9 m 
to match the ‘surface’ depth at the B-E site (Fig. 1C). Situated inside a 
marine reserve, BFC typically harbors similar vertebrate and inverte
brate species as found at PL, but since kelp were suspended in the water 
column at this site they were presumably not accessible to benthic 
species. 

2.2. Environmental conditions 

The primary goal of this study was to assess the growth of giant kelp 
when depth-cycled under conditions where nutrients are limiting at the 
surface but not at depth. To determine nutrient availability, we used a 
combination of direct measurements of inorganic nitrogen (nitrate, ni
trite, ammonia) and phosphate from seawater samples taken from 
different depths, as well as temperature measurements, which can be 
used to determine thermocline depth [33] and estimate nitrate con
centrations [34]. Water samples and hydrographic water column pro
files (measuring conductivity, temperature, and dissolved oxygen) were 
collected at potential depth-cycling study site locations prior to the start 
of the experiment (Fig. S2, Tables S1 and S2), as well as collected twice 
at each kelp outplant site during the experiment (Table 1). These mea
surements were later used to model the relationship between tempera
ture and nitrate concentration. Temperatures were also recorded at each 
outplant site during the experiment using continuous data loggers places 
underwater. Combining these data with our model of the relationship 
between temperature and nitrate allowed us to estimate ambient nitrate 
concentrations at each site throughout the experiment. 

Hydrographic profiles were collected using a Sea Bird Electronics 
(SBE) 25plus Sealogger with Conductivity, Temperature, and Depth 
(CTD) sensors together with a SBE43 Dissolved Oxygen sensor with all 
sensors recording at a rate of 16 samples per second. Measurements were 
made onboard a 25-ft vessel, lowering and raising the CTD sensor 
package using a power hauler at a rate of about 1 m sec-1. Raw CTD and 
oxygen sensor files were processed by the Southern California Marine 
Institute using the SBE Data Processing software. Mixed Layer Depths 
(MLD) were calculated using a temperature threshold criterion of sea- 
surface temperature (SST) – 0.8 ◦C [35] which performed well in 

Fig. 1. Experimental sites. (A) The Buoy-Elevator (BE) experimental platform 
depth-cycled kelp between 9 m during the day and 80 m at night. (B) Parsons 
Landing (PL) was the site of collection for all the kelp used in the trial and also 
used as a reference for growth of kelp in its natural setting. Experimental kelp 
were outplanted at the edge of a naturally occurring kelp bed. (C) Kelp were 
outplanted along a polypropylene rope that was suspended at 9 m in the water 
column at Big Fisherman’s Cove (BFC), mimicking established near-shore 
farming practices. 

Fig. 2. Study location. The study was conducted on the north side of Santa 
Catalina Island’s isthmus in the SCB (eastern North Pacific) (inset) and included 
three sites: BFC, PL, and B-E (see Fig. 1). 
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estimating MLD in the California Current [33] where the B-E site is 
located. 

Seawater samples were collected from discrete depths using a 2 L 
Niskin bottle (General Oceanics) during each sampling cruise. Sampling 
depths (Tables S2 and 1) were chosen to maximize coverage of the 
relevant portion of the water column, as each site varied in maximum 
depth. Seawater collected from each depth was syringe filtered through 
a 0.2 μm filter (Corning™ Polyethersulfone Syringe Filters, Fisher Sci
entific) into 20 mL scintillation vials, immediately frozen on dry ice, and 
stored at − 20 ◦C until further processing. Seawater samples were 
analyzed by the University of California Santa Barbara’s Marine Science 
Institute Analytical Lab for Nitrite, Nitrite plus Nitrate, Ammonia, and 
Ortho-phosphate concentrations using Flow Injection Analysis on a 
QuikChem 8500 Series 2 (Lachat Instruments, Zellweger Analytics). 
Nitrate-depth profiles were also estimated using a nitrate-temperature 
regression (see below), and nutricline depths (ND) were estimated as 
the depth where estimated nitrate concentrations were 1.025 μM [36]. 

High frequency temperature data in combination with a relationship 
between temperature-nitrate and upwelling models were used to assess 
nutrient exposure at each site during the course of the experiment. 
Temperature data was collected using a combination of Onset HOBO 
Pendant Temperature/Light Loggers (part# UA-002-08), HOBO 
Pendant MX Temperature/Light Data Loggers (part# MX2202) and 
HOBO TidbiT MX Temperature 5000′ Data Loggers (part# MX2204) 
logging every 15 min (B-E and PL) or 1 h (BFC). Loggers at B-E and PL 
were installed immediately adjacent to outplanted kelp, while the 
temperatures collected for the BFC site were taken from loggers previ
ously installed by the USC Catalina Conservation Divers (https://dorns 
ife.usc.edu/wrigley/wies-ccd/) at a site ~200 m northwest of the 
installation and a depth of 9 m. There were missing data between 6/20/ 
2019 and 7/28/2019 for PL due to failed loggers. 

Hydrographic profiles and nitrate measurements from seawater 
samples collected at and near the B-E site (Table S2) were used to model 
the relationship between temperature and nitrate for the study area. 
Following Snyder et al. [34] a Generalized Additive Model (GAM) was 
fit to this temperature and nitrate dataset using the mgcv package in R 
with the restricted maximum likelihood method (k = 10, family: 
gaussian, link function: identity) [37]. The temperature-nitrate GAM 
was then used to predict instantaneous nitrate concentrations for each 

time point from high-frequency temperature data obtained from the in 
situ loggers, which were then averaged to give mean daily nitrate con
centrations. Two new upwelling indices that improve upon classical 
upwelling indices (e.g. Bakun Index) for the U.S. west coast (33 ◦N) were 
used to assess the influence of upwelling at all three sites [38]. The 
Biologically Effective Upwelling Transport Index, BEUTI, an estimate of 
vertical nitrate flux and Coastal Upwelling Transport Index, CUTI, an 
estimate of vertical transport are publicly available datasets [39]. 

2.3. Experimental design 

To test the effects of depth-cycling on Macrocystis growth and 
morphological response, juvenile giant kelp were transplanted to each of 
the three sites. On May 13, 2019, about 120 young Macrocystis in
dividuals (~25 cm in length and single bladed or recently-split double- 
bladed without pneumatocysts) were hand collected from PL at depths 
between 6 and 12 m by divers using SCUBA and then transferred to flow- 
through seawater tables at the USC Wrigley Marine Science Center 
(WMSC) on Catalina Island. Individual kelp outplants were each 
assigned an ID number, measured, weighed, and photographed before 
being randomly assigned to one of the three experimental sites (35 in
dividuals at BFC and B-E, 40 at PL). The weights and lengths of each 
outplant assigned to the three sites were not significantly different 
(Kruskal-Wallis test; wet weights: H = 2.631, df = 2, P = 0.268; lengths: 
H = 0.657, df = 2, P = 0.720). Tissue samples from six additional ju
veniles were dried for elemental analysis (see Tissue composition section 
below). 

The following day (experimental day 0), tagged individuals were 
transported to each experimental site in coolers filled with seawater. 
Outplants were deployed at each site using 1.5-m long ½“-PVC pipes as 
the substrate. The PVC pipes were sanded and incubated in flow-through 
seawater tanks for several days prior to use in order to ‘season’ them. For 
attachment, kelp stipes were spliced into a 12-cm piece of three-strand 
¼” polypropylene rope. Cable ties were woven into the rope at each 
end flanking the kelp and were used to attach the kelp to the PVC pipes 
with 30 cm spacing for a total of 5 kelp plants per pipe. Four ¼” holes 
were pre-drilled along the PVC pipe to secure them to the experimental 
structures at each site using heavy-duty zip-ties. 

Kelp outplanted at the B-E site was depth-cycled for 90 of the 107 

Table 1 
Hydrographic data at the three experimental sites on multiple dates and depths relevant to the study. bd = below detection; nd = no data.  

Site Date Depth Nitrate Nitrite Ammonia Phosphate Temperature Salinity Dissolved Oxygen 

m d-1 y-1 m μM μM μM μM ◦C ppt mL L-1 

B-E 5/9/2019 10 0.58 bd nd 0.44 16.73 33.63 5.61   
30 3.57 0.26 nd 0.75 14.63 33.63 5.52   
50 11.72 0.19 nd 1.30 11.96 33.66 4.10   
70 15.41 bd nd 1.60 10.91 33.71 3.55   
100 20.96 bd nd 2.04 10.06 33.84 2.90  

6/18/2019 10 bd bd bd 0.14 16.62 33.81 6.05   
30 11.20 0.27 bd 1.13 12.22 33.71 4.19   
50 18.20 0.11 bd 1.54 10.81 33.74 3.28   
70 22.50 0.10 bd 1.84 10.34 33.82 2.84   
100 25.50 0.12 bd 2.05 9.76 33.96 2.38  

7/25/2019 10 bd bd bd 0.16 19.89 33.85 5.21   
30 1.12 bd bd 0.38 16.24 33.78 5.72   
50 10.60 0.26 bd 1.09 12.38 33.85 4.45   
70 18.30 bd bd 1.52 11.15 33.83 3.34   
100 17.10 bd bd 1.55 10.06 33.92 2.54 

PL 6/18/2019 5 0.41 0.13 bd 0.26 16.96 33.68 5.76   
8 3.16 0.19 bd 0.55 15.75 33.79 5.91  

7/25/2019 5 bd bd bd 0.11 18.86 33.76 5.59   
8 bd bd bd 0.17 18.43 33.71 5.75 

BFC 6/18/2019 5 0.37 bd bd 0.22 17.95 33.70 5.65   
10 1.94 bd bd 0.35 17.42 33.79 5.64   
15 2.51 0.18 bd 0.50 15.75 33.74 5.28  

7/25/2019 5 bd bd bd 0.14 19.84 33.75 5.52   
10 0.57 bd bd 0.30 17.93 33.81 5.70   
15 0.87 bd bd 0.28 16.81 33.71 5.72  
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days between kelp transplant and recovery, with interruptions caused by 
large swells and technical glitches occasionally preventing cycling 
(Table S3). On day 104 of the experiment, the tetrahedron platform at B- 
E descended to the sea floor due to a compromised cable-eye. The 
following day, the tetrahedron and attached kelp were recovered and 
towed underwater to BFC at a speed of <2 km hr-1, where it was then 
attached to a mooring and maintained at a depth of ~10 m. Two days 
later, 107 days after outplanting, the attached B-E kelp were recovered 
from the tetrahedron via SCUBA and transported to the lab at WMSC for 
analysis. Kelp outplants at PL were recovered on day 113 and at BFC on 
day 119. 

2.4. Growth and morphology 

In-situ growth measurements and photography were conducted by 
SCUBA divers throughout the experiment to monitor kelp growth and 
development. During the transition from juvenile to adult, the overall 
morphology of Macrocystis changes substantially which required a shift 
from measurements of overall length to measuring the length of each 
stipe and finally the number of stipes achieving 1 m or greater in length 
(Fig. 3A and B). 

The overall length of each kelp plant (as measured from the base of 
the primary stipe to the furthest blade tip) was used as the metric for 
growth for the first 42 days (Fig. 3A). Five individuals at PL and 4 at B-E 
were completely lost within this period and excluded from our analysis. 
An additional 3 individuals at B-E had one or more missing time-points 
due to challenging diving conditions at that site and were also excluded. 
Following observations of primary dichotomous branching and frond 
development, up to four different stipes were tagged and measured for 
each outplant to determine stipe elongation rates (cm per day). Stipe 
lengths were measured as the distance between the base of the primary 

stipe (where it attaches to the holdfast) and the apical meristem 
(Fig. 3B). Stipe lengths were measured in-situ at B-E on July 15 and PL on 
July 18 and upon recovery (see below). After further growth, stipe 
lengths at B-E were too long to accurately measure in-situ so the number 
of stipes greater than 1 m was counted for each individual at PL and B-E 
on August 8 (87 days) and August 11 (90 days), respectively. 

At the end of the experiment, recovered kelp were measured and 
photographed including a detailed analysis of pneumatocyst and blade 
morphology (Fig. 3B–E). Wet weights were determined using a motion 
compensating load cell (RL20000 ST) from Rice Lake. Percent growth 
per day was calculated using the equation  

r =
(ln(W2) − ln(W1))

t2 − t1  

where r is relative growth per day and W1 and W2 are individual wet 
weights at times t1 (deployment) and t2 (recovery). Individuals were 
placed on a white plastic sheet and photographed, and the length of each 
stipe was recorded. 

Previously tagged stipes with intact apical meristems were used to 
calculate the rate of elongation for each individual stipe in cm per day 
and the relative elongation rate (RER) using the equation  

RER =
(ln(L2) − ln(L1))

t2 − t1  

where L1 and L2 are stipe lengths at times t1 and t2. Thirty individuals 
were recovered from B-E and 27 from PL. There were no intact in
dividuals at the BFC site with only the holdfasts and small portions of 
stipe still present. The presence of apparent sorus tissue on individuals 
transplanted to B-E was photographed but not quantified, and no sorus 
tissue was observed on kelp transplanted to PL or BFC. Two or three 
mature blades were harvested from 14 individuals recovered from PL 
and B-E (each) by severing the blade stem at the point of intersection 
with the stipe. Blades were photographed, pneumatocysts removed for 
measurement, and ~10 g and ~20 g pieces of tissue removed for 
pigment and elemental/isotopic analysis, respectively. Tissue for 
pigment analysis was immediately frozen on dry ice, while tissue for 
elemental/isotopic analysis was dried overnight at 60◦ C. The remaining 
tissue was air dried on lines in a research greenhouse for proximate 
analysis. The maximum width of each pneumatocyst, as well as the 
blade stem length (Fig. 3D), was measured using calipers. Pneumato
cysts were bisected at their widest point using a scalpel to allow mea
surement of the pneumatocyst wall thickness (Fig. 3E). Any indications 
of damage and the presence or absence of fluid within each pneuma
tocyst was also recorded. Blade lengths and widths were measured using 
photographed images that included a length reference using ImageJ 
software (https://fiji.sc/) (Fig. 3C). 

2.5. Tissue composition 

Proximate, elemental/isotopic, and pigment analyses were used to 
evaluate the physiological state of kelp recovered from B-E and PL, and 
to assess nutrient uptake in depth-cycled kelp. Stable carbon (C) and 
nitrogen (N) isotope composition of kelp was used to explore whether 
depth-cycled kelp exhibited a distinct isotopic signature reflecting ni
trogen uptake at deeper depths. 

For proximate analysis, air dried blade tissue was pooled into ~50 g 
samples (2 per site) and shipped to Eurofins DCQI LLC for analysis using 
the following AOAC International standard methods: Protein- 
Combustion AOAC 990.03; AOAC 992.15, Ash-Combustion AOAC 
942.05, Fat-Acid Hydrolysis AOAC 954.02, Carbohydrates-Calculated 
CFR 21-calc. 

For elemental-isotopic analysis, dried blade tissue was powdered 
using a mortar and pestle, and approximately 1.8 mg was analyzed (in 
triplicates for each sample and six biological replicates per site). 
Elemental (% N and % C) and stable isotopic composition (δ15N and 

Fig. 3. Morphological measurements. (A) Overall length measurement of ju
venile kelp. (B) Measurements of stipe length (each color corresponds to a 
single stipe measurement). (C) Blade size measurements; length (bl) and width 
(bw). (D, E) Pneumatocyst measurement; blade stem length (bsl), pneumatocyst 
width (pw) and pneumatocyst wall thickness (pt). 
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δ13C) were determined by continuous-flow isotope ratio mass spec
trometry (CF-IRMS) using a Costech ECS 4010 elemental analyzer 
interfaced to a Micromass Isoprime mass spectrometer. Technical rep
licates were averaged to obtain values for each biological replicate. 

Pigment content of frozen tissue was analyzed using the methods 
described in Campbell et al. [40]. Briefly, pigment was extracted in 
DMSO followed by methanol, and pigment concentrations measured via 
spectrophotometry using equations from Seely et al. [41] and Ritchie 
[42]. 

2.6. Statistical analysis 

Daily average temperatures and daily average estimated nitrate 
concentrations were compared using a Kruskal-Wallis Test with Bon
ferroni correction applied to pairwise comparisons of each site. Differ
ences in stipe elongation rate (cm day-1 and % per day), pneumatocyst 
wall thickness, blade length, blade width, wet-dry weight ratio, pigment 
concentrations, C and N content, and isotope ratios between sites were 
compared using Welch’s unequal variance T-test. Data for recovered wet 
weight, % weight increase per day, number of stipes greater than 1-m in 
length, number of fronds upon recovery, pneumatocyst width, and 
blade-stem length failed the Shapiro-Wilk test of normality and were 
thus compared using the Mann-Whitney Rank Sum Test. Proximate 
analysis results (% Ash, % Protein, % Carbohydrates, % Crude Fat) were 
compared using a pooled-variance T-test to increase statistical power as 
a two-tailed F test showed that σ1 is considered equal to σ2 (p = 0.834). 
All tests were carried out at a 95% level of confidence. A principal 
component analysis (PCA) of results from the elemental/isotopic 
composition analysis was obtained using the R statistical package. 

3. Results and discussion 

3.1. Environmental conditions 

Ocean waters are frequently stratified, with surface waters contain
ing low concentrations (<1 μM) of the dissolved inorganic nutrients 
nitrate and phosphate, and increasing concentrations below the ther
mocline reaching ~40 μM nitrate and ~4 μM phosphate in abyssal en
vironments [43]. Such oligotrophic surface conditions present 

challenges for mariculture efforts, which the current study addressed by 
testing the biological effects of a novel depth-cycling approach. 
Consistent with oligotrophic surface conditions, surface nutrients were 
low at the B-E site, with nitrate and phosphate concentrations below 1 
μM in seawater sampled from 10 m during three separate cruises 
(Fig. 3B, Table 1). In contrast, seawater sampled from 70 m at the B-E 
site contained >15 μM nitrate and >1.5 μM phosphate. Temperature 
logs on the B-E clearly reflect successful depth-cycling between the 
nutrient deficient surface and nutritionally replete deeper environment, 
with rapid changes of 3–10 ◦C accompanying each transition between 
the deep and shallow positions (Fig. S3). Nutrient concentrations 
throughout the water column were tightly coupled to vertical temper
ature gradients, as evident by the temperature-depth profiles during all 
three cruises (Fig. 4). These profiles confirmed that the daytime kelp 
position was either at the Mixed Layer Depth (MLD) or above both the 
MLD and thermocline during all three cruises (Fig. 4A). At the surface 
position, kelp were exposed to warmer temperatures that increased from 
~17 ◦C to ~21 ◦C over the course of the experiment (Fig. 5A, Tables S4 
and S5). In contrast, the nighttime kelp position at ~80 m exhibited a 
relatively constant temperature of ~10 ◦C (Fig. 5A, Table S4) and was 
consistently below the thermocline (Fig. 4A). 

Conditions at the other study sites were typical for nearshore waters 
at Catalina Island during mild El Nino conditions (https://psl.noaa.gov/ 
enso/mei/index.html). Temperatures at BFC and PL ranged between 
12 ◦C and 22 ◦C (Fig. S3). Similar to the surface position at the B-E site, 
daily averaged temperatures increased at both BFC and PL between May 
and September (Fig. 5A, Table S4) with high short-term variability 
(hourly fluctuations of 3 ◦C or more; Fig. S3), likely reflecting internal 
waves as observed by Zimmerman and Kremer [44]. Nitrate concen
trations in water samples from these sites were between 0 and 5 μM 
(Table 1). Levels of nitrite and ammonia were found to be negligible at 
all sites and depths. 

Nitrogen is generally considered to be one of the key factors limiting 
growth of giant kelp in Southern California [44–46]. To determine 
overall nitrate availability at each site, we relied on the close inverse 
correlation between seawater temperature and nitrate concentration in 
coastal upwelling regions such as the SCB [34,47,48] which enables 
predictions of nitrate concentration using temperature data. Building on 
these observations, in-situ temperature and nitrate concentrations from 

Fig. 4. Temperature, estimated nitrate, and measured nitrate profiles at the B-E site. Dotted reference lines represent the kelp surface position (B-ES) at ~9 m and 
deep position (B-ED) at ~80 m. (A) Temperature-depth profiles collected on three dates: 9/5/2019 (purple), 6/18/2019 (green), and 7/24/2019 (blue). Dashed 
reference lines represent the MLD. (B) Nitrate measurements and estimated nitrate-depth profiles. Nitrate measurements at 10, 30, 50, 70 and 100 m on the same 
three dates (triangles) and estimated nitrate concentrations (circles) at 1 m resolution predicted from the temperature-nitrate GAM using discrete temperature 
measurements from panel (A). Nutricline depths (ND) indicate estimated nitrate concentrations of 1.025 μM. 
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CTD and water sampling casts during the experiment and within a prior 
2-year period (Fig. S2, Tables S1 and S2) were used to determine the 
temperature-nitrate relationship at our study site (Fig. 6). While linear 
regression models have previously been used to derive 
temperature-nitrate relationships, GAM provides a better prediction of 
these relationships [34]. A similar GAM to the one used by Snyder et al. 
[34] was fit to this temperature and nitrate dataset. Although Snyder 
et al. [34] used a much more robust dataset (n > 2600), the GAM from 
this study, with an R2 = 0.957; p < 0.001; n = 85, produced a very 
similar fit. 

Using data from high frequency temperature loggers installed at or 
near the sites and our temperature-nitrate model, we then calculated 
estimated ambient nitrate concentrations. (Fig. 5B). Partitioning the 
temperature data between deep and surface positions at the B-E (Fig. 5B, 
Tables S6 and S7) shows that the nitrate exposure in the deep position on 
the B-E greatly exceeded nitrate exposure at PL or BFC. Depth-cycled 
kelp experienced an average nitrate concentration >15 μM in the deep 
position, which is both higher than what is typical for Macrocystis on 
Catalina Island [44] and has been shown to saturate growth in both field 
and laboratory studies [44,46,49]. In contrast, the B-E shallow position 
experienced nitrate concentrations <1 μM for most of the experiment, 

though it is possible that the daily vertical movements of the B-E 
structure facilitated some deep-water mixing at the surface. 

Daily average predicted nitrate exposure at PL was < 4 μM (Fig. 5B, 
Table S6). Periodic decreases in temperature and corresponding in
creases in nitrate exposure correlate well with the BEUTI and CUTI 
upwelling indices (Fig. 5B and C). Overall temperature trends at BFC and 
PL were similar (Fig. 5A, Tables S4 and S5), but temperature at BFC 
rarely dropped below the 14 ◦C threshold where nitrate concentrations 
increase with decreasing temperatures (Fig. S3) suggesting N limitations 
at this location (Fig. 5B, Tables S6 and S7). 

3.2. Growth and morphology 

To our knowledge, this is the first experiment to test the growth of 
kelp under depth-cycling conditions. The growth of depth-cycled kelp 
exceeded that of kelp transplanted to a fixed depth on the benthos or 
suspended in the water column at PL and BFC, respectively (Figs. 7–9). 
Kelp on the B-E initially declined in length, presumably a result of tissue 
removed during a storm just after deployment. Net growth resumed by 
June 10 (day 27) (Fig. 8), and by day 41 the majority of individuals were 
between 50 and 120 cm in length. An average length increase of 2.2 cm 
day-1 over the 18 day period between May 23 (day 9) and June 10 (day 
27) is comparable to previously documented daily length increases for 
juvenile Macrocystis of 1.0–2.5 cm day-1 [22,50,51], suggesting growth 
was not negatively impacted by depth-cycling. 

Over the entire course of the experiment the wet weight of kelp 
transplanted to B-E increased at an average overall rate of 5% per day 
resulting in a final wet weight ~4 times greater than kelp at PL, the site 
of a naturally occurring kelp bed (Fig. 9). This is despite almost all of the 
longest fronds on depth-cycled kelp being severed, presumably due to 
the failure of the B-E cable near the end of the experiment (see Methods). 
The heaviest B-E individual had a wet weight of 5.76 kg (Fig. 7J), and 
the longest individual stipe measured 6.3 m. At PL, the heaviest indi
vidual was 1.6 kg (Fig. 7G), and the longest stipe was 2.6 m. These 
maximum values indicate the potential yield of individual kelp which 
possibly could be expanded to mariculture operations using selection 
strategies and germplasm resources [16]. Juveniles transplanted to BFC 
did not survive (Fig. 7), possibly due to nutrient limitation (Fig. 5B), 
though other factors such as herbivory, limited water flow, and thermal 
stress cannot be ruled out [52]. 

Overall development also proceeded more rapidly at B-E. Stan
dardized elongation rates for fronds that were not severed at B-E (mean 
RER = 3.27% per day, Stdev = 0.86, n = 12) were greater (d.f. = 21.0, T 
= 4.85, p < 0.001) than at PL (mean RER = 1.85% per day, Stdev = 0.85, 
n = 29) over the last half of the experiment and over three times greater 

Fig. 5. Daily average temperatures, esti
mated nitrate concentrations, and upwelling 
indices during the experiment. (A) Continu
ously measured temperature (◦C) data aver
aged daily for the three experimental sites: 
1) B-E (B-ED: Deep, B-ES: Surface), 2) BFC, 
and 3) PL. (B) Daily average GAM estimated 
nitrate (μM) concentrations computed from 
continuously collected temperature data. (C) 
Two different upwelling indices for 33◦N 
along the U.S. west coast: 1) BEUTI (mmol 
m− 1 s− 1) and 2) CUTI (m2 s− 1). The date 
range for all figures (x-axis) begins on 5/13/ 
2019 and ends 2/9/2019.   

Fig. 6. Temperature-nitrate relationship model. Corresponding temperature 
and nitrate data for 85 seawater samples collected between 11/1/2017 and 7/ 
25/2019 at the B-E, PL, BFC, and surrounding waters from multiple depths. 
Formula: nitrate ~ s(temperature, k = 10); parametric coefficients: intercept 
estimate = 6.49, std. error = 0.1737, t-value = 37.38, Pr (>|t|) = <2e-16; 
approximate significant of smooth terms: s(temperature) estimated d.f. = 5.21, 
F = 295.1, p < 2e-16. GAM fit for temperature to nitrate relationship (R2 

=

0.957, p < 0.001) is represented by the black line with the gray bars repre
senting the standard error about the curve. Measured nitrate concentrations 
(μM) are in green while estimated nitrate (μM) from the summer GAM con
structed by Snyder et al., 2020 is in blue. 
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on a centimeter per day basis (Fig. 10A). Furthermore, a census of fronds 
showed that by August 12 (day 90) most individuals (90%) on the B-E 
had at least 2 fronds greater than 1 m in length, while at PL on August 8 
(day 86) the majority of kelp (74%) had no fronds achieving this length 

(Fig. 10B). Frond initiation rates were also greater; kelp recovered from 
B-E (n = 30) at the end of the experiment had an average of seven fronds 
or developing apical meristems compared to four at PL (n = 26) (U =
704.5, Z = 5.30, P < 0.001). In summary, daily cycling between ~9 and 

Fig. 7. Images of representative kelp during the experiment. (A) Juvenile kelp before deployment. (B–D) Kelp grown at BFC on days 27 (B), 65 (C), and 119 (D) post- 
deployment. (E–G) Kelp grown at PL on days 27 (E), 65 (F) and 113 (G) post-deployment. (H–I) Kelp grown at B-E on days 27 (H), 62 (I) and 107 (J) post-deployment. 
The individuals with the most wet biomass recovered from PL (1.6 kg) and B-E (5.76 kg) are shown in (G) and (J), respectively. 

Fig. 8. In-situ length measurements of juvenile kelp. Lengths from holdfast to furthest blade tip for individuals at BFC (A, n = 35), PL (B, n = 35), and the B-E (C, n =
28) between 5/13/2019 (t = 0 days) and 6/24/2019 (t = 42 days). 
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~80 m of depth appeared to have no negative effects on giant kelp, and 
in fact significantly enhanced growth relative to individuals trans
planted back to the kelp bed from which the juvenile kelp were origi
nally obtained. 

Macrocystis is known to have a large degree of morphological plas
ticity in response to environmental conditions (e.g. Ref. [53]), so the 
effect of depth-cycling on morphology was investigated. Of particular 
interest was whether pneumatocyst development would be affected by 
exposure to high pressures at depth. Previous work [22] found that 
pneumatocysts formed at shallow depths ruptured when Macrocystis was 
transplanted to deeper water, but that kelp grown from a 
pre-pneumatocyst stage in deep water were able to form pneumatocysts 
that did not rupture. During in-water observations and upon harvest we 

found that the majority of pneumatocysts on the depth-cycled kelp 
appeared undamaged but had morphologies distinct from those found at 
PL where pneumatocysts closely resembled that of nearby undisturbed 
individuals. Pneumatocysts of depth-cycled kelp were significantly 
narrower and had a greater range of blade stem lengths (Width: U =
728.0, Z = 6.33, p < 0.001; Blade stem length: U = 0.0, Z = − 6.29, p <
0.001, Fig. 11). Pneumatocyst walls were also significantly thicker (d.f. 
= 34.48, T = − 10.45, p < 0.001, Fig. 11). A surprising finding was that 
each of the depth-cycled pneumatocysts sliced open for measurement 
was fluid-filled, with at most a small gas bubble present within the fluid. 
Since aqueous fluids are incompressible this likely explains the absence 
of ruptured bladders. Moreover, we found no evidence that the outer 
layer of the depth-cycled pneumatocysts were compromised, suggesting 
that the fluid accumulated internally. During the experiment, kelp at the 
B-E appeared to have slight negative buoyancy consistent with the 
absence of gas in pneumatocysts causing fronds to stream out in the 
current rather than float towards the surface. The presence of fluid was 
in contrast to pneumatocysts from PL, which were filled with gas as is 
typical for Macrocystis. The change in expected buoyancy of bladder kelp 
requires further investigation to inform future farm designs that will 
need to take into account how this parameter could impact biological 
requirements (e.g., light availability) and engineering constraints (e.g., 
drag). 

Other morphological differences between depth-cycled individuals 
and those outplanted to PL include longer and wider blades (Fig. 12), as 
well as the possible presence of sorus tissue on basal blades of depth- 
cycled kelp. The latter observation is based on qualitative assessments 
of blades that appeared to contain darkened patches characteristic of 
sorus tissue (Fig. 13), but the presence and viability of spores could not 
be tested. Darkened patches were not noticeably present on kelp at PL. 

It is unclear which environmental differences between the PL kelp 
bed and B-E site were responsible for these morphological differences. 
As previously described depth-cycled kelp experienced substantial 
pressure changes and daily exposure to cold nutrient-rich water, but 
other unmeasured variables such as differences in water motion (which 
can increase rates of both nutrient uptake and photosynthesis [54]), 
biotic interactions with other species (e.g., herbivorous fish and inver
tebrate species typical of PL but not B-E) and thermoregulatory 

Fig. 9. Recovered wet weights and growth rate from B-E (n = 30) and PL (n =
27). (A) Average wet weight for all kelp recovered. Wet weights are plotted 
with standard error bars (U = 756.0, Z = 5.60 p < 0.001). (B) Average percent 
increase in wet weight per day at PL and B-E plotted with standard error bars 
(U = 759.0, Z = 5.65, p < 0.001). 

Fig. 10. Frond elongation rates and in-situ frond measurements. (A) Elongation rates of intact fronds at harvest from B-E (n = 12 previously tagged fronds) and PL (n 
= 29 previously tagged fronds) plotted with error bars showing standard error (d.f. = 12.7, T = 5.36, p < 0.001). (B) Survey of fronds longer than 1 m per individual 
at PL (8/8/2019, n = 30) and B-E (8/12/2019, n = 29). Average number of fronds greater than 1 m was 0.42 fronds at PL and 2.67 at B-E (U = 883.0, Z = 6.27, p 
< 0.001). 
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metabolic responses may have also affected morphological development 
and reproductive capacity. Work on natural populations of Macrocystis 
suggests that sorus production can be stimulated by increased nitrogen 
exposure [55], though observations of small individuals with mature 
sorus in the upper sublittoral fringe [56] and four months after 
recruitment in the rocky intertidal [51] suggest that additional envi
ronmental factors such as water motion could also influence precocious 
sorus formation. Similarly, Stephens and Hepburn [57] observed that 
exposure to pulses of increased nitrate concentrations increased blade 

thickness and reduced erosion rates suggesting that the repeated expo
sure to saturating levels of nitrate via depth-cycling in this study may 
explain some of the differences in blade size. Another possibility is that 
water motion differences affected blade morphology, as differences in 
blade shape between individuals growing in high versus low wave en
ergy environments are also well documented [58]. 

3.3. Tissue composition 

Growth rates for depth-cycled kelp exceeded those of kelp trans
planted to a fixed depth on a reef where they naturally occur, and 
relative differences in average nitrate availability at each site correlate 
with differences in kelp growth (Figs. 5 and 7). This suggests that depth- 
cycled kelp may have been less nitrogen limited than kelp at other sites. 

Fig. 11. Pneumatocyst morphology. (A) Blade stem length (measured from the end of the pneumatocyst to the stipe) and pneumatocyst width for samples from both 
sites. Average width is 0.98 cm (Stdev = 0.13) at B-E and 2.12 cm (Stdev = 0.17) at PL. Average length is 5.31 cm (Stdev = 1.78) at B-E and 3.44 cm (Stdev = 0.59) at 
PL. (B) Wall thickness of pneumatocysts from PL (n = 28) and the B-E (n = 26), with error bars showing standard deviation. (C) Representative pneumatocysts from 
PL (top) and the B-E (bottom three), scale bar is 5 cm. 

Fig. 12. Patches resembling sorus tissue on blades from the B-E site.  

Fig. 13. Blade Morphology. Length (left) and width (right) of randomly 
sampled kelp blades from the B-E (n = 43) and Parsons Landing (PL, n = 19) at 
the end of the experiment. Average blade length and width were significantly 
greater at B-E than PL (d.f. = 44.86, T = 2.76, p = 0.008 and d.f. = 55.03, T =
3.59, p < 0.001, respectively). 
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Recent work investigating the growth response of Macrocystis to simu
lated in-situ pulses of nitrate (via potassium nitrate dissolution blocks) 
found that during N deficient periods, N fertilization did not enhance 
frond elongation rates but instead promoted tissue maintenance [57]. 
Similarly, it is possible that pulses of nitrate supplied by episodic up
welling or internal waves (Fig. 5B and C) at PL may have been sufficient 
to support tissue maintenance but might not have been enough to pro
mote high growth rates. 

While the rapid growth of depth-cycled kelp suggests successful 
uptake of N from deep water, previous work has found that both depth 
(0 m vs 12 m) and an absence of light may impede the uptake of nitrate 
by Macrocystis [46]. In contrast, recent transcriptomic work assessing 
gene expression of vegetative blades along a frond sampled at the sur
face (0 m) and near the holdfast (18 m) found a higher level of N 
assimilation (e.g. nitrite/nitrate reductase) gene expression in deeper 
water [59]. Although these different studies support some degree of N 
uptake at depth, a major concern was whether deeper depths (in this 
case ~80 m) combined with a complete absence of light might prevent N 
uptake entirely. To support the idea that the increased growth of 
depth-cycled kelp reflected successful uptake of nitrate during the deep 
phase of each cycle, we analyzed key parameters related to N assimi
lation in tissue recovered from B-E and PL (Tables 2–4). 

Proximate analysis of pooled blade tissue from the B-E and PL kelp 
showed that kelp grown at B-E had nearly twice the protein content and 
significantly lower ash content compared to kelp transplanted to PL 
(Table 2). A previous study of Southern and Central California Macro
cystis found protein ranged from 5 to 14% of total dry mass ([60] via 
[61]). Blades recovered from depth-cycled kelp were ~12% protein, 
indicating that depth-cycling did not significantly impede N assimila
tion. Pigment concentration measurements showed lower chlorophyll-a 
content (on a dry-weight basis) and a higher molar ratio of chlor
ophyll-c:chlorophyll-a at B-E compared to PL (Table 3). Differences in 
pigment concentrations and ratios were likely caused by interactive 
effects between light and nutrient availability at each site [62]. 

Elemental analysis of C and N further supports the conclusion that 
depth-cycling did not impede N assimilation, with kelp from B-E having 
a lower C:N ratio and significantly higher N content (% dry weight, 
mean % N of 1.9) than kelp from PL (Table 4, Fig. 13). Interestingly, 
depth-cycled kelp from this study exhibited even lower C:N and higher N 
content than kelp tissue from N fertilization experiments [57] and 
Macrocystis exhibiting enhanced growth at wave-exposed sites [63]. 
Laboratory studies using juvenile sporophytes [49] showed that specific 
growth rates increased rapidly as N content increases to 1% but leveled 
off thereafter. Similar results were obtained by Gerard [64] who found 
that growth rates for a mature sporophyte transplanted to 
nitrate-deficient waters were maintained until internal N declined to 
~1% at which point growth sharply declined. Taken together, the tissue 
composition of kelp recovered from B-E suggest that growth was not N 
limited. 

To explore the possibility that N and C assimilated by depth-cycled 
kelp would have a unique isotopic signature, tissue δ15N and δ13C 
were analyzed. Blades from B-E had a significantly higher δ15N value 
than PL (Table 4). The dissolved subsurface nitrate in the SCB, including 
two stations sampled in the San Pedro Basin close to the B-E site, are 
reported to have a mean δ15N signature of 9 ± 0.7‰ with a δ15N 

maximum of ~11.5‰ at 350 m [65]. More recent work has also shown 
that δ15N increases with depth along the Southern/Baja California coast 
at depths above 300 m, with a weaker signature near Point Conception 
that becomes stronger further south [66]. A higher δ15N signature in 
depth-cycled kelp most likely indicates that the N accumulated in 
depth-cycled kelp tissue had a deeper origin than the N incorporated at 
PL. Foley and Koch [67] also report a difference in δ15N values between 
kelp sampled along central California at 5 m and 15 m during late 
summer and fall, where even a difference of 10 m resulted in the deeper 
kelp tissue exhibiting higher δ15N values. As previously described, 
ambient nitrate at the B-E surface position was extremely limited 
(Fig. 5B), thus the accumulation of N and nitrogenous compounds in 
depth-cycled kelp coupled with a heavier δ15N signature strongly sup
ports the conclusion that Macrocystis was able to absorb and utilize N 
obtained at depth and in the absence of light. 

Interestingly, depth-cycled kelp also had a significantly higher δ13C 
compared to PL (Table 4). Elevated δ13C is often a consequence of CO2 
depletion at the blade surface at high photosynthetic rates [68]. Because 
C fixation would have occurred during daylight hours when kelp from 
both B-E and PL were at a similar depth (~9 m) and presumably exposed 
to isotopically similar pools of dissolved inorganic carbon, the higher 
δ13C signature associated with B-E kelp might reflect more rapid 
assimilation of C. The higher growth rates (Figs. 9 and 10) and greater % 

Table 2 
Proximate analysis results of combined kelp tissue from the B-E and PL at the end of the experiment (two replicates from each site).    

Ash (%) Carbohydrates (%) Crude Fat (%) Protein (%) 

B-E Rep-1 41.42 44.97 1.38 12.23 
Rep-2 42.18 43.69 1.47 12.66 

PL Rep-1 46.35 44.96 1.26 7.43 
Rep-2 48.92 42.96 1.36 6.87  
d.f. 2.0 2.0 2.0 2.0  
t-statistic − 4.35 0.31 1.71 15.0  
p-value 0.049 0.785 0.229 0.004  

Table 3 
Percent dry weight, tissue pigment concentrations (mg g− 1 dw), and pigment 
molar ratios of blades recovered from PL and B-E.  

Measurement  PL n = 6 B-E n = 6 d.f t-statistic p-value 

% Dry Weight Mean 12.07 15.53 8.27 4.24 0.0026 
Stdev 0.010 1.705 

Chlorophyll-a Mean 1.90 1.60 8.41 − 3.78 0.0049 
Stdev 0.165 0.104 

Chlorophyll-c Mean 0.67 0.93 8.85 2.24 0.0523 
Stdev 0.232 0.159 

Fucoxanthin Mean 0.29 0.30 6.19 0.17 0.8677 
Stdev 0.123 0.043 

Chl-c: Chl-a Mean 0.51 0.85 9.87 4.09 0.0022 
Stdev 0.150 0.134 

Fuco: Chl-a Mean 0.20 0.25 6.27 1.58 0.1626 
Stdev 0.074 0.027  

Table 4 
Elemental analysis of blade tissue at the end of the experiment. % C and % N are 
percentage dry weight.  

Value PL 
n = 6 

B-E 
n = 6 

d.f. t-statistic p-value 

% C Mean 
Stdev 

25.36 
1.76 

28.72 
1.37 

9.43 − 3.70 0.0045 

% N Mean 
Stdev 

1.04 
0.37 

1.89 
0.50 

9.26 − 3.35 0.00825 

C:N Mean 
Stdev 

27.27 
10.12 

15.98 
3.74 

6.34 2.56 0.04087 

δ15N Mean 
Stdev 

7.06 
1.51 

10.21 
1.57 

9.28 − 3.54 0.00538 

δ13C Mean 
Stdev 

− 17.14 
1.42 

− 11.78 
2.04 

8.93 − 5.28 0.000522  
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C (Table 4) observed for depth-cycled kelp further support the potential 
for higher photosynthetic rates at the B-E site relative to PL. Interest
ingly, Foley and Koch [67] also note a distinct difference between δ13C 
values of kelp collected at 5 and 15 m depth during an upwelling period, 
with the surface blades exhibiting higher δ13C values potentially due to 
increased draw down of CO2. A further possible explanation can be 
found from studies of C isotope fractionation in phytoplankton. While 
the fractionation dynamics of C isotopes in marine primary producers is 
complex, in diatoms it appears that N limited growth is associated with 
an increase in fractionation as compared to light limited growth [69]. 
Similarly, greater N availability due to depth-cycling at the B-E site 
(Fig. 5B), reflected in higher N and protein content, seems to support 
greater C fixation resulting in higher C content, lower C:N, and heavier 
δ13C values for depth-cycled kelp as compared to PL (Fig. 14, Table 5). 

Together, these results suggest that ambient nitrogen accumulated 
during the deep phase of each depth-cycle supported kelp growth, which 
exceeded that of kelp at PL and BFC where nitrogen was more limited, 
although we cannot rule out the possibility that other untested envi
ronmental factors such as water motion, light availability, or herbivory 
contributed to these differences. 

3.4. Conclusions 

Results from this study provide the first documentation of growth 
and development of Macrocystis pyrifera under daily depth-cycling 
conditions, demonstrating that this species is compatible with a depth- 
cycling cultivation strategy. Extensive efforts during the Marine 
Biomass Program of the 1970’s and 1980’s [9] provide a framework for 
investigating macroalgae as a bio-fuel feedstock, and here we add an 
alternative to previously described artificial upwelling strategies. 
Though previous work has shown that both the absence of light and an 
increase in depth may negatively impact the ability of Macrocystis to 
assimilate nitrate [46], the results from this study show that any such 
reduction in uptake rate is compensated by frequent exposure to satu
rating nitrate concentrations below the thermocline. 

Depth-cycling may also provide a mechanism to prevent thermal 
stress both through the avoidance of excessively warm surface condi
tions and by increasing nitrate availability [70], an important consid
eration in the context of global warming and climatic regimes such as El 
Niño events. This is consistent with work by Clendenning and Sargent 
[71] who found that the highest photosynthetic rates for Southern 
California Macrocystis were between 20◦ and 25 ◦C and that 25–30 ◦C 
was optimal for Baja California kelp. These results suggest that Macro
cystis supplied with sufficient nutrients via depth-cycling could tolerate 
relatively warm surface conditions, especially if consideration were 
given to cultivation of warm-water adapted genotypes. 

Engineering studies for depth-cycling open ocean farms are currently 
underway (Fig. S4), and the impact of altered pneumatocyst buoyancy 
will have to be accounted for in these designs. Additional depth-cycling 
trials are also required to understand the growth and development of 
more mature kelp, particularly when the kelp reach harvest size. The 
frequency and duration of depth-cycling as well as selection of depths 
should also be considered in the context of uptake kinetics and nutrient 
storage to potentially enhance biomass yields [72]. Logistical costs and 
technological developments aside, this study suggests that Macrocystis 
can be grown under depth-cycling conditions, and that this technique 
may offer a viable approach to circumventing surface nutrient limita
tions facilitating large-scale and year-round production of macroalgae as 
feedstock for low-carbon fuels. 
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