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Abstract
The application of mathematics, physics and engineering to medical research is continuously 
growing; interactions among these disciplines have become increasingly important and have 
contributed to an improved understanding of clinical and biological phenomena, with implications 
for disease prevention, diagnosis and treatment. This special issue presents examples of this 
synergy, with a particular focus on the investigation of cardiac and neural excitability.

This issue includes 24 original research papers and covers a broad range of topics related to the 
physiological and pathophysiological function of the brain and the heart. Studies span scales from 
isolated neurons and small networks of neurons to whole-organ dynamics for the brain and from 
cardiac subcellular domains and cardiomyocytes to one-dimensional tissues for the heart.

This preface is part of the Special Issue on “Excitable Dynamics in Neural and Cardiac Systems”.
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1. Introduction
Neural tissue and heart muscle are important examples of biological excitable media. A 
key characteristic of an excitable medium is its capacity to allow the passage of electrical 
excitation from one element to another by means of local coupling. For neural and cardiac 
systems, this corresponds to their ability to respond strongly to the action of a relatively 
weak external stimulus delivered after a refractory period.

This special issue aims at providing an overview of recent theoretical and computational 
research in neural and cardiac systems. The basic elements of both systems are excitable 
cells, i.e., neurons and cardiac myocytes, which when connected form neural tissue and 
heart muscle, respectively, where new emergent behavior appears. The extensive use 
of mathematical and numerical techniques has allowed detailed studies to simulate the 
functioning of these two complex systems and to investigate the underlying mechanisms in 
both health and disease. As both systems share important characteristics but have specific 
particularities, major objectives of this issue are, on the one hand, to show how both can be 
analyzed using similar techniques and, on the other hand, to showcase the dynamics of each 
particular system. The articles included use numerical modeling and time series analysis 
to elucidate the mechanisms underlying the onset, perpetuation, and control of complex 
neuronal and cardiac dynamics.

In summary, important contributions of this special issue include a snapshot of the current 
research landscape on these two types of excitable media and an emphasis on the numerous 
links between neural and cardiac studies using theoretical/mathematical and computational 
approaches.

2. Neural systems
The first group of papers is devoted to the study of neural systems across scales from 
detailed analysis of isolated neurons, small networks of neurons and finally large networks 
and brain studies.

2.1. Isolated neuron dynamics
Currently, stochastic models are increasingly common in mathematical neuroscience. In 
[1] the torus canard parametric region in the stochastic Hindmarsh-Rose neuron model is 
studied. It is shown that noise can transform the torus canard into a large-amplitude torus, 
which can underlie a transition from amplitude-modulated spiking behaviour to bursting.

The classical Hodgkin-Huxley (HH) and the FitzHugh-Nagumo (FHN) models are revisited 
in Rameh et al. [2], where the generation of the action potential is now achieved via a single 
delay-differential equation (DDE). The solutions of the new models are similar to those of 
the original HH and FHN models, showing that delay-differential equations can also be used 
as building blocks in the development of new mathematical cell models.

Fold/homoclinic (square-wave) bursting orbits are typical of many excitable dynamical 
systems. In [3] a complete theoretical scheme to describe spike-adding in these systems 
is given. The main bifurcations and their connection with homoclinic bifurcations are 
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described. This global scheme provides an explanation of different phenomena presented 
in the literature (continuous and chaotic processes) and indicates where each kind of spike-
adding process occurs in parameter space.

The firing properties of Purkinje cells are regulated by cerebellar stellate cells. These cells 
have a temporary increase in excitability during patch clamp configuration of the entire cell 
in what is called “runup”. In [4] modeling approaches are used to clarify the dynamics of 
runup and classify the firing behavior of cerebellar stellate cells as type I oscillators that 
have a saddle node in an invariant cycle (SNIC) bifurcation.

Phase response curves (PRC) have been widely used to understand the response of limit 
cycle oscillators to weak external perturbation. Recently, extensions of the phase-oscillator 
reduction technique have been introduced to capture more information away from the limit 
cycle, including the phase response function (PRF, a generalization of the PRC) and the 
amplitude response function (ARF). In [5] the study of the dynamics of PRF-ARF systems 
under periodic pulsatile stimuli is presented using several techniques from dynamical 
systems.

Inner hair cells (IHCs) are excitable sensory cells in the inner ear that encode acoustic 
information. In [6] a three-dimensional model of a reduced IHC is proposed and non-
dimensionalization is carried out. When the typical time scales of the variables in the 
reduced IHC model are estimated, it is shown that this model can be characterized by 
two fast and one slow or one fast and two slow variables, depending on the biophysically 
relevant parameters that control the dynamics. This fast-slow analysis describes how to pass 
from pseudo-plateau bursting to mixed-mode oscillations by varying a single parameter in 
the model.

The phenomenon of reverse stochastic resonance (ISR) consists of an unexpected depression 
in the response of a system subject to external noise, for example, as seen in the average 
firing rate in some pacemaker neurons subject to moderate noise values. In [7], the specific 
conditions for ISR in a general bistable model system are determined. In addition, the 
existence of another non-standard stochastic resonance is shown, even in the absence of any 
weak input signal.

2.2. Coupled neuron dynamics
The study of the synchronization patterns of small neuron networks that control different 
biological processes has become a growing discipline. In [8–10] the problem of studying 
small groups of neurons, and more specifically patterns in central pattern generators (CPGs), 
is treated.

In [8] the problem of the detection of patterns in generic CPGs is studied and two 
new numerical techniques are introduced: a lateral phase delay analysis based on a 
graphical representation of some Poincaré maps and a sweep quasi-Monte Carlo method 
with an optimized generic classification of the different patterns that allows location and 
classification of all coexisting rhythms. As a test example, the authors consider an insect 
movement CPG consisting of six coupled neurons for cockroach motor neurons.
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In [9] the coexistence of multistable rhythms generated by oscillatory neural circuits 
formed by four cells is studied. Modern computational approaches are used that 
include unsupervised machine-learning algorithms and fast parallel simulations on GPUs, 
which allow the authors to analyze the mechanisms that establish the robustness and 
multifunctionality of these neural circuits.

In [10], using a phase-reduction technique of an intersegmental network model of stick 
insect locomotion, the authors construct a reduced model of the intra- and intersegmental 
network that controls the activity of the depressor elevator in the meso- and metathoracic 
ganglia. When examining intra- and intersegmental phase differences in the model, the 
authors identified the properties of network couplings that replicate several results observed 
in stick insect experiments. In addition, they define general characteristics of coupling 
between CPGs of any type that maintain the phase relationships observed in experiments.

Analyzing spike sequences generated by individual and coupled stochastic FitzHugh-
Nagumo models shows that relative spike timing can encode signal information [11]. Using 
a symbolic method to analyze the sequence of spikes, preferred and uncommon spike 
patterns can be detected. It is found that for a group of neurons, only a few connections to 
each other can significantly improve the coding of small-amplitude signals, which indicates 
that the encoding of information in preferred and that unusual spike patterns are a plausible 
way for neuronal populations to encode weak periodic inputs, exploiting the presence of 
neuronal noise.

The theory of communication through coherence (CTC) proposes that brain oscillations 
reflect changes in the excitability of neurons and, therefore, successful communication 
between two oscillating neural populations. A population rate model consisting of excitatory 
and inhibitory cells is considered in [12]. Different bifurcation studies are performed 
as several phase-locked states are detected, as well as bistability regions. The neuronal 
implications of these findings are studied in detail.

Stochastic resonance (SR) is a noise-induced phenomenon reported in dynamical systems 
with a threshold, while reverse stochastic resonance (ISR) is the opposite phenomenon 
that occurs in dynamical systems with bistability between a stable node and a stable limit 
cycle. In [13] the possible coexistence of both phenomena, SR and ISR, is shown in a 
minimal circuit of neurons that are synaptically coupled. Simulations indicate that the main 
characteristics of SR are the direct results of dynamic properties that lead to ISR.

2.3. Brain dynamics
The study of brain electrical activity measured by electroencephalographic recordings (EEG) 
is an important technique for the understanding and diagnosis of neurological diseases. 
Several applications to detect pathologies or to study brain waves are shown in David et al. 
[14], Galadí et al. [15]. In [14], multifractal deviated fluctuation analysis, the Hurst exponent 
(H) and the fractal dimension (D) are used to analyze the dynamics of EEG signals from 
normal and epileptic patients using a set of physiological time series. In addition, a new 
measure is proposed, the combined index. The results presented indicate that the H and D 
indices are useful for constructing a combined measure to study healthy and epileptic brain 
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EEG activity. In [15] the authors focus on understanding EEG data from first principles 
through numerical simulation. They study a network model of excitatory and inhibitory 
neurons that generates a variety of comparable waves similar to α, β, γ and other rhythms 
observed in EEG recordings.

The brain can be considered a system that optimizes the structure of anatomical connections 
based on efficiency requirements of functional connectivity. The power of this principle 
in organizing the complexity of brain architecture is illustrated in Tapia et al. [16], 
where functional connectivity is described as diffusion in the current network structure. 
By showing how several structures arise (modular small-worlds with rich club effects, as 
observed in neural anatomy), the authors offer a new conjecture about how structures similar 
to natural and artificial brains can be physically implemented.

The responses of excitable systems can be probed by exposing them to a variety of different 
perturbations. Typically, small inputs produce approximately linear responses, whilst large 
ones may give rise to radically different large amplitude nonlinear responses. A difficult task 
is to determine the transition between the two. In [17] this transition, between normal and 
pathological responses, is studied using a variety of mathematical techniques in a model of 
coupled Wendling neural masses.

The gamma rhythm (20–100 Hz) is present in numerous cognitive tasks. A weak gamma 
rhythm results from synchronous firing of pyramidal neurons in an interaction with local 
inhibitory interneurons in a pyramidal-interneuron gamma (PING). Based on previous 
results, the authors of [18] postulate that dopaminergic modulation can control weak 
gamma clustering and explain how dopaminergic network modulation and cellular properties 
influence the cluster formation process in a PING network model.

Mammals can efficiently select actions based on noisy signals and adapt to unexpected 
results to better take advantage of future opportunities. These behavioral changes based 
on feedback depend partially on long-term plasticity within corticobasal-ganglia-thalamic 
networks, driven by dopaminergic modulation. In [19], the authors simulate the evolution 
of synaptic corticostriatal weights based on a spike-time-dependent plasticity rule driven by 
dopamine signaling that is induced by the results of actions in the context of a task of forced 
choice between two alternatives.

The estimation of parameters in stochastic processes has been investigated for decades and 
the asymptotic properties of the estimators are known. However, achieving the regime where 
asymptotic properties are valid can take so long that well-founded theoretical results have 
no practical value. In [20], three processes of the Pearson diffusion class are studied, which 
are examples of leaky integrate-and-fire models, that describe the electrical properties of a 
neuronal membrane.

3. Cardiac systems
The second group of papers is devoted to the study of cardiomyocytes exhibiting arrythmic 
dynamics and the propagation of waves in one-dimensional cardiac tissue fibers and generic 
excitable media.
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The study presented in Lai et al. [21] sheds light on the phenomenon of cardiac alternans, 
which has been reported to increase the risk for cardiac arrhythmias in different clinical 
scenarios. Cardiac cellular alternans are defined as a period-2 oscillatory response of the 
membrane potential or the intracellular calcium concentration. Along with calcium alternans 
developing uniformly in the whole cardiomyocyte, subcellular calcium alternans has been 
also described, which manifests as spatial heterogeneities in the amplitude of the calcium 
transients along a cardiomyocyte. A two-dimensional network of calcium release units 
in cardiomyocytes is used to investigate the role of calcium buffers and L-type calcium 
channels in the generation of subcellular calcium alternans. By numerical simulations, 
calcium diffusion in the sarcoplasmic reticulum is shown to be a critical determinant of the 
spatial pattern of subcellular calcium alternans.

In [22], complex cardiac excitation dynamics at macroscopic scales is investigated by 
methods accounting for non-local spatio-temporal coupling, which presents the advantage of 
avoiding the need for resolution of tissue heterogeneities to microscopic scales. Specifically, 
a simulation study of fractional diffusion models in one-dimensional cardiac tissue fibers is 
presented, with both phenomenological and biophysically detailed models used to represent 
the electrophysiology of ion channels. The authors prove that spatio-temporal features of 
cardiac tissue are influenced by the introduction of non-local operators in such a way 
that the domain size plays a much more important role in the model output than in the 
standard local case. Importantly, the effects of boundary conditions are not only relevantly 
observed near the boundaries of the domain but in a much wider space due to the introduced 
non-locality.

The work presented in Bezekci and Biktashev [23] offers a characterization of the 
relationship between the strength and duration of stimulation in one-dimensional excitable 
media. Threshold phenomena are important because they determine whether cardiac action 
potentials in the heart can be elicited or not and, consequently, whether success or failure in 
electrical propagation occurs. Similarly, threshold phenomena have been reported to be key 
in explaining pathological findings in brain diseases such as Alzheimer. Here, the authors 
focus on strength-duration curves and propose an analytical approach to assess ignition 
of propagation waves in one-dimensional media like those from the brain or the heart, 
including both linear and quadratic approximations. Subsequently, a “hybrid” approach 
is proposed where the ingredients of the expressions used in those approximations are 
numerically computed. Applicability of the proposed methods is illustrated for five different 
models, covering one-component as well as multi-component examples.

In [24], novel adaptive time-step numerical methods are proposed to solve stiff excitable 
models that use Markov chain formulations to describe ion channel dynamics. This type of 
models is becoming increasingly used to simulate electrical abnormalities due to mutations 
in genes encoding ion channels or to predict the effects of drug-channel interactions. Since 
many of these models are stiff, the performance of standard explicit solvers, like the 
Euler method, is compromised due to stability constraints. Among the methods proposed 
in the study, the adaptive time-step scheme that combines the generalized Rush-Larsen 
method with Uniformization (adaptive GLR1 + UNI) is shown to outperform all other 
tested methods in a range of scenarios involving highly stiff cellular models. In single 
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cell simulations, the adaptive GLR1 + UNI is more than 25 times faster than the adaptive 
time-step Euler method and 350 times faster than the fixed time-step Rush-Larsen method. 
In 3D tissue simulations, it renders a 5-fold acceleration with respect to the adaptive Euler 
method.
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