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Self-averaging in many-body quantum systems out of equilibrium: Time dependence of distributions
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In a disordered system, a quantity is self-averaging when the ratio between its variance for disorder realizations
and the square of its mean decreases as the system size increases. Here, we consider a chaotic disordered
many-body quantum system and search for a relationship between self-averaging behavior and the properties
of the distributions over disorder realizations of various quantities and at different timescales. An exponential
distribution, as found for the survival probability at long times, explains its lack of self-averaging, since the mean
and the dispersion are equal. Gaussian distributions, however, are obtained for both self-averaging and non-self-
averaging quantities. Our studies show also that one can make conclusions about the self-averaging behavior of
one quantity based on the distribution of another related quantity. This strategy allows for semianalytical results,
and thus circumvents the limitations of numerical scaling analysis, which are restricted to few system sizes.
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I. INTRODUCTION

Experimental advances with cold atoms [1], ion traps [2],
superconducting devices [3], and nuclear magnetic resonance
platforms [4,5] allow for the high level of control and long
coherence times of many-body quantum systems. This has
invigorated experimental and theoretical studies of the long-
time evolution of these systems. Common questions include
the viability of thermalization [6-9], the description of the
dynamics [10,11], and the time to reach equilibrium [12,13].
Much less explored is the question of self-averaging [14—16].

A quantity of a disordered system is self-averaging when
its relative variance—the ratio between its variance for disor-
der realizations and the square of its mean—decreases as the
system size increases. If self-averaging holds as the system
size increases, then one can decrease the number of samples
used in theoretical and experimental analyses. In this case,
the properties of the system do not depend on the specific
realization selected. Lack of self-averaging, however, makes
the study of disordered systems more challenging. Take as an
example the scaling analysis of many-body quantum systems.
The problem is already hard, because the many-body Hilbert
space grows exponentially with system size. If in addition to
this, one cannot decrease the number of disorder realizations
as the system size grows, the problem becomes intractable.

Non-self-averaging behavior is often associated with disor-
dered many-body quantum systems at the transition between
the delocalized and the localized phase [17] and systems at
a critical point in general [18-27]. This sort of studies have
mostly been done at equilibrium [20]. Recently, however, the
analysis has been extended to systems out of equilibrium close
to the localization transition point [15,16] and also in the
chaotic regime [14]. It has been shown that self-averaging is
not directly related with quantum chaos [14,28-30], as one
might naively expect.
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Quantum chaos refers to specific properties of the eigenval-
ues and eigenstates of systems that are chaotic in the classical
limit. The eigenvalues are correlated [31-33] and the eigen-
states are close to the random vectors [8,34,35] of full random
matrices. If the system shows these properties, then it is usual
to refer to it as chaotic even if its classical limit is not well
defined.

In Ref. [14], the analysis of self-averaging was done for
both a disordered spin model in the chaotic regime and a
model consisting of full random matrices of a Gaussian or-
thogonal ensemble (GOE). It was shown numerically and
analytically that the survival probability (the probability for
finding the system in its initial state at a later time) is
non-self-averaging at any timescale. Other quantities consid-
ered include the inverse participation ratio, which measures
the spread of the initial state in the many-body Hilbert
space, and observables measured in experiments with cold
atoms and ion traps, namely the spin autocorrelation func-
tion and the connected spin-spin correlation function. The
self-averaging behavior of the inverse participation ratio and
spin autocorrelation function varies in time, while the con-
nected spin-spin correlation function is self-averaging at all
times.

Motivated by the results in Ref. [14], we now study
numerically and analytically the distributions over disorder re-
alizations of those same quantities throughout their evolution
to equilibrium using again both the GOE and the disordered
spin model. In addition, to avoid the negative values that
can be reached with the spin autocorrelation function, we
consider also the absolute value and the square of the spin
autocorrelation function. Our goal is to understand how the
shape and overall properties of the distributions depend on
time, observables, and models, and whether they can help us
determine when self-averaging holds.
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We find that at short times, the distributions are model
dependent. Due to the locality of the spin model Hamiltonian,
the distributions of the quantities considered here exhibit a
fragmented structure with peaks at different energy windows,
while the distributions are Gaussian for the GOE model.

At long times, the distributions become similar for both
models, but they differ depending on the quantity. The survival
probability, for example, shows an exponential distribution
[28-30,36] as soon as the correlations between the eigenval-
ues get manifested in the dynamics. This distribution, where
mean and standard deviation coincide, explains the lack of
self-averaging of this quantity at long times. For the other
quantities, the distribution is either Gaussian or related to a
normal distribution. Gaussian distributions are found for both
self-averaging and non-self-averaging quantities.

A useful outcome of these studies is the realization that
the shape of the distribution for one quantity can assist with
the analysis of the self-averaging behavior of another related
quantity. As an example, we discuss the case of the spin
autocorrelation function, I(¢), and its absolute value, |I(t)].
The numerical analysis of the self-averaging behavior of |I(¢)|
at long times are inconclusive, due to the limited system sizes
available. However, in hands of the Gaussian distribution for
I(t), we find analytically the dependence on system size of
the relative variance of |I(¢)|. With this strategy, we are able
to deduce that |I(¢)| is non-self-averaging at long times.

The paper is organized as follows. Section II contains the
necessary background for the following sections. It presents
the model, initial states, quantities, and our previous results
about the dynamics and self-averaging properties of the sur-
vival probability and inverse participation ratio. In Secs. III,
IV, and V, we proceed with the analysis of the distributions
of these global quantities. This study is separated by time
intervals: short times in Sec. III, long times in Sec. IV, and in-
termediate times in Sec. V. The analysis of the local quantities
and how to use the distribution of one quantity to describe the
self-averaging behavior of another one is explained in Sec. VI.
Conclusions are presented in Sec. VII.

II. MODELS, QUANTITIES, AND TIMESCALES

We study two models described by Hamiltonians of the
form

H=H,+V, (D

where H is the unperturbed part of the total Hamiltonian and
V is a strong perturbation that takes the system into the chaotic
regime. The notation adopted is the following: |n) stands for
the eigenstates of Hy, |«) for the eigenstates of H, and E,, for
the eigenvalues of H. One model consists of random matrices
from a GOE and the other is a many-body spin-1/2 system.

A. GOE model

For the GOE model, Hj is the diagonal part of a full ran-
dom matrix of dimension D and V contains the off-diagonal
elements. The entries are all real random numbers from a
Gaussian distribution with mean value (H;;) = 0 and variance

w =11, 124 @
i 1/2 i#j.

The Hamiltonian matrix H can be generated by creating a
matrix M with random numbers from a Gaussian distribution
with mean O and variance 1 and then adding M to its transpose
as H = (M + MT)/2 [37]. The eigenvalues of this model are
highly correlated [31-33] and the eigenstates are normalized
random vectors [35]. There are no realistic systems described
by this model, but it allows for analytical derivations not
only for static properties [31,33,38], but also for the dynamics
[12,14,39,40].

B. Disordered spin model

We consider a one-dimensional chaotic spin-1/2 model of
great experimental interest [41] and often used in studies of
many-body localization [42-47]. It has onsite disorder and
nearest neighboring couplings [48],

L

Hy =1 (S + SiSi, ).
k=1
L
V=T (SiSi + SIS ). 3)
k=1

X, Y, Z

Above, i = 1, J =1 is the coupling strength, S, are spin
operators on site k, L is the size of the chain, which is even
throughout this work, and periodic boundary conditions are
used. The Zeeman splittings /; are random numbers uni-
formly distributed in [—#A, h]. The total magnetization in the
z direction is conserved, so we take the largest subspace,
where the total z magnetization is zero and the dimension is
D = L!/(L/2)'*. We use disorder strength 4 = 0.75, which
places the system in the chaotic regime. The level statistics
and the structure of the eigenstates away from the borders of
the spectrum are comparable to those of the GOE model.

C. Initial state

The initial state |ini) = |W(0)) is an eigenstate |n) of Hy.
We take |W(0)) with energy close to the middle of the spec-
trum, where the eigenstates are chaotic [49],

Ewi = (WO)H[WO) = Y [CME, ~0. @)

In the equation above,
Gy = (a|W(0)) ®)

are real components, since the Hamiltonian matrices treated
in this work are real and symmetric. For the spin model, the
initial states are product states in the z direction, where on
each site the spin either points up or down in the z direction,
suchas [ty 111 ...). They are often referred to as site-basis
vectors or computational basis vectors.

D. Quantities

We analyze in detail the distributions over disorder realiza-
tions of the survival probability and the inverse participation
ratio. Both are nonlocal quantities in real space. We also
present results for the spin autocorrelation function, its abso-
lute value and its square value, and for the connected spin-spin
correlation function. These four quantities are local in space.
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Our studies of the survival probability and the inverse
participation ratio are presented for the GOE model and the
chaotic spin model. For the local quantities, this is done only
for the spin model, since the notion of locality does not exist
in full random matrices.

The survival probability is the squared overlap of the initial
state and its evolved counterpart,

2
Ps(t) = [(W(O)le ' |w(0))|* =

Z |C‘;ni |26—iEdt

o

2
_ ‘ f dEe pu(E)| | ©)

where

pini(E) =) ICM *8(E — E,) (7)

is the energy distribution of the initial state. pj,; (E) is usually
referred to as local density of states (LDOS) or strength func-
tion. The width I" of this distribution depends on the number
of states |n) that are directly coupled with |W(0)),

2
- Yl e - (Sler )

= (W(O)| HH|W(0)) — (W(0)|H|W(0))*
= > (W(0)|H|n)(n|H|W(0)) — (¥(0)|H|¥(0))>

= Y [(n[H|WO). ®)
n#ini

The survival probability is a quantity of great theoretical
and experimental [50] relevance. It has been used in stud-
ies of the quantum speed limit [51,52], onset of exponential
[53,54] and power-law [55-59] decays, quench dynamics
[60—65], ground-state and excited-state quantum phase tran-
sitions [66,67], quantum scars [68,69], multifractality in
disordered systems [70-73], and emergence of the correlation
hole [74-82].

The inverse participation ratio measures the degree of de-
localization of a state in a certain basis [71,83,84]. Here, we
study a dynamical version of it [§5-87], which accounts for
the spreading in time of the initial many-body state in the basis
of unperturbed many-body states |n). It is defined as

IPR() = Y [(nle™ " [w(0))". ©)

Att = 0, when |W(0)) is one of the states |n), IPR(z) = 1. As
|W(0)) spreads into other states |n), [PR(¢) decays. For chaotic
systems perturbed far from equilibrium, it reaches very small
values.

The spin autocorrelation function measures the proximity
of a spin k at time ¢ to its orientation at# = 0 and it is averaged
over all sites,

4 L A .
1) = 7 Y (WO)ISie™ Sie ™ W) (10)
k=1

This quantity is equivalent to the density imbalance between
even and odd sites measured in experiments with cold atoms
[41], as can be seen by mapping the spins into hardcore
bosons. The self-averaging behavior of this quantity was stud-
ied in Refs. [14,15]. Here, we analyze also |I(¢)| and I%(¢).
This is done because at long times, /(¢) can reach negative
values and the oscillations between negative and positive val-
ues may complicate the analysis of self-averaging, which is
avoided with the other two quantities.
The connected spin-spin correlation function is given by

4 7 Q2
C) =7 Y [(W@ISESE, %)

k
— (WOISF WO (WIS, 1W(1))] (1)

and is measured in experiments with ion traps [88].

E. Self-averaging and Timescales

The results presented in this subsection have already ap-
peared in Refs. [12,14]. The purpose of this summary is to
serve as a reference for the discussions in the next sections.
We show first the evolution of the mean survival probability.
The various timescales involved in the relaxation process of
this quantity are the ones used in the analysis of the distribu-
tions of all quantities in the next sections. We also describe
here the time-dependence of the relative variance of the sur-
vival probability and of the inverse participation ratio, whose
distributions are the subjects of Secs. III, IV, and V.

A quantity O is self-averaging when its relative variance

od(t)  (0*(1)) —(0()°
(0)? (0)?
decreases as the system size increases. The notation (.) indi-
cates in our case the average over disorder realizations and
also initial states. We consider 0.01D initial states and at least
10*/(0.01D) disorder realizations, so that each point for the
curves of (O(t)) and Ro(t) is an average over 10* data.

Ro(t) =

12)

1. Survival probability

The top panels of Fig. 1 show the survival probability for
the GOE model [Fig. 1(a)] and the spin model [Fig. 1(b)]. The
shape and bounds of the LDOS [Eq. (7)] determine the initial
decay of the survival probability. The LDOS for the GOE
model is semicircular. The square of the Fourier transform
of a semicircle gives jlz(ZFt)/(thz), where 7; indicates
the Bessel function of the first kind [89]. This implies that
after a very rapid initial decay, (Ps(#)) shows oscillations that
decay according to a power law t73 [58,59,79], as seen in
Fig. 1(a). The LDOS for the spin model is Gaussian [60,61],
as found in many-body quantum systems with two-body
couplings and perturbed far from equilibrium [35,85,90-93].
The square of the Fourier transform of a bounded Gaus-
sian gives exp(—I"2¢2)F(t)/(4N?), where F(t) involves error
functions and A is a normalization constant (see the ap-
pendices in Refs. [12,59]). This implies that after an initial
Gaussian decay [60,61], (Ps(¢)) shows a power-law behavior
o t72 [58,59,94], as observed in Fig. 1(b). The origin of
the power-law decay of the survival probability in bounded
spectra has been discussed at least since the 1950s [55,95-99]
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FIG. 1. Evolution of the mean of the survival probability (a),
(b), of the relative variance of the survival probability (c), (d), and
of the relative variance of the inverse participation ratio (e), (f) for
the GOE model (left panels) and the chaotic disordered spin model
(right panels). The time intervals for the fast initial decay, power-law
behavior, correlation hole, and saturation are indicated in panels
(a) and (b). The horizontal dashed line marks the saturation value
of Py for the largest size. System sizes: D = 252, 924, 3432, 12870
(L =10, 12, 14, 16). For the spin model, L = 18 is also shown. In all
panels: 0.01D disorder realizations and 10*/(0.01D) initial states.

and more recently in Ref. [100]. The experimental detec-
tion of algebraic decay at long times has been reported in
Ref. [101], and evidence of slower relaxation for the density
imbalance in the context of many-body localization of one-
and two-dimensional quasiperiodic systems was presented in
Refs. [102,103].

The power-law decays in Figs. 1(a) and 1(b) persist up to a
time denoted by 1y, [12], where (Pg(¢)) reaches its minimum
value. Beyond this point, the survival probability increases un-
til the dynamics saturates for ¢ > g, where g is the relaxation
time. At this point, (Ps(¢ > tr)) fluctuates around the infinite-
time average ()_, |CM I*). The dip below the saturation point
is known as correlation hole [74-76] and it appears only in
systems where the eigenvalues are correlated, reflecting short-
and long-range correlations [104].

(i) The four time intervals for the distinct behaviors of
(Ps(t)), fast initial decay, t < 1/T,

(ii) power-law behavior, 1/T" < ¢ < #y,

(iii) correlation hole, 1, < t < 1R,

(iv) saturation, t > fg,

are indicated in Figs. 1(a) and 1(b). These are the timescales
that we consider in the next sections to investigate the distri-

butions of the survival probability and of the other quantities
as well.

In Figs. 1(c) and 1(d), we show the results for the rela-
tive variance Rp,(¢) for different system sizes. The survival
probability is non-self-averaging at any timescale, as shown
analytically in Ref. [14]. Initially, Rp (¢) grows with system
size, while for t > #ry, it reaches a constant value, Rp (t) ~ 1.
There is no noticeable difference between the value of Rp,(¢)
in the interval [f1y, tr] and for ¢ > fR.

2. Inverse participation ratio

Plots for the mean of the inverse participation ratio can
be seen in Ref. [14]. There are two different behaviors for
(IPR(#)) at short times. The decay is initially very fast and
then it either oscillates in the case of the GOE model or it
slows down for the spin model. These two timescales coin-
cide with the intervals for the fast decay and the power-law
behavior of (Ps(¢)). Beyond this point, however, a correlation
hole is not visible for (IPR(#)). It exists, but it is extremely
small [12] and, contrary to what we find for the survival
probability, the ratio between the saturation point of (IPR(#))
and its minimum value at the correlation hole decreases as the
system size increases.

The evolution of the relative variance of IPR is seen in
Figs. 1(e) and 1(f). It shows that the inverse participation
ratio is non-self-averaging at short times, which is under-
standable, since for small times,(IPR(z)) ~ (Psz(t)). But for
times ¢ > t1y,, the inverse participation ratio becomes “super”
self-averaging, by which we mean that Rpg () & 1/D instead
of ox 1/L.

III. DISTRIBUTIONS AT SHORT TIMES

In Fig. 2, we show the distributions of the survival prob-
ability [Figs. 2(a) and 2(b)] and of the inverse participation
ratio [Figs. 2(c) and 2(d)] for the GOE model [Figs. 2(a) and
2(c)] and the spin model [Figs. 2(b) and 2(d)] at short times,
t < I'"!, when the decays of (Ps(¢)) and (IPR(¢)) are very
fast. The distributions are similar for both quantities, but differ
between the models.

At short times, the main contribution for (IPR(?)) is
the square of the survival probability, (IPR(t <« T'~1)) ~
|(¥(0)|e~ ™ |\W(0))|*, which explains why the distributions
for both quantities are so similar. Compare Fig. 2(a) with
Fig. 2(c), and Fig. 2(b) with Fig. 2(d). Therefore, it suffices to
describe below the distributions for the survival probability.

Survival probability

At short times, the decay of the survival probability is
controlled by the short-time expansion of J2(2I't)/(I'*t?) for
the GOE model and of exp(—I"%¢?) for the spin model. The
distribution of Ps(7) at a fixed time ¢t < I'~! reflects then the
distribution of the square of the width of the LDOS, 2, and
its higher powers.

1. Survival probability: GOE model

For the GOE model, the expansion gives
JE@2Tt) _

5 7 7
L =T+ T - %0+ — %8 .
22 D) 72 * 180
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FIG. 2. Distributions of the survival probability (a), (b) and in-
verse participation ratio (c), (d) for the GOE (a), (c) and the spin
(b), (d) model at very short times: t = 0.01 and r = 0.5, respectively.
Solid line in (a) is the theoretical Gaussian distribution with mean
from Eq. (13) and variance from Eq. (14), and dashed line in (c) is
the Gaussian with the numerical values for the mean and variance.

As we saw in Eq. (8), I'? is the sum of the square of the
off-diagonal elements contained in the row of the Hamilto-
nian matrix where the initial state lies. For the GOE model,
this means the sum of the square of D — 1 Gaussian random
numbers with (H;;) = 0 and (H;) = 1/2, which gives a x*-
distribution with D — 1 degrees of freedom. This is approx-
imately a Gaussian distribution with mean pupr: = (D — 1)/2
and variance o7, = (D — 1)/2.

Using g, as a notation for the moments of 2, that s,

2,02
gn = ; /(r2)" exp [_M}dr{

2
J2mo, 201,

and keeping terms up to 8th order in time we see that

5 7 7
Pt ~ 1 — gt? + —got* — — g3t + —gur®, (13
(Ps(2)) git” + 382 7583 + 1505 (13)

and the variance
2
Tpr) (14)

5
= (g —gt* — A g192)°

2 34 ) |1
| 144 84 — & 36 84 — 8183

r 7 35
—| ==(g5s — g184) + —= (g5 — gzg3)]t1°

| 240 432
2 gy + )+ )|
5184 86— 83 3600 86—8185 376 86—8284 .

For a fixed r = 0.01 and D = 12870, (Ps(0.01)) ~ 0.505 and
o001 ~ 2-1 x 107, which are the values used in the Gaus-
sian indicated with a solid line in Fig. 2(a).

2. Survival probability: Spin model

For the spin model, the energy Ei,; [Eq. (4)] of the initial
state depends on the disorder strength and on the number 7,
of neighboring pairs of up-spins as determined by the Ising
interaction, ) _, S;S; . Focusing only on the Ising interaction,
one can see that it leads to L/2 energy bands that go from the
band of lowest energy with no pairs of up-spins, which has
only the two Néel states || 1] ...) and | [ 1|1 ...), to the
band of highest energy with n, = L/2 — 1 neighboring pairs
of up-spins, which has L states [105]. The number of states in
a band grows as we approach the middle of the spectrum. The
most populated band for chain sizes that are multiple of 4 is
centered at energy zero, and for the chains of other even sizes,
it is centered at —1/2.

The fragmented distribution in Fig. 2(b) reflects the bands
created by the Ising interaction. Each state in a band with
n, pairs of neighboring up-spins couples with (L —2n,)
other states, so according to Eq. (8), r’=(L- 2n,)/4. For
the L = 16 case shown in Fig. 2(b), the states in the most
populated band at energy zero has n, =4 and '’ = 2, so
Ps(t < ™1y ~ exp(—T"%t?) gives ~0.61 for t = 0.5, which is
indeed the center of the highest peak in Fig. 2(b). The two
other highest peaks correspond to the Ising band at —1 with
n, = 3 and Ps(0.5) ~ 0.54 and the band at 1 with n, = 5 and
Pg(0.5) ~ 0.69.

As discussed in Ref. [14], both the survival probability
and in the inverse participation ratio are non-self-averaging
at short times. This can be understood from the expansion of
the survival probability at the lowest order in ¢,

Ps(t) ~ 1 — "2, (15)
which gives
(1 —=T22)2) — (1 —T%?)°
(1 — I22)?

= opt™. (16)

Rpg(t) ~

The lack of self-averaging happens because 0132 grows with L

for the spin model and with D for the GOE model, having no
relationship with the shape of the distributions.

IV. DISTRIBUTIONS AFTER SATURATION

In Fig. 3, we show the distributions of Ps(¢) and IPR(¢)
after the saturation of the dynamics, for a fixed time ¢ > fR.
In contrast with the behavior at short times, the distributions
for both models are now similar, while they differ between
quantities. In realistic chaotic systems, properties similar to
those of random matrices manifest themselves at long times.

A. Survival probability

The distribution of Ps(¢) for the GOE and the spin model
for ¢+ > tr is exponential, as shown in Figs. 3(a) and 3(b).
Since the mean and the dispersion of exponential distributions
are equal, Rp(t > tr) ~ 1, as indeed found numerically in
Figs. 1(c) and 1(d). This justifies the lack of self-averaging of
the survival probability for t > fg.

The rate parameter of an exponential distribution is the
reciprocal of the mean. For the distribution of Ps(t > tr), the
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FIG. 3. Distributions of the survival probability (a), (b) and in-
verse participation ratio (c), (d) for the GOE model (a), (c) att = 10°
and for the spin model (b), (d) at t = 5 x 10*. Solid lines in (a) are
the exponential distribution with rate parameter D/3, and in (c) they
are the Gaussian distribution with mean and variance from Egs. (21)
and (22). Dashed lines in (b) are the exponential distribution with
rate parameter 1/(>", |C‘;‘1i [*, and in (d) they are the Gaussian curve
with the numerical values for (IPR(z)) and oppr(z) at 7 = 5 x 10*.

rate parameter is 1/, |CM|*. This can be understood by
writing the survival probability as

Ps(t) =Y " 2|CPICH cos [(Eo — Ep)t] + > IC[*.
a<f o
a7
On average, the first term on the right-hand side of the equa-
tion above cancels out, so (Ps(f > fR)) ~ ), IC;"1|4.

The eigenstates of the GOE model are random vectors,
so Cini>g are random numbers from a Gaussian distribution
satisfying the constraint Z?:l |Cini|2 = 1. Using P(C) =
VDJ(2m)e P2 for the components, we have (C) =0,
(C?) = 1/D,and (C*) = 3/D?*,s0 ), |CM|* =" (3/D*) =
3/D.

For the chaotic spin model, the eigenstates away from the
edges of the spectrum are also approximately random vectors,
so Y, |Cin|* is close to 3/D, although slightly larger. This
discrepancy becomes particularly evident if one fits the nu-
merical distribution in Fig. 3(b) with a single parameter. The
fact that we get a value slightly larger than 3/D indicates some
remaining degree of correlations between the components of
the initial state.

A simple justification for the exponential shape of the
distribution for Ps(¢) can be given by substituting

Z }C;nife—iEaz

o

2

’

with

2 2
%”:ZCOS(EOJ)} +|:Zsin(Eat):| } (18)

The sum of the cosines and the sum of the sines are Gaussian
random variables, as discussed in Ref. [29] for full random

matrices. The distribution of the sum of the square of two
Gaussian random numbers is exponential, which explains the
shape seen in Figs. 3(a) and 3(b). Notice, however, that this
simplification gives 1/D as the mean value for Pg(¢), which
differs from the correct value by a factor of 3. Furthermore, we
verified numerically that for ¢ > fg, the sum of the cosines and
the sum of the sines are Gaussian random variables also when
E, are random numbers from a Gaussian distribution, which
indicates that for such long times, the correlations between the
eigenvalues are not essential for the onset of the exponential
shape of the distribution for Ps(¢). This means that even for an
integrable model with uncorrelated eigenvalues, the distribu-
tion of Ps(t > tg) is exponential.

The proper derivation of the exponential distribution for
Ps () involves the convolution of the distribution for the com-
ponents of the initial state with the distribution for e’
as done in Ref. [30] for random matrices. The result for
t >1R1S

Ps(t) ] (19)

1
Za |C‘;m|4 p [ Za |Cém|4

The agreement between this theoretical curve and the numer-
ical distribution of Pg(t) for the GOE and also for the spin
model is excellent, as seen in Figs. 3(a) and 3(b).

B. Inverse participation ratio

The distribution of the inverse participation ratio for the
GOE and the spin model at a fixed time ¢t > tg is Gaussian, as
evident in Figs. 3(c) and 3(d). Following the steps described
in Ref. [30], it should be possible to formally derive the
Gaussian distribution by doing the convolutions between the
distributions for the components C" and CI™, which are nearly
Gaussian random numbers, and for e’ Taking into account
the sum over all basis vectors |n) in

IPR(t) = Z

n

4

CrCinigtat || (20)

o

which is a large sum, one should arrive at the Gaussian shape.
The mean of the distribution of IPR(¢) is obtained by
realizing that the only terms in

IPR(1)
— Z Z Csc&nlcgckm sc}i/nicglcénief(Eu —Eg+E,—Ej)t
nao,B,y.8

that do not average out at long times are those where o = §,
y=§witha #8,a=6§B=y,witha #B;anda = =
y = §, which gives

2
Since for the random matrices, |Cgf|2 ~ 1/D, we have

2 9

it 1)
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To compute the variance of the distribution, we need the
dominant terms of

PRO=Y Y Y ¥

n oapBys n o By

n ~ini ~n ~ini ~n ~ini ~n ~ini [ —(E,—Eg+E, —Es)t
Yeioilerelodelede L raluan

x CL iy cicr Cini ey Cple™Fe ~Ey By —Eot
There are four terms similar to the one with ¢ = 8, o’ =
B,y =35y =8, which gives 43, (¥, IC!PICI ) —
4% ICMA(Y" ICH*), and they cancel the dominant terms
of (IPR(¢ > tr))?, so they do not contribute to the variance.

But there are also four terms similar to the one with o = 6,
o =48,8=y,B =y, which forn = n gives

2| ~ini 2 2| ~ini 2 2 ini 2 2 ini |2
43 GG PGP ICE PIC PIC PG IPICM P,
na,pB,y.8

so the variance of the distribution of IPR(¢) for a fixed t > g
is
2 4
TipR ~ T3+ (22)

The Gaussian distribution with the mean from Eq. (21)
and the variance from Eq. (22) matches very well the his-
togram for the GOE model in Fig. 3(c). Furthermore, our
numerical analysis of the distributions obtained for random
matrices of different sizes shows that the skewness — 0
and the kurtosis — 3 as the dimension of the matrices in-
creases, just as we would expect for a symmetric Gaussian
distribution.

For the spin model, the dashed line in Fig. 3(d) is a Gaus-
sian curve with the numerical values obtained for (IPR(z))
and opg(?) for a fixed ¢ > tg. The mean and variance for
this curve are slightly larger than the values in Egs. (21) and
(22), indicating again some degree of correlation between the
components of the eigenstates of the realistic model. We might
expect the results to approach those for the GOE model as L
increases, although our numerical analysis of the distributions
for L =10, 12, 14, 16, 18 indicates that the skewness — 1
and the kurtosis — 4 as the system size increases. These
values indicate a nonsymmetric distribution with heavier tails
than a Gaussian distribution.

The results for the mean and variance of IPR(¢) in Egs. (21)
and (22) make it clear that Ripr (¢ ) decreases as 1/D and there-
fore, the inverse participation ratio becomes self-averaging at
long times. The dependence of Ripr(* > fr) on the dimen-
sion of the Hamiltonian matrix instead of the system size L
is characteristic of interacting many-body quantum systems.
This is related to the fact that the spread of the initial state
takes place in the many-body Hilbert space instead of the real
space.

V. DISTRIBUTIONS AT INTERMEDIATE TIMES

As time grows from zero, the distributions for the various
quantities studied here gradually change their shapes from
those observed at short times (Fig. 2) to those at long times
(Fig. 3). Ilustrations of the distributions for Ps(¢) and IPR(¢)
for the spin model at intermediate times are shown in Fig. 4
and discussed below.

20F A
~ @] o ®
= o0 T E o«

& K
0 0
0 0.1 0.2 0.3 0 0.04 0.08 0.12
I 120 ‘ ‘

2x107 N

=140

4x10* sx10™

OF
=1000

@

/)

Lsx10™* 1.6x10™* 1.7%x10™
IPR

1x10°

0 sx10™
Ps

FIG. 4. Distributions of the survival probability (left) and inverse
participation ratio (right) for the spin model at times indicated in
the panels. Dashed lines in (d) and (e) are the exponential distribu-
tion with rate parameter given by 1/(Ps(¢)), and in (i) and (j) they
are the Gaussian distribution with the mean and variance obtained
numerically.

A. Survival probability

As time increases, the Gaussian distribution that Pg(t)
shows for the GOE model at short times becomes gradually
more skewed until an exponential distribution emerges. For
the spin model, the bands found in the distribution at short
times [Fig. 4(a)] broaden and simultaneously become more
skewed [Fig. 4(b)] until the distribution becomes exponential
as well [Figs. 4(d) and 4(e)].

Notice that for both models, the exponential distribution
is seen even before fg. It starts taking shape already in the
interval of the power-law decay [Fig. 4(c)] and it becomes
clearly exponential at ¢ ~ tr;, when the spectral correlations
get manifested in the dynamics and the correlation hole de-
velops [Figs. 4(d) and 4(e)].

For t > ty,, the rate parameter of the exponential distri-
bution is given by 1/(Ps(t)), as shown with a dashed line
in Figs. 4(d) and 4(e). It is only for ¢ > tg that 1/(Ps(z)) ~
/3, |C(i)[“i|4 and we recover the curve from Fig. 3(b). The
fact that we have an exponential distribution for Pg(t), with
mean equal to the dispersion during the entire duration of

062126-7



E. JONATHAN TORRES-HERRERA et al.

PHYSICAL REVIEW E 102, 062126 (2020)

the correlation hole (#ry, < < fr) implies that both (Ps(¢))
and op,(t) decrease below their saturation values and that
Rp,(t) ~ 1 forany timet > try, as we indeed see numerically
in Figs. 1(c) and 1(d).

We notice that for an integrable model, where the correla-
tion hole does not exist, one should not expect an exponential
distribution for Ps(¢) before saturation, that is, for ¢, <t <
tr. However, as discussed below Eq. (18), it should emerge
fort > tg. The analysis of how the distribution of the survival
probability may serve as an indicator of quantum chaos is a
subject worth further studies.

B. Inverse participation ratio

The distribution of IPR(#) for the GOE model is throughout
Gaussian, although some level of skewness and kurtosis larger
than 3 are seen for times where (IPR(#)) oscillates, which cor-
responds to the power-law region of the survival probability.
The width of the distribution depends on the dimension of the
GOE matrix. At short times, the variance is related with the
distribution of I'2, so it increases as the matrix grows, while at
long times, the variance is related with the distributions of the
components Cy;, so it decreases as D grows. We therefore have
a Gaussian distribution that shrinks as time grows. The fact
that the distribution is Gaussian at short and long times, but
self-averaging holds at long times only, reiterates our claim
that there is not a one to one correspondence between the
shape of the distribution and the presence of self-averaging.

The distribution for IPR(¢) for the spin model is hybrid.
It starts similar to the distribution for the survival probability
of the spin model [Figs. 4(f) and 4(g)], but it later acquires
a shape equivalent to the distribution of IPR(#) for the GOE
model [Figs. 4(i) and 4(j)].

VI. INFERRING SELF-AVERAGING BEHAVIORS
FROM DISTRIBUTIONS

The main purpose of this section is to show how we can
use the distribution of one quantity to assist determining the
self-averaging behavior of another related quantity. But before
that, we summarize the self-averaging behavior and the shapes
of the distributions of the two experimental local quantities,
the connected spin-spin correlation function and the spin au-
tocorrelation function evolved under the spin model.

A. Distributions of local quantities

Both quantities C and [ are self-averaging up to the corre-
lation hole. The connected spin-spin correlation function does
not detect the hole and remains self-averaging at all times
[14]. In contrast, the spin autocorrelation function exhibits
a correlation hole and stops being self-averaging beyond its
minimum value.

Similarly to the survival probability and the inverse par-
ticipation ratio, the distributions of the values of the two
local quantities at short times also reflect the distribution of
I'2. They exhibit fragmented structures similar to those in
Figs. 2(b) and 2(d). However, the main difference between the
global and local quantities at short times is that P and IPR
are not self-averaging, while the local quantities are, because
they have an explicit dependence on the system size in the

denominator [14],

2¢2
It)~1— 4T, (23)
SO
0§2t4
Ri@)~ 16 TPk (24)

which decreases with L.

As time grows, the distributions for the connected spin-spin
correlation function and for the spin autocorrelation function
progress in a way similar to the distribution for the inverse
participation ratio shown in Fig. 4, that is, from a fragmented
structure at short times to a Gaussian shape at long times.

Even though both quantities show Gaussian distributions
at long times, C is strongly self-averaging, with Rc (¢ > tR)
decreasing exponentially as L increases [14], while I is non-
self-averaging at long times. This is what we observe by
studying system sizes with L < 18, although one cannot rule
out the possibility that this behavior might change for much
larger L’s. Based on the results at hand, the fact that both
quantities exhibit a Gaussian distribution makes us conclude
that there is no direct connection between self-averaging for
t > tg and a Gaussian distribution.

B. Semianalytical results for self-averaging

The spin autocorrelation function can reach negative values
at long times, which could suggest that R,(¢) increases with
L just because (I(t)) gets very close to zero. This motivates us
to study also the self-averaging behavior of |I(¢)| and / 2(1).

In Figs. 5(a) and 5(b), we compare the results for the mean
of the spin autocorrelation function and for the mean of its
absolute value. The correlation hole is less evident for (|I(7)|)
and for (I*(¢)) (this one is not shown) than for (I(z)), but
it is still present. For the three quantities, however, the ratio
between the saturation point and the minimum of the hole
decreases as L increases, which contrasts with the survival
probability, where the ratio is constant.

As expected for local quantities, the three observables are
self-averaging at short times, with R; |; 2(¢) decreasing as L
increases [see Figs. 5(c), 5(d) and 5(e)]. For ¢ ~ 1y, the curves
cross. Beyond this point, for ¢ > tr,, the behavior of R;(?),
Rin(), and Rp(¢) differ. R;(¢) increases with system size,
confirming the non-self-averaging behavior mentioned above,
while the curves for Rp2(¢) cross once again, recovering self-
averaging at very long times. The results for Ry (¢), however,
are much less conclusive. Excluding L = 10, which is very
small, the curves for ¢ > 7, seem to reach a nearly constant
value independent of L, as shown also in the scaling analysis
in Fig. 5(f). This suggests lack of self-averaging, but how can
we be better convinced of it with the system sizes that we have
access to?

Our strategy to circumvent the limited system sizes avail-
able is to use the numerical results for I(¢) to infer the
self-averaging behavior of |I(¢)|, as we explain next.

We verified that distribution for |I(r > tg)| is a folded
Gaussian, which further supports that the distribution for
I(t > tr) is indeed Gaussian. Both the standard deviation
and the mean of /(¢) for r > tg decrease as the system size
increases. The exponents s and m in o;(t > tr) < L=° and
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FIG. 5. Evolution of the mean of the spin autocorrelation func-
tion (a) and its relative variance (c), the mean of the absolute value of
the spin autocorrelation function (b) and its relative variance (d), the
relative variance of the square of the spin autocorrelation function
(e), and the relative variance of the three quantities for > #g vs. L
(f). All panels are for the chaotic disordered spin model. In panels (a),
(b) the four time intervals identified in the evolution of the survival
probability are indicated, and the horizontal dashed line marks the
saturation value for L = 16. In all panels: Average over 10* data and
(f) includes also an average for 100 different instants of times.

(I(t > tr)) o< L™™ can be obtained numerically. We find that
m > s. With this information, we can compute the mean and
the variance of the folded Gaussian distribution for |/(¢)| using

2 1)? I
iy = \ﬁm exp (—%) + ) erf(ﬂ),
b/ 207 or
o = (I)*+of — ().
For large L, we find that

() — L™ (25)

QI

2
o — L-Z“(l - ;>, (26)

which implies that the relative variance goes asymptotically
to a constant,

—2
Rt > tr) — ”T ~0.57. 27)

This value is indeed very close to what we have in Fig. 5(f),
but the semianalytical strategy described above provides a
much stronger evidence that |I(¢)| is non-self-averaging at
long times than what we can conclude from the numerical
results in Fig. 5(f).

VII. CONCLUSIONS

We investigated the distributions over disorder realizations
of different quantities and at various timescales of the evolu-
tion of a realistic chaotic spin model, from very short times
up to equilibration. We compared these distributions with
the quantities’ self-averaging properties. The distributions for
the global quantities—the survival probability and the inverse
participation ratio—were contrasted also with those for the
GOE model. The results for the two models are comparable at
long times, but not at short times.

At long times, the distribution of the survival probability
for the GOE and for the chaotic spin model is exponential,
which accounts for the lack of self-averaging of this quantity.
The exponential shape emerges as soon as the dynamics detect
the spectral correlations typical of chaotic systems.

At long times, the distribution of the inverse participation
ratio and also of the local quantities—the spin-spin correlation
function and the spin autocorrelation function—are Gaussian.
The fact that the first two are self-averaging, while the spin
autocorrelation function is not, demonstrates that there is no
direct relationship between the presence of self-averaging and
the onset of a Gaussian distribution.

We also studied the absolute value and the square of the
spin autocorrelation function, /()| and I*(t). The evolution
of their mean values shows features similar to those observed
for (I(¢)), but their self-averaging behaviors differ. Based on
the system sizes available, we conclude that at long times
the spin autocorrelation function is non-self-averaging, while
I%(t) is. The numerical scaling analysis of the relative variance
of |I(t)] is less conclusive.

A main result of this work is to show that knowledge of the
distribution of one quantity may be used to uncover the self-
averaging behavior of another related quantity. This is what
we achieved using /(¢) and |/(¢)| as an example. Starting with
the Gaussian distribution and non-self-averaging behavior of
I(t) at long times, we showed semianalytically that the relative
variance of |I(¢)| for times ¢t > fgr goes asymptotically to a
constant as L increases, concluding in this way that |I(¢)| is
non-self-averaging at long times. This strategy circumvents
the limitations of the numerical scaling analysis, for which
few system sizes can be accessed.
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