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ABSTRACT

Identification is the core of any authentication protocol design as the purpose of the au-
thentication is to verify the user’s identity. The efficient establishment and verification of
identity remain a big challenge. Recently, biometrics-based identification algorithms gained
popularity as a means of identifying individuals using their unique biological characteris-
tics. In this paper, we propose a novel and efficient identification framework, ActID, which
can identify a user based on his/her hand motion while walking. ActID not only selects a set
of high-quality features based on Optimal Feature Evaluation and Selection and Correlation-
based Feature Selection algorithms but also includes a novel sliding window based voting
classifier. Therefore, it achieves several important design goals for gait authentication based
on resource-constrained devices, including lightweight and real-time classification, high
identification accuracy, a minimum number of sensors, and a minimum amount of data
collected. Performance evaluation shows that ActID is cost-effective and easily deployable,

satisfies real-time requirements, and achieves a high identification accuracy of 100%.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

User authentication is an effective mechanism to protect ma-
licious access to sensitive resources. Identification is a cru-
cial component in the authentication protocol design as the
purpose of the authentication is to verify the identity of
the user (Ailisto et al., 2005; Gafurov et al., 2006; Mantyjarvi
et al.,, 2005; Nickel et al., 2012). Over the past few decades,
several types of identification technologies have been devel-
oped that can uniquely identify users and prevent imperson-
ation. These identification solutions aim to provide a practi-
cal and cost-effective approach to easily identify the user as
well as offer a smooth user experience, but challenges remain.
Username/password-based identity is widely adopted in the
digital world (Lin and Hwang, 2003), yet they are susceptible to
hacking, theft, and fraud. A digital signature based on crypto-
graphic algorithms is another popular approach for building a
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verifiable identity (Merkle, 1988). It is an effective solution, but
it requires a powerful processor to generate digital signatures;
therefore, resource-constrained devices have difficulty in cre-
ating such an identity. Recently, a hardware-based solution,
Physical Unclonable Function (PUF) (Suh and Devadas, 2007),
has evolved to identify users, and many authentication proto-
cols are built based on it. PUF provides a strong identity solu-
tion but it requires extra hardware support. Similarly, tokens
and access cards (Tan et al., 2001) provide a hardware-based
solution for identity.

Biometrics-based identity solutions are the next frontier
of identification and verification (Alizadeh et al., 2016). They
are considered more effective than the aforementioned digi-
tal identities because of the following reasons. First, biomet-
rics are a natural part of the user. Unlike other traditional
means of identity verification such as usernames/passwords,
PINs, tokens, etc., biometrics cannot be forgotten, lost, or
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stolen (Derawi et al., 2010). Second, biometrics are unique
for everyone, therefore they are hard to be forged. Third, the
biometrics-based identities are easily verifiable by measuring
the biometric characteristics (Sha and Kumari, 2018).

Many biometrics-based identities have been developed
and applied in modern computing systems. For example,
iPhone X and later versions, and Microsoft Surface Pro use
facial recognition techniques to identify legitimate users
app (2017); mic (2017). The fingerprint is the most widely
adopted biometrics-based identity used in smartphones and
PCs (Ohana et al., 2013). ECG/EEG patterns (Chatra, 2014; Dey
et al., 2014), Iris patterns (Wildes, 1997), and palm vein pat-
terns (Zhang and Hu, 2010) are other popular biometrics-
based identities. All these solutions require special hardware
to measure the biometrics. This can be expensive, inconve-
nient as well as very intrusive to the user’s experience. The re-
cent solutions of behavioral biometrics are inexpensive, more
appropriate than conventional biometrics and/or they can
be used in combination with traditional biometrics such as
multi-factor authentication to improve security and usabil-
ity (Gafurov and Snekkenes, 2009). However, some biometrics-
based authentication systems necessitate user interaction,
which is inconvenient for the user. Typing the password, lift-
ing the phone for face id, and pressing the fingerprint sen-
sor are just a few examples. This would be much more diffi-
cult for the user during continuous authentication, as the user
must authenticate several times (Crawford et al., 2013; Sae-
vanee et al., 2015; Syed Idrus et al., 2014). This problem can
be solved by activity sensor based identity solutions such as
wearable sensor based gait recognition (Kumar et al., 2016),
touch gestures based recognition (Mondal and Bours, 2015),
keystroke based recognition, etc., since the biometric patterns
are captured implicitly while the user interacts with the device
(Abuhamad et al., 2021). These approaches address the pri-
vacy (Chen et al., 2012) and power consumption (Gafurov and
Snekkenes, 2009) issues better than traditional vision based
activity recognition.

Based on the data collected by activity sensors, such as ac-
celerometers and gyroscopes, researchers have analyzed the
activity patterns of humans and have found unique traits that
can be used as the identity. In literature, activity sensors have
been used in identifying users based on their keystroke dy-
namics (Lee et al,, 2018), hand movements (Casanova et al.,
2012; Garcia et al., 2016), and gait patterns (Ailisto et al,,
2005; Al Kork et al, 2017; Blasco et al.,, 2016; Chen, 2014;
Damasevicius et al., 2016a; Damasevicius et al., 2016b; Derawi
et al., 2010; Gafurov et al., 2006; Guan et al., 2011; Johnston
and Weiss, 2015; Kwapisz et al., 2010; Liu et al., 2017; Manty-
jarvi et al., 2005; Marsico and Mecca, 2019; Nickel et al., 2012;
Primo et al., 2014; Rong et al., 2007; Su et al., 2014; Sugimori
et al., 2011; Sun and Yuao, 2012; Thang et al., 2012; Xu et al,,
2016; Yang et al., 2016). These existing approaches produce
promising results, but most of them either use several sen-
sors deployed around the body, which is not practical in real-
life scenarios or employ computation-heavy algorithms based
on a large number of features. The limitations of these ap-
proaches in the real-world applications include willingness to
use wearable sensors, ability to wear them, success rate, scal-
ability, ease of use, battery life, and the approach’s usefulness
(Chen et al., 2012).

As smartwatches and wristbands become pervasively
available, many sensors, such as accelerometers and gyro-
scopes embedded on these devices can be used as measuring
devices for biometrics. Therefore, we can design solutions that
construct and verify digital identity for users by using these
sensors to measure biometrics in a cost-effective and conve-
nient way. In addition, this approach is not expensive and can
be used in continuous authentication since it does not require
any user interaction with the device.

In this paper, we propose ActID, an efficient framework for
activity sensor based user identification, to efficiently identify
users based on sensors deployed at the wrist. The main goal of
our classification algorithm design is to overcome challenges
resulting from the authentication application requirements
and resource-constrained devices used in the application. We
aim to design an efficient framework that identifies users with
high accuracy in real-time, based on a minimal number of
sensors, a minimal amount of data, as well as using only
lightweight classification algorithms. The novelty of our pro-
posed method is four-fold. First, we employ the Optimal Fea-
ture Evaluation and Selection method (OFES) (Kayastha, 2019;
Kayastha and Sha, 2019; Sai Ram et al., 2020) and Correlation-
based Feature Subset Selection (CFSS) (Hall, 1999) algorithms
to evaluate the extracted features and select a set of high-
quality features that can distinctly identify individuals. There-
fore, we can keep the size of the feature set as small as possi-
ble. It also reduces the algorithm complexity. Second, we de-
fine a novel classification algorithm, Sliding Window based
Voting classifier for gait authentication which reuses the data
to reduce the amount of data and adapts voting to improve
the identification accuracy. Third, we provide a smooth user
experience with our proposed framework. Unlike other re-
search methods, where the users must wear multiple sen-
sors on different parts of the body, our experiment only re-
quires the users to wear one wrist sensor and walk normally
as they do on a plain surface for less than a minute to train
the classifier. Fourth, we reduce the number of sensors by us-
ing only an accelerometer sensor and improve the cost ef-
ficiency of user classification based on activity sensor data.
The performance evaluation based on a simple prototype with
a multi-class classifier shows that the proposed framework
can achieve high accuracy of 100% when applied to a 30 user
dataset, which is better than the similar approaches includ-
ing the efforts presented in (Al Kork et al., 2017; Damasevicius
et al.,, 2016a; Gafurov et al., 2006; Johnston and Weiss, 2015;
Kumar et al., 2016; Kwapisz et al., 2010; Liu et al., 2017; Nickel
et al,, 2012; Yang et al., 2016).

The contribution of the paper is three-fold. First, we ana-
lyzed challenges in the activity sensor based user identifica-
tion. Second, we proposed a novel classification algorithm that
features sliding window technique and voting method. Third,
we built a prototype for activity sensor based user identifica-
tion and carried out an extensive performance evaluation.

The rest of the paper is organized as follows. Section 2 dis-
cusses the motivation behind this study. Section 3 details
the design of the ActID framework. Section 4 presents the
performance evaluation based on a simple prototype im-
plementation. Section 5 lists a set of related work. Fi-
nally, we conclude the paper and discuss future work
in Section 6.
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Fig. 1 - The ActID Framework.

2. Motivation

One of the common problems of authentication is its intrusive
way of authenticating users. It could be typing the password,
raising the phone for face id, touching the fingerprint sensor,
giving the voice to identify the user. These kinds of authenti-
cations require user interaction every time the user attempts
authentication, which leads to lots of inconvenience to the
user. Syed Zulkarnain et al. studied on finding the profile of
an individual like age, gender etc., based on their behavioral
characteristics of keystroke dynamics (Syed Idrus et al., 2014).
It would be interesting to see if the same can be achieved with
activity sensor data. Heather Crawford et al. proposed a frame-
work that integrates multiple behavioral biometrics to imple-
ment an effortless and continuous authentication mechanism
without user interaction (Crawford et al., 2013). Similarly, Sae-
vanee et al. proposed a novel text-based multimodal biomet-
ric approach usinglinguistic analysis, keystroke dynamics and
behavioral profiling so that the number of intrusive authen-
tication requests required for high security applications will
be decreased (Saevanee et al., 2015). All these approaches are
trying to achieve authentication without any intrusion to the
user. We believe activity sensor based user identification is
less intrusive because it does not require much user interac-
tion with the device thus to make authentication easier.
Activity sensor based biometrics has been a hot research
topic in the last several years. The pervasive availability of ac-
tivity sensors, such as accelerators and gyroscopes, lead to
many novel designs and innovations that aim to construct
user identity based on the activity sensor data. Previous de-
signs have used different activities such as walking, running,
jumping, and arm gestures for identities (Abate et al., 2017;
Gupta et al., 2013; Nickel et al., 2012). However, we have not
yet seen large-scale deployments of these technologies be-
cause of the following concerns. First, we have observed the
deployment of sensors on different body parts, including waist
(Ailisto et al., 2005; Mantyjarvi et al., 2005), leg (Gafurov et al,,
2006), sternum (Vural et al., 2013), wrist (Kumar et al., 2016),
and on multiple body locations at the same time (Al Kork et al.,
2017). Many of them are not practical in real-life scenarios.
Considering the rising popularity of smartwatches (e.g., Apple
Watch) and activity bands (e.g., Fitbit), we believe it is more

practical to make use of activity data collected with the help
of the activity sensors installed on these devices to construct
identity. In this way, we do not need to add any extra sensors to
the human body. Also, we need to reduce the number of sen-
sors so that the design will be cost-effective. Second, the big
size of the feature set increases the complexity of the iden-
tification algorithm. We need to keep the feature set size as
small as possible. On the other hand, we do not want to miss
important features that work well to produce the uniqueness
of identity. It is a challenge to identify a user accurately based
on a small set of high-quality features. Third, there is still
space to improve the accuracy of existing activity sensor based
identification algorithms. Fourth, several user identification
applications have real-time requirements, yet many embed-
ded devices such as smart lockers and smart wristbands are
heavily resource-constrained, including a slow processor and
a small-size memory. Therefore, the user identification algo-
rithms need to be lightweight so that it can be easily executed
on various smart devices. Finally, to provide a smooth user ex-
perience and to satisfy real-time requirements, the identifica-
tion should be completed in a very short period, like less than
a minute. Hence, only a small set of data should be collected.

We tackle the above challenges by designing the ActID
framework, which consists of a feature evaluation and selec-
tion mechanism, a set of high-quality features from multiple
perspectives, and a sliding window based identity modeling
algorithm.

3. Design of the ActID framework

The ActID framework is depicted in Fig. 1. The framework con-
sists of two phases, the identity modeling phase and the identifi-
cation phase.

In Fig. 1, the identity modeling phase is shown by the path
of blue arrows, and the identification phase is depicted by the
path of red arrows. In the first phase, when the user walks
around, the changes in motion are captured by an activity
sensor consisting of an accelerometer and gyroscope, which
is placed on the wrist of the user. The sensing data is then
transferred to a smart device via a Bluetooth channel. Next,
the received data is filtered, resampled, and interpolated to
improve the quality of the data. A set of features are extracted
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Fig. 2 - Samples of Raw Data.
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Fig. 3 - Samples of an accelerometer readings of the same user for two sessions.

from the processed data. These features consist of both
statistical attributes such as mean, standard deviation, and
variance, as well as physical attributes like peak value for an
acceleration of hand motion. Feature evaluation algorithms,
including Optimal Feature Evaluation and Selection (OFES)
and Correlation-based Feature Subset Selection (CFSS), are
used to evaluate extracted features and select high-quality
features. Then, we establish a Sliding Window based Voting
(SWV) classifier as the identity model using a sliding window
algorithm and voting method. In the second phase, user
activity data is collected similar to the first phase. Subse-
quently, the collected user data is given as the input to the
trained classifier, and the classifier identifies the user. Next,
we present the details of the ActID framework.

3.1.  Data acquisition
In our experiment, we collect activity data from 30 users in two
sessions. In each session, users walk as they usually walk on a
plain surface for 60 s. We use MetaWear C board mbi (0000) to
collect the activity data. The MetaWear C board comes in
a very small round form-factor equipped with two sensors
including an accelerometer and a gyroscope. The sensor is
placed on the wrist of the user. The sensor captures the hand
movement of users as they walk. Sensor readings consist of an
accelerometer and gyroscope readings along x, y, and z-axes.
Therefore, each data point is a 6-tuple, (Ax, Ay, Az, Gx, Gy, Gz),
where A; and G; specify an accelerometer and gyroscope on
the i axis, respectively. Each session collects 60 s of data sam-
pled at a frequency of 100 Hz.

Among the two sessions, the data collected in the first ses-
sion is used to construct the classifier as illustrated in phase
one. The data collected in the second session will be used to

test the classifier in phase two. The output of the classifier is
interpreted as the identity of the user.

Figure 2 represents the sample consisting of 0.01 s of raw
data. Figure 3 displays the sample of an accelerometer data of
a user in X, Y, and Z dimensions for two sessions (S1 and S2).
In the figure, blue color lines represent session 1 data where
as orange color lines represent session 2 data. Several stud-
ies (Gafurov et al., 2006; Yang et al., 2018) have used a com-
bined signal of all three dimensions by using a vector sum-
mation method. These approaches have the advantage of re-
ducing computation time by reducing dimensions; however, if
the amplitude of the signal in a particular dimension is much
higher than others, dimensions with smaller amplitude signal
become ignored. In our study, we use data in all three dimen-
sions separately for feature computation and comparison be-
cause this strategy helps in identifying high-quality features.
3.2 Data pre-processing
We pre-processed the activity data using interpolation and re-
sampling. Resampling is the process of filling the missing data
point with the nearest possible value using the linear inter-
polation method. Figure 4 shows the scatter plot of a set of
sampled data before and after interpolation, where the blue
dots represent the data before interpolation and the orange
dots depict the data after interpolation. In addition, because
the first few and last few data points may contain more noise,
we eliminated the first and the last 2000 data points in the
dataset and selected 2000 data points.

3.3. Feature evaluation and selection

One of the mostimportant steps in developing any biometrics-
based identification algorithm is to identify unique features of
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Fig. 4 - Results of Resampling and Interpolation.

the biometric dataset (Derawi et al., 2010). On one hand, the
efficiency of the identification algorithm is influenced by the
size of the feature set. Typically, to identify a user, a single fea-
ture may not be sufficient. Most of the previous studies use
a vector of features in their algorithms (Al Kork et al., 2017;
Ohana et al., 2013) which increases both the size and dimen-
sion of the dataset and results in the increase of complexity
of the identification algorithm. On the other hand, the accu-
racy of the results of identification is primarily influenced by
the quality of selected features. We would need high-quality
features that can differentiate any two users distinctly which
increases the accuracy of the user identification significantly.
Distinguishing a particular user from other users is not sig-
nificant if they are compared using a weak feature. Thus, by
excluding weak features based on the results of the feature
evaluation, we seek to find a minimum set of high-quality fea-
tures.

We select a minimum set of high-quality features for gait
identification based on the results of our feature evalua-
tion by applying Optimal Feature Evaluation and Selection
(OFES) (Kayastha, 2019; Kayastha and Sha, 2019; Sai Ram et al,,
2020) and Correlation-based Feature Subset Selection (CFSS)
(Hall, 1999) algorithms. First, we extract biometric features
which consist of statistical attributes such as mean, median,
and variance, as well as physical attributes like peak value for
an acceleration of hand, from the processed raw dataset. OFES
provides two of the measures, Farness Value and Farness Ratio
to evaluate features (Kayastha, 2019; Kayastha and Sha, 2019;
Sai Ram et al., 2020). Based on these values, we rank the fea-
tures according to the ranking method of OFES and identify
the high-quality features subset. Second, we reduce the num-
ber of sensors used to collect data from users during the iden-
tification process in order to make a cost-effective design. To
do so, we select only the high-quality features from a sensor
that contributes to 70% of high-quality features or more. For
example, let’s say that among the top 10 selected features, the
first 7 features are from the accelerometer, and the last 3 fea-
tures are from the gyroscope sensor. Since the accelerometer
contributes to the majority (i.e., 70%) of the high-quality fea-

tures, we replace the last 3 features from gyroscope with ac-
celerometer features whose ranks are closest to those 3 gyro-
scope features. This way we select the 10 high-quality features
from the accelerometer sensor only. Third, we apply CFSS to
select the set of high-quality features that are correlated to the
class label, but independent of each other. To do so, for each
feature, we check correlation with every other feature with re-
spect to the class label and identify a set of features that are
independent of each other but correlated with the class label.

3.4.  Sliding window vote (SWYV) classifier

Satisfying the real-time requirements of the user is impor-
tant in identification. We need to collect only a small set of
data from the user so that identification completes in a very
short period and provides a smooth user experience. Achiev-
ing high accuracy with less amount of data is a challenge in
classification. Overcoming this challenge, we design Sliding
Window Vote (SWV) Classifier on top of a traditional classi-
fier. To make decisions on a small set of data, SWV utilizes
sliding windows which not only helps normalize the data but
also helps in reusing data in multiple windows. It also adopts
a voting method which helps to improve the accuracy of iden-
tification.

The sliding window method solves three issues. First, while
comparing two users, it is important to align their activity
cycles. Second, a small amount of data will not be sufficient
enough to classify a user. With a sliding window, we can gen-
erate more windows by overlapping and reusing a set of data.
Third, overlapping data between subsequent windows im-
proves the accuracy of the classification.

The design of SWV classifier (also referred to be SWV
for the rest of the paper) is depicted in Fig. 5. It consists of
three major components: a set of windows represented using
W1, Wy, Ws...., Wy, a traditional classifier, and an aggregator.

The windows are used to hold the data segmented from
the sensor data stream using the sliding window approach,
the main idea of which is presented in Fig. 6. As shown in the
figure, d; represents the data points at position i. The sliding
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Fig. 6 - Sliding Window Based Feature Extraction.

window takes the first window of WS data points beginning
at position d; and ending at position dys, and places it in W;
in Fig. 5. Then, it slides right by SI positions and takes the sec-
ond window of data starting at position d;,s; and ending at
position dys,s. This set of data will be placed into W,. This
process will be continued until W, is filled, which is the last
window of the data sequence.

In the sliding window approach, two parameters, Window
Size that is defined as the fixed amount of time for how many
data points contained in a window, and Sliding Interval that is
defined as a fixed amount of time for how many data points
the window will shift, have a big impact on the performance
of the classifier. Therefore, the values of these two parameters
should be carefully determined, which is achieved by the pro-
cess of determining optimal values of window size and sliding
interval represented in Fig. 5. Once the optimal values are de-
termined, they need to be kept the same for the rest of the
process.

The traditional classifier can be any existing lightweight
classifier such as Random Forest, Support Vector Machine
(SVM), K-Nearest Neighbor (KNN), and Naive Bayes Classifier.
Our SWV classifier is built and optimized based on these clas-
sifiers. The choice of classifier also impacts the performance
of the SWV classifier.

The last component of SWV is the aggregator. Data in each
window will be used as the input to the traditional classifier.
Accordingly, a class label will be generated for each window of
data. The aggregator generates the final class label by aggre-
gating the class label of each window. Majority voting is used
in the process of aggregating. In other words, the aggregator

counts the votes for each label and selects the label with the
highest number of votes.

SWYV is trained using the training dataset, which is pro-
duced from session one data collected in Section 3.1. First, we
find the optimal values for the parameters such as window
size and sliding interval, the process of which is discussed be-
low. Then, we generate windows of data with the optimal val-
ues of window size and sliding interval from session one data
of activity dataset as discussed before. After that, we extract
selected features from each window of data to generate a fea-
ture dataset. This feature dataset is used as a training dataset
and sent to the traditional classifier component as input to
train SWV.

To determine optimal values of Window Size and Sliding
Interval, first, we initialize window size with any small value
and a fixed size for Sliding Interval e.g., 0.5 s, corresponding to
50 data points. As before, we generate a training dataset from
session one data of the activity dataset. Then, we train any
traditional classifier with a training dataset. Similar to train-
ing data, we generate test data from session two data of the
activity dataset. Next, we test the classifier using test data to
measure accuracy. From our results, we observe that the ac-
curacy of the classifier increases with the increase of window
size until a certain point and then decreases. Hence, we in-
crease the window size, extract the feature dataset, and gen-
erate the classifier again. We repeat this process until the ac-
curacy of the classifier starts decreasing. Finally, we select the
window size which results in the highest accuracy of the clas-
sifier. Similarly, we determine the optimal sliding interval that
gives high accuracy by fixing the optimal value for window
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size and increasing the values of the sliding interval starting
from 0.01 s (sliding only one data point), 0.25 s, and so on. In
the process of determining sliding interval, we observe that
the accuracy of the classifier decreases with the increase of
sliding interval. However, with a sliding interval of 0.01 s, data
generation time is very long and accuracy is only a little higher
than in case of 0.25 s. Hence, we select 0.25 s as the optimum
sliding interval by trading off the accuracy with the efficiency.

After SWV is trained, it is used to identify the users. In this
process, a few seconds of user activity data is the input to the
SWYV, and the identity of the user will be the output of the clas-
sifier.

4, Experimental results

In this section, we first determine the parameters of the SWV
classifier such as optimal window size and sliding interval,
choice of the best classifier, selection of feature sets, and ac-
tivity data size. Next, we conduct a performance evaluation
of SWV based on the optimal parameters. The evaluation in-
cludes performance in the reduced data set, performance of
the scalability, and performance in the accuracy. Finally, we
perform a comparison between ActID and other frameworks.

4.1.  Description of dataset

As we discussed in Section 3, we select 20 s of activity data, i.e.,
2000 samples from the processed dataset of 60 s of data, i.e.,
6000 samples. The training and testing dataset is the feature
dataset calculated from the 20 s of activity data following the
window generation procedure as discussed in Section 3.4. As
detailed in Section 4.2.4, we find that 10 high-quality features
represent a great trade-off between the classification accuracy
and complexity.

Various window sizes and sliding intervals are used in the
process of determining their optimal values which are dis-
cussed in Section 4.2. We determine the optimum window
sizes of 6, 8, and 10 s for 10, 15, and 20 s of activity data respec-
tively, and 0.25 s as an optimum sliding interval in all three
cases. After that, the optimal values of window size and slid-
ing interval are used in the rest of the experiment for the spe-
cific activity data size. Later, these optimal values of window
size and sliding interval are used in the process of generating
feature dataset. For each specific feature, we will have two ses-
sions of feature dataset. Session one feature dataset was used
as train dataset whereas session two feature dataset was used
as test dataset.

4.2.  Finding optimal values of SWV parameters

4.2.1. Optimal feature set

In this experiment, we considered 96 features that are used
in (Kayastha, 2019; Kayastha and Sha, 2019; Sai Ram et al.,,
2020). We extract these features and apply OFES and CFSS al-
gorithms as we discussed in Section 3. To identify the high-
quality features, first, we ranked them from highest to low-
est based on Farness Value and Farness Ratio (Kayastha, 2019;
Kayastha and Sha, 2019; Sai Ram et al., 2020). Then, we iden-
tify the top 10 features each from the Farness Value and Far-

ness Ratio list. In both of these lists, 8 out of 10 features are
in common. Next, we select the top 10 features from both Far-
ness Value and Farness Ratio list considering the ranks of both
Farness Value and Farness Ratio. Table 1 represents the top 10
features selected. In the table, all the top 10 features belong
to accelerometer readings. Hence, we use only one sensor, i.e.,
an accelerometer to collect activity data during user identifi-
cation.

4.2.2. Optimal window size

This experiment was conducted to find the optimum window
size required to uniquely identify a person. We select SVM
classifier as our default standard classifier which is discussed
in the following subsections. To find the optimal window size,
we use various values of window sizes starting from 2 s and
a fixed size of sliding interval. For example, we use 0.5 s of
sliding interval for this experiment.

Figures 7 and 8 demonstrates the accuracy with different
window sizes for 15 and 20 s of activity data or data segment
respectively. In these figures, the x-axis represents the window
size in seconds whereas the y-axis represents the accuracy of
the SVM classifier. From both figures, we observe that, since
the size of the total dataset is fixed in this study, the graph
achieves a peak and then starts to fall. We select the window
sizes at the peak point which are 8 s and 10 s as optimum
values in the case of 15 and 20 s of activity data respectively.

4.2.3. Optimal sliding interval

Similar to window size, an experiment was conducted to find
the optimum sliding interval required to uniquely identify a
person. Likewise, when analyzing the impact of sliding inter-
val on the classification accuracy, we fix the window sizes to
optimal values of 8 s and 10 s for 15 and 20 s of activity data
respectively.

Figure 9 demonstrates the accuracy of SVM classifier with
different sliding intervals for 15 and 20 s of activity data. In
the figure, the x-axis represents the sliding interval in seconds
whereas the y-axis represents the accuracy of the SVM classi-
fier. We use different values for sliding intervals such as 0.01,
0.25,0.5, 1 s, and so on. As mentioned in Section 3.4, we skip
the sliding interval size 0of 0.01 s. We observe that since the size
of the total dataset is fixed in this study, the accuracy of the
classifier decreases with the increase in the sliding interval.
As per our analysis, 0.25 s of the sliding interval is an opti-
mum size of the sliding interval in both cases of 10 and 20 s of
activity data which results in the highest accuracy of the SVM
classifier.

4.2.4. Optimal number of features

The size of feature set impacts the accuracy as well as time
complexity of the classifier. Hence, it is necessary to select a
minimum number of high-quality features. We conduct an ex-
periment where a set of classifiers are constructed using vari-
ous classification algorithms and based on a different number
of selected features. We select four lightweight classification
algorithms which are widely used in user identification appli-
cations, including K-Nearest Neighbors (KNN), Support Vec-
tor Machine (SVM), Naive Bayes, and Random Forest Classifier.
Four different sets of top-ranked features with sizes 8, 10, 12,
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Table 1 - Top 10 features selected.

Rank  OFES Definition

1. Mean ACC X Mean of acceleration data along the x-axis. The mean is the most common measure of central
tendency. It is simply the sum of the numbers divided by the number of numbers.

2. Median ACC X Median of acceleration data along the x-axis. The median is also a frequently used measure of
central tendency. The median is the midpoint of a distribution.

3. Mean ACCY Mean of acceleration data along the y-axis.

4. Median ACCY Median of acceleration data along the y-axis.

5. Energy ACC X Energy of acceleration data along the x-axis. The total energy of a signal x is defined as the
sum of squared moduli.

6. Median ACC Z Median of acceleration data along the z-axis.

7. Mean ACC Z Mean of acceleration data along the z-axis.

8. Energy ACCY Energy of acceleration data along the y-axis.

9. Skewness ACC'Y Skewness of acceleration data along the y-axis. Skewness is a measure of symmetry, or more
precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same
to the left and right of the center point. We compute the Skewness by using the
scipy.stats.skew library in Python.

10. Root Mean Square ACC X Root Mean Square of acceleration data along the x-axis. The root mean square, also known as

the quadratic mean, is a statistical measure of the magnitude of a varying quantity, or set of
numbers. Its name comes from its definition as the square root of the mean of the squares
of the values.
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Fig. 8 - Impact of window size on 20 s of data.

and 14 are used to construct different classifiers and the ac-
curacy of each classifier is evaluated.

Figure 10 shows the results of the above experiment, where
the x-axis specifies the size of the feature set, and the y-axis
indicates the accuracy of the classifier constructed using a

different number of selected features. Each colored line rep-
resents the accuracy of a classifier constructed based on a
different classification algorithm for a specific number of se-
lected features. From the figure, we observe that classifiers
built based upon 4 different sets of features exhibit close per-
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formance in terms of accuracy, which is mostly between 90%
and 100% except for the Random Forest Classifier which re-
sults in around 85%. Classifiers built based on 8, 12, and 14
features have a very close performance for all four classifica-
tion algorithms, while the classifier on 10 features has slightly
higher accuracy. Hence, we select 10 feature set as the mini-
mum feature set that results in high accuracy. Among the four
classification algorithms, the SVM exhibits the best accuracy
while Random Forest Classifier has the least accuracy. Some
classification algorithms like Naive Bayes and Random For-
est Classifier are less sensitive to the number of features. The
above observations confirm our belief that a small number of
high-quality features is sufficient to build a highly accurate
classifier. It is also necessary to identify a set of high-quality
features to reduce the complexity of the classification process.

4.2.5. Optimal classifier

Our SWV classifier is built on top of a traditional classifier.
Therefore, the choice of different classifiers may impact the
performance of our voting classifier. We believe that deep
learning classifiers are too heavy for real-time user identifi-
cation. Hence, we test four popular lightweight classifiers in-
cluding KNN, SVM, Naive Bayes, and Random Forest Classifier.

Table 2 - Performance comparison between SWV and tra-

ditional classifiers in terms of accuracy.

Classifier Model = KNN Naive Bayes RFC SVM
SWV 96.66%  96.66% 86.66%  100%
Standard Classifier 96.53% 94.76% 85.76%  97.98%

We compute the accuracy of the SWV Classifier built on top of
these traditional classifiers for comparison.

A comparison between standard classifier and SWV classi-
fier built on top of respective standard classifier can be found
in Table 2. The results mentioned in the table represent the
accuracy of the multi-class classifier that classifies 30 users
with 20 s of activity data each. SWV classifier with traditional
classifier as Random Forest Classifier achieves the least accu-
racy of 86.66% whereas KNN, SVM, and Naive Bayes results in
the accuracy of 96.66%, 100%, and 96.66% respectively. For all
the four traditional classifiers, the SWV classifier improves the
accuracy. We select the SVM classifier as the best traditional
classifier for the SWV classifier since it achieves the highest
accuracy compared to others.
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Fig. 11 - Performance comparison between SWV classifier and other traditional classifiers.

4.3.  Performance evaluation of SWV

From the above experiment, we select SVM classifier as our
standard classifier to build SWV classifier, SWV-SVM, in terms
of accuracy, scalability, and stability when applied to a small
dataset.

4.3.1.  Performance comparison between SWV and traditional
classifiers

Figure 11 represents the performance of SWV-SVM with other
traditional classifiers. In the figure, the x-axis represents dif-
ferent classifiers whereas the y-axis represents the accuracy
of the classifier for 20 s of activity data. Random Forest Classi-
fier achieves the least accuracy of 85.76% whereas KNN, SVM,
and Naive Bayes results in the accuracy of 96.53%, 97.98%, and
94.76% respectively. SWV-SVM achieves the highest accuracy
of 100% when compared to others.

4.3.2.  Scalability of SWV

The accuracy of classifiers usually decreases with the increase
in the number of class labels in a multi-class classification
(Kumari and Thakar, 2017). Classifiers constructed based on
high-quality features should be scalable with the number of
class labels. In other words, classifiers should maintain high
accuracy with the increase in the number of class labels.

In this experiment, we compare the performance of the
SVM classifier (the best-performed classifier among the four
evaluated traditional classifiers) and SWV-SVM in 14, 20, 25,
and 30-class classification. The results are depicted in Fig. 12,
where the x-axis specifies the number of class labels, and the
y-axis indicates the accuracy of the classifier for 20 s of activ-
ity data. Blue color represents SVM classifier where red color
represents SWV-SVM classifier.

From the figure, we observe that, for all datasets with 14, 20,
25, and 30 users, SWV-SVM results in consistent high accuracy
while traditional SVM classifier’s accuracy decreases with the
increase of the number of users. Similar results are seen using
other traditional classifiers as well. It shows that SWV not only
improves the accuracy of traditional classifiers, but it is also
scalable to the size of labels.

4.3.3.  Stability of SWV when applied to a small dataset
Increasing the size of collected data will both result in a longer
data process and longer data collection time, and cause incon-
venience to the user. However, smaller activity data size may
not capture the entire cycle of walking. Therefore, an optimum
size of activity data is required.

Figure 13 demonstrates the accuracy of the SVM and SWV-
SVM with 10, 15, and 20 s of activity data. In the figure, the
x-axis represents the activity data size in seconds whereas
the y-axis represents the accuracy of classifiers. We observe
that SVM trained with 15 s and 20 s of activity data results
in similar performance with an accuracy of 97.7% and 97.96%
respectively whereas SVM trained with 10 s of activity data
results in slightly lesser accuracy of 95.74%. SWV classifier re-
sults in 100% accuracy in all three cases. In general, the accu-
racy of traditional classifiers decreases when the dataset size
gets smaller, e.g., 10 s. SWV exhibits a better performance than
the traditional classifier. As shown in the figure, it not only al-
ways has a better performance than traditional SVM but also
remains 100% accurate even when the dataset size is reduced
to 10 s. This helps to achieve real-time authentication.

4.4.  ActID with other similar user identification
approaches

In this section, we compare ActID with other similar user iden-
tification approaches. Table 3 shows the comparison of Ac-
tID with others in terms of a number of features, best clas-
sification method, user set size, activity data size, and accu-
racy. In the table, two measures including EER, and accuracy
are used to show the results. EER is defined as the equal error
rate which indicates that the proportion of false acceptances
is equal to the proportion of false rejections. The lower the
EER, the higher the accuracy of the identification.

In the table, Nickel et al. (2012) uses the highest number of
52 features with EER 8.24% whereas (Gafurov et al., 2006) uses
only one feature with EER 5% and 9%. We observe that both
the highest and least number of features result in a significant
decrease in accuracy. ActID uses an optimum number of 10
features which results in the highest accuracy of 100%.
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Table 3 — Comparison of our approach versus other approaches.

Paper Features Best Classification Size of User Activity data Results
Method Set size

Kumar et al. (2016) 31 features K-NN 12 2 min Accuracy: 95%

Damasevicius et al. (2016a) 10 features Heuristic (random 14 Accuracy: 95.52%

projections + PDFs
+ Jaccard distance)

Liu et al. (2017) 20 features (time and C4.5 decision tree 7 20 min Accuracy: 86.7%
frequency- domain) classifier

Johnston and Weiss (2015) 6 features Rotation Forest 59 5 min Accuracy: 84%
Nickel et al. (2012) 52 features K-NN 20 1.7 min EER: 8.24%
Al Kork et al. (2017) 3 types of features Manhatten method 23 4.5 min EER: 1.23% to 4.07%
Gafurov et al. (2006) 1 feature Histogram Similarity 21 EER: 5%, 9%

and Cycle Length

methods
Our Approach 10 features (time and SWV-SVM 30 10 sec Accuracy: 100%

frequency- domain)




12 COMPUTERS & SECURITY 108 (2021) 102319

Table 4 - List of high quality features.

No. Features

L, Energy ACC X

2 Energy ACCY

3. Energy ACC Z

4. Variance ACC X

5. Variance ACCY

6. Variance ACC Z

7. Mean ACC X

8. Mean ACCY

9. Median ACC X

10. Median ACCY

11. Root Mean Square ACC X
12. Root Mean Square ACC Z

Johnston and Weiss (2015) uses 5 min of activity data and
results in a lesser accuracy of 84%. Al Kork et al. (2017) re-
sults in low EER of 1.23% to 4.07% but collects 4.5 min of ac-
tivity data. Liu et al. (2017) collects 20 min of activity data
and results in lesser accuracy of 86.7%. ActID only uses 10 s
of activity data but results in the highest accuracy of 100%.
Nickel et al. (2012) and Kumar et al. (2016) select K-NN as
the best classification method, while ActID selects SWV-SVM.
Johnston and Weiss (2015) uses highest user set size of 59,
Liu et al. (2017) uses lowest user set size of 7, whereas Ac-
tID uses a user set size of 30. Damasevicius et al. (2016a) and
Kumar et al. (2016) results in accuracy of around 95% whereas
ActID results in the highest accuracy of 100%.

In summary, ActID uses an optimum number of features,
i.e., 10 features, least amount of activity data, i.e., 10 s, yet re-
sults in the highest accuracy of 100% when compared to oth-
ers.

4.5, Discussion

Stability of High-Quality Features. We believe the results of
our feature selection method are consistent across a differ-
ent number of users. To verify this hypothesis, we compare
the top 15 selected features obtained based on 14-user and 30-
user datasets. We have the following two observations. First,
all the top 15 features are from the accelerometer sensor. This
supports our hypothesis that an accelerometer alone may be
sufficient for identifying users based on their behavior. Sec-
ond, 12 out of the top 15 resulted features are in common. This
supports our hypothesis that the top-ranked features from our
feature selection process are consistent with gait characteris-
tics in different individuals. Table 4 lists the 12 common fea-
tures.

Analysis of the Perfect Accuracy. The accuracy results pub-
lished in this study are based on a 30-user dataset, using our
top 10 selected features as well as the optimal values of model
parameters, including window size, sliding interval, and data
segment size. Many factors may impact the accuracy, includ-
ing the number of users, the types of users, the choice of pa-
rameters, etc., so we believe, for larger size user sets, accu-
racy may not always be 100% but it could still be very close
to 100%, because in our experiments all participants are col-
lege students who may have similar activity patterns, which

can be considered as a challenging case for identification. In
the future, we plan to verify the results of both the feature
selection method and the SWV classifier (based on features
selected from our feature selection method) with a diversified
and large number of user sets.

The two sessions of user data are collected at separate
times as we tried to avoid unnecessary similarity introduced
in the data collection process. However, we also have to agree
that the changes in user’s moving patterns over time may have
an impact on the identification accuracy. We are currently in-
vestigating new approaches that can cope with the pattern
changes. This is our future work.

Efficiency Analysis of the Classification Algorithm. We be-
lieve our classification algorithm is lightweight. First, because
of the feature selection algorithm, we can significantly reduce
the number of features. This reduces the complexity of the al-
gorithm while maintaining high accuracy. The feature evalua-
tion is done before the classifiers are trained and it only needs
to be done once. We can perform feature evaluation on a pow-
erful device such as at the computing edge. Second, the clas-
sifier training phase can be separated from the identification
phase. The training phase is more computing-intensive than
the identification phase. Third, the identification phase is only
based on a small amount of data, 10 s of activity data. Fourth,
we can adjust the sliding intervals to keep the classification
phase even more lightweight; however, the impact of accu-
racy also needs to be considered. All the above designs make
the algorithm to be a lightweight algorithm. To verify these
arguments, we conducted a preliminary experiment to evalu-
ate the computing cost of the proposed algorithm in terms of
execution time as summarized below.

In the experiment, we first evaluated the execution time
of identification on an old Macbook Air (Early 2015 model)
with a 1.6 GHz Intel Core 5 processor (64-bit dual-core) and
8GB memory size. The identification only took 4 millisec-
onds. If we consider more computing-intensive tasks, fea-
ture extraction and classifier training, the execution time is
2 s and 33 milliseconds respectively. Although we were not
able to find a direct performance comparison between the
processing speed of Macbook Air (early 2015 model) and Ap-
ple Watch 6, we found a performance comparison between
MacBook Air (early 2015 model) processor and Snapdragon
200, as well as Apple Watch 6 processor and Snapdragon 200.
This enables us to have an indirect comparison. The report
from Notebookcheck (Hinum, 2020) said the processor of Ap-
ple Watch 6 is comparable to Snapdragon 200, while the pro-
cessor of MacBook Air (early 2015 model) is 10 times as fast
as the processor of Motorola Moto E i.e., which uses Snap-
dragon 200 Benchmarks (2021). Therefore, we estimate that
the execution time in the smartwatch (Apple Watch 6) would
be approximately 20 s for feature extraction, 330 millisec-
onds for classifier training, and 40 milliseconds for identifi-
cation. When we offload the feature extraction and classi-
fier training to a smartphone like the iPhone 12, which ex-
ecutes 3 times as fast as MacBook Air (early 2015 model)
(Benchmarks, 2021), the estimated execution time will be less
than 1 s for feature extraction and 11 milliseconds for clas-
sifier training. In conclusion, we believe our algorithm is suf-
ficiently lightweight to be executed on mobile devices, even
for smartwatches like Apple Watch 6, especially when we of-
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Table 5 - A summary of user identification based on activity sensor.

Study Subjects Sensor Location Results
Ailisto et al. (2005) 36 Waist EER: 6.4%
Mantyjarvi et al. (2005) 36 Waist EER: 7% - 19%
Gafurov et al. (2006) 21 Lower leg EER: 5%, 9%
Al Kork et al. (2017) 23 Leg, hand, wrist, pant pocket, shirt EER: 0.17% - 2.27%
pocket and bag (left and right side) EER: 1.23% - 4.07%
Hand (holding smartphone)
Derawi et al. (2010) 51 Pocket attached to the belt EER: 20.1%
(right-hand side of the hip)
Rong et al. (2007) 21 Waist EER: 5.6%, 21.1%
Sun and Yuao (2012) 22 ankle EER: 3.03%
Kwapisz et al. (2010) 36 Front pants leg pocket Accuracy: 82.1%,
92.9%
Thang et al. (2012) 11 Trouser pocket position Accuracy: 92.7%
(SVM)
Johnston and Weiss (2015) 59 Waist (smartwatch) EER: 2.6% - 8.1%

fload the heavy computing tasks to an edge device like the
iPhone.

Currently, we are developing a continuous authentication
protocol based on both smartwatch and smartphone. We will
build a prototype to quantitatively evaluate the CPU utiliza-
tion rate, communication cost, and power consumption.

5. Related work

Activity-based user identification has been an interesting re-
search topic. In this section, we list a set of work that is related
to our research.

5.1.  Activity sensor-based user identification

Biometrics-based user identification is an effective solution to
identify or verify individuals based on their unique physio-
logical or behavioral characteristics (Vacca, 2007). Physiologi-
cal biometrics is associated with the precise measurements,
dimensions, and physical traits of an individual. In contrast
to physical biometrics, behavioral biometrics are easily gath-
ered with existing hardware or wearable sensors that require
less power consumption, requiring only software for analysis
purposes. Hence, it makes behavioral biometrics cost-effective
and easy to implement. Our study falls into the category of be-
havioral biometrics.

In behavioral biometrics, activity sensor based user iden-
tification has shown great research potential in the last few
years.

One of the most popular activity-based biometric charac-
teristics is gait because researchers have shown it to be feasi-
ble means for authentication. Table 5 summarizes some of the
recent studies on gait recognition based on the activity sensor.
Ailisto et al. (2005) were the first to propose sensor-based gait
authentication. Their gait authentication was based on the ac-
celeration sensor that was attached to the user’s waist. They
applied cross-correlation as a measure of similarity achieving
6.4% of EER. Their approach was further developed and ana-
lyzed by Gafurov et al. (2006). Some designs have used sensors
attached to different parts of the body (e.g., leg, waist, hip, arm,

and all over the body) for gait authentication (Al Kork et al,,
2017), which is not practical in real-life scenarios. Therefore,
we have not yet seen large-scale deployments of these tech-
nologies.

5.2. Smartphone and wrist sensor based user
identification

Modern smartphones and wrist-wearables are equipped with
powerful sensors that capture activity sensor data of individ-
uals who carry them. These devices have become a rich data
source to measure human activities such as walking, jogging,
sitting, climbing stairs, and so on (Su et al., 2014). Hence, these
devices are unobtrusive, easier to carry, and convenient to col-
lect activity data for user identification compared to other
technologies. Nickel et al. (2012) developed a method to extract
gait features using the K-Nearest Neighborhood algorithm
and demonstrated its feasibility on smartphones achieving an
EER of 8.24%. Al Kork et al. (2017) developed a multi-model bio-
metric database for human gait using wearable sensors and a
smartphone. They achieved a very low EER of 0.17% to 2.27%.
At the same time, it can be noted that they have used five sen-
sor nodes on different body locations in addition to a smart-
phone with built-in accelerometer and gyroscope sensors held
in hand. We, on the other hand, have used a single sensor
node in our method. Also, their data collection time is 4.5 min
while our data collection time is 60 s out of which we use
only 10 s of data. Garcia et al. (2016) were the first to consider
hand dynamics for authentication based on hand movement
while opening a door. They used sensors, namely, accelerome-
ter, gyroscope, and magnetometer embedded in Google Nexus
4 smartphones to collect sensor data. For classification, they
proposed a machine learning-based approach, consisting of
various statistical and physical features and Support Vector
Machine (SVM). With their approach, they achieved an accu-
racy of 92%. Most studies on smartphone-based gait recogni-
tion assume that the phone is placed at a fixed location (e.g.,
waist, pocket, or hand) so that they can disregard the varia-
tions introduced in the walking pattern captured by motion
sensors due to changes in the placement of the phone (e.g.,
from pocket to hand) (Primo et al., 2014). However, in a real sit-
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uation, there is no precise location of the phone on the user’s
body and no proper framework that can locate the position of
the phone automatically exists currently (Kumar et al., 2016).

Wrist-wearables like smartwatches and wristbands pro-
vide great advantages over smartphones, particularly in
gait authentication because users usually wear their smart-
watches or wristbands in the same location and orientation.
Compared to the most common location for smartphones
such as pockets or handbags, the wrist location provides more
accurate information about a user’s movements (Johnston and
Weiss, 2015). Wearable sensor based activity recognition has
several useful applications in health care, patient or elderly
monitoring, rehabilitation training, and many other areas of
human interaction (Xu et al., 2016). Due to its rising popularity,
location consistency, and wide applicability, it is more practi-
cal to collect activity data from wrist-wearables for user iden-
tification.

In Johnston and Weiss (2015), Johnston et al. used a smart-
watch to collect gait data and achieved the EER of 2.6% us-
ing features derived from the accelerometer data and EER of
8.1% using data derived from gyroscope data. They showed
their result using 6 types of features, namely, average, stan-
dard deviation, average absolute difference, the time between
peaks, binned distribution, and average resultant accelera-
tion by training five minutes of the dataset with a maxi-
mum identification accuracy of 84%. In both above studies, a
long duration of data was used for training the model. Our
experiment used only 10 s of data and provided a promis-
ing result of 100%. In a realistic scenario where data acqui-
sition time will be limited, our analysis is more feasible and
optimum.

Kumar et al. (2016) proposed four continuous authentica-
tion designs by using the characteristics of arm movements
while individuals walk. They collected motion data with a
smartwatch’s sensor. Their first design uses an accelerome-
ter sensor to capture acceleration of arms, the second design
uses a gyroscope sensor to collect rotation of arms, and the
third one uses the combination of both accelerometer and ro-
tation at the feature level and the fourth design uses fusion at
score-level.

A recent study done by Liu et al. (2017), illustrated an ap-
proach for authentication using 20 different features from
time and frequency domain. They adopted the C4.5 decision
tree in their proposed scheme and achieved an accuracy of
86.7%. The author concluded with the need for a feature se-
lection strategy to improve the performance of the model and
reduce computational complexity.

Lopez-Fernandez et al. (2015) proposed a multi-view gait
recognition on curved paths using local variations on the an-
gular measurements along time. They have used a stream of
images from a certain number of fixed cameras (Eg. surveil-
lance cameras) to recognize a user based on gait patterns
whereas we used activity data from the accelerometer sen-
sor on the wrist of the user. We shared some similar ideas in
the classifier design, but our design couples with a unique fea-
ture selection and our identification approach has fewer con-
straints on user movement and is less costly. In addition, we
have also introduced a mechanism to obtain optimal values
of the parameters such as window size and sliding interval
during the sliding window process.

This study is based on but significantly extends Ms. Nam-
rata Kayastha’s Master’s Thesis (Kayastha, 2019). The differ-
ences are summarized below. The focus of the thesis is to de-
velop a feature evaluation and selection mechanism, while in
this paper, we focus on designing a multi-class classification
algorithm. In the evaluation of the thesis, the experiments are
based on a 14-user single-session dataset, while in this paper,
the experiments are based on a 30-user two-session dataset.
We have also improved the feature selection algorithms in this
paper by applying correlation analysis and sensor reduction.
Consequently, the classification in this paper is based only on
a set of accelerometer data, while the classification in the the-
sis uses both accelerometer and gyroscope data. Furthermore,
the thesis only utilizes and evaluates existing traditional clas-
sification algorithms, but we designed and evaluated a novel
sliding window based voting classification algorithm in this
paper. As a result, the paper improves classification accuracy.

In summary, compared with many previous research, our
experiment only uses 10 s of data and we tackle the challenges
faced by the previous studies. With our proposed framework,
we intend to keep the size of the feature set as small as pos-
sible, identify a set of high-quality features that can help dis-
tinctly identify individuals, provide a smooth user experience,
as well as provide a promising result.

6. Conclusion and future scope

In this study, we proposed a novel ActID framework that ef-
fectively addresses various real-time challenges of user au-
thentication based on activity sensor data. We introduced a
novel Sliding Window Vote Classifier which significantly im-
proved the identification accuracy over traditional classifiers.
It demonstrates that even a small amount of activity data
and optimal feature dataset is sufficient to uniquely identify
a user. This suggests that a balance can be achieved between
computation time and accuracy while designing an identifica-
tion protocol. Furthermore, the SVM classifier is shown to be
the consistent and best classifier among the traditional classi-
fiers for user identification based on activity sensor data. Our
empirical analysis provided a mechanism to determine the
optimal window size and sliding interval, and to reduce the
number of sensors used to collect activity data.

In the future, we plan to extend the Actld framework to
continuous authentication applications and evaluate several
factors such as a large number of user sets, spoofing, etc.
We would also introduce a mechanism to learn the biomet-
ric changes of the user that occur as the user ages along with
a method to detect various activities of the user like walking,
running, sitting, etc.
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