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Ubiquitous quantum scarring does not
prevent ergodicity
Saúl Pilatowsky-Cameo 1, David Villaseñor 1, Miguel A. Bastarrachea-Magnani 2,3,

Sergio Lerma-Hernández 4, Lea F. Santos 5✉ & Jorge G. Hirsch 1✉

In a classically chaotic system that is ergodic, any trajectory will be arbitrarily close to any

point of the available phase space after a long time, filling it uniformly. Using Born’s rules to

connect quantum states with probabilities, one might then expect that all quantum states in

the chaotic regime should be uniformly distributed in phase space. This simplified picture was

shaken by the discovery of quantum scarring, where some eigenstates are concentrated

along unstable periodic orbits. Despite that, it is widely accepted that most eigenstates of

chaotic models are indeed ergodic. Our results show instead that all eigenstates of the

chaotic Dicke model are actually scarred. They also show that even the most random states

of this interacting atom-photon system never occupy more than half of the available phase

space. Quantum ergodicity is achievable only as an ensemble property, after temporal

averages are performed.
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A striking feature of the quantum-classical correspondence
not recognized in the early days of the quantum theory is
the repercussion that measure-zero structures of the

classical phase space may have in the quantum domain. A recent
example is the effect of unstable fixed points, that cause the
exponentially fast scrambling of quantum information in both
integrable and chaotic quantum systems1–5. Another better
known example is the phenomenon of quantum scarring6–8. As a
parameter of a classical system is varied and it transits from a
regular to a chaotic regime, periodic orbits that may be present in
the phase space change from stable to unstable. These classical
unstable periodic orbits can get imprinted in the quantum states
as regions of concentrated large amplitudes known as quantum
scars. Even though the phase space may be densely filled with
unstable periodic orbits, they are still of measure zero, which
explains why it took until the works by Gutzwiller9 for their
importance in the quantum chaotic dynamics to be finally
recognized.

Quantum scarring was initially observed in the Bunimovich
stadium billiard10 and soon in various other one-body systems11–13

giving rise to a new line of research in the field of quantum
chaos8,14–22. The recent experimental observation of long-lived
oscillations in chains of Rydberg atoms23, associated with what is
now called “many-body quantum scars”, has caused a new wave of
fascination with the phenomenon of quantum scarring24–28. While
the interest in many-body quantum scars lies in their potential as
resources to manipulate and store quantum information, a direct
relationship between them and possible structures in the classical
phase space has not yet been established.

Halfway between one-body and many-body models, one finds
systems such as two-dimensional harmonic oscillators and the
Dicke model29, where quantum scars have also been
observed30,31. In the first case, the model is not fully chaotic and
scarring can be understood as an extension of the regular
orbits32,33. The Dicke model, on the other hand, has a region of
strong chaos, where the Lyapunov exponents are positive and the
level statistics agrees with the predictions from random matrix
theory34. The model describes a large number of two-level atoms
that interact collectively with a quantized radiation field and was
first introduced to explain the phenomenon of superradiance35,36.
It has been studied experimentally with cavity assisted Raman
transitions37,38, trapped ions39,40, and superconducting circuits41.

In this work, we investigate the intricate relationship between
quantum scarring and phase-space localization in the super-
radiant phase of the Dicke model. Even though both phenomena
are often treated on an equal footing, the connection is rather
subtle. Scarring refers to structures that resemble periodic orbits
in the phase-space distribution of quantum eigenstates, while
phase-space localization implies that a state exhibits a low degree
of spreading in the phase space. Here, we demonstrate that
scarring does not necessarily imply significant phase-space
localization.

In systems studied before, scarred eigenstates were thought to
be a fraction of the total number of eigenstates. In contrast to
that, we show that deep in the chaotic regime of the Dicke model,
all eigenstates are scarred. Their phase-space probability dis-
tributions always display structures that can be traced back to
periodic orbits in the classical limit. Yet, we find eigenstates that
are highly localized in phase space and eigenstates that are nearly
as much spread out as random states, although none of them,
including the random states, can cover more than approximately
half of the available phase space.

In addition to the analysis of quantum scarring and phase-
space localization, we also provide a definition of quantum
ergodicity. This is done using a measure that we introduce to
quantify the level of localization of quantum states in the phase

space. We say that a quantum state is ergodic if its infinite-time
average leads to full delocalization. Under this definition, sta-
tionary quantum states are never ergodic, while random states
are, and coherent states lie somewhere in between.

Results
Dicke model and chaos. The Hamiltonian of the Dicke model is
written as

ĤD ¼ ωâyâþ ω0 Ĵ z þ
2γffiffiffiffiffi
N

p Ĵxðây þ âÞ; ð1Þ

where ℏ= 1. It describes N two-level atoms with atomic transi-
tion frequency ω0 interacting with a single mode of the electro-
magnetic field with radiation frequency ω. In the equation above,
â (ây) is the bosonic annihilation (creation) operator of the field
mode, Ĵ x;y;z ¼ 1

2

PN
k¼1 σ̂

k
x;y;z are the collective pseudo-spin opera-

tors, with σ̂x;y;z being the Pauli matrices, and γ is the atom-field
coupling strength.

The eigenvalues j(j+ 1) of the squared total spin operator bJ2 ¼
Ĵ
2
x þ Ĵ

2
y þ Ĵ

2
z specify the different invariant subspaces of the

model. We use the symmetric atomic subspace defined by the
maximum pseudo-spin j ¼ N =2, which includes the ground
state. When the Dicke model reaches the critical value
γc ¼

ffiffiffiffiffiffiffiffi
ωω0

p
=2, it goes from a normal phase (γ < γc) to a

superradiant phase (γ > γc). Our studies are done in the super-
radiant phase, γ= 2γc, and we choose ω= ω0= 1. The rescaled
energies are denoted by ϵ= E/j. For the selected parameters,
ϵGS=−2.125 is the ground-state energy.

The classical Hamiltonian, hcl(x) in the coordinates x= (q, p;
Q, P), is obtained by calculating the expectation value of the
quantum Hamiltonian under the product of bosonic Glauber and
pseudo-spin Bloch coherent states xj i ¼ q; pj i � Q; Pj i (see
Methods) and dividing it by j. The effective Planck constant
ℏeff= 1/j42 determines the resolution of the quantum states on the
four dimensional phase space M. We are able to work with large
system sizes (j ~ 100 and Hilbert space dimensions D ~ 6 × 104),
due to the use of an efficient basis that guarantees the
convergence of a broad range of eigenvalues and eigenstates43,44

(see Methods). The Dicke model displays regular and chaotic
behavior. For the Hamiltonian parameters selected in this
work, the system is in the strong-coupling hard-chaos regime
for ϵ >−0.8 (see Supplementary Note 1).

Quantum scarring. The (unnormalized) Husimi function of a
state ρ̂ is defined as Qρ̂ðxÞ ¼ xh jρ̂ xj i, which is the expectation
value of the density matrix over the coherent state xj i centered at
x. This function is used to visualize how the state ρ̂ is distributed
in the phase space. Quantum scars are localized around the
classical periodic orbits in an energy shell of the phase space. To
visualize the scars, we consider the Husimi projection over the
classical energy shell at ϵ,

eQϵ;ρ̂ðQ; PÞ ¼
Z Z

dqdp δðϵ� hclðxÞÞQρ̂ðxÞ: ð2Þ

By integrating out the bosonic variables (q, p), the remaining
function can be compared with the projection of the classical
periodic orbits on the plane of atomic variables (Q, P).

Identifying all periodic orbits that generate the scars of a
quantum system is extremely challenging. We were able to
identify two families of periodic orbits for the Dicke model, which
we denote by family A and family B45. By calculating the overlap
of the eigenstates with tubular phase-space distributions located
around these orbits8, we selected twelve eigenstates ρ̂k ¼ Ekj i Ekh j
scarred by those two different families. In Fig. 1 we plot their
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Husimi projections eQk ¼ eQϵk;ρ̂k
at ϵk= Ek/j along with the

corresponding periodic orbit of each family. Family A (solid blue
line in Fig. 1a1–a6) contains the periodic orbits of lowest period
of the Dicke model, which emanate from one of the two normal
modes around a stable stationary point at the ground-state
energy. Family B (solid red line in Fig. 1b1–b6) arises from the
other normal mode around the same point. Scarring is clearly
visible in all panels of Fig. 1. The quantum states are highly
concentrated around the classical periodic orbits. This happens
even in the chaotic region of high excitation energy, where the
classical dynamics is ergodic, as seen in Fig. 1a5, a6, b5, b6. Notice
that the eigenstates may be scarred by more than one periodic
orbit. In fact, as we showed quantitatively in ref. 45 after
introducing a measure of scarring, an eigenstate may even be
scarred by periodic orbits of different families. This means that
different eigenstates exhibit different degrees of scarring.

It is evident from Fig. 1 that the degree of delocalization of the
eigenstates in phase space also varies. The Husimi distribution of
the eigenstates in Fig. 1a5, a6, for instance, is not entirely confined
to the two periodic orbits drawn in blue. This contrasts with the
high density concentration that the eigenstate in Fig. 1a4 shows
around the plotted unstable periodic orbits. To quantify these
differences, we introduce a measure of the degree of localization
of a quantum state in the classical energy shell.

Scarring vs. phase-space localization. To measure the localization
of a state in a Hilbert-space basis indexed by some letter n, the
most commonly used quantity is the participation ratio PR46–48. Its
inverse is given by P�1

R ¼ P
nP2

n, where Pn is the probability of
finding the state in the n’th basis vector. By analogy, we introduce a
measure of localization in phase space that employs as basis the
overcomplete set of coherent states within a single energy shell
Mϵ ¼ fx ¼ ðq; p;Q; PÞjhclðxÞ ¼ ϵg, so that we replace the sum ∑k
with a three-dimensional surface integral

R
Mϵ

ds over Mϵ. For a
given x 2 Mϵ, the probability Px of finding the state ρ̂ in the
coherent state xj i is given by the Husimi function Qρ̂ðxÞ. With
these replacements, we finally obtain a measure of phase-space
localization Lðϵ; ρ̂Þ given by

Lðϵ; ρ̂Þ�1 ¼ 1
N

Z
Mϵ

ds Q2
ρ̂ðxÞ; ð3Þ

where N ¼ ðRMϵ
ds Qρ̂ðxÞÞ2=VðϵÞ is a normalization constant and

VðϵÞ ¼ R
Mϵ

ds is the volume of Mϵ (see Methods).
The measure Lðϵ; ρ̂Þ is an energy-restricted second moment of

the Husimi function49. It is related to the second-order Rényi-
Wehrl entropy47, which, in turn, was shown for the Dicke
model50 to be linearly related to the first-order Rényi-Wehrl
entropy51.

The value of Lðϵ; ρ̂Þ indicates the fraction of the classical
energy shell at ϵ that is covered by the state ρ̂. It varies from its
minimum value Lðϵ; ρ̂Þ � ð2π_eff Þ2=VðϵÞ, which indicates max-
imum localization, to Lðϵ; ρ̂Þ ¼ 1, which implies complete
delocalization over the energy shell. The former occurs for
coherent states, and the latter happens if Qρ̂ðxÞ is a constant for

all x 2 Mϵ, in which case the projection eQϵ;ρ̂ðQ; PÞ is also
constant for the allowed values of Q and P.

All eigenstates in Fig. 1 have values of Lk ¼ Lðϵk; ρ̂kÞ below
1/2. For the eigenstates in Fig. 1a1, a2, a4, b3, these values are very
small, since the eigenstates are almost entirely localized around
the plotted periodic orbits. The value of Lk is larger in Fig. 1a3,
because at the center of the diagram, there is an unstable
stationary point2, which produces a one-point scar in addition to
the scar associated to the blue orbit. The localization measure is
larger in Fig. 1b1, b2 simply because in these cases the phase
space is very small. It is also larger for the states in the high
energy region in Fig. 1a5, a6, b4, b5, b6, because they spread
beyond the marked periodic orbits. As the energy increases and
one approaches the chaotic region, more unstable periodic orbits
emerge in the classical limit, enhancing the likelihood that a
single quantum eigenstate gets scarred by different periodic
orbits. We stress, however, that even for those high-energy states
with larger values of Lk, the drawn periodic orbits cast a bright
green shadow that is clearly visible in the Husimi projections.

It is important to make it clear that scarring and localization,
despite related, are not synonyms. Of course, there is no
eigenstate with a large value of Lk that would at the same time
have a high value of our scarring measure, but there is more to
the relationship between these two concepts. A highly localized
eigenstate is scarred by few periodic orbits of a particular family
and therefore has a high value of the scarring measure for that
family, although it has low values for the other families of
periodic orbits45. Furthermore, even the most delocalized

Fig. 1 Classical periodic orbits and scars in the Husimi projection of eigenstates. a1–a6, b1–b6 Projected Husimi distribution eQkðQ; PÞ superposed by
periodic orbits from the family A (blue lines) [family B (red lines)]. Dashed lines mark the mirror image (in Q and q) of the periodic orbits drawn with solid
lines. The mirror images are also periodic orbits due to the parity symmetry of the Hamiltonian. In the projected Husimi distributions, lighter colors indicate
higher concentrations, while black corresponds to zero. The values of the energy ϵk and localization measure Lk of each eigenstate k are indicated in the
panels. Energies larger than −0.8 are in the chaotic region. The system size is j= 30.
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eigenstates are still scarred, but now by periodic orbits from
different families22.

In Fig. 2, we take a step further in the analysis of localization
and scarring. In the large panel in Fig. 2a, we show Lk against
energy for all eigenstates between ϵGS and ϵ= 0.06. This plot is
equivalent to a Peres lattice52 for expectation values of
observables, as used in studies of chaos and thermalization. In
the low-energy regular regime, Lk is organized along lines that
can be classified with quasi-integrals of motion linked with
classical periodic orbits53. Conversely, as the system enters the
chaotic region at higher energies, the distribution of Lk becomes
dense and looses any order. Notice, however, that all eigenstates
in the chaotic region have values of Lk much lower than 1, mostly
clustering below 1/2.

The value L � 1=2 marks a limit on the spreading of any pure
state in the high energy shells of the phase space. To show this, we
build random states Rϵj i ¼ P

kck Ekj i, where ck are complex
random numbers from a Gaussian energy profile centered at
energy ϵ (see Methods). The values of the localization measure
Lðϵ; ρ̂ϵÞ for four different random states ρ̂ϵ ¼ Rϵj i Rϵh j centered
at increasing energies ϵ between −0.6 and −0.1 are given in
Fig. 2r1-r4, and indeed L � 1=2. This upper bound on the phase-
space delocalization is not due to quantum scarring, but to
quantum interference effects.

The panels in Fig. 2r1–r4 display the projected Husimi
distributions eQϵ;ρ̂ϵ

ðQ; PÞ of the four random states and those in
Fig. 2s1-s22 show the distributions for 22 eigenstates taken at
fixed steps of k with ϵk∈ [−0.62, 0.06] (various other examples
are provided in the Supplementary Note 2). The difference

between random states and eigenstates is clear. The Husimi
projections of the random states do not show structures that
resemble closed periodic orbits, so they are not scarred, while the
Husimi projections of all eigenstates in the chaotic region do
show those structures. In contrast to Fig. 1 (see also ref. 45), we
have not identified the periodic orbits associated with Fig. 2s1-
s22, but the visible circular patterns are clear evidence of periodic
orbits. Their existence is supported by the shape of the Husimi
projections and by knowing the generic direction of the classical
Hamiltonian flow. The patterns display all the features of periodic
orbits: they always cross the line P= 0 perpendicularly, they are
symmetric along both the horizontal Q and P axes, and they
visibly form closed loops. There is no quantum effect other than
scarring that would produce such patterns. One therefore deduces
that deep in the chaotic region of the Dicke model, all quantum
eigenstates are scarred, although they have different degrees of
scarring, as seen by the patterns, and they have different degrees
of localization, ranging from strong localization (L � 0:1) to
states that are nearly as much delocalized as random states.

Our results are sharpened as one approaches the semiclassical
limit. The patterns indicating scarring do not fade away as the
system size increases. Quite the opposite, as j= 1/ℏeff increases,
the periodic orbits get better defined in the Husimi projections
(cf. the figures for j= 30 and j= 100 in the Supplementary
Note 3). To study the dependence of the level of phase-space
localization on system size, we show the distributions of L for
random states (Fig. 2b) and for eigenstates in the chaotic region
(Fig. 2c) for different values of j. For the random states, L is
concentrated around 1/2 and the width of the distribution

Fig. 2 Husimi projection and localization measure of eigenstates and random states. a Localization measure Lk as a function of energy for the first
17,000 eigenstates with ϵk∈ [ϵGS, 0.1], j= 100. (s1–s22) Projected Husimi distributions for 22 eigenstates selected every 400 values of k, starting at k=
7700 in (s1) up to k= 16500 in (s22), j= 100. Lighter colors indicate higher concentrations, while black corresponds to zero. (r1–r4) Projected Husimi
distributions for random states of energy width σ= 0.3 centered at ϵ=−0.6 in (r1), ϵ=−0.4 in (r2), ϵ=−0.2 in (r3), and ϵ=−0.1 in (r4), j= 100. Lighter
colors indicate higher concentrations, while black corresponds to zero. b Distribution of L for 20,000 random states of width σ= 0.3 centered at ϵ=−0.5.
c Distribution of Lk for the eigenstates in the chaotic region with ϵk∈ [− 0.8, 0]. The system sizes for b and c are indicated in the panels.
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decreases as j increases, corroborating that L ¼ 1=2 is indeed the
delocalization upper bound. In contrast, for the eigenstates in the
chaotic regime, the distributions are skewed and broader. The tail
at small values of Lk does not change as j increases, showing that
the highly localized states persist, while the portion of the states
with large Lk decreases, suggesting that for large system sizes,
none of the eigenstates reach values of Lk > 1=2.

The ubiquitous scarring revealed by our studies motivates the
question of whether scarring in other quantum models is also the
rule. We have found hints in the literature suggesting that our
findings may actually be quite general. For example, in ref. 22, the
authors reconstruct significant portions of the spectrum of a
quantum chaotic system using only periodic orbits. This means
that all of these eigenstates are described by those periodic orbits
and are therefore scarred. In ref. 20, the authors claim that the
great majority of the eigenstates of the hydrogen atom in a
magnetic field may be related to periodic orbits, indicating that
scars must be the rule. But to provide a definite answer, a phase-
space analysis similar to the one presented here is needed.

Quantum ergodicity. We have so far discussed two concepts –
quantum scarring and phase-space localization – that are related,
but are not equal. How about their relationship with quantum
ergodicity? In the classical limit, a system is ergodic if the tra-
jectories cover the energy shell homogeneously. We then adopt
the same definition for quantum ergodicity. To quantify how
much of the energy shell is visited on average by the evolved state
ρ̂ðtÞ ¼ e�iĤDt ρ̂ eiĤDt , we consider the infinite-time average54,55,

ρ ¼ lim
T!1

1
T

Z T

0
dt ρ̂ðtÞ; ð4Þ

and compute Lðϵ; ρ̂Þ � Lðϵ; ρÞ with Eq. (3). If the whole energy
shell at ϵ is homogeneously visited by ρ̂, then Lðϵ; ρ̂Þ ¼ 1. We
thus say that a quantum state ρ̂ is ergodic over the energy shell ϵ if
Lðϵ; ρ̂Þ ¼ 1. According to this definition, all stationary states in
the chaotic region of the Dicke model are non-ergodic, since
Lðϵk; ρ̂kÞ ¼ Lðϵk; ρ̂kÞ≲ 1=2, as shown above.

How about non-stationary states, such as coherent states or
random states, are they ergodic? We study the evolution of initial
coherent states Ψð0Þj i ¼ x0j i ¼ P

kck Ekj i with mean energies
ϵ=−0.5, that are in the chaotic region (see Methods). We select
both coherent states that are highly localized and delocalized in the
energy eigenbasis, with the degree of delocalization measured by

the participation ratio PR ¼ ðPkjckj4Þ
�1
. Their energy distribu-

tions are shown in Fig. 3a1–g1. The components of the states with
low PR are bunched around specific energy levels (Fig. 3a1, b1),
exhibiting the comb-like structure typical of scarred states6. As PR
increases, the coherent states become more spread in the energy
eigenbasis, looking more similar to the random state Ψð0Þj i ¼
Rϵj i shown in Fig. 3h1, whose mean energy is also ϵ=− 0.5.
The evolution of the survival probability, SPðtÞ ¼

j Ψð0Þh je�iĤDt Ψð0Þj ij2, for the coherent states with low PR leads
to large revivals before the saturation of the dynamics56, as seen
in Fig. 3a2, b2, c2. This contrasts with the evolution of the
coherent states with large PR, such as those in Fig. 3d2–g2, and
the evolution of the random state in Fig. 3h2. In these cases, the
approach to the asymptotic value of SP(t) is much smoother and
exhibits the so-called correlation hole, which corresponds to the
ramp towards saturation. The correlation hole reflects the
presence of correlated eigenvalues and is a quantum signature
of classical chaos57–59.

The values of Lðϵ; ρ̂Þ for the states in Fig. 3a1–h1 are indicated
in Fig. 3a3–h3. The random state is indeed ergodic, reaching
L � 1. For the coherent states, L increases as PR does, but even

for the states with the largest values of the participation ratio, L is
still slightly under 1. The analysis of the dependence of L on
system size is done in Fig. 3i, j. The distribution of L for random
states (Fig. 3j) gets narrower and better centered at L ¼ 1 as j
increases, confirming that these states indeed behave ergodically.
The distribution for the coherent states (Fig. 3h) is much broader.
The center moves towards larger values as j increases, but it is not
clear whether there will ever be a significant portion of the initial
coherent states with L � 1.

In Fig. 3a3–h3, we plot the projected time-averaged Husimi
distributions eQϵ;ρðQ; PÞ for the states in Fig. 3a1–h1. Remarkably,
even for the coherent states with high PR, which do not exhibit
any comb-like structure in their energy distributions and do not
show revivals in the evolution of their survival probability, we still
see an enhancement around unstable periodic orbits, as revealed
by a careful inspection of Fig. 3d3–g3 and in contrast with the
absence of any pattern for the random state in Fig. 3h3. This
unexpected manifestation of dynamical scarring can only be
observed in phase space, having no identifiable signature in the
energy distribution of the initial states or in the evolution of the
survival probability. Thus, revivals in the long-time quantum
dynamics are signs of a scarred initial state, but lack of revivals do
not exclude the presence of scarring, it just indicates that if it
exists it is at a low degree.

Discussion
The three main concepts investigated and compared in this
work were quantum scarring, phase-space localization, and
quantum ergodicity. We showed that for the Dicke model, all
eigenstates in the chaotic region are scarred, although with dif-
ferent degrees of scarring and different levels of phase-space
localization. Evidently, an eigenstate that is strongly scarred is
also highly localized in phase space, but a single eigenstate may be
scarred by different periodic orbits and reach levels of delocali-
zation almost as high as a random state. We also showed that any
pure state – even without any trace of scarring – is localized in
phase space, and that ergodicity is an ensemble property,
achievable only through temporal averages. Thus, scarring,
localization and lack of ergodicity are not synonyms, although
connections exist.

The ubiquitous scarring of the eigenstates does not immedi-
ately translate into the breaking of quantum ergodicity. All
eigenstates are certainly non-ergodic, since they never reach
complete delocalization in phase space, but if a non-stationary
state visits on average the available phase-space homogeneously,
then it is ergodic. Random states, for example, are ergodic. The
analysis of initial coherent states showed that some are heavily
scarred, resulting in the strong breaking of ergodicity that
translates into the usual revivals of the survival probability. More
interesting is the subtle behavior of the majority of the initial
coherent states, which do not display revivals in the quantum
dynamics or the comb-like structure in their energy distributions,
but yet show some degree of scarring.

Analyses that focus on the Hilbert space, such as the energy
distribution of the initial states or the fluctuations of eigenstate
expectation values in Peres lattices and comparisons with ther-
modynamic averages, that are often done in studies of the
eigenstate thermalization hypothesis (ETH), may miss the ubi-
quitous scarring observed in this work. For this feature to be
revealed, one needs to look at the structures of the states in
phase space.

Our results for the Dicke model are, of course, important, due
to the widespread theoretical interest in this model and the fact
that it is employed to describe experiments with trapped ions and

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21123-5 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:852 | https://doi.org/10.1038/s41467-021-21123-5 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


superconducting circuits. But the repercussion of the findings
discussed here goes beyond the limit of spin-boson systems by
raising the question of whether scarring in other quantum sys-
tems is also the rule and not the exception. Our work provides the
appropriate tools to address this question. The phase-space
method that we developed is applicable to any quantum system
that has a tractable phase-space. Whether these studies could
eventually be extended also to interacting many-body quantum
systems, such as interacting spin-1/2 models, will depend on the
viability of their semiclassical analysis, and some recent works
give reasons for optimism60–62.

Methods
Classical Hamiltonian. To construct the classical Hamiltonian in a four-
dimensional phase space M with coordinates x= (q, p;Q, P), we use the Glauber-
Bloch coherent states xj i ¼ q; pj i � Q; Pj i30,34,63–66. They are tensor products of

the bosonic Glauber coherent states q; pj i ¼ e�ðj=4Þ q2þp2ð Þe
ffiffiffiffiffi
j=2

p
qþipð Þ

� �
ây 0j i and the

pseudo-spin Bloch coherent states Q;Pj i ¼ 1� Z2

4

� �j
e QþiPð Þ=

ffiffiffiffiffiffiffiffi
4�Z2

p½ �Ĵþ j;�jj i, where
Z2=Q2+ P2, 0j i denotes the photon vacuum, j;�jj i designates the state with all
atoms in their ground state, and Ĵþ is the raising atomic operator. The classical
Hamiltonian is given by

hclðxÞ ¼
ω

2
ðq2 þ p2Þ þ ω0

2
Z2 þ 2γQq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

4

r
� ω0:

ð5Þ

Efficient basis and system sizes. The efficient basis is the Dicke Hamiltonian (1)
eigenbasis in the limit ω0→ 0, which can be analytically obtained by a displacement
of the bosonic operator Â ¼ âþ ð2γ=ðω

ffiffiffiffiffi
N

p
ÞÞĴ x and a rotation of− π/2 around the

y axis of the collective pseudo-spin operators Ĵx ; Ĵ y ; Ĵ z
� �

! Ĵ
0
z ; Ĵ

0
y ;�Ĵ

0
x

� �
,

N; j;m0j i ¼ ðÂyÞNffiffiffiffiffi
N!

p N ¼ 0; j;m0j i; ð6Þ

where N is the eigenvalue of the modified bosonic number operator Â
y
Â and

m0 ¼ mx is the eigenvalue of the original collective pseudo-spin operator Ĵx . The
modified bosonic vacuum states in N ¼ 0; j;m0j i ¼ N ¼ 0j i � j;m0j i are Glauber
coherent states N ¼ 0j i ¼ �2γm0=ðω

ffiffiffiffiffi
N

p
Þ

��� E
. The Hilbert space dimension of this

basis is given by D ¼ ð2jþ 1ÞðNmax þ 1Þ, where Nmax designates a cutoff of the
modified bosonic subspace.

This basis allows to work with larger values of j by reducing the value of Nmax
required for convergence of the high-energy eigenstates. With j= 100 and Nmax ¼
300 (D= 60,501), we are able to get 30,825 converged eigenstates covering
the whole energy spectrum up to ϵ= 0.853. Having converged eigenstates in
such a high-energy regime would be infeasible with the usual Fock basis for
j= 10044,67–69.

Husimi projection and localization measure. To compute the Husimi projection
given in Eq. (2) and the localization measure given by Eq. (3), one has to compute
integrals of the form

ef ðQ;PÞ ¼ Z Z
dqdp δðϵ� hclðxÞÞf ðxÞ; ð7Þ

where x= (q, p;Q, P) and f(x) is a non-negative function in the phase space. For

the localization measure, note that Lðϵ; ρ̂Þ�1 ¼ 1
N

RR
dQdP ef 2ðQ;PÞ with f 2 ¼ Q2

ρ̂ ,

N ¼ ðRRdQdP ef 1ðQ;PÞÞ2=VðϵÞ with f 1 ¼ Qρ̂ , and VðϵÞ ¼ RR
dQdPef 0ðQ; PÞ with

f0(x)= 1.

Fig. 3 Dynamical behavior of coherent and random states. a1–g1 Energy distribution for coherent states with different values of PR and centered at ϵ=
−0.5, j= 100. h1 Energy distribution for a random state Rϵ

�� �
with energy width σ= 0.3 centered at ϵ=−0.5, j= 100. a2–h2 Quantum survival probability

(gray solid line), its running average (blue solid line) and its asymptotic value (black dashed line) for the corresponding states of panels a1–h1. a3–h3
Projected Husimi distributions of the time-averaged ensemble, eQϵ¼�0:5;ρ for the corresponding states of panels a1–h1 with the values of Lðϵ ¼ �0:5; ρ̂Þ
indicated. i Distribution of Lðϵ; ρ̂Þ for a set of 1551 coherent states that are evenly distributed along the atomic variables (Q, P) at ϵ=−0.5 and p= 0.
This is done for system sizes j= 20, 30, 40, 50, 100, as indicated. j Distribution of Lðϵ; ρ̂Þ for 500 random states with ϵ=−0.5 and σ= 0.3 for j= 20, 30,
40, 50, 100.
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By using properties of the δ function, those integrals are reduced to

ef ðQ; PÞ ¼ Z pþ

p�

dp

P
q±
f ðq± ; p;Q; PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðϵ; p;Q; PÞp ; ð8Þ

where q± are the two solutions in q of the second-degree equation hcl(q, p;Q, P)= ϵ,

Δðϵ; p;Q; PÞ ¼ ∂hcl
∂q

ðq ± ; p;Q; PÞ
2����
����

¼ 2ωω0
ϵ

ω0
þ 1� Q2 þ P2

2

	 

þ 4γ2Q2 1� Q2 þ P2

4

	 

� ω2p2;

ð9Þ

and p± are the two solutions in p of the second-degree equation Δ(ϵ, p,Q, P)= 0.
Because of the form of the weight 1=

ffiffiffiffi
Δ

p
, the integral given by Eq. (8) may be

computed efficiently using a Chebyshev-Gauss quadrature method.
It is worth noting that a quantum state with a Wigner distribution that is

constant in an energy shell will lead to a Husimi function that needs not to be
constant within the same energy shell. This is because the Husimi distribution is
the convolution of the Wigner distribution with the Gaussian Wigner distributions
of the coherent states, which have different energy widths due to the geometry of
the energy shells in the phase space. This rather marginal effect may be seen in
Fig. 3h3, where there is a barely visible weak concentration towards the center of
the plot causing L to be slightly under 1. We stress that this effect is not related to
quantum scarring. It is just a manifestation of the phase-space geometry in the
Husimi distributions.

Coherent states. The coherent states xj i are described by four coordinates x=
(q, p; Q, P). To select coherent states at a given energy ϵ, we solve the
second-degree equation hcl(q, p; Q, P)= ϵ for q, which yields two solutions
qþðϵ; p;Q;PÞ≥ q�ðϵ; p;Q; PÞ59. All of the initial coherent states shown in Fig. 3
have bosonic variables given by q ¼ qþðϵ ¼ �0:5; p;Q; PÞ and p= 0. The
coherent states shown in Fig. 3a1-g1 have atomic coordinates given by (Q, P)=
(1.75, 0) a1, (0.5, 0.75) b1, (0.75, 0.5) c1, (1.25, 0.25) d1, (−1.25, 1) e1, (−1.25,
0.75) f1, and (−0.75, 0.5) g1. The atomic coordinates of the 1551 coherent states
whose distributions of L are shown in Fig. 3i were selected by constructing a
rectangular grid with step ΔQ= ΔP= 0.05 from ðQi; PiÞ ¼ ð− 2;− 2ÞðQi;PiÞ ¼
ð−2;−2Þ to (Qf, Pf)= (2, 0). Of the 3321 points inside of this grid, 1551 have
allowed values of Q, P (i.e. they satisfy Q2+ P2 ≤ 4) and fall inside of the energy
shell at ϵ=−0.5 (i.e. there exists qþðϵ ¼ �0:5; p ¼ 0;Q; PÞ). We use these 1551
coherent states to compute the distributions in Fig. 3i.

Random states. The state Rϵj i ¼ P
kck Ekj i is built by sampling random numbers

rk > 0 from an exponential distribution λe−λx and random phases θk from a uni-
form distribution in [0, 2π). We use

ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rkρðEkÞ
νðEkÞM

s
eiθk ð10Þ

where ν(E) is the density of states, ρ(E) is a Gaussian profile of width jσ centered at
energy jϵ, andM ensures normalization. This way, Rϵj i has a defined energy center
ϵ, where the Husimi projection and the localization measure are calculated59,70.
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