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Abstract—Industrial automation traditionally relies on local
controllers implemented on microcontrollers or programmable
logic controllers. With the emergence of edge computing, how-
ever, industrial automation evolves into a distributed two-tier
computing architecture comprising local controllers and edge
servers that communicate over wireless networks. Compared to
local controllers, edge servers provide larger computing capac-
ity at the cost of data loss over wireless networks. This article
presents switching multitier control (SMC) to exploit edge com-
puting for industrial control. SMC dynamically optimizes control
performance by switching between local and edge controllers
in response to changing network conditions. SMC employs a
data-driven approach to derive switching policies based on clas-
sification models trained based on simulations while guaranteeing
system stability based on an extended Simplex approach tailored
for two-tier platforms. To evaluate the performance of indus-
trial control over edge computing platforms, we have developed
WCPS-EC, a real-time hybrid simulator that integrates simulated
plants, real computing platforms, and real or simulated wireless
networks. In a case study of an industrial robotic control system,
SMC significantly outperformed both a local controller and an
edge controller in face of varying data loss in a wireless network.

Index Terms—Cyber—physical systems, edge computing,
machine learning, wireless networked control system (NCS).

I. INTRODUCTION

NDUSTRIAL automation is undergoing a significant trans-

formation driven by the emergence of edge computing and
wireless networking technologies. As shown in Fig. 1, the new
generation of industrial automation systems features a two-tier
computing architecture comprising local and edge comput-
ing platforms. Traditionally, industrial automation relies on
local controllers running on microcontrollers or programmable
logic controllers (PLCs) that are often embedded in control
plants with wired connections to sensors and actuators. Edge
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computing platforms comprise edge servers located on indus-
trial premises. To lower deployment and maintenance costs,
edge servers may communicate with control systems through
wireless technologies that are increasingly being adopted in
industry [1], [2]. Despite their flexibility, wireless networks
may suffer from data loss due to environmental factors,
such as obstacles, noises, interferences, extreme weather, as
well as cyberattacks. The reduced reliability of the wireless
network results in degradation of the control performance.
Therefore, compared with local controllers, edge servers pro-
vide the advantages of computation capacity at the cost of
communication reliability and latency.

While edge computing has received significant attention
in the industry, research on exploiting edge computing for
industrial control has remained limited. In this article, we pro-
pose switching multitier control (SMC), a novel approach to
optimize control performance at runtime on a two-tier comput-
ing platform. SMC dynamically switches control between local
and edge platforms in response to changing network reliabil-
ity. SMC has two salient features. First, in order to overcome
theoretical challenges of analyzing control performance of
complex systems under network dynamics [3]-[5], it employs
data-driven approaches to derive control switching policies.
A key contribution of this approach is to formulate the
platform selection problem as a data-driven classification
problem, optimal platform classifier (OPC), which can be
solved using models extracted from simulations. Second, it
extends the Simplex framework [6]-[10] to the distributed
two-tier architecture comprising local and edge controllers.
The Simplex approach enables SMC to dynamically optimize
control performance without sacrificing stability. Furthermore,
as a tool to study edge computing for industrial control,
it presents wireless cyber—physical simulator-edge comput-
ing (WCPS-EC), a real-time hybrid simulator that integrates:
1) real computing platforms; 2) real or simulated wireless
networks; and 3) simulated physical plants. The contributions
of this article are fivefold.

1) An SMC architecture that dynamically switches con-
trol between local and edge controllers in response to
changes in network reliability.

2) Data-driven approaches to derive switching policies for
multitier control based on the classification models
learned from simulations.

3) A controller-switching design that guarantees system
stability by extending the Simplex approach to a multi-
tier architecture.
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Fig. 1. Multitier control system (local and edge tiers).

4) A real-time hybrid simulator (WCPS-EC) for
studying and evaluating control systems based on
edge computing.

5) A case study on industrial robotic control demonstrating
the advantage of SMC to optimize control performance
while maintaining system stability.

The remainder of this article is organized as follows.
Section II proposes the SMC architecture and design.
Section III introduces a control-theoretic framework for
enabling a systematic design of both a safety controller and
a stability-ensuring switching policy. Section IV presents the
data-driven approaches to optimize control performance based
on physical states and network reliability. Sections V and VI
describe the case study and performance evaluation of SMC
for industrial robotic control. Section VII reviews related
works and Section VIII concludes this article.

II. SMC ARCHITECTURE

In industrial control, the states of physical plants (e.g., the
joint position of a robotic arm) are monitored and controlled
by either a local controller or an edge controller. The edge
controllers communicate with the sensors and actuators of the
physical plants through communication networks. However,
to date wireless networks and edge computing face open
challenges for industrial control with stringent requirements:
1) control performance, which is related to factory revenue
and 2) system stability, which is related to the safety of fac-
tory operation. The system may face data loss over wireless
networks. For example, if a control command is lost, the
actuator may not react to changes in the physical states in
time. Therefore, our goal is to improve control performance
and guarantee stability in the presence of data loss over the
wireless network.

This section presents an overview of SMC architecture.
The objective of SMC is to: 1) dynamically optimize con-
trol performance and 2) guarantee system stability when the
reliability of the wireless network changes dynamically. SMC
exploits the two-tier platform by switching between the local
controller and the edge controller in response to changing
network reliability.
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Fig. 2. Two-tier control system of robotic arms.

A wireless network incurs both communication latency and
data loss. For digital control systems with periodic sampling,
communication latency is acceptable as long as the packet
meets its deadline (associated with the sampling period). When
a packet misses its deadline, it is treated as a loss [11], [12].
In addition, industrial wireless network standards, such as
ISA100 [13] and WirelessHART [14], employ TDMA pro-
tocols with predictable latency. In such systems, the impact
of wireless networks on control is often manifested through
packet losses. Therefore, we focus on addressing data loss in
this article. Latency will be addressed in future work.

In this section, we introduce the SMC architecture and pro-
vide an overview of its switching logic and mechanisms. The
design to guarantee system stability and optimize performance
will be detailed in Sections IIT and IV, respectively.

A. System Model

SMC employs a pair of local/edge controllers for each
feedback control loop. Compared to the local controller, the
edge controller may run a more sophisticated control algo-
rithm given the larger computational capacity of the edge
server. The local controller is connected to sensors and actu-
ators through a wired network with no data loss. The local
controller and the edge controller communicate over wire-
less networks with varying data loss. An example of two-tier
robotic control is shown in Fig. 2. At any time, only one con-
troller is active and controls the physical plant at a sampling
period T. Furthermore, a switching agent is co-located with
each controller. The switching agent co-located with the active
controller checks the trigger of stability status to determine
whether to switch to the safety controller and checks the trig-
ger for performance optimization every coordination period
T, to determine whether to switch to the controller with the
optimal performance. If a switch is triggered, the control is
transferred to the other controller along with the necessary
state information using a switching protocol.

We now introduce the variables representing the physical
and network states. x(k) denotes the state vector of the con-
trolled system in the kth sampling period; and x.(k) denotes
the state error vector defined as the difference between x(k)
and its reference value. In our case study, we use the mean
absolute error MAE (1/n 4+ 1) Y 4_o Ixe(k)|, where n
denotes the number of samples in the coordination period, as
a suitable metric for control performance of a robotic system
tracking a reference trajectory.

The control performance of the edge controller depends on
the data loss over the wireless network. We explore two models

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 03,2020 at 02:12:24 UTC from IEEE Xplore. Restrictions apply.



3508

to describe the data loss process: 1) independent and iden-
tically distributed (i.i.d) Bernoulli random distribution with
packet loss ratio p and maximum loss bound 7 defined as
the maximum number of consecutive packet loss and 2) two-
state Markov chain with the probabilities of transiting from/to
the packet loss state to/from the packet reception state as o
and B, respectively. While these models are relatively simple,
we show in our evaluation that they are effective in selecting
the controller when used with data-driven approaches.

B. Switching Logic

The switching logic of SMC integrates two switching rules:
1) the Stability Switch for guaranteeing stability and 2) the
OPC for selecting the optimal control platform.

The Simplex framework [6] supports high-performance and
dependable control systems through the integration of an
unverifiable complex controller, a verified safety controller,
and a switching logic. When the system is in danger of enter-
ing an unrecoverable state, the switching logic makes the
system switch to the safety controller. In this way, a control
system can employ the complex controller while maintaining
the guarantees of the safety controller. In the Simplex frame-
work, the physical states satisfying all operational constraints,
such as physical state restrictions and limits of actuation, are
defined as admissible states. The set of recoverable states is a
subset of the admissible states. If the given safety controller is
used from these states, all future states will remain admissible.
The Stability Switch in SMC extends the Simplex framework
to our two-tier architecture to guarantee stability.

SMC extends the Simplex framework [6]-[10] in three novel
ways: 1) while earlier research on Simplex usually assumed
that the safety controller and the performance controller are
co-located on a same computational platform, SMC extends
the approach to the distributed two-tier architecture comprising
local and edge controllers; 2) we introduce OPC, a new data-
driven classifier to select the optimal controller at run time; and
3) we integrate the Stability Switch and OPC in a coordinated
switching logic that optimizes control performance without
sacrificing stability.

Stability Switch: In SMC, the local controller serves as the
safety controller as it usually employs a simple control law and
has a reliable connection to sensors and actuators without data
loss. The edge controller serves as the performance controller
that can afford a sophisticated control law and suffers time-
varying data loss over the wireless network. As illustrated in
the left figure in Fig. 3, the physical system may operate in the
recovery region (RR) or the performance region (PR) in terms
of its physical states. RR is the region of recoverable states
that can be stabilized by the local controller. PR is the subset
of the RR, where either the local or the edge controller may
be active as selected by the OPC at runtime. The derivation
of PR is presented in Section III.

OPC: When the system operates in PR, the OPC is responsi-
ble for selecting between the local and edge controllers based
on the network conditions and physical states. The control
performance of the local and edge controllers depends on
both the current network conditions and the physical states of
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Fig. 3. Regions and boundaries of SMC.

the system. To overcome the theoretical challenges of analyz-
ing control performance of complex systems under network
dynamics [3]-[5], OPC employs data-driven approaches to
select controllers. The data-driven approach allows SMC to
be adopted in a wide range of practical systems and networks.
The inputs to the OPC include the physical states (e.g., x.)
and network conditions. The network conditions include the
distribution and burstiness of data loss. e.g., p and 7 in the
i.i.d. model, or @ and B in the Markov chain model. The OPC
may be trained based on simulation or experimental results.
The design of OPC is detailed in Section IV.

Integration of Stability Switch and OPC: As illustrated in
Fig. 3, when x € PR, the OPC selects the controller that opti-
mizes control performance based on network conditions and
physical states. When x ¢ PR, control is switched to the local
controller to guarantee stability. By designing the local con-
troller and PR with theoretical guarantees and by setting the
stability switch with higher priority, SMC can dynamically
optimize control performance without sacrificing stability.

C. Switching Protocol

We now present the switching protocol used by SMC to exe-
cute the switching between local and edge controllers across
the two-tier platform.

In the two-tier architecture, each controller is co-located
with a switching agent. Each switching agent integrates the
Stability Switch and the OPC. The OPC monitors network
and physical conditions every 7, to achieve the platform that
optimizes predicted control performance over the next T,.. The
monitored network conditions depend on which loss model the
OPC is trained on. If the OPC is trained on an i.i.d loss model,
it measures the packet loss rate (p) and the maximum num-
ber of consecutive packet loss (1) over the last time window
of T,. If the OPC is trained on the Markov chain model, it
measures the probabilities of transiting from/to the bad state
(packet drop) to/from the good state (packet reception), & and
B, respectively, over the last time window of 7.

At any time, only one controller is active along with its
switching agent. The active controller operates its control
policy in each sampling period 7; to generate the actua-
tion commands. When multiple tasks share the local or edge
platform, schedulability analysis can be performed for each
platform to guarantee that all the tasks remain schedulable
when controllers are activated. As shown in the finite state
machine (Fig. 4), the switching protocol works as follows.

1) When the local controller is active, the switching agent

is invoked every T, the prediction horizon of OPC. If
a) x € PR and b) the OPC selects the edge controller as
the optimal platform over the next prediction horizon T,
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x ¢ PR OROPC - Local x & PR AND OPC > Edge

Local
Local Controller
Operate local control
policy every T;

Edge
»” Edge Controller
Operate edge control
policy every T;;

x € PR AND OPC > Edge
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Switching Agent
Check Stability Switch
ondition(if x PR) every T;

Switching Agent
Check Stability Switch

+4PROR ondition(if xE PR) every T;

(x€PR AND OPC -> Local)

Operate OPC every T, Operate OPC every T,

Send d, over wireless network;
Reserve a coordination data flow every 7, for
network conditions between edge and local;

Fig. 4. Finite state machine for SMC. The arrows represent platform switches,
and the switching conditions are above the arrows. The main actions taken to
switch the computation platform are below the horizontal arrows.

the control switches to the edge controller. The switching
agent on the local platform sends a switching command
to the switching agent on the edge platform along with
any state data, d;, needed by the edge controller. e.g.,
depending on control design, d; may include previous x.
2) When the edge controller is active, the switching agent
checks if x € PR every T, and switches to a local con-
troller immediately when x ¢ PR. The switching agent
also invokes OPC every T¢. If the OPC selects the local
controller as the optimal platform over the next 7, the
control switches to the local controller. The switching
agent on the edge platform sends a switching command
to the switching agent on the local platform along with
any state data, d,, needed by the local controller.
Given the criticality of the switching command, the switch-
ing agents rely on retransmissions and acknowledgments
to ensure reliable communication. Furthermore, to ensure a
higher level of assurance, the local controller may remain
active to monitor the physical states and take over control
when x ¢ PR. The local controller may also monitor the
network condition using the control commands from the edge
controller as heartbeat messages. When it has not received an
actuation command from the edge controller within a timeout
threshold, the local controller can take over the control. This
approach enhances the dependability of SMC as it can switch
to the local controller without the switching commands from
the edge switching agent, e.g., when the network between the
edge and local is completely jammed. The actuators can be
designed to allow override by the local controller if it receives
control commands from both controllers.

III. LocAL CONTROLLER AND PERFORMANCE REGION

The key problem of a Stability Switch boils down to devel-
oping the local controller and the PR. We consider the system
dynamics approximated by a linear time-invariant (LTI) model
with linear constraints since a wide variety of systems can be
represented with satisfactory accuracy by such LTI model

X =Ax+ Bu (1a)
aiTxfl,izl,Z,...,q (1b)
plu<1, j=1,2,....r (Ic)

J -
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where (1b) are physical restrictions and (lc) are limits of
actuators. The local controller is a state feedback controller,
u = Kx. We next formulate a convex optimization problem to
establish both the safety feedback gain, K, and RR

S = {xx"Px < 1} @

by applying the Lyapunov stability theory and linear matrix
inequality (LMI) methodologies [7]-[10], where P is a
positive-definite matrix. P defines a Lyapunov function, x” Px,
which is positive definite with a negative-definite derivative,
thus guaranteeing the stability of the linear system.

We establish the local controller (K) and S (Q = P h
jointly by applying the method presented in [10]. We solve
an optimization problem over feasible K and Q, subject to
LMI constraints, such that the resulting closed-loop system is
asymptotically stable and RR is maximized. Since the volume
of RR given by (2) is proportional to v/det(Q—!), maximizing
RR is equivalent to minimizing the determinant det(Q~1). The
LMI problem can be formulated as

minQinzlize log det(Q™ 1) (3a)
subject to QO > 0 (3b)
0AT + AQ+Z"BT +BZ <0 (3¢)
alQa;<1,i=1,2,....q (3d)
1 'z
iZ1=0,j=12....,r. (e
[szj Q } /

Applying the change of variable, we obtain K = ZQ~! and
P = Q_l. Constraints (3b) and (3c) are the stability (Lyapunov
equation) constraints, and (3e) is an LMI constraint converted
from (lc). Since multitier control systems are implemented
on digital platforms, we discretize (1a) with sampling period
Ts;. We consider the worst case latency of T, since in our
case (Table II, joint position control) the worst case end-to-
end (E2E) latency of local safety controller is 6.19 ms which is
shorter than 7y = 50 ms, which results in the consideration of

x(k+1) = Agx(k) + Bgu(k — 1). 4)

Considering the state feedback control u(k) = Kx(k) and
defining a new state vector z(k) = [xT(k) xT(k — l)]T, the
closed-loop form of the augmented system of z(k) is

2k + 1) = Agz (k) (5)
where
- Ag BgK
Ay = . 6
d |:IN><N 0N><Ni| ©

We solve Q = P~! by [7] as

maximize log det(Q) (7a)
0
subject to 0>0 (7b)
0AT —A7'0 <0 (7¢)
alQa, <l,m=1.2,..,¢g (7d)
where @, = [al,01xn]7 and @, = [O1xn, L] are the

constraints corresponding to x(k) and x(k — 1), respectively.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 03,2020 at 02:12:24 UTC from IEEE Xplore. Restrictions apply.



3510

i

0.5 0.5
11

B a

(a)

Fig. 5.
control, (b) optimal platform labeling.

o :a,ﬂ,form:1,...,q;oe,,T1=bjTK,form=q~|—1,...,g,
j=1,...,r, and g = g+ r. The corresponding RR is

S = {z(b)z(k)" Pz (k) < 1}. (8)

Remark 1: The stability condition of the two-tier control
system is that x should stay in RR. Thus, control should be
switched to the local controller before x leaves RR. SMC is
designed to switch among two platforms in a distributed way.
Hence, the switching latency is unavoidable. It may result in
x out of RR. In order to guarantee stability, a smaller region
of PR should be calculated. A practical solution would be to
choose a smaller ellipsoid, e.g., an ellipsoid defined by x” Px =
0.7 [6]. The distance d in Fig. 3 can be derived theoretically
through the searching of control policies that drive x within
RR to the boundary of RR in the shortest time, which can be
formulated as a minimum-time optimal control problem and
solved by the bang-bang control. If the resulting shortest time
is shorter than the sum of 7 and switching latency, x belongs
to PR.

Remark 2: When switching occurs, the actuation com-
mands may change in a nonsmooth (discrete) fashion. The
discrete changes in the actuation commands will not affect
stability since the stability switch is rigorously derived for the
system (4), and switches do not happen frequently (multiples
of T;). In addition, there exist switching system designs that
deal with discontinuous design space [15], which are not the
focus of this article.

IV. OPTIMAL PLATFORM CLASSIFIER

OPC employs data-driven approaches to select controllers
trained by simulations. Invoked every 7., OPC measures the
network conditions and physical states and selects the con-
troller that is predicted to optimize control performance over
the prediction horizon T,. Our data-driven approach is inspired
by simulation-guided certificate construction [16], [17], but we
apply the data-driven approaches for different purposes and
scenarios. Unlike certificate construction, the false positive of
which is extremely dangerous to a control system, the OPC is
designed to improve the control performance within the sta-
bilizable PR, the misclassification of which does not affect
system stability in SMC.
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A. Cyber—Physical Inputs

There exist different approaches to model data loss in the
context of networked control systems (NCSs): 1) modeling
loss as stochastic processes [18], e.g., i.i.d Bernoulli ran-
dom distribution [19], [20] and two-state Markov chain [21];
2) modeling loss as weakly hard real-time constraints [22],
e.g., (m, k) model [11], [23]; and 3) modeling loss with con-
secutive loss bound [24], [25]. The (m, k) model is commonly
used in real-time scheduling for computing tasks and is not
suitable for the probabilistic nature of wireless communica-
tion. Hence, we explore two stochastic models for data loss,
including i.i.d process with consecutive loss bounds and two-
state Markov chain. The i.i.d loss model is characterized by:
1) the loss ratio p and 2) the maximum number of consec-
utive packet loss count n. The two-state Markov chain loss
(Gilbert-Elliott) model is characterized by: 1) the probability
of transiting from the packet loss state to the reception state «
and 2) the probability of transiting from the reception state to
the loss state 8. Our experiments show that the OPC trained
by either model works for realistic wireless traces. In addition
to the network conditions, OPC also takes the physical state
errors, x,, as inputs. OPC, therefore, selects controllers based
on both cyber (network) and physical states.

B. Data Collection

To train and test OPC, we conduct simulations of local and
edge control by sampling the input values over their feasible
ranges. Since that OPC is invoked every T, at runtime, the
simulation time for data collection is T, such that SMC can
optimize the control performance over the prediction horizon
of T.. We will study and discuss the choice of T, in Section VI.
Our simulations are performed for a robotic case study in
WCPS-EC, a real-time hybrid simulator (see Sections V-C
and VI for details).

We run simulations to collect data for i.i.d loss model
and two-state Markov chain loss model, respectively. The
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Fig. 7.

simulations incorporate communication latency correspond-
ing to the maximum latency of the local and edge platforms
measured experimentally (see Section VI-A). Fig. 5(a) shows
data collection and processing examples for cases of two-state
Markov chain loss model when T, = 15 s (other experimen-
tal settings of this group of experiments are the same as in
Section VI-A2). The three axes are OPC inputs, i.e., o, 8, and
initial x,. Each data point indicates one round of simulation
for 15 s. The color bar indicates the log-scale MAE. We can
see that when x, and 8 are low, and « is high, the edge con-
trol has smaller MAE. By comparing MAEs of edge control
and local control, we label each data point with the optimal
platform that achieves smaller MAE, as shown in Fig. 5(b).

C. Classifier: Training and Testing

We then train classifiers to select the local or edge platform
(as shown in Fig. 6). We explore two classification mod-
els, threshold-based classification and support vector machines
(SVMs). The goal of a classifier is to identify the optimal plat-
form boundary (OPB), i.e., the boundary that separates the
regions in which the local and edge platforms achieve bet-
ter control performance, respectively. While simple to train
and efficient at runtime, a threshold-based classifier may not
be able to achieve a close approximation of the OPB that is
often nonlinear in practical systems. In comparison, SVM is
a well established and powerful method to efficiently estab-
lish the separation boundary of arbitrary data sets, even when
the training data are not linearly separable [26]. We train and
compare both classifiers in this article.

For the threshold-based classifier, we use grid search to find
the set of thresholds that minimize the classification error on
the training datasets. For example, for the two-state Markov
chain loss model, we exhaustively sweep all feasible values of
o, B, and x, at certain step sizes to find the set of parameters
that leads to the minimum classification error. We tuned the
step sizes to balance the search time and classification error.
The step sizes used to generate the thresholds are 0.067 for «
and B, and 0.53 for x,. For SVM, we use the radial basis kernel
function, proper box constraint, and kernel scale to minimize
the tenfold cross-validation loss on the training datasets.

We trained and tested the classifiers on our training and
testing datasets, respectively. The OPBs established by the
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threshold-based (Grid) classifier and SVM are shown as the
two shaded surfaces in Fig. 7, respectively. The regions to
the left and right of the boundaries are classified as edge
and local control, respectively. As expected, when x, and B
are low, and « is high, OPC will choose edge control, and
local control otherwise. Notably, SVM establishes a nonlinear
boundary separating edge control and local control while the
threshold-based classifier identifies a cube-shaped boundary.

The testing results of SVM are shown in Fig. 7 (mis-
classified points are circled in red). We observe that the
miss classifications happen near OPB, where local and edge
controllers have similar control performance. Fig. 8 shows
the empirical cumulative distributions of MAE difference
of local and edge control in their correct classification sets
and in their miss classification sets, respectively. The results
confirm that misclassifications have moderate impacts on con-
trol performance for both classifiers. The SVM outperforms
threshold-based (Grid) classification in the miss classification
set since SVM establishes a more accurate boundary. We train
two sets of OPCs based on the i.i.d loss model and two-state
Markov chain loss model to show the generality of the data-
driven approach. Both OPCs work for realistic wireless traces,
which will be discussed in Section VI-B2.

Remark 3: Due to the generality of the data-driven
approach, the OPC can be trained for other metrics of
control performance. For example, to optimize the settling
time of a control system, the OPC can be trained to select
the optimal control platform with the shortest settling time.
Furthermore, to minimize settling time, the local and edge con-
trollers can be designed to maximize the convergence speed
with proper closed-loop eigenvalues [27] or learning-based
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approaches [28]. For our robotic case study, as we consider
a linear state-space model for the plant, we can design the
stabilizing controller to result in a certain convergence rate of
the closed-loop system, which is readily given in terms of the
eigenvalues of the closed-loop system matrix.

V. CASE STUDY DESIGN FOR MULTITIER CONTROL

Fig. 2 shows a case for multitier control, where single or
multiple robotic arms are in a workshop of a factory. We will
utilize this case study to explore the multitier control system
in the rest of this article. The objectives are to control the
velocity and position of the independent joints.

In order to evaluate multitier control and SMC, we
built WCPS-EC, a real-time hybrid simulator that inte-
grates real multitier computation platforms, real or simu-
lated wire/wireless networks, and physical plants simulated
in Simulink.

A. Physical Plants

A robotic arm comprises a chain of joints and rigid links.
The motion of the end effector is the composition of the
motion of each link, and the links are ultimately moved by
forces and torques exerted on the joints.

The most common structure for joint control is the nested
control loop. The outer loop is responsible for maintaining
position and determines the velocity of the joint that will
minimize position error. The inner loop is responsible for
maintaining the velocity of the joint as demanded by the outer
loop. The motor drive assembly comprises a motor to generate
torque, a gearbox to amplify the torque and reduce the effects
of the load, and an encoder to provide feedback about position
and velocity. We can write the torque balance on the motor
shaft as

ra(g)
- =

where K, is the motor torque constant, K, is the transcon-
ductance of the amplifier, ¢ is the joint coordinates, w is the
joint velocity, and u is the control voltage. B', 7/, and J' are,
respectively, the effective total viscous friction, Coulomb fric-
tion, and inertia due to the motor, gearbox, bearings, and the
load. t4(q) is the disturbance torque due to the link motion. In
order to analyze the dynamics of (9), we linearize it by setting
all additive constants to zero

KynKau — B'ow — t((0) — Jo 9)

J&o+ Bow=K,Ku (10)
which admits the transfer function description
Q KK
(s) _ BmfBg (11)

UGs) J's+B'

The outer position loop provides the velocity demand for the
inner velocity loop.

We modify the open-source Robotics ToolBox [29] to sim-

ulate a PUMAS60 robotic arm in a multirate and real-time

fashion. We refer readers to [29] for the underlying kinematics

and dynamics of the robotic arm and the guide for the toolbox,
and to [30] and [31] for the parameters of PUMAS560.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE I
SYSTEM SETTINGS OF THE CASE STUDIES

Local
Raspberry Pi 3 (4
ARMv7 CPUs@ 900
MHz, 1G RAM)

I/0 + Ethernet cable

Tiers Edge
Intel Server (4 Intel
Core 15-4590 CPUs@
3.3 GHz, 16 G RAM)
/0 + Wi-Fi +
University network

Computation

Communication

Local/Edge Platform Controller Side
u
i Controller L
20 Hz

Control Client

Wired/Wireless Network : |

¥
Sensor Client Control Server

File Interface =¢

Interfacing Block

Interfacing Block

Sensors «— Plant <«— Actuators
20 Hz 500 Hz 500 Hz
Simulink Desktop Real-Time Plant Side

Fig. 9. Architecture of WCPS-EC.

B. System Settings of Local and Edge Platforms

The architecture of our case studies for exploring the mul-
titier control system was shown in Fig. 2. The settings of the
computation platforms and communication approaches that we
use are described in Table I.

C. Wireless Cyber—Physical Simulator-Edge Computing

It is challenging to conduct experiments on industrial con-
trol systems in the field, especially under cyber and physical
disturbances. We built a real-time hybrid simulator, WCPS-
EC, which integrates: 1) real controllers running on various
computation platforms; 2) real Wi-Fi network and Ethernet,
or simulated network using TOSSIM; and 3) simulink desk-
top real time (SLDRT), which simulates the robotic arm in
real time.

The architecture of WCPS-EC is shown in Fig. 9. Compared
with RT-WCPS [32], WCPS-EC includes immigrated con-
trollers running on various computation platforms instead
of controllers running in MATLAB/Simulink. In addition,
WCPS-EC can reflect the impacts of real communication
network and computation platform during runtime.

We implement the control policies in Python and C [33]
so that the policies can run on any platforms that support
Python or C. Based on our measurements, while the con-
troller written in C has a slightly shorter execution time than
the Python implementation, the difference is not significant
as the computation time is dominated by solving the same
quadratic programming problem. In RT-WCPS, the worst case
E2E latency is below Ts. Hence, the actuation commands are
set to have fixed latency of T;. However, in multitier control
systems, the E2E latency can be longer than 7. In addition,
we consider a more realistic control system setup [4], [8], [34]
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TABLE 11
LATENCY MEASUREMENTS OF EACH TIER (IN THE FORMAT
OF MEDIAN AND WORST CASE LATENCY PAIR)

. Control | Communication | Computation | E2E latency

Tiers .

policy latency (ms) latency (ms) (ms)

PID (3.89, 5.28) (2.00, 2.79) (5.91, 6.19)
Local (51.49, 61.65)

MPC } (infeasible) )

PID | (22.17, 34.40) | (0.04, 0.05) | (23.44, 35.26)
Edge | MPC | (20.80, 34.80) | (3.69, 4.44) | (25.29, 38.08)

with: 1) clock-driven sensors that sample the plant outputs
periodically every Tj; 2) an event-driven controller which cal-
culates the actuation commands as soon as the sensor data
arrives; and 3) event-driven actuators, which means actuators
can respond to updated actuation commands immediately.

As shown in Fig. 9, Sensors sample periodically (e.g.,
20 Hz), and write the new measurements to a Sensor Data File.
The Sensor Client, located on the host of SLDRT, discovers the
sensing update immediately and sends it to the Sensor Server
via a wired or wireless networks. The event-driven Controller
starts operation once Sensor Server receives the sensing mea-
surements, and sends the control commands to Control Server,
which writes the control commands to the Commands File.
The actuator in SLDRT checks the Commands File with high
frequency (e.g., 500 Hz) and updates the actuation once it dis-
covers an update of control commands. The intermediate File
Interface is introduced between Simulink and the computation
platform. In this way, Simulink and the computation plat-
form are asynchronous, which is essential for the sequential
execution of the Simulink loop.

VI. CASE STUDY EVALUATION

We evaluate the multitier control and SMC in the case study
introduced in Section V. We explore control systems with
static local and edge controllers. Two cases, i.e., multitier con-
trol of joint velocity and of joint position, are evaluated from
the aspect of control performance. Next, we evaluate the SMC
that optimizes performance and guarantees system stability.

A. Evaluation of Static Cases

When the network is in normal condition, Table II sum-
marizes the latencies of different tiers of control with the
system settings described in Table I. We choose proportional-
integral-derivative (PID) and model predictive control (MPC)
as alternative control policies for independent joint velocity
and position control. As shown in Table II, since PID is
more computationally lightweight than MPC, the computa-
tional latency of PID is shorter than that of MPC over both
local and edge platforms. Since the edge platform is equipped
with more computation capacity than the local platform, it
finishes PID and MPC within 0.05 and 4.5 ms, respectively,
while the local platform requires 2.8 and 61.7 ms, respectively.
On the other hand, communication latency between the local
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Fig. 11. Response curves of the joint position control. (a) PID over local.
(b) MPC over edge.

platform and the plant is around 5 ms, which is much shorter
than ~ 30 ms of the edge platform. In summary, edge can
run MPC much faster than local due to higher computation
capacity at the cost of longer communication latency.

1) Case 1—Joint Velocity Control of PUMA560: The phys-
ical plants described by (10) are discretized and simulated at
1000 Hz to mimic a continuous system. The sampling rate of
the sensors is 200 Hz, a reasonable rate for the system time
constant of joint velocity control. The settings for communica-
tion between sensors/actuators and the computation platform
are shown in Table I. The communication latency of the case
studies is shown in Table II.

The response curves of the joint velocity control are shown
in Fig. 10. The reference value of the physical state w is
w*. For joint velocity control that has a short time constant
(high sensitivity to latency), the local controller, which has
the shortest latency, performs the best. We ran experiments
for 30 times. The statistical results for MAE are shown in
Fig. 12(a). PID over local has the best control performance,
which is consistent with the observation in Fig. 10.

2) Case 2—Joint Position Control of PUMA560: The set-
tings for the joint position control are mostly the same as for
the joint velocity control described in Section VI-Al, except
that the sampling rate is 20 Hz since the time constant is much
longer than that of velocity control. We control the joint posi-
tion (A) to track a sinewave signal (6*), which is common
in position control of robots [35]. The response curves and
the statistical results of the joint position control are shown in
Figs. 11 and 12(b), respectively. The edge controller performs
the best since the gain of MPC on edge overcomes the effects
of extra communication latency.

In summary, for joint velocity control, PID over local has
the best performance, since it is sensitive to latency. For joint
position control, MPC over the edge has the best performance
since MPC performs better than PID, which overcomes the
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effects of longer communication latency. The control perfor-
mances of control tiers are determined by the properties of
control policies, networks, and physical plants. The advantage
of the two-tier computing architecture is enabled by the flexi-
bility in controller placements and the choice of corresponding
control policies tailored for physical plants.

Note that the MPC controller over local is infeasible due to
the computational resource shortage on edge: the computation
latency is longer than the sampling period. For instance, in
Table II, the maximum computational latency of MPC over
local is 61.7 ms, which makes it infeasible for a sampling
period of 50 ms. In this section, the network conditions are
normal. The performance of the closed-loop control system
may deteriorate due to the unreliable wireless network con-
nection between the edge controller and the plant [4]. In the
next section, we will focus on evaluating SMC facing changing
data loss.

B. Evaluation of SMC

1) OPC Training and Testing: We run 26 000 simulations
to collect around 40-GB data for i.i.d loss model and Markov
chain loss model, respectively. We set the worst case end-to-
end latency of local control and edge control to 7 and 40 ms,
respectively, based on the measurements in Table. II. For each
data loss model (i.i.d or Markov), we randomly choose 6500
simulations as the training set, and the other 6500 as a testing
set. The accuracies of training and testing are summarized in
Table III. SVM consistently achieved higher accuracies than
the threshold-based (Grid) classification. The average time
taken by one SVM classification is 0.67 and 10.27 ms on the
edge and local platforms (over 20000 testing cases), respec-
tively, which suggests that online classification is practical
even on a local platform. The average time it takes to train
the SVM classifier is 26.62 s on the edge server (over 100
training runs). It is a reasonable amount of time since training
is done offline.

2) Performance Optimization: In order to evaluate SMC,
we consider joint position control with the same settings as
described in Section VI-A2, except that we simulate data loss
based on traces generated by TOSSIM [36], [37], which is
a high-fidelity wireless simulator. Received signal strength
indicator (RSSI) data have been collected over real wire-
less testbed. In addition, we use controlled background noise
strength to simulate various network conditions between edge
and local as shown in Fig. 13(a). Both the RSSI and controlled
noise strength are fed into TOSSIM to derive realistic packet
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TABLE III
ACCURACY OF THRESHOLD-BASED (GRID) AND SVM CLASSIFIERS.
(THE TRAINING ACCURACIES OF GRID AND SVM ARE FROM THE GRID
SEARCH AND TENFOLD CROSS-VALIDATION, RESPECTIVELY, ON THE
TRAINING DATASETS. THE TESTING ACCURACIES ARE MEASURED ON
THE TESTING DATASETS)

Loss Model Accuracy | T, = T.=10s|Te =15s|T. = 2
Approach y c=5s |T. =10s|T. = 15s|T. =20s
iid Grid Training | 95.46% | 89.60% | 88.02% | 89.68%

Testing | 94.80% | 89.68% | 87.74% | 89.71%
LidSyMm | lraining | 96.95% | 91.89%| 91.26% | 92.62%
Testing | 96.83% | 91.72%| 90.25% | 92.48%
Markov Grid Trair%ing 96.02% | 90.58% | 86.91% | 85.48%
Testing 95.31%| 90.08% | 86.68% | 85.69%
Markov SVM Tralryng 96.82% | 92.17%| 91.72%| 91.63%
Testing | 96.94% | 93.11%| 90.98% | 91.78%
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Fig. 13. System dynamics under SMC. (T, = 10 s, i.i.d data loss).

loss traces. The OPC (SVM trained for i.i.d loss model and
T. = 10 s) monitors p and n during a sliding window of the
past T, (10 s), as shown in Fig. 13(b) and (c). The runtime
position error inputs of OPC are shown in Fig. 13(d). The
optimal platform derived by OPC is shown in Fig. 13(e). We
can see that edge control is the best choice when the noise
level is low, and the control should be switched to local when
the noise level is high since the gain of the edge control is
offset by the effects of data loss.

With a coordination period 7, of 10 s, we observe a 10-s
delay of OPC in reacting to the changes of the noise level.
Fig. 14(a) compares the control performance of SMC with
various T, fixed local control, and fixed edge control over
30 rounds of simulations. When 7, is properly chosen, i.e.,
10-15 s, our SMC provides over 30% and 40% MAE reduc-
tion over fixed local control and edge control, respectively.
While the OPC is trained based on the i.i.d loss model, it
works for more realistic loss traces generated by TOSSIM as
well.

To study the impact of T, we run experiments under more
frequently changing noise [Fig. 14(b)]. As shown in Fig. 14(c),
SMC achieves the best performance with 7, = 10 s. When T,
is too short, the OPC is trained based on the data of transient
physical states without taking steady states into consideration.
On the other hand, when T is too long, the OPC cannot react
to frequently changing network conditions in time. We will
explore adaptive T, to balance the above factors in the future.

In Fig. 15, we compare the performance of the OPC trained
based on the i.i.d loss model and that based on the Markov
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chain loss model. The OPC performs similarly when trained
with different data loss models, which suggests the general-
ity and robustness of the data-driven approach for selecting
optimal platforms.

In Fig. 16, we compare the control performance under
learning-based (SVM) and threshold-based (Grid) OPC.
Thanks to its higher classification accuracy, SVM generally
outperforms Grid. Furthermore, SVM is a more general and
precise approach that may lead to more significant improve-
ment when the cost of misclassification is higher under other
settings, which we will evaluate in future work.

3) Stability Analysis: We model the joint position con-
trol by treating the inner velocity loop as constant since the
response of the velocity loop is much faster than that of the

position loop, as shown in Figs. 10 and 11
0(t) = —K K,0(p). (12)

We define 6 ~(t) = 0(f) — 0*(¢), and the proportional controller
u(t) = —K,0(t). To achieve the equilibrium point at the origin,
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we transform the coordinates of (12)

0(1) = —KK,0(r) = Kgu(o).

Solving (3), among multiple solutions, we choose K, = 800.
Then, we model the discrete system with one sampling
period latency (7) using the Euler method

k=1 KK o, where 20 = [é(i(f)m}'

We solve (7) by using YALMIP and the multiparamet-
ric toolbox (MPT) with semidefinite programming solver
(SDPT?3) solver in MATLAB

- |:2.837

0.732
=0=|338

3.382 p_

7834 == 20316
The corresponding RR is

= {z(0)|z(k)" Pz(k) < 1}.

—-0.316
0.264

We confirm that during the dynamic switch process, all physi-
cal states are within this RR. Therefore, stability is guaranteed,
and no Stability Switch is needed.

VII. RELATED WORK

The cloud computation platforms proposed and commercial-
ized in last two decades for large-scale data centers are famous
for their high computing ability, voluminous data storage, and
low cost [38]-[40]. The cloud-based IIOT provides a central-
ized solution for statistical data analysis of increased amounts
of tasks and data. Many mainstream cloud computing vendors,
such as Amazon, Google, and IBM, have offered services in
various domains, such as data management and analysis, and
intelligent transportation systems. However, for industrial con-
trol systems, a cloud-based computation platform suffers from
long and fluctuating latency to end devices because it is up to
hundreds of miles away from the end devices [41].

In the recent decade, the increase of IoT devices at the edge
of the network and the evolution of hardware with increased
computational capability have spawned the edge computa-
tion platform. Compared with the cloud-based platform, the
edge platform benefits from the localization of computation
resources [42]. The ability to provide local data aggregation
and processing not only reduces the bandwidth demand on
network links to the cloud [43] but also meets the latency
requirements of applications [44]. Therefore, although only in
its early stage, edge computing is already widely deployed
among applications with low-latency requirements, such as
vehicles [45], mobile gaming [46], and health monitoring [47];
applications dealing with large amounts of data, such as
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video [48] and large-scale sensor networks [49]; and appli-
cations with geographical distribution [50] and mobility [51],
such as mining, smart grid, transportation, waste manage-
ment, and agriculture [52]. However, few edge computing
technologies have been applied to industrial control systems
thus far.

In a conventional industrial control system, the control algo-
rithm runs on a local controller, which is usually deployed
physically near the sensors and actuators and implemented
with an SCM or PLC [53] with a reliable wired connection
but limited computational ability. In recent years, the physi-
cal plants tend to be controlled by a remote controller for the
advantages of: 1) more conductive environments for hardware
implementation of control algorithms and 2) centralized con-
trol and coordination of multiple plants. Due to the network
connection between the remote controller and the physical
plant, remote control systems are regarded as NCSs [1], [2].

We note that there are remote controller designs that
guarantee stability in a mean square sense in the presence
of data loss. The design is based on stochastic Lyapunov
functions [54], [55], as well as certain assumptions about the
communication network. However, the unpredictable wireless
conditions mean that the assumptions may not be guaranteed,
leading to unsafe physical plant operations with deteriorated
performance.

Lin and Antsaklis [56] and Liberzon and Morse [57]
summarized switching control approaches that maintain sta-
bility. Dai et al. [58] established an optimization framework
for switching sampling periods that maximizes the control
performance and CPU resource efficiency. However, those
work do not consider control over wireless networks and mul-
titier computing platforms. The Simplex framework ensures
the safe use of an unverifiable complex controller by using a
verified safety controller and a switching logic. In the con-
ventional Simplex framework [6], the complex controller and
safety controller operate in parallel. ORTEGA [7] enhances
the efficiency and flexibility of Simplex by eliminating the
redundant execution of controllers. NetSimplex [8] extends
the Simplex from a single node control system to an NCS.
Bak et al. [9] derived the switching logic by combining
offline LMI results and online reachability computation, which
significantly reduces conservatism. In all the above cases,
both the complex controller and safety controller are running
on the same computation platform. Whereas most previous
works consider single machine cases, we extend the Simplex
framework by considering: 1) distributed two-tier architecture
comprising local and edge controllers; 2) new data-driven OPC
for control performance optimization; and 3) a coordinated
switching logic which integrates stability switch and OPC.

Ma et al. [5] designed the stability switch between local
and edge controllers under data loss from another perspec-
tive, based on the co-design of edge and local controllers
that are designed via a joint Lyapunov function. The co-
design approach is nontrivial and specific to the control policy.
In comparison, by extending the Simplex framework to the
distributed two-tier architecture, our SMC approach can be
applied to any control policies on edge without sacrificing
stability.
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Data-driven approaches have been applied to control
design [59] and safety verification of control systems [17] to
overcome the restrictions of analytical modeling. We develop
our data-driven approach for a different purpose and system
architecture. The data-driven OPC is designed to improve the
control performance by selecting the optimal control platform
in a distributed two-tier computing architecture.

Skarin et al. [60] presented a 5G-based edge cloud com-
puting testbed for a multitier control system and evaluated the
system while operating a mission-critical control application
of an MPC controlled ball and beam process. However, sys-
tematic studies, such as how to co-design proper computation
platforms and control policies, and how to adjust to uncertain-
ties and maintain closed-loop stability, remain to be performed.
Ma et al. [32], [61] proposed the concept of holistic control
that co-joins network management and physical control at run
time, where the focus is the remote control. In this article,
we focus on a multitier industrial control system with a com-
prehensive view of the properties of the edge/cloud controller,
network conditions, and physical plants. We also propose a
controller dynamic switch among multitier computation plat-
forms which not only optimizes the control performance at
runtime but also guarantees system stability under various
network conditions.

Simulation tools are of vital importance to study
multitier control. NCS simulators [36], [62], [63] are
MATLAB/Simulink-based tools, which enable simulations of
CPU scheduling, communication, and control by integrating
wireless simulators. Given simulators cannot always capture
the real-world wireless network dynamics, network-in-the-
loop simulations have recently been developed [32], [64].
Skarin et al. [60] presented a 5G-based edge cloud computing
testbed for a multitier control system. However, the real phys-
ical plants used in its experiments are limited to lab settings.
We build WCPS-EC, which integrates real multitier computa-
tion platforms and wireless networks and leverages simulation
support for various physical plants.

VIII. CONCLUSION

With the emergence of edge computing and wireless
network technologies, controllers located in various com-
putational tiers have different computational capacities and
communication reliability, which influence the performance
and stability of industrial control systems. We presented
an SMC architecture for industrial control systems. SMC
dynamically switches between local and edge control based
on plant states and network reliability. It employs a
switching agent that integrates: 1) a data-driven optimal
performance classifier for selecting the controller platform
with optimal performance and 2) a Stability Switch for
guaranteeing system stability. SMC effectively reaps the
benefits of switching among different computation tiers.
In hybrid simulations on WCPS-EC, SMC achieved over
30% and 40% reductions in mean absolute errors when
compared with fixed local and edge control, respectively,
while maintaining stability guarantees under changing network
reliability.
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