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a b s t r a c t

Consider a set of jobs with independent random service times to be scheduled on a single machine.
The jobs can be surgeries in an operating room, patients’ appointments in outpatient clinics, etc. The
challenge is to determine the optimal sequence and appointment times of jobs to minimize some
function of the server idle time and service start-time delay. We introduce a generalized objective
function of delay and idle time, and consider l1-type and l2-type cost functions as special cases of
interest. Determining an index-based policy for the optimal sequence in which to schedule jobs has
been an open problem for many years. For example, it was conjectured that ‘least variance first’ (LVF)
policy is optimal for the l1-type objective. This is known to be true for the case of two jobs with specific
distributions. A key result in this paper is that the optimal sequencing problem is non-indexable, i.e.,
neither the variance, nor any other such index can be used to determine the optimal sequence in
which to schedule jobs for l1 and l2-type objectives. We then show that given a sequence in which to
schedule the jobs, sample average approximation yields a solution which is statistically consistent.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Scheduling is an important aspect for efficient resource uti-
lization, and there is a vast literature on the topic dating back
several decades (see for example, Baker, 1974; Conway, Maxwell,
& Miller, 2003; Erdogan, Gose, & Denton, 2015; Pinedo, 2012).
The problem considered in this paper is stochastic appointment
scheduling which has various applications in scheduling of surg-
eries at operating rooms, appointments in outpatient clinics,
cargo ships at seaports, etc.
Problem Statement: Stochastic appointment scheduling problem
(ASP) has a simple statement: Consider a finite set of n jobs to
be scheduled on a single machine. Job durations are random with
known distributions. If a job is completed before the appointment
time of the subsequent job, the server will remain idle. Con-
versely, if it lasts beyond the allocated slot, the following job will
be delayed. We need to determine optimal appointment times so
that the expectation of a function of idle time and delay is min-
imized. Thus, the ASP addresses two important questions. First,
given the sequence of jobs, what are the optimal appointment
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times? This is called the scheduling problem. Second, in what
sequence should the jobs be served? This is called the sequencing
problem. We note that while we call it the sequencing problem
for brevity, it really refers to the joint sequencing–scheduling
problem of determining both the optimal sequence as well as the
appointment times.

Examples of the scheduling problem are cargo ships at sea-
ports that must be given time to berth in the order in which
they arrive. Examples of the sequencing problem are surgeries in
a single operating room that must be scheduled the day before in
an order that minimizes certain metrics such as wait times and
idle time.

Intuitively speaking, scheduling jobs with more uncertain du-
rations first may lead to delay propagation through the schedule.
This intuition has motivated many researchers to prove optimal-
ity of ‘least variance first’ (LVF) policy. However, efforts beyond
the case of n = 2 have not been fruitful for specific distributions
such as uniform and exponential (Wang, 1999; Weiss, 1990). Re-
cent numerical work of Mansourifard, Mansourifard, Ziyadi, and
Krishnamachari (2018) has argued that LVF is not the best heuris-
tic for the sequencing problem in the case that idle time and delay
unit costs are not balanced. They introduce ‘newsvendor’ index as
another heuristic that outperforms variance. However, no proof of
optimality is provided. This controversy raises an important open
question that: Is there an index (a map from a random variable to
the reals) that yields the optimal sequence?

In this paper, both the scheduling and sequencing problems
are addressed. In the sequencing problem, we introduce an index
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(a map from a random variable to the reals) and prove that it
is the only possible candidate to return the optimal sequence.
This candidate index reduces to the ‘Newsvendor’ index and vari-
ance index for l1 and l2-type cost functions, respectively. How-
ever, by providing counterexamples for optimality of variance
and newsvendor index, we show that the sequencing problem is
not indexable in general. Moreover, the candidate index illumi-
nates that the heuristic sub-optimal indexing policy one might
use depends on the objective function. In contrast to what has
been used in the literature for a long time, variance is not the
candidate index for l1-type cost function. Instead, newsvendor
should be used. This theoretical result confirms the numerical evi-
dence of Mansourifard et al. (2018) that newsvendor outperforms
variance.

In the scheduling problem, we prove that the l1-type objective
function introduced by Weiss (1990) is convex and there exists a
solution to the stochastic optimization problem. Moreover, sam-
ple average approximation (SAA) can be used to approximate
the optimization problem. We prove that SAA gives a solution
that is statistically consistent. These provide a feasible compu-
tational method to compute optimal appointment times given
the sequence. To the best of our knowledge this result is new
from two perspectives. First, the result is proved for a generalized
objective function c (as long as it is convex) which includes
previously considered objective function in the literature (l1-type
objective) as a special case of interest. Second, the assumptions
for consistency of SAA are considerably relaxed compared to the
standard literature of SAA. In fact we prove that SAA gives a
consistent result as long as there exists a schedule with finite cost.
The main contributions of this paper are:

• It is rigorously proved that there exists no index that yields
the optimal sequence in the stochastic appointment
scheduling problem (Theorem 11). However, a candidate
index is introduced that yields a heuristic sub-optimal se-
quence. This candidate index reduces to newsvendor and
variance for l1-type and l2-type objective functions, respec-
tively.

• It is proved that the objective function of Weiss (1990)
for stochastic appointment scheduling problem is convex
and there exists an optimal schedule (Proposition 21 in
Appendix A and Theorem 17).

• It is proved that for a fixed sequence of jobs, sample average
approximation yields an approximate solution for the opti-
mal schedule that is statistically consistent (Theorem 20).

The remainder of the paper is organized as follows. In Section 2,
literature is reviewed. Section 3 provides the problem formu-
lation. In Section 4, the sequencing problem is discussed. The
scheduling problem is addressed in Section 5. Section 6 provides
numerical results followed by conclusions in Section 7.

2. Literature review

Extensive application of appointment scheduling in trans-
portation such as bus scheduling (Wu, Liu, Jin, & Ma, 2019),
as well as healthcare applications (Erdogan & Denton, 2013)
has led to a vast body of literature on the topic. We note that
the problem considered in this paper is a variant of a broader
scheme of railway scheduling (Herroelen & Leus, 2004; Tian
& Demeulemeester, 2014) where jobs are not allowed to start
earlier than their schedule. Other variants of scheduling such as
roadrunner scheduling (Newbold, 1998) are beyond the scope
of this work. Among all the related papers, we focus on the
most relevant work and classify it into sequencing and scheduling.
The interested reader is referred to Ahmadi-Javid, Jalali, and

Klassen (2017), Baker (1974), Cardoen, Demeulemeester, and Be-
liën (2010), Cayirli and Veral (2003), Chen and Robinson (2014),
Conway et al. (2003), Erdogan and Denton (2013), Erdogan et al.
(2015), Gupta and Denton (2008), Hulshof, Kortbeek, Boucherie,
Hans, and Bakker (2012), Kuiper and Mandjes (2015a, 2015b),
Kuiper, Mandjes, and de Mast (2017), Pinedo (2012), Tian and
Demeulemeester (2014) and Wu et al. (2019) and references
therein for other aspects of the problem.

Sequencing. The sequencing problem we consider was first for-
mulated by Weiss (1990). Intuitively speaking, jobs with less
uncertainty should be placed first to avoid delay propagation
throughout the schedule. Motivated by this intuition, a large body
of literature suggested ‘least variance first’ (LVF) rule as a se-
quencing policy (see Denton, Viapiano, & Vogl, 2007; Mak, Rong,
& Zhang, 2014; Qi, 2016; Wang, 1999; Weiss, 1990). However,
optimality of LVF rule is only proved for the case of two jobs
n = 2 for certain distributions (Wang, 1999; Weiss, 1990). Mak
et al. (2014) and Guda, Dawande, Janakiraman, and Jung (2016)
tried to impose conditions under which LVF rule is optimal but
the conditions are relatively restrictive and unlikely to hold in
most scenarios of interest. A variant of the problem where jobs
are allowed to start before scheduled appointments (no idle time
is allowed) is studied by Baker (2014) and Guda et al. (2016).
In particular, Guda et al. (2016) show that LVF rule is optimal
if there exists a dilation ordering for service durations. Berg,
Denton, Erdogan, Rohleder, and Huschka (2014) and Gupta (2007)
proved that if there exists a convex ordering for job durations, it
is optimal to schedule smaller in convex order first for n = 2.
However, their efforts for n > 2 have not been fruitful. Kong, Lee,
Teo, and Zheng (2016) considered likelihood ratio as a measure of
variability and obtained some insights into why smallest variabil-
ity first may not be optimal. Based on the insights, they provided
a counterexample for non-optimality of LVF rule in the case of
n = 6.

Besides the theoretical work, some papers have resorted to
extensive simulation studies to investigate optimality of heuris-
tics (see Denton et al., 2007; Klassen & Rohleder, 1996; Lebowitz,
2003; Marcon & Dexter, 2006). In particular, Denton et al. (2007)
numerically showed that LVF outperforms sequencing in increas-
ing order of mean and coefficient of variation. However, Mancilla
and Storer (2012) and Mansourifard et al. (2018) argued that
LVF is not the best sequencing policy especially when idle time
and delay cost units are not balanced. Alternatively, Mansourifard
et al. (2018) proposed a ‘newsvendor’ index and supported its
better performance in simulations. No proof of optimality was
provided.

Scheduling. The scheduling problem is also intensively studied
in the literature. The seminal work of Bailey (1952) recommended
to set appointment intervals equal to the average service time of
each job. This approach was further pursued by Soriano (1966)
and Choi and Banerjee (2016). However, letting job slots to be
average service time can be near optimal only in the case that
waiting cost is about 10% to 50% of the idle cost (see Denton &
Gupta, 2003).

Starting with (Weiss, 1990), some papers modeled the prob-
lem using stochastic optimization to optimize on slot duration. He
considered weighted sum of idle time and delay as the objective
function and noticed that for the case of n = 2, the problem
is equivalent to the newsvendor problem. Based on that, he
proposed a heuristic estimate of the job start times for n > 2.
This heuristic was extended by Kemper, Klaassen, and Mandjes
(2014) to general convex function of idle time and delay. Wang
(1993) and Wang (1999) considered another objective function
as the weighted sum of jobs’ flow time (delay and service time)
and server completion time and proved its convexity. Assuming
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Fig. 1. Appointment scheduling. si denotes appointment time of job i. For the
realization shown in this figure, server remains idle between Eσ (1) and s2 and
third job is delayed for Eσ (2) − s3 amount of time.

that the job durations are exponentially distributed, he provided
a set of nonlinear equations to derive the optimum slot dura-
tions. Vink, Kuiper, Kemper, and Bhulai (2015) presented a lag
order approximation by ignoring the effect of previous jobs past
a certain point. Kong, Lee, Teo, and Zheng (2013) adopted a robust
method over all distributions with a given mean and covariance
matrix of job durations. They computationally solved for 36 jobs
and showed that their solution is within 2% of the approximate
optimal solution given by Denton and Gupta (2003). We refer the
reader to Begen and Queyranne (2011) and Kaandorp and Koole
(2007) for approaches in discrete time.

3. Problem formulation

We start with providing a mathematical formulation of the
problem. Let X + be the space of nonnegative random variables
and X = (X1, . . . , Xn) be a vector of independent random vari-
ables with components in X + and known distributions denoting
jobs durations to be served on a single server. Let σ · X denote
a permutation of the jobs in the order they are served, such that
σ (i) is the ith job receiving service. Without loss of generality,
we can assume that the first job starts at time zero, i.e., s1 = 0.
Let s = (s2, . . . , sn) be appointment times for job 2 through n in
the order σ and let Eσ (i) be a random variable denoting the end
time of job i in this order (see Fig. 1). Job σ (i) may finish before
or after scheduled start time of the subsequent job. In the case
that Eσ (i) ≤ si+1, job σ (i+ 1) starts according to the schedule and
server is idle between Eσ (i) and si+1. In the case where Eσ (i) > si+1,
job σ (i+ 1) is delayed by Eσ (i) − si+1 and will start as soon as the
previous job is finished. Hence,

Eσ (1) = Xσ (1),

Eσ (i) = max(Eσ (i−1), si) + Xσ (i), i = 2, . . . , n. (1)

Our goal is to determine appointment times such that a com-
bination of both delay and idle time is optimized. Consider an
objective function of form,

C(s, σ · X) =

n∑
i=2

g(Eσ (i−1) − si) (2)

where g : R → R is a nonnegative, continuous and coercive
function (i.e., lim|t|→∞ g(t) = ∞). Furthermore, we can assume
that g(0) = 0 since a perfect scenario where Eσ (i−1) = si should
not impose any cost. However, this assumption is not technically
necessary. For the special case of g = g1 in Example 1, this
objective function reduces to that of Weiss (1990). However, (2)
is not the most general objective function one can consider. For
example, in some applications, it is useful to distinguish between
jobs by considering different delay per unit costs for different
jobs. Moreover, (2) does not account for overtime, a related
quantity that is important in some applications.

Given the schedule s, C(s, σ · X) captures the associative cost
of the realization of job durations X in the order σ . Thus, cσ (s) =

E[C(s, σ · X)] denotes the expected cost of schedule s when the
jobs are served in the order σ .

Fig. 2. Examples of function g .

In the scheduling problem in Section 5, we assume that the
sequence of jobs is given, and we are looking for a schedule that
minimizes the expected cost, i.e.,

inf
s∈S

cσ (s) (3)

where S = {(s2, . . . , sn) ∈ Rn−1
| 0 ≤ s2 ≤ · · · ≤ sn} is a closed

and convex subset of Rn−1. The sequencing problem discussed in
Section 4, addresses the question of finding the optimal order and
appointment times of the jobs, i.e.,

min
σ

inf
s∈S

cσ (s).

Before proceeding with the sequencing problem, let us see some
possible choices for the function g .

Example 1. Let g1(t) = β(t)+ + α(−t)+ where (·)+ = max(·, 0)
and α, β > 0. Thus, the objective function would be

cσ
1 (s) =

n∑
i=2

E[α(si − Eσ (i−1))+ + β(Eσ (i−1) − si)+]. (4)

(si − Eσ (i−1))+ denotes idle time before job i and (Eσ (i−1) − si)+
indicates its possible delay. Cost function cσ

1 is the same cost
function used by Weiss (1990). If α ̸= β , it captures potential
different costs associated with idle time and delay. We call this
function l1-type objective function.

Example 2. Let g2(t) = t2. The objective function reduces to

cσ
2 (s) =

n∑
i=2

E[(Eσ (i−1) − si)2]. (5)

Cost function cσ
2 penalizes both idle time and delay equally.

However, due to the nonlinearity of cσ
2 , long idle time and delay

are less tolerable. We call this function l2-type objective function.

Example 3. Let

g3(t) =

⎧⎨⎩
β(t − TD), if t ≥ TD
−α(t + TI ), if t ≤ −TI
0, otherwise

(6)

where TD, TI ≥ 0 are delay and idle time tolerance, respectively
(see Fig. 2). In this case, no cost is exposed for delay and idle
time under a certain threshold. This situation arises in some ap-
plications such as operating room scheduling where some small
amount of delay is tolerable.
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4. Sequencing problem

4.1. Non-indexability

In this section, we first consider the joint sequencing-
scheduling problem (referred to as just the ‘sequencing prob-
lem’ since the optimal sequence cannot be determined without
also determining the optimal appointment times). Intuitively,
scheduling jobs with higher uncertainty in durations first may
lead to delay propagation through the schedule. Considering ob-
jective function cσ

1 , this intuition has motivated many researchers
to prove optimality of least variance first (LVF) policy. However,
the efforts have not been fruitful beyond the case of two jobs
(n = 2) for some typical distributions such as exponential and
uniform. Most related papers thus have resorted to numerical
evaluation to analyze the performance of the LVF rule. In par-
ticular, Denton et al. (2007) compared three ordering policies,
namely, increasing mean, increasing variance, and increasing
coefficient of variation. Using numerical experiment with real
surgery duration data, they argued that ordering with increasing
variance outperforms the other two heuristics. However, Man-
sourifard et al. (2018) claimed that variance does not distinguish
the potential difference between idle time and delay for cσ

1 . They
introduced the newsvendor index defined as

I∗1 (X) = αE[(s∗ − X)+] + βE[(X − s∗)+] (7)

where FX is cumulative distribution function of X , s∗ := F−1
X ( β

α+β
),

and numerically verified that sequencing in increasing order of
I∗1 outperforms LVF, and conjectured that it returns the optimal
sequence. No proof of optimality was given. These conjectures
will be evaluated in this section. In particular, we will prove
that there exists no index (a map from a random variable to the
reals) that yields the optimal sequence for objective functions cσ

1
and cσ

2 .
Moreover, we rigorously prove that the only candidate to

provide the optimal sequence is newsvendor index for objective
function cσ

1 and variance for objective function cσ
2 . This provides

a theoretical support for numerical evidence of Mansourifard
et al. (2018). Moreover, it completely eliminates variance as a
candidate heuristic for objective function cσ

1 .
Let us first start with a simple example of sequencing two jobs.

Example 4. Consider the case of scheduling two jobs with
durations X1, X2. The optimization problem to determine optimal
appointment times given the sequence (X1, X2) would be:

inf
s2≥0

E[g(X1 − s2)] (8)

The optimal cost given by the above equation is indeed an index
that maps random variable X1 to a real number. Moreover, sorting
in increasing order of this index yields the optimal sequence for
n = 2.

Motivated by this example, we have a candidate index for
general n:

I∗g (X) = inf
s≥0

E[g(X − s)]. (9)

One can verify that this index reduces to variance (I∗2 ) and
newsvendor index (I∗1 ) in the case that g(t) = t2 and g(t) =

β(t)+ + α(−t)+, respectively. The natural question is whether
this index provides the optimal sequence for n > 2. And if
not, whether there is any other index that yields the optimal
sequence. In the ensuing, we will show that the answer to both of
these questions is negative. In fact, we first prove in Proposition 8
that I∗g is the only possible candidate to return the optimal
sequence and then through counterexamples 9 and 10 show that
it is not optimal.

To prepare the setup for Proposition 8, let R̄ = R ∪ {+∞}

be the extended real line. We say I : X +
→ R̄ is an index

and denote the space of all indexes by I . For example, mean,
variance, newsvendor and I∗g are examples of elements in I . First,
we define an equivalence relation on I .

Definition 5. Let I1, I2 ∈ I . We say I1 is in relation with I2
denoting by I1RI2 if for any X1, X2 ∈ X +, I1(X1) ≤ I1(X2) if and
only if I2(X1) ≤ I2(X2).

It is straightforward to check that R is an equivalence relation
on I . Hence, R splits I into disjoint equivalence classes. Next,
we define a notation for sorting random variables in increasing
order of an index.

Definition 6. Let X = (X1, . . . , Xn) be a random vector where
Xi ∈ X + for all i, and I ∈ I be an index. We say σ · X =

(Xσ (1), . . . , Xσ (n)) is a valid permutation of X with respect to I if
I(Xσ (1)) ≤ · · · ≤ I(Xσ (n)). We denote the set of valid permutations
by PI (X).

In the case that I(X1), . . . , I(Xn) take distinct values, PI (X)
includes only one element.

If I1 is equivalent to I2, then PI1 (X) = PI2 (X) for any random
vector X with components in X +.

Definition 7. Index I is optimal for cost function c if for any
n ≥ 2 and any random vector X = (X1, . . . , Xn) with components
in X +, infs E[C(s, σ · X)] ≤ infs E[C(s,X)] for all σ ∈ PI (X).

Thus, by the above remark if an index of a class is optimal, all
equivalent indices are also optimal. Hence, optimality is a class
property.

We already observed that I∗g is optimal for the case of n = 2.
The following Proposition provides a result for general n.

Proposition 8. If there exists an optimal index for cost function c,
it is equivalent to I∗g .

Proof. Assume by contradiction that there exists index J which
is optimal but not equivalent to I∗g . Hence, there exist random
variables X1, X2 ∈ X + such that I∗g (X1) < I∗g (X2) but J(X1) ≥ J(X2).
Note that I∗g (X1) = infs≥0 E[g(X1−s)] and I∗g (X2) = infs≥0 E[g(X2−

s)]. Hence, I∗g (X1) < I∗g (X2) implies that infs≥0 E[g(X1 − s)] <

infs≥0 E[g(X2 − s)]. However, optimality of J implies that infs≥0 E
[g(X1 − s)] ≥ infs≥0 E[g(X2 − s)] which is a contradiction. □

Note that I∗g reduces to I∗1 and I∗2 for objective functions cσ
1 and

cσ
2 , respectively. We also notice that contrary to widely believed
conjectures in the literature that I∗2 (LVF rule) is an optimal
index-based policy for cost function cσ

1 , Proposition 8 states that
variance can only be a candidate for cσ

2 . However, note that this
proposition does not say anything about the existence of an opti-
mal index. In the following, we provide counter examples which
show that sequencing (and optimally scheduling) in increasing
order of I∗1 and I∗2 is not optimal for cσ

1 and cσ
2 , respectively.

Example 9. Let X1, X2, X3 be independent random variables in
L1 and assume that X1 ∼ U(0, 1) and X2 follows the following
distribution (see Fig. 3):

FX2 (x) =

⎧⎪⎨⎪⎩
0, if x ≤ 0
2x2, if 0 < x < 0.5
2(x − 0.5)2 + 0.5, if 0.5 ≤ x < 1
1, otherwise
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Fig. 3. Distribution of X1 and X2 for (a) Example 9 and (b) Example 10.

Consider objective function cσ
1 with α = β = 1. I∗1 reduces to

E[|X − F−1
X ( 12 )|]. First we claim that I∗1 (X1) = I∗1 (X2) =

1
4 :

E[|X1 − F−1
X1

(
1
2
)|] = E[|X1 −

1
2
|]

=

∫ 1
2

0
(
1
2

− x)dx +

∫ 1

1
2

(x −
1
2
)dx

=

∫ 1
2

0
(
1
2

− x)dx +

∫ 1
2

0
xdx =

1
4
,

E[|X2 − F−1
X2

(
1
2
)|] = E[|X2 −

1
2
|]

=

∫ 1
2

0
(
1
2

− x)4xdx +

∫ 1

1
2

(x −
1
2
)(4x − 2)dx

=

∫ 1
2

0
(
1
2

− x)4xdx +

∫ 1
2

0
4x2dx =

1
4
.

Distribution of X3 can be arbitrary as long as I∗1 (X3) > 1
4 to make

sure that it comes last. In order to have I∗1 as the optimal index,
changing the order of X1 and X2 should not affect the optimal
value of cσ

1 . However, for the sequence σ1 · X = (X1, X2, X3),
infs∈S cσ1

1 (s) ≈ 0.3946 but sequence σ2 · X = (X2, X1, X3) yields
infs∈S cσ2

1 (s) ≈ 0.3872.

Thus, the index I∗1 is not optimal for cost function cσ
1 .

Example 10. Consider objective function cσ
2 and let X1 ∼

lnN (1, 1) and X2 ∼ lnN ( 12 ln( e
e+1 ), 2) be independent (see Fig. 3).

Note that I∗2 (X1) = I∗2 (X2) = e3(e − 1). Distribution of X3
can be arbitrary as long as I∗2 (X3) > I∗2 (X1) = I∗2 (X2) to make
sure that it comes last. In order to have I∗2 as the optimal index,
changing the order of X1 and X2 should not affect the optimal
value of cσ

2 . However, for the sequence σ1 · X = (X1, X2, X3),
infs∈S cσ1

2 (s) ≈ 94.158 but sequence σ2 · X = (X2, X1, X3) yields
infs∈S cσ2

2 (s) ≈ 99.096.

Thus, the index I∗2 is not optimal for cost function cσ
2 . The

above leads us to the following conclusion.

Theorem 11. There exists no index that yields the optimal sequence
for cost functions cσ

1 and cσ
2 .

Proof. Proposition 8 implies that I∗k is the only possible optimal
index for cost functions ck, k = 1, 2. But counterexamples 9 and
10 show that these need not be optimal. This leads us to the
conclusion that optimal indices may not exist, i.e., the problem
is non-indexable. □

Remark 12. It is worth mentioning that Proposition 8 still holds
even if we restrict the space of random variables to a certain
family. Therefore, although Theorem 11 states that the sequenc-
ing problem is not indexable in general, it does not preclude
the possibility of indexability in a restricted space. Nevertheless,
Proposition 8 ensures that one should not investigate indices
other than I∗g . Finding a family of distributions for which I∗g is
an optimal index is still an open research problem. In partic-
ular, Example 10 ensures that even if we restrict the space of
random variables to exponential family, the problem remains
non-indexable. In fact, we are unable to conclude about indexabil-
ity if we further restrict to the exponential distribution. Moreover,
Theorem 11 does not exclude the possibility of existence of
non-index-based optimal policies.

4.2. Bounds on the optimal cost

It is disappointing that contrary to long-held conjectures in the
literature, the sequencing problem is non-indexable in general.
Nevertheless, I∗g can be considered as a heuristic to order the
random variables and achieve a suboptimal solution. We next
provide lower and upper bounds on the optimum cost with cσ

1
and cσ

2 objective functions. Note that the increasing order of
I∗k , k = 1, 2 minimizes the upper bound.

Theorem 13. For k = 1, 2, the optimum cost of objective function
cσ
k can be bounded by:
n−1∑
i=1

I∗k (Xσ (i)) ≤ inf
s∈S

cσ
k (s) ≤

n−1∑
i=1

(n − i)I∗k (Xσ (i)) (10)

Proof. We need two Lemmas for the proof of the theorem. Their
proofs are relegated to Appendix A. Lemma 14 proves a sub-
additive property of the index functions while Lemma 15 is a
technical lemma.
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Lemma 14. Let X1, X2 ∈ X + be independent. Then, for k = 1, 2

I∗k (X1 + X2) ≤ I∗k (X1) + I∗k (X2). (11)

Lemma 15. Assume g(0) = 0 and

(i) let X ∈ X +. Then, supx∈R I∗g (max(x, X)) ≤ I∗g (X).
(ii) let X1, X2 ∈ X + be independent. Then,

max(I∗g (X1), I∗g (X2)) ≤ I∗g (X1 + X2).

Lemmas 14 and 15 can now be used to bound I∗k (Eσ (j)):

I∗k (Eσ (j)) = I∗k (max(sj, Eσ (j−1)) + Xσ (j)) (12)

≤ I∗k (max(sj, Eσ (j−1))) + I∗k (Xσ (j)) (13)

≤ I∗k (Eσ (j−1)) + I∗k (Xσ (j)) (14)

for k = 1, 2 where the first and the second inequality follow from
Lemmas 14 and 15, respectively. Using the fact that Eσ (1) = Xσ (1),
one can write:

I∗k (Eσ (j)) ≤

j∑
i=1

I∗k (Xσ (i)) (15)

By lower bound in Lemma 15, I∗k (max(sj, Eσ (j−1)) + Xj) ≥ I∗k (Xj).
Hence, I∗k (Eσ (j)) can be bounded by:

I∗k (Xσ (j)) ≤ I∗k (Eσ (j)) ≤

j∑
i=1

I∗k (Xσ (i)). (16)

Now, to prove the upper bound let s̃ = (s̃2, . . . , s̃n) where s̃i =

F−1
Eσ (i−1)

( β

α+β
) for the case that k = 1 and s̃i = E[Eσ (i−1)] for the

case that k = 2. Note that s̃i can be calculated recursively because
Eσ (i−1) is a function of s̃2 through s̃i−1. We have:

inf
s
cσ
k (s) ≤ cσ

k (s̃) =

n∑
j=2

I∗k (Eσ (j−1))

≤

n−1∑
j=1

j∑
i=1

I∗k (Xσ (i))

=

n−1∑
i=1

n−1∑
j=i

I∗k (Xσ (i))

=

n−1∑
i=1

(n − i)I∗k (Xσ (i)).

To prove the lower bound, note that E[gk(Eσ (i−1) − si)] ≥ I∗k
(Eσ (i−1)) ≥ I∗k (Xσ (i−1)) where g1(t) = β(t)+ + α(−t)+ and g2(t) =

t2. Thus,

cσ
k (s) =

n∑
i=2

E[gk(Eσ (i−1) − si)] ≥

n∑
i=2

I∗k (Xσ (i−1)). □

Remark 16. Note that the upper and lower bounds in (10) coin-
cide when n = 2, and this is the result we already expected from
Example 4. For general n, sequencing with respect to increasing
order of I∗k minimizes the upper bound in (10).

5. Scheduling problem

In many problems, the sequence in which to schedule is given
and only the appointment times are to be determined optimally.
In this section, we assume that the sequence of n random vari-
ables X = (X1, . . . , Xn) is fixed and without loss of generality
(by possibly renaming jobs) remove the notation σ for simplicity.
We call this problem the scheduling problem. We propose sample

average approximation (SAA) as an algorithm to find the optimal
appointment times and prove it is statistically consistent in the
case that the objective function is convex (e.g., cσ

1 ). This result is
significant because the only assumption required for consistency
of SAA is the existence of a schedule with finite cost. This as-
sumption significantly relaxes the typical assumptions required
for consistency of SAA in the literature (see e.g., Theorem 5.4
of Shapiro, Dentcheva, & Ruszczynski, 2009).

5.1. Existence of solution

We first show that there exists a solution to the optimization
problem in (3).

Theorem 17.

(i) For any particular realization of X, C(·,X) is nonnegative and
coercive.

(ii) c(·) is nonnegative, coercive and lower semi-continuous. Fur-
thermore, if c(s) < ∞ for some s ∈ S , then there exists
a solution to the optimization problem in (3) and the set of
minimizers is compact.

The proof is relegated to Appendix A.
One of the essential conditions in Theorem 17 is that c(s) < ∞

for some s ∈ S. The question is how to check whether this
condition is satisfied. Should we explore the entire set S in the
hope of finding such s? Let us illuminate this condition: First of
all it is easy to see that for p ≥ 1 and g(t) = |t|p, this condition
is equivalent to Xi ∈ Lp (i.e., E[|Xi|

p
] < ∞) for i = 1, . . . , n − 1.

This is also true for some other variations where g is a piecewise
function of the form |·|

p such as g1 and g3 in Examples 1 and 3.
Moreover, if c(s) < ∞ for some s ∈ S , it is finite for all s ∈ S.
It is mainly due to the fact that Lp is a vector space. Therefore,
in such cases, there is no need to explore the set S. However, for
general g , the set {X ∈ X +

| E[g(X)] < ∞} may not be a vector
space (see Birnbaum–Orlicz space, Birnbaum & Orlicz, 1931) and
c(s) may be infinite for some s. In that case, random exploration
may yield s ∈ S such that c(s) < ∞.

5.2. Sample average approximation

The next question is how to calculate the optimal appoint-
ment times. Theorem 17 assures that there exists an optimal
schedule under mild condition. However, calculating expectation
is very costly in our problem due to the convolution nature of the
distribution of the service completion times. In fact, for a given
schedule s, distribution of Eσ (i) is convolution of distributions of
max(si, Eσ (i−1)) and Xi. An alternative is to use sample average
approximation (SAA) to approximate the optimization problem.
SAA is a well studied topic in stochastic programming (see for
example, Royset, 2013; Shapiro et al., 2009). In the following, we
discuss SAA and provide a theoretical guarantee for convergence
of the solution in stochastic appointment scheduling problem. We
assume that

Assumption 18. For any realization of X, C(·,X) is convex.

This assumption holds for the l1-type objective function (see
Proposition 21 in Appendix A) which is widely considered in
the literature. However, it does not hold for the case of l2-type
objective (see Example 22 in Appendix A).

Let (Xj)mj=1 be an independently and identically distributed
(i.i.d.) random sample of size m for durations X and define

Cm(s) =
1
m

m∑
j=1

C(s,Xj) (17)
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Instead of solving the optimization problem in Eq. (3), we are
going to solve

inf
s∈S

Cm(s). (18)

Convexity and coercivity of C(·,X) imply convexity and coercivity
of Cm(·). Therefore, there exists a solution to the optimization
problem in (18). In addition, Strong Law of Large Numbers implies
that for each s, Cm(s) → c(s) a.s. as m → ∞. Nevertheless,
optimization over the set S requires some stronger result to
guarantee infs∈S Cm(s) → infs∈S c(s) a.s. as m → ∞. Moreover,
it would be useful to see if the set of minimizers of the SAA also
converges to the set of true minimizers in some sense. To reach
that goal, we need the following definition of deviation for sets
(see Eq. (7.4) in Shapiro et al., 2009).

Definition 19. Let (M, d) be a metric space and A, B ⊆ M . We
define distance of a ∈ A from B by

dist(a, B) := inf{d(a, b) | b ∈ B} (19)

and deviation of A from B by

D(A, B) := sup
a∈A

dist(a, B). (20)

Note that D(A, B) = 0 implies A ⊆ cl(B) (i.e. A is a subset of
closure of B with respect to M). The next theorem guarantees that
SAA is a consistent estimator for the scheduling problem.

Theorem 20. Suppose Assumption 18 holds and c(s) < ∞ for some
s ∈ S and let S∗

= arginf s∈Sc(s) and S∗
m = arginf s∈SCm(s). Then,

infs∈S Cm(s) → infs∈S c(s) and D(S∗
m, S∗) → 0 a.s. as m → ∞.

The proof is available in Appendix A.
Theorem 20 proves the consistent behavior of SAA as the

number of samples tends to infinity. Let us now observe how
it behaves in terms of bias. For any s′

∈ S , we can write
infs∈S Cm(s) ≤ Cm(s′). By taking expectation and then minimizing
over s′, we conclude that E[infs∈S Cm(s)] ≤ infs∈S E[Cm(s)]. Since
samples are i.i.d., E[Cm(s)] = c(s). Therefore, E[infs∈S Cm(s)] ≤

infs∈S c(s) which means SAA is negatively biased. Does this bias
decrease as the number of samples increases? The answer is
affirmative. Theorem 2 in Mak, Morton, and Wood (1999) proves
that E[infs∈S Cm(s)] ≤ E[infs∈S Cm+1(s)].

6. Numerical results

It has become a standard practice to evaluate performance
on operating room data due to the immediate application of
stochastic appointment scheduling in healthcare. Denton et al.
(2007) used real surgery scheduling data collected at Fletcher
Allen Health Care of New York. In this paper, we consider surgery
scheduling dataset from Keck hospital of USC.

The dataset includes 38,000 surgeries performed in 25 oper-
ating rooms over the course of 3 years. More than 800 different
procedure types were performed by 200 surgeons. Surgeries with
the same procedure type performed by the same surgeon are
assumed to be samples of the same distribution. Our numerical
analysis is restricted to those distributions that have at least 30
samples. We stick to 30 samples because we observed that they
are sufficient for a close enough SAA of the optimal solution.
This is much fewer than the theoretically required number of
samples given by Begen, Levi, and Queyranne (2012). In some
practical scenarios, there are not enough samples to directly
apply SAA. In such scenarios, similar cases based on the nature
of the procedure type can be aggregated to build distributions
with enough number of samples. In this paper, we focus on the
surgeon–procedure pairs that have enough number of samples.

Fig. 4. SAA running time (in seconds) to find approximate optimal schedule
for a given sequence. 30 samples/job are used for SAA though no appreciable
difference even if 10x more samples used.

We first show that given a sequence, SAA-based optimization
algorithm is fast enough for all practical purposes to find an
approximate solution. To do so, we use the Powell method (Brent,
2013) to solve the SAA-based optimization problem numerically.
The experiments are performed in Python on a 2015 Macbook Pro
with 2.7 GHz Intel Core i5 processor and 16 GB 1867 MHz DDR3
memory. Fig. 4 confirms that appointments for a given sequence
of n = 80 jobs can be calculated in about 3 min. Moreover,
we observed that changing the number of samples from 10 to
300 does not change the run time of the SAA-based optimization
significantly.

Secondly, the bounds provided in Theorem 13 are evaluated.
Bounds in Theorem 13 are for general distribution and may be
useful in the worst case scenarios. However, Fig. 5 shows that
the upper bound is loose as the number of jobs increases on Keck
dataset. The upper bound of Theorem 13 uses the complete delay
propagation through the schedule, i.e., potential cost of each job
affects all the future jobs equally. Although this situation might
arise in the worst case, we have observed that on Keck dataset,
it does not happen. Indeed, the gaps between jobs prevent the
delay to have full effect on subsequent jobs.

Non-indexability shown in Theorem 11 is for general distribu-
tion. One might wonder if non-indexability is actually observed in
practice. We verify that the optimal sequence is indeed different
from the one given by heuristic policies (see Table 1) using Keck
dataset. Newsvendor and LVF indexes are considered as heuristic
policies for cσ

1 and cσ
2 objective functions, respectively since they

are the only possible candidates to return the optimal sequence
(Proposition 8). The true optimal sequence is calculated by com-
paring all n! choices. In operating room scheduling, the number
of surgeries performed in a typical day hardly exceeds 6 which
leaves the door open for exhaustive search to find the optimal
sequence. However, other applications such as outpatient clinics
have much larger number of jobs and it may not be feasible to
exhaustively search over all possible sequences.

Cost function cσ
1 depends on the idle time and delay per unit

costs α and β . Mansourifard et al. (2018) analyzed how newsven-
dor index outperforms variance in different regimes of these
parameters. In Fig. 6, we evaluate the gap between newsvendor
index and the optimal sequence as α and β change. The optimal
sequence is obtained by exhaustive search over all n! possible
sequences. It can be seen that as the ratio of α/β increases,
the sub-optimality gap of newsvendor index increases on Keck
dataset.
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Fig. 5. Upper and lower bounds on optimal cost for (a) cσ
1 and (b) cσ

2 cost
functions. As shown in the figure, upper bound is quite loose on USC Keck
dataset. Table 1 provides numerical values for n ≤ 6 to compare optimal
sequence with index-based heuristic policy.

Fig. 6. Optimality gap of newsvendor index increases as the ratio of α/β

increases on Keck dataset. The optimal sequence is found by exhaustive search
over all n! possible sequences. β = 1 is fixed and α changes from 0.1 to 100.
The dashed lines show the cost for the sequence obtained by least newsvendor
first. The cost of the optimal sequence is shown by solid lines.

Table 1
Non-optimality of least newsvendor first for cσ

1 and least variance first for cσ
2 .

Optimal sequence found by exhaustive search is different from the sequence
given by heuristic index-based policies.

n (Number of jobs)

2 3 4 5 6

cσ
1

lower bound 14.9 32.8 51.2 71.4 92.3
optimal cost 14.9 36.6 51.6 79.0 105.3
newsvendor cost 14.9 36.6 64.4 95.4 126.5
upper bound 14.9 47.7 98.9 170.4 262.7

cσ
2

lower bound 368.0 817.5 1534.3 2430.0 3562.3
optimal cost 368.0 1036.3 1763.8 2760.1 3912.5
variance cost 368.0 1081.7 1923.1 2853.7 3939.1
upper bound 368.0 1185.5 2719.9 5149.8 8712.2

7. Conclusions

In this paper, we considered the optimal stochastic appoint-
ment scheduling problem. Each job potentially has a different
service time distribution and the objective is to minimize the
expectation of a function of idle time and start-time delay. There
are two sub-problems. (i) The sequencing problem: the optimal
sequence in which to schedule the jobs. We show that this
problem in general is non-indexable. (ii) The scheduling prob-
lem: finding the optimal appointment times given a sequence
or order of jobs. We show that there exists a solution to the
scheduling problem. Moreover, the l1-type objective function is
convex. Further, we give a sample average approximation-based
algorithm that yields an approximately optimal solution which is
asymptotically consistent.

It has been an open problem for many years to find the index
that yields the optimal sequence of jobs. Following the work
of Weiss (1990), who showed that Least Variance First (LVF) is
optimal for two cases for specific distributions, it had been con-
jectured that the problem is indexable and LVF may be optimal
for the general problem with the l1-type objective. In fact, several
simulation studies and approximation algorithms are based on
such policies. In this paper, we have settled the open question of
the optimal index-type policy, namely that the problem is non-
indexable in general, and no such index exists. Indeed, we show
that if the problem is indexable, then a ‘Newsvendor index’ would
be optimal for the l1 cost objective, a variance index would be
optimal for l2 objective, and we also give form of an index I∗g
that would be optimal for a generalized cost function g . But we
provide counterexamples that show that an optimal index-based
policy does not exist for some problems. It is quite possible that
the problem is indexable for specific distribution classes. That
remains an open research question.
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Appendix A. Proofs

Proof of Lemma 14. For k = 2 the statement is obvious. For
k = 1, using the fact that (a + b)+ ≤ a+

+ b+ for a, b ∈ R, we
have:

I∗1 (X1 + X2)
= inf

s
E[α(s − X1 − X2)+ + β(X1 + X2 − s)+]

≤ E[α(F−1
X1

(
β

α + β
) + F−1

X2
(

β

α + β
) − X1 − X2)+
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+ β(X1 + X2 − F−1
X1

(
β

α + β
) − F−1

X2
(

β

α + β
))+]

≤ E[α(F−1
X1

(
β

α + β
) − X1)+ + β(X1 − F−1

X1
(

β

α + β
))+]

+ E[α(F−1
X2

(
β

α + β
) − X2)+ + β(X2 − F−1

X2
(

β

α + β
))+]

= I∗1 (X1) + I∗1 (X2) □

Proof of Lemma 15. (i) We can write g(t) = gr (t) + gl(t) where
gr (t) = g(t+) and gl(t) = g(−(−t)+) capture g for positive
and negative values of t , respectively. Since g is nonnegative,
convex and g(0) = 0, we can conclude that gr is nondecreasing
and gl is nonincreasing. Moreover, I∗g (X) = infs≥0 E[g(X − s)] =

infs∈R E[g(X − s)]. Suppose s∗ is a minimizer for I∗g and let X =

{x ∈ R : x ≤ s∗}. We prove the lemma for x ∈ X and x /∈ X
separately.

Let x ∈ X . We can write:

I∗g (max(x, X)) = inf
s
E[g(max(x, X) − s)]

= inf
s
E[gr (max(x, X) − s) + gl(max(x, X) − s)]

≤ inf
s≥x

E[gr (max(x, X) − s) + gl(max(x, X) − s)]

= inf
s≥x

E[gr (X − s) + gl(max(x, X) − s)]

≤ inf
s≥x

E[gr (X − s) + gl(X − s)]

= inf
s≥x

E[g(X − s)]

= E[g(X − s∗)] = I∗g (X)

For the case that x /∈ X , we can write:

I∗g (max(x, X)) = inf
s
E[g(max(x, X) − s)]

= inf
s
E[gr (max(x, X) − s) + gl(max(x, X) − s)]

≤ inf
s<x

E[gr (max(x, X) − s) + gl(max(x, X) − s)]

= inf
s<x

E[gr (max(x, X) − s)]

= E[gr (max(x, X) − x)]
= E[gr (X − x)]
≤ E[gr (X − s∗)]
≤ E[gr (X − s∗) + gl(X − s∗)]
= E[g(X − s∗)] = I∗g (X)

(ii) Note that I∗g (X) = infs≥0 E[g(X − s)] = infs∈R E[g(X − s)]. To
prove max(I∗g (X1), I∗g (X2)) ≤ I∗g (X1 + X2), by symmetry, suffices to
prove I∗g (X1) ≤ I∗g (X1 + X2). Let x2 ≥ 0, we have:

I∗g (X1) = inf
s
E[g(X1 − s)]

= inf
s
E[g(X1 + x2 − s)]

= inf
s
E[g(X1 + X2 − s) | X2 = x2]

= inf
s

φ(s, x2)

where φ(s, x2) = E[g(X1 + X2 − s | X2 = x2)]. The above equality
holds for any value of x2 ≥ 0. Hence, I∗g (X1) ≤ φ(s, X2) for any
s ∈ R. Therefore, I∗g (X1) ≤ E[φ(s, X2)] = E[g(X1 + X2 − s)] by
smoothing property of conditional expectation. Thus, I∗g (X1) ≤

infs E[g(X1 + X2 − s)] = I∗g (X1 + X2). □

Proof of Theorem 17. (i) Since g is nonnegative, it is obvious
that C(·,X) is also nonnegative.

To prove coercivity of C(·,X), let (sm)m≥1 ⊆ Rn−1 be a se-
quence such that ∥sm∥ → ∞. We need to show that C(sm,X) →

∞ as m → ∞. Let j be the smallest integer such that ∥smj ∥ → ∞.
Note that for any particular realization of X, there exists M ∈ R
such that |Em

j−1| ≤ M for all m where Em
j−1 denotes finish time of

job j − 1 with schedule sm. By triangle inequality,

|Em
j−1 − smj | ≥ |smj | − |Em

j−1| ≥ |smj | − M → ∞ (A.1)

as m → ∞. Coercivity of g implies that g(Em
j−1 − smj ) → ∞

as m → ∞. On the other hand, since g is nonnegative we can
write C(sm,X) ≥ g(Em

j−1 − smj ) for all m. Hence, C(sm,X) → ∞ as
m → ∞.

(ii) Clearly, c(·) is nonnegative. To prove coercivity, let (sm)m≥1
be as defined in the previous part, by Fatou’s Lemma and coer-
civity of C(·,X) we have:

lim inf
m

c(sm) = lim inf
m

E[C(sm,X)]

≥ E[lim inf
m

C(sm,X)] = ∞.

To prove lower semi-continuity, let (sk)k≥1 ⊆ Rn−1 be a sequence
converging to s ∈ Rn−1. By Fatou’s Lemma we can write

lim inf
k

c(sk) = lim inf
k

E[C(sk,X)]

≥ E[lim inf
k

C(sk,X)] ≥ E[C(s,X)] = c(s).

Since c is coercive and c(s) < ∞ for some s ∈ S , without
loss of generality we can assume that the minimization is over a
compact set. Moreover, c(s) is lower semi-continuous. Thus, the
set of minimizers is nonempty and compact. □

Proof of Theorem 20. Define the extended real valued functions

C̄m(s) = Cm(s) + IS(s)
c̄(s) = c(s) + IS(s)

where

IS(s) =

{
0, if s ∈ S
+∞, Otherwise

Note that C̄m, c̄ are nonnegative, convex and lower semicontin-
uous because Cm, c are lower semicontinuous and S is closed
and convex. By Theorem 2.3 of Artstein and Wets (1994) (see
Appendix B), C̄m(·) epi-converges to c̄(·) (denoted by C̄m(·)

e
−→ c̄(·))

for a.e. ω ∈ Ω .
Note that S∗

= arginfs∈Sc(s) = arginfs∈Rn−1 c̄(s) and S∗
m =

arginfs∈SCm(s) = arginfs∈Rn−1 C̄m(s). Since c(s) < ∞ for some
s ∈ S , by Theorem 17 we know that S∗ is nonempty and compact.
Let K be a compact subset of Rn−1 such that S∗ lies in the
interior of K . Let Ŝ∗

m = arginfs∈K C̄m(s). We first show that for
a.e. ω ∈ Ω , Ŝ∗

m is nonempty for large enough m. Let s∗
∈ S∗

and consider ω ∈ Ω for which C̄m(·)
e

−→ c̄(·). By definition of
epi-convergence, lim supm C̄m(sm) ≤ c̄(s∗) for some sm → s∗.
Therefore, there exists M ≥ 1 such that for m ≥ M , C̄m(sm) ≤

c̄(s∗) + 1 < ∞. Moreover, it follows from sm → s∗ that for large
enough m, sm lies in the interior of K . Since C̄m(·) is convex and
lower semicontinuous and K is compact, Ŝ∗

m is nonempty a.s. (see
Appendix B for Proposition 2.3.2 of Bertsekas, Nedić, & Ozdaglar,
2003).

Now, let us show that D(Ŝ∗
m, S∗) → 0 a.s. Consider ω ∈ Ω

for which C̄m(·)
e

−→ c̄(·). We claim that for such ω, D(Ŝ∗
m, S∗) →

0. Assume by contradiction that D(Ŝ∗
m, S∗) ̸→ 0. Thus, there

exist ϵ > 0 and ym ∈ Ŝ∗
m (for large enough m) such that

dist(ym, S∗) ≥ ϵ. Let yml → y be a convergent subsequence
of (ym)m≥1. Such a subsequence exists because K is compact. It
follows from dist(ym, S∗) ≥ ϵ that y /∈ S∗. On the other hand,
Proposition 7.26 of Shapiro et al. (2009) (see Appendix B) implies
that y ∈ arginfs∈K c̄(s) = S∗ which is a contradiction.
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Note that S∗ is in the interior of K . It follows from D(Ŝ∗
m, S∗) →

0 that for large enough m, Ŝ∗
m lies in the interior of K . Hence, Ŝ∗

m
is a local minimizer. Convexity of C̄m(·) implies that Ŝ∗

m is a global
minimizer i.e. Ŝ∗

m = S∗
m. Therefore, D(S

∗
m, S∗) → 0 a.s. as m → ∞.

It remains to prove that infs∈S Cm(s) → infs∈S c(s) a.s. Fix
ω ∈ Ω for which C̄m(·)

e
−→ c̄(·) and let s∗

m ∈ S∗
m be a convergent

sequence. Such a sequence exists because for large enough m,
S∗
m falls inside the compact set K . Then, by Proposition 7.26
of Shapiro et al. (2009) (see below), inf C̄m(s) → inf c̄(s) or
equivalently, infs∈S Cm(s) → infs∈S c(s). □

Proposition 21. Let X be a fixed sequence of jobs and C1(·,X) =∑n
i=2

[
α(si − Ei−1)+ + β(Ei−1 − si)+

]
as in Example 1. For any re-

alization of X, C1(·,X) is convex and thus, c1(·) = E[C1(·,X)] is also
convex.

Proof. We proceed by writing C1(·,X) as maximum of 2n−1 affine
functions. Since an affine function is convex, so is the maximum.
To define these functions, we first split Rn−1 into 2n−1 regions
and then define an affine function in each region. These functions
are then extended to the entire Rn−1. The details are given in the
following.

Fix a realization of X and note that for any schedule s =

(s2, . . . , sn) ∈ Rn−1, either (si − Ei−1)+ > 0 or (Ei−1 − si)+ > 0
for i = 2, . . . , n. Let bi be a binary variable that indicates which
of the two happens. More specifically, bi = 1 if si ≥ Ei−1, and
bi = 0 if si < Ei−1. These binary variables are used to split Rn−1

into 2n−1 regions Rb2,...,bn . More precisely, if bi = 1, then si ≥ Ei−1
denotes the range of si in Rb2,...,bn and if bi = 0, then si < Ei−1
determines its range. For example for n = 4, region R101 would
be

R101 := {(s2, s3, s4) ∈ R3
| s2 ≥ E1, s3 < E2, s4 ≥ E3}.

Corresponding to each region, one can define a function f̄b2,...,bn :

Rb2,...,bn → R that consists of sum of n − 1 terms associated
with each bi. If bi = 1, then the corresponding term would be
α(si − Ei−1) and if bi = 0, it would be β(Ei−1 − si). For example
for n = 4, f̄101 would be

f̄101(s) := α(s2 − E1) + β(E2 − s3) + α(s4 − E3)

= α(s2 − X1) + β(s2 + X2 − s3) + α(s4 − s2 − X2). (A.2)

Note that C1(s,X) = f̄b2,...,bn (s) on Rb2,...,bn . Moreover, restricting
the domain of f̄b2,...,bn to Rb2,...,bn allowed us to write the last
equality in (A.2) which can now be used for an affine extension
to the entire Rn−1. Let fb2,...,bn : Rn−1

→ R be such an extension.
We claim that C1(s,X) = maxb2,...,bn fb2,...,bn (s) for all s ∈ Rn−1

and thus convex. To prove this claim, it suffices to show that
on Rb2,...,bn , f̄b2,...,bn (s) ≥ fb′

2,...,b′
n
(s) (because C1(s,X) = f̄b2,...,bn (s)

on Rb2,...,bn ). This is indeed true because if b′

i ̸= bi, the corre-
sponding term would be negative in fb′

2,...,b′
n
(s). Finally, note that

c1(·) = E[C1(·,X)] is also convex since expectation preserves
convexity. □

Proposition 21 shows that the l1-type objective function is
convex. The following example shows that this may not be true
for the objective function c2.

Example 22. Consider the special case of n = 3 and let
X1, X2 > 0 be positive scalars (which can be seen as degenerate
distributions). We show that the function c2(s2, s3) := (X1−s2)2+
(max{X1, s2}+X2 − s3)2 is not convex. Let t = 0.5 and s1 = (X1 −

γ , X1 + 10X2), s2 = (X1, X1 + 10X2) and s3 = (X1 + γ , X1 + 10X2)
for some 0 < γ < min{X1, 6X2}. Substituting these values, we
observe that c2(s2) = c2(ts1 + (1 − t)s3) > tc2(s1) + (1 − t)c2(s3).

Appendix B. Useful theorems and propositions

Theorem 23 (Theorem 2.3 of Artstein & Wets, 1994). Let F : S ×

Ξ → (−∞, ∞] be a measurable function and P(dξ ) be a probabil-
ity measure over the space Ξ of random elements. We assume that
S is a metric space. Define f (s) := E[F (s, ξ )] =

∫
F (s, ξ )P(dξ ) and

let ξ1, . . . , ξm be independent samples of Ξ drawn according to P.
Suppose (1) F (· , ξ ) is lower semicontinuous for fixed ξ ∈ Ξ and (2)
for each s0 ∈ S there exist an open set N0 ⊆ S and an integrable
function g0 : Ξ → (−∞, ∞) such that the inequality

F (s, ξ ) ≥ g(ξ )

holds for all s ∈ N0. Then, 1
m

∑m
j=1 F (·, ξj) almost surely epi-

converges to f (·).

Proposition 24 (Proposition 7.26 of Shapiro et al., 2009). Let fm, f :

S → (−∞, ∞] where S ⊆ Rn. Suppose that fm(·) epi-converges to
f (·). Then,

lim sup
m

[inf
s
fm(s)] ≤ inf

s
f (s).

Suppose further that (1) for some ϵm ↓ 0 there exists an ϵm-
minimizer sm of fm(·) such that the sequence sm converges to a point
s̄. Then, s̄ ∈ argminf and

lim
m→∞

[inf
s
fm(s)] = inf

s
f (s)

Proposition 25 (Proposition 2.3.2 of Bertsekas et al., 2003). Let S
be a closed convex subset of Rn, and let f : Rn

→ (−∞, ∞] be a
closed convex function such that f (s) < ∞ for some s ∈ S. The set of
minimizing points of f over S is nonempty and compact if and only
if S and f have no common nonzero direction of recession.
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