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Identification is the core of any authentication protocol design as the purpose of the au- 

thentication is to verify the user’s identity. The efficient establishment and verification of 

identity remain a big challenge. Recently, biometrics-based identification algorithms gained 

popularity as a means of identifying individuals using their unique biological characteris- 

tics. In this paper, we propose a novel and efficient identification framework, ActID, which 

can identify a user based on his/her hand motion while walking. ActID not only selects a set 

of high-quality features based on Optimal Feature Evaluation and Selection and Correlation- 

based Feature Selection algorithms but also includes a novel sliding window based voting 

classifier. Therefore, it achieves several important design goals for gait authentication based 

on resource-constrained devices, including lightweight and real-time classification, high 

identification accuracy, a minimum number of sensors, and a minimum amount of data 

collected. Performance evaluation shows that ActID is cost-effective and easily deployable, 

satisfies real-time requirements, and achieves a high identification accuracy of 100%. 

© 2021 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

User authentication is an effective mechanism to protect ma-
licious access to sensitive resources. Identification is a cru-
cial component in the authentication protocol design as the
purpose of the authentication is to verify the identity of
the user ( Ailisto et al., 2005; Gafurov et al., 2006; Mantyjarvi
et al., 2005; Nickel et al., 2012 ). Over the past few decades,
several types of identification technologies have been devel-
oped that can uniquely identify users and prevent imperson-
ation. These identification solutions aim to provide a practi-
cal and cost-effective approach to easily identify the user as
well as offer a smooth user experience, but challenges remain.
Username/password-based identity is widely adopted in the
digital world ( Lin and Hwang, 2003 ), yet they are susceptible to
hacking, theft, and fraud. A digital signature based on crypto-
graphic algorithms is another popular approach for building a
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verifiable identity ( Merkle, 1988 ). It is an effective solution, but
it requires a powerful processor to generate digital signatures;
therefore, resource-constrained devices have difficulty in cre-
ating such an identity. Recently, a hardware-based solution,
Physical Unclonable Function (PUF) ( Suh and Devadas, 2007 ),
has evolved to identify users, and many authentication proto-
cols are built based on it. PUF provides a strong identity solu-
tion but it requires extra hardware support. Similarly, tokens
and access cards ( Tan et al., 2001 ) provide a hardware-based
solution for identity. 

Biometrics-based identity solutions are the next frontier
of identification and verification ( Alizadeh et al., 2016 ). They
are considered more effective than the aforementioned digi-
tal identities because of the following reasons. First, biomet-
rics are a natural part of the user. Unlike other traditional
means of identity verification such as usernames/passwords,
PINs, tokens, etc., biometrics cannot be forgotten, lost, or
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tolen ( Derawi et al., 2010 ). Second, biometrics are unique 
or everyone, therefore they are hard to be forged. Third, the 
iometrics-based identities are easily verifiable by measuring 
he biometric characteristics ( Sha and Kumari, 2018 ). 

Many biometrics-based identities have been developed 
nd applied in modern computing systems. For example,
Phone X and later versions, and Microsoft Surface Pro use 
acial recognition techniques to identify legitimate users 
pp (2017) ; mic (2017) . The fingerprint is the most widely 
dopted biometrics-based identity used in smartphones and 
Cs ( Ohana et al., 2013 ). ECG/EEG patterns ( Chatra, 2014; Dey 
t al., 2014 ), Iris patterns ( Wildes, 1997 ), and palm vein pat- 
erns ( Zhang and Hu, 2010 ) are other popular biometrics- 
ased identities. All these solutions require special hardware 
o measure the biometrics. This can be expensive, inconve- 
ient as well as very intrusive to the user’s experience. The re- 
ent solutions of behavioral biometrics are inexpensive, more 
ppropriate than conventional biometrics and/or they can 

e used in combination with traditional biometrics such as 
ulti-factor authentication to improve security and usabil- 

ty ( Gafurov and Snekkenes, 2009 ). However, some biometrics- 
ased authentication systems necessitate user interaction,
hich is inconvenient for the user. Typing the password, lift- 

ng the phone for face id, and pressing the fingerprint sen- 
or are just a few examples. This would be much more diffi- 
ult for the user during continuous authentication, as the user 
ust authenticate several times ( Crawford et al., 2013; Sae- 
anee et al., 2015; Syed Idrus et al., 2014 ). This problem can 

e solved by activity sensor based identity solutions such as 
earable sensor based gait recognition ( Kumar et al., 2016 ),
ouch gestures based recognition ( Mondal and Bours, 2015 ),
eystroke based recognition, etc., since the biometric patterns 
re captured implicitly while the user interacts with the device 
 Abuhamad et al., 2021 ). These approaches address the pri- 
acy ( Chen et al., 2012 ) and power consumption ( Gafurov and 
nekkenes, 2009 ) issues better than traditional vision based 
ctivity recognition. 
Based on the data collected by activity sensors, such as ac- 

elerometers and gyroscopes, researchers have analyzed the 
ctivity patterns of humans and have found unique traits that 
an be used as the identity. In literature, activity sensors have 
een used in identifying users based on their keystroke dy- 
amics ( Lee et al., 2018 ), hand movements ( Casanova et al.,
012; Garcia et al., 2016 ), and gait patterns ( Ailisto et al.,
005; Al Kork et al., 2017; Blasco et al., 2016; Chen, 2014; 
amaševi ̌cius et al., 2016a; Damaševi ̌cius et al., 2016b; Derawi 
t al., 2010; Gafurov et al., 2006; Guan et al., 2011; Johnston 

nd Weiss, 2015; Kwapisz et al., 2010; Liu et al., 2017; Manty- 
arvi et al., 2005; Marsico and Mecca, 2019; Nickel et al., 2012; 
rimo et al., 2014; Rong et al., 2007; Su et al., 2014; Sugimori 
t al., 2011; Sun and Yuao, 2012; Thang et al., 2012; Xu et al.,
016; Yang et al., 2016 ). These existing approaches produce 
romising results, but most of them either use several sen- 
ors deployed around the body, which is not practical in real- 
ife scenarios or employ computation-heavy algorithms based 
n a large number of features. The limitations of these ap- 
roaches in the real-world applications include willingness to 
se wearable sensors, ability to wear them, success rate, scal- 
bility, ease of use, battery life, and the approach’s usefulness 
 Chen et al., 2012 ). 
As smartwatches and wristbands become pervasively 
vailable, many sensors, such as accelerometers and gyro- 
copes embedded on these devices can be used as measuring 
evices for biometrics. Therefore, we can design solutions that 
onstruct and verify digital identity for users by using these 
ensors to measure biometrics in a cost-effective and conve- 
ient way. In addition, this approach is not expensive and can 

e used in continuous authentication since it does not require 
ny user interaction with the device. 
In this paper, we propose ActID, an efficient framework for 

ctivity sensor based user identification, to efficiently identify 
sers based on sensors deployed at the wrist. The main goal of 
ur classification algorithm design is to overcome challenges 
esulting from the authentication application requirements 
nd resource-constrained devices used in the application. We 
im to design an efficient framework that identifies users with 

igh accuracy in real-time, based on a minimal number of 
ensors, a minimal amount of data, as well as using only 
ightweight classification algorithms. The novelty of our pro- 
osed method is four-fold. First, we employ the Optimal Fea- 
ure Evaluation and Selection method (OFES) ( Kayastha, 2019; 
ayastha and Sha, 2019; Sai Ram et al., 2020 ) and Correlation- 
ased Feature Subset Selection (CFSS) ( Hall, 1999 ) algorithms 
o evaluate the extracted features and select a set of high- 
uality features that can distinctly identify individuals. There- 
ore, we can keep the size of the feature set as small as possi-
le. It also reduces the algorithm complexity. Second, we de- 
ne a novel classification algorithm, Sliding Window based 
oting classifier for gait authentication which reuses the data 
o reduce the amount of data and adapts voting to improve 
he identification accuracy. Third, we provide a smooth user 
xperience with our proposed framework. Unlike other re- 
earch methods, where the users must wear multiple sen- 
ors on different parts of the body, our experiment only re- 
uires the users to wear one wrist sensor and walk normally 
s they do on a plain surface for less than a minute to train
he classifier. Fourth, we reduce the number of sensors by us- 
ng only an accelerometer sensor and improve the cost ef- 
ciency of user classification based on activity sensor data.
he performance evaluation based on a simple prototype with 

 multi-class classifier shows that the proposed framework 
an achieve high accuracy of 100% when applied to a 30 user 
ataset, which is better than the similar approaches includ- 
ng the efforts presented in ( Al Kork et al., 2017; Damaševi ̌cius
t al., 2016a; Gafurov et al., 2006; Johnston and Weiss, 2015; 
umar et al., 2016; Kwapisz et al., 2010; Liu et al., 2017; Nickel
t al., 2012; Yang et al., 2016 ). 
The contribution of the paper is three-fold. First, we ana- 

yzed challenges in the activity sensor based user identifica- 
ion. Second, we proposed a novel classification algorithm that 
eatures sliding window technique and voting method. Third,
e built a prototype for activity sensor based user identifica- 
ion and carried out an extensive performance evaluation. 

The rest of the paper is organized as follows. Section 2 dis- 
usses the motivation behind this study. Section 3 details 
he design of the ActID framework. Section 4 presents the 
erformance evaluation based on a simple prototype im- 
lementation. Section 5 lists a set of related work. Fi- 
ally, we conclude the paper and discuss future work 
n Section 6 . 
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Fig. 1 – The ActID Framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Motivation 

One of the common problems of authentication is its intrusive
way of authenticating users. It could be typing the password,
raising the phone for face id, touching the fingerprint sensor,
giving the voice to identify the user. These kinds of authenti-
cations require user interaction every time the user attempts
authentication, which leads to lots of inconvenience to the
user. Syed Zulkarnain et al. studied on finding the profile of
an individual like age, gender etc., based on their behavioral
characteristics of keystroke dynamics ( Syed Idrus et al., 2014 ).
It would be interesting to see if the same can be achieved with
activity sensor data. Heather Crawford et al. proposed a frame-
work that integrates multiple behavioral biometrics to imple-
ment an effortless and continuous authentication mechanism
without user interaction ( Crawford et al., 2013 ). Similarly, Sae-
vanee et al. proposed a novel text-based multimodal biomet-
ric approach using linguistic analysis, keystroke dynamics and
behavioral profiling so that the number of intrusive authen-
tication requests required for high security applications will
be decreased ( Saevanee et al., 2015 ). All these approaches are
trying to achieve authentication without any intrusion to the
user. We believe activity sensor based user identification is
less intrusive because it does not require much user interac-
tion with the device thus to make authentication easier. 

Activity sensor based biometrics has been a hot research
topic in the last several years. The pervasive availability of ac-
tivity sensors, such as accelerators and gyroscopes, lead to
many novel designs and innovations that aim to construct
user identity based on the activity sensor data. Previous de-
signs have used different activities such as walking, running,
jumping, and arm gestures for identities ( Abate et al., 2017;
Gupta et al., 2013; Nickel et al., 2012 ). However, we have not
yet seen large-scale deployments of these technologies be-
cause of the following concerns. First, we have observed the
deployment of sensors on different body parts, including waist
( Ailisto et al., 2005; Mantyjarvi et al., 2005 ), leg ( Gafurov et al.,
2006 ), sternum ( Vural et al., 2013 ), wrist ( Kumar et al., 2016 ),
and on multiple body locations at the same time ( Al Kork et al.,
2017 ). Many of them are not practical in real-life scenarios.
Considering the rising popularity of smartwatches (e.g., Apple
Watch) and activity bands (e.g., Fitbit), we believe it is more
 

practical to make use of activity data collected with the help
of the activity sensors installed on these devices to construct
identity. In this way, we do not need to add any extra sensors to
the human body. Also, we need to reduce the number of sen-
sors so that the design will be cost-effective. Second, the big
size of the feature set increases the complexity of the iden-
tification algorithm. We need to keep the feature set size as
small as possible. On the other hand, we do not want to miss
important features that work well to produce the uniqueness
of identity. It is a challenge to identify a user accurately based
on a small set of high-quality features. Third, there is still
space to improve the accuracy of existing activity sensor based
identification algorithms. Fourth, several user identification
applications have real-time requirements, yet many embed-
ded devices such as smart lockers and smart wristbands are
heavily resource-constrained, including a slow processor and
a small-size memory. Therefore, the user identification algo-
rithms need to be lightweight so that it can be easily executed
on various smart devices. Finally, to provide a smooth user ex-
perience and to satisfy real-time requirements, the identifica-
tion should be completed in a very short period, like less than
a minute. Hence, only a small set of data should be collected. 

We tackle the above challenges by designing the ActID
framework, which consists of a feature evaluation and selec-
tion mechanism, a set of high-quality features from multiple
perspectives, and a sliding window based identity modeling
algorithm. 

3. Design of the ActID framework 

The ActID framework is depicted in Fig. 1 . The framework con-
sists of two phases, the identity modeling phase and the identifi-
cation phase . 

In Fig. 1 , the identity modeling phase is shown by the path
of blue arrows, and the identification phase is depicted by the
path of red arrows. In the first phase, when the user walks
around, the changes in motion are captured by an activity
sensor consisting of an accelerometer and gyroscope, which
is placed on the wrist of the user. The sensing data is then
transferred to a smart device via a Bluetooth channel. Next,
the received data is filtered, resampled, and interpolated to
improve the quality of the data. A set of features are extracted
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Fig. 2 – Samples of Raw Data. 

Fig. 3 – Samples of an accelerometer readings of the same user for two sessions. 
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rom the processed data. These features consist of both 

tatistical attributes such as mean, standard deviation, and 
ariance, as well as physical attributes like peak value for an 

cceleration of hand motion. Feature evaluation algorithms,
ncluding Optimal Feature Evaluation and Selection (OFES) 
nd Correlation-based Feature Subset Selection (CFSS), are 
sed to evaluate extracted features and select high-quality 
eatures. Then, we establish a Sliding Window based Voting 
SWV) classifier as the identity model using a sliding window 

lgorithm and voting method. In the second phase, user 
ctivity data is collected similar to the first phase. Subse- 
uently, the collected user data is given as the input to the 
rained classifier, and the classifier identifies the user. Next,
e present the details of the ActID framework. 

.1. Data acquisition 

n our experiment, we collect activity data from 30 users in two 
essions. In each session, users walk as they usually walk on a 
lain surface for 60 s. We use MetaWear C board mbi (0000) to 
ollect the activity data. The MetaWear C board comes in 

 very small round form-factor equipped with two sensors 
ncluding an accelerometer and a gyroscope. The sensor is 
laced on the wrist of the user. The sensor captures the hand 
ovement of users as they walk. Sensor readings consist of an 

ccelerometer and gyroscope readings along x , y , and z -axes.
herefore, each data point is a 6-tuple, (Ax, Ay, Az, Gx, Gy, Gz ) ,
here A i and G i specify an accelerometer and gyroscope on 

he i axis, respectively. Each session collects 60 s of data sam- 
led at a frequency of 100 Hz. 
Among the two sessions, the data collected in the first ses- 

ion is used to construct the classifier as illustrated in phase 
ne. The data collected in the second session will be used to 
est the classifier in phase two. The output of the classifier is 
nterpreted as the identity of the user. 

Figure 2 represents the sample consisting of 0.01 s of raw 

ata. Figure 3 displays the sample of an accelerometer data of 
 user in X, Y, and Z dimensions for two sessions (S1 and S2).
n the figure, blue color lines represent session 1 data where 
s orange color lines represent session 2 data. Several stud- 
es ( Gafurov et al., 2006; Yang et al., 2018 ) have used a com-
ined signal of all three dimensions by using a vector sum- 
ation method. These approaches have the advantage of re- 
ucing computation time by reducing dimensions; however, if 
he amplitude of the signal in a particular dimension is much 

igher than others, dimensions with smaller amplitude signal 
ecome ignored. In our study, we use data in all three dimen- 
ions separately for feature computation and comparison be- 
ause this strategy helps in identifying high-quality features. 

.2. Data pre-processing 

e pre-processed the activity data using interpolation and re- 
ampling. Resampling is the process of filling the missing data 
oint with the nearest possible value using the linear inter- 
olation method. Figure 4 shows the scatter plot of a set of 
ampled data before and after interpolation, where the blue 
ots represent the data before interpolation and the orange 
ots depict the data after interpolation. In addition, because 
he first few and last few data points may contain more noise,
e eliminated the first and the last 2000 data points in the 
ataset and selected 2000 data points. 

.3. Feature evaluation and selection 

ne of the most important steps in developing any biometrics- 
ased identification algorithm is to identify unique features of 
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Fig. 4 – Results of Resampling and Interpolation. 
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the biometric dataset ( Derawi et al., 2010 ). On one hand, the
efficiency of the identification algorithm is influenced by the
size of the feature set. Typically, to identify a user, a single fea-
ture may not be sufficient. Most of the previous studies use
a vector of features in their algorithms ( Al Kork et al., 2017;
Ohana et al., 2013 ) which increases both the size and dimen-
sion of the dataset and results in the increase of complexity
of the identification algorithm. On the other hand, the accu-
racy of the results of identification is primarily influenced by
the quality of selected features. We would need high-quality
features that can differentiate any two users distinctly which
increases the accuracy of the user identification significantly.
Distinguishing a particular user from other users is not sig-
nificant if they are compared using a weak feature. Thus, by
excluding weak features based on the results of the feature
evaluation, we seek to find a minimum set of high-quality fea-
tures. 

We select a minimum set of high-quality features for gait
identification based on the results of our feature evalua-
tion by applying Optimal Feature Evaluation and Selection
(OFES) ( Kayastha, 2019; Kayastha and Sha, 2019; Sai Ram et al.,
2020 ) and Correlation-based Feature Subset Selection (CFSS)
( Hall, 1999 ) algorithms. First, we extract biometric features
which consist of statistical attributes such as mean, median,
and variance, as well as physical attributes like peak value for
an acceleration of hand, from the processed raw dataset. OFES
provides two of the measures, Farness Value and Farness Ratio
to evaluate features ( Kayastha, 2019; Kayastha and Sha, 2019;
Sai Ram et al., 2020 ). Based on these values, we rank the fea-
tures according to the ranking method of OFES and identify
the high-quality features subset. Second, we reduce the num-
ber of sensors used to collect data from users during the iden-
tification process in order to make a cost-effective design. To
do so, we select only the high-quality features from a sensor
that contributes to 70% of high-quality features or more. For
example, let’s say that among the top 10 selected features, the
first 7 features are from the accelerometer, and the last 3 fea-
tures are from the gyroscope sensor. Since the accelerometer
contributes to the majority (i.e., 70%) of the high-quality fea-
 

tures, we replace the last 3 features from gyroscope with ac-
celerometer features whose ranks are closest to those 3 gyro-
scope features. This way we select the 10 high-quality features
from the accelerometer sensor only. Third, we apply CFSS to
select the set of high-quality features that are correlated to the
class label, but independent of each other. To do so, for each
feature, we check correlation with every other feature with re-
spect to the class label and identify a set of features that are
independent of each other but correlated with the class label.

3.4. Sliding window vote (SWV) classifier 

Satisfying the real-time requirements of the user is impor-
tant in identification. We need to collect only a small set of
data from the user so that identification completes in a very
short period and provides a smooth user experience. Achiev-
ing high accuracy with less amount of data is a challenge in
classification. Overcoming this challenge, we design Sliding
Window Vote (SWV) Classifier on top of a traditional classi-
fier. To make decisions on a small set of data, SWV utilizes
sliding windows which not only helps normalize the data but
also helps in reusing data in multiple windows. It also adopts
a voting method which helps to improve the accuracy of iden-
tification. 

The sliding window method solves three issues. First, while
comparing two users, it is important to align their activity
cycles. Second, a small amount of data will not be sufficient
enough to classify a user. With a sliding window, we can gen-
erate more windows by overlapping and reusing a set of data.
Third, overlapping data between subsequent windows im-
proves the accuracy of the classification. 

The design of SWV classifier (also referred to be SWV
for the rest of the paper) is depicted in Fig. 5 . It consists of
three major components: a set of windows represented using

 1 , W 2 , W 3 ...., W n , a traditional classifier, and an aggregator. 
The windows are used to hold the data segmented from

the sensor data stream using the sliding window approach,
the main idea of which is presented in Fig. 6 . As shown in the
figure, d i represents the data points at position i . The sliding
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Fig. 5 – Design of the Sliding Window Vote Classifier (SWV). 

Fig. 6 – Sliding Window Based Feature Extraction. 
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indow takes the first window of WS data points beginning 
t position d 1 and ending at position d WS , and places it in W 1 

n Fig. 5 . Then, it slides right by SI positions and takes the sec-
nd window of data starting at position d 1+ SI and ending at 
osition d WS + SI . This set of data will be placed into W 2 . This
rocess will be continued until W k is filled, which is the last 
indow of the data sequence. 
In the sliding window approach, two parameters, Window 

ize that is defined as the fixed amount of time for how many 
ata points contained in a window, and Sliding Int erval that is 
efined as a fixed amount of time for how many data points 
he window will shift, have a big impact on the performance 
f the classifier. Therefore, the values of these two parameters 
hould be carefully determined, which is achieved by the pro- 
ess of determining optimal values of window size and sliding 
nterval represented in Fig. 5 . Once the optimal values are de- 
ermined, they need to be kept the same for the rest of the 
rocess. 
The traditional classifier can be any existing lightweight 

lassifier such as Random Forest, Support Vector Machine 
SVM), K-Nearest Neighbor (KNN), and Naive Bayes Classifier.
ur SWV classifier is built and optimized based on these clas- 
ifiers. The choice of classifier also impacts the performance 
f the SWV classifier. 
The last component of SWV is the aggregator. Data in each 

indow will be used as the input to the traditional classifier.
ccordingly, a class label will be generated for each window of 
ata. The aggregator generates the final class label by aggre- 
ating the class label of each window. Majority voting is used 
n the process of aggregating. In other words, the aggregator 
ounts the votes for each label and selects the label with the 
ighest number of votes. 
SWV is trained using the training dataset, which is pro- 

uced from session one data collected in Section 3.1 . First, we 
nd the optimal values for the parameters such as window 

ize and sliding interval, the process of which is discussed be- 
ow. Then, we generate windows of data with the optimal val- 
es of window size and sliding interval from session one data 
f activity dataset as discussed before. After that, we extract 
elected features from each window of data to generate a fea- 
ure dataset. This feature dataset is used as a training dataset 
nd sent to the traditional classifier component as input to 
rain SWV. 

To determine optimal values of Window Size and Sliding 
nterval, first, we initialize window size with any small value 
nd a fixed size for Sliding Interval e.g., 0.5 s, corresponding to 
0 data points. As before, we generate a training dataset from 

ession one data of the activity dataset. Then, we train any 
raditional classifier with a training dataset. Similar to train- 
ng data, we generate test data from session two data of the 
ctivity dataset. Next, we test the classifier using test data to 
easure accuracy. From our results, we observe that the ac- 
uracy of the classifier increases with the increase of window 

ize until a certain point and then decreases. Hence, we in- 
rease the window size, extract the feature dataset, and gen- 
rate the classifier again. We repeat this process until the ac- 
uracy of the classifier starts decreasing. Finally, we select the 
indow size which results in the highest accuracy of the clas- 
ifier. Similarly, we determine the optimal sliding interval that 
ives high accuracy by fixing the optimal value for window 
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size and increasing the values of the sliding interval starting
from 0.01 s (sliding only one data point), 0.25 s, and so on. In
the process of determining sliding interval, we observe that
the accuracy of the classifier decreases with the increase of
sliding interval. However, with a sliding interval of 0.01 s, data
generation time is very long and accuracy is only a little higher
than in case of 0.25 s. Hence, we select 0.25 s as the optimum
sliding interval by trading off the accuracy with the efficiency.

After SWV is trained, it is used to identify the users. In this
process, a few seconds of user activity data is the input to the
SWV, and the identity of the user will be the output of the clas-
sifier. 

4. Experimental results 

In this section, we first determine the parameters of the SWV
classifier such as optimal window size and sliding interval,
choice of the best classifier, selection of feature sets, and ac-
tivity data size. Next, we conduct a performance evaluation
of SWV based on the optimal parameters. The evaluation in-
cludes performance in the reduced data set, performance of
the scalability, and performance in the accuracy. Finally, we
perform a comparison between ActID and other frameworks. 

4.1. Description of dataset 

As we discussed in Section 3 , we select 20 s of activity data, i.e.,
2000 samples from the processed dataset of 60 s of data, i.e.,
6000 samples. The training and testing dataset is the feature
dataset calculated from the 20 s of activity data following the
window generation procedure as discussed in Section 3.4 . As
detailed in Section 4.2.4 , we find that 10 high-quality features
represent a great trade-off between the classification accuracy
and complexity. 

Various window sizes and sliding intervals are used in the
process of determining their optimal values which are dis-
cussed in Section 4.2 . We determine the optimum window
sizes of 6, 8, and 10 s for 10, 15, and 20 s of activity data respec-
tively, and 0.25 s as an optimum sliding interval in all three
cases. After that, the optimal values of window size and slid-
ing interval are used in the rest of the experiment for the spe-
cific activity data size. Later, these optimal values of window
size and sliding interval are used in the process of generating
feature dataset. For each specific feature, we will have two ses-
sions of feature dataset. Session one feature dataset was used
as train dataset whereas session two feature dataset was used
as test dataset. 

4.2. Finding optimal values of SWV parameters 

4.2.1. Optimal feature set 
In this experiment, we considered 96 features that are used
in ( Kayastha, 2019; Kayastha and Sha, 2019; Sai Ram et al.,
2020 ). We extract these features and apply OFES and CFSS al-
gorithms as we discussed in Section 3 . To identify the high-
quality features, first, we ranked them from highest to low-
est based on Farness Value and Farness Ratio ( Kayastha, 2019;
Kayastha and Sha, 2019; Sai Ram et al., 2020 ). Then, we iden-
tify the top 10 features each from the Farness Value and Far-
ness Ratio list. In both of these lists, 8 out of 10 features are
in common. Next, we select the top 10 features from both Far-
ness Value and Farness Ratio list considering the ranks of both
Farness Value and Farness Ratio. Table 1 represents the top 10
features selected. In the table, all the top 10 features belong
to accelerometer readings. Hence, we use only one sensor, i.e.,
an accelerometer to collect activity data during user identifi-
cation. 

4.2.2. Optimal window size 
This experiment was conducted to find the optimum window
size required to uniquely identify a person. We select SVM
classifier as our default standard classifier which is discussed
in the following subsections. To find the optimal window size,
we use various values of window sizes starting from 2 s and
a fixed size of sliding interval. For example, we use 0.5 s of
sliding interval for this experiment. 

Figures 7 and 8 demonstrates the accuracy with different
window sizes for 15 and 20 s of activity data or data segment
respectively. In these figures, the x -axis represents the window
size in seconds whereas the y -axis represents the accuracy of
the SVM classifier. From both figures, we observe that, since
the size of the total dataset is fixed in this study, the graph
achieves a peak and then starts to fall. We select the window
sizes at the peak point which are 8 s and 10 s as optimum
values in the case of 15 and 20 s of activity data respectively. 

4.2.3. Optimal sliding interval 
Similar to window size, an experiment was conducted to find
the optimum sliding interval required to uniquely identify a
person. Likewise, when analyzing the impact of sliding inter-
val on the classification accuracy, we fix the window sizes to
optimal values of 8 s and 10 s for 15 and 20 s of activity data
respectively. 

Figure 9 demonstrates the accuracy of SVM classifier with
different sliding intervals for 15 and 20 s of activity data. In
the figure, the x -axis represents the sliding interval in seconds
whereas the y -axis represents the accuracy of the SVM classi-
fier. We use different values for sliding intervals such as 0.01,
0.25, 0.5, 1 s, and so on. As mentioned in Section 3.4 , we skip
the sliding interval size of 0.01 s. We observe that since the size
of the total dataset is fixed in this study, the accuracy of the
classifier decreases with the increase in the sliding interval.
As per our analysis, 0.25 s of the sliding interval is an opti-
mum size of the sliding interval in both cases of 10 and 20 s of
activity data which results in the highest accuracy of the SVM
classifier. 

4.2.4. Optimal number of features 
The size of feature set impacts the accuracy as well as time
complexity of the classifier. Hence, it is necessary to select a
minimum number of high-quality features. We conduct an ex-
periment where a set of classifiers are constructed using vari-
ous classification algorithms and based on a different number
of selected features. We select four lightweight classification
algorithms which are widely used in user identification appli-
cations, including K-Nearest Neighbors (KNN), Support Vec-
tor Machine (SVM), Naive Bayes, and Random Forest Classifier.
Four different sets of top-ranked features with sizes 8, 10, 12,
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Table 1 – Top 10 features selected. 

Rank OFES Definition 

1. Mean ACC X Mean of acceleration data along the x -axis. The mean is the most common measure of central 
tendency. It is simply the sum of the numbers divided by the number of numbers. 

2. Median ACC X Median of acceleration data along the x -axis. The median is also a frequently used measure of 
central tendency. The median is the midpoint of a distribution. 

3. Mean ACC Y Mean of acceleration data along the y -axis. 
4. Median ACC Y Median of acceleration data along the y -axis. 
5. Energy ACC X Energy of acceleration data along the x -axis. The total energy of a signal x is defined as the 

sum of squared moduli. 
6. Median ACC Z Median of acceleration data along the z -axis. 
7. Mean ACC Z Mean of acceleration data along the z -axis. 
8. Energy ACC Y Energy of acceleration data along the y -axis. 
9. Skewness ACC Y Skewness of acceleration data along the y -axis. Skewness is a measure of symmetry, or more 

precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same 
to the left and right of the center point. We compute the Skewness by using the 
scipy.stats.skew library in Python. 

10. Root Mean Square ACC X Root Mean Square of acceleration data along the x -axis. The root mean square, also known as 
the quadratic mean, is a statistical measure of the magnitude of a varying quantity, or set of 
numbers. Its name comes from its definition as the square root of the mean of the squares 
of the values. 

Fig. 7 – Impact of window size on 15 s of data. 

Fig. 8 – Impact of window size on 20 s of data. 
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nd 14 are used to construct different classifiers and the ac- 
uracy of each classifier is evaluated. 
Figure 10 shows the results of the above experiment, where 

he x -axis specifies the size of the feature set, and the y -axis 
ndicates the accuracy of the classifier constructed using a 
ifferent number of selected features. Each colored line rep- 
esents the accuracy of a classifier constructed based on a 
ifferent classification algorithm for a specific number of se- 
ected features. From the figure, we observe that classifiers 
uilt based upon 4 different sets of features exhibit close per- 



c om p u t e r s  &  s e c u r i t y  1 0 8  ( 2 0 2 1 )  1 0 2 3 1 9  9 

Fig. 9 – Impact of sliding interval. 

Fig. 10 – Impact of number of features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 – Performance comparison between SWV and tra- 
ditional classifiers in terms of accuracy. 

Classifier Model KNN Naive Bayes RFC SVM 

SWV 96.66% 96.66% 86.66% 100% 

Standard Classifier 96.53% 94.76% 85.76% 97.98% 

 

 

 

 

 

 

 

 

 

 

 

 

formance in terms of accuracy, which is mostly between 90%
and 100% except for the Random Forest Classifier which re-
sults in around 85%. Classifiers built based on 8, 12, and 14
features have a very close performance for all four classifica-
tion algorithms, while the classifier on 10 features has slightly
higher accuracy. Hence, we select 10 feature set as the mini-
mum feature set that results in high accuracy. Among the four
classification algorithms, the SVM exhibits the best accuracy
while Random Forest Classifier has the least accuracy. Some
classification algorithms like Naive Bayes and Random For-
est Classifier are less sensitive to the number of features. The
above observations confirm our belief that a small number of
high-quality features is sufficient to build a highly accurate
classifier. It is also necessary to identify a set of high-quality
features to reduce the complexity of the classification process.

4.2.5. Optimal classifier 
Our SWV classifier is built on top of a traditional classifier.
Therefore, the choice of different classifiers may impact the
performance of our voting classifier. We believe that deep
learning classifiers are too heavy for real-time user identifi-
cation. Hence, we test four popular lightweight classifiers in-
cluding KNN, SVM, Naive Bayes, and Random Forest Classifier.
We compute the accuracy of the SWV Classifier built on top of
these traditional classifiers for comparison. 

A comparison between standard classifier and SWV classi-
fier built on top of respective standard classifier can be found
in Table 2 . The results mentioned in the table represent the
accuracy of the multi-class classifier that classifies 30 users
with 20 s of activity data each. SWV classifier with traditional
classifier as Random Forest Classifier achieves the least accu-
racy of 86.66% whereas KNN, SVM, and Naive Bayes results in
the accuracy of 96.66%, 100%, and 96.66% respectively. For all
the four traditional classifiers, the SWV classifier improves the
accuracy. We select the SVM classifier as the best traditional
classifier for the SWV classifier since it achieves the highest
accuracy compared to others. 
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Fig. 11 – Performance comparison between SWV classifier and other traditional classifiers. 
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.3. Performance evaluation of SWV 

rom the above experiment, we select SVM classifier as our 
tandard classifier to build SWV classifier, SWV-SVM, in terms 
f accuracy, scalability, and stability when applied to a small 
ataset. 

.3.1. Performance comparison between SWV and traditional 
lassifiers 
igure 11 represents the performance of SWV-SVM with other 
raditional classifiers. In the figure, the x -axis represents dif- 
erent classifiers whereas the y -axis represents the accuracy 
f the classifier for 20 s of activity data. Random Forest Classi- 
er achieves the least accuracy of 85.76% whereas KNN, SVM,
nd Naive Bayes results in the accuracy of 96.53%, 97.98%, and 
4.76% respectively. SWV-SVM achieves the highest accuracy 
f 100% when compared to others. 

.3.2. Scalability of SWV 

he accuracy of classifiers usually decreases with the increase 
n the number of class labels in a multi-class classification 

 Kumari and Thakar, 2017 ). Classifiers constructed based on 

igh-quality features should be scalable with the number of 
lass labels. In other words, classifiers should maintain high 

ccuracy with the increase in the number of class labels. 
In this experiment, we compare the performance of the 

VM classifier (the best-performed classifier among the four 
valuated traditional classifiers) and SWV-SVM in 14, 20, 25,
nd 30-class classification. The results are depicted in Fig. 12 ,
here the x -axis specifies the number of class labels, and the 
 -axis indicates the accuracy of the classifier for 20 s of activ- 
ty data. Blue color represents SVM classifier where red color 
epresents SWV-SVM classifier. 

From the figure, we observe that, for all datasets with 14, 20,
5, and 30 users, SWV-SVM results in consistent high accuracy 
hile traditional SVM classifier’s accuracy decreases with the 

ncrease of the number of users. Similar results are seen using 
ther traditional classifiers as well. It shows that SWV not only 
mproves the accuracy of traditional classifiers, but it is also 
calable to the size of labels. 
.3.3. Stability of SWV when applied to a small dataset 
ncreasing the size of collected data will both result in a longer 
ata process and longer data collection time, and cause incon- 
enience to the user. However, smaller activity data size may 
ot capture the entire cycle of walking. Therefore, an optimum 

ize of activity data is required. 
Figure 13 demonstrates the accuracy of the SVM and SWV- 

VM with 10, 15, and 20 s of activity data. In the figure, the
 -axis represents the activity data size in seconds whereas 
he y -axis represents the accuracy of classifiers. We observe 
hat SVM trained with 15 s and 20 s of activity data results
n similar performance with an accuracy of 97.7% and 97.96% 

espectively whereas SVM trained with 10 s of activity data 
esults in slightly lesser accuracy of 95.74%. SWV classifier re- 
ults in 100% accuracy in all three cases. In general, the accu- 
acy of traditional classifiers decreases when the dataset size 
ets smaller, e.g., 10 s. SWV exhibits a better performance than 

he traditional classifier. As shown in the figure, it not only al- 
ays has a better performance than traditional SVM but also 
emains 100% accurate even when the dataset size is reduced 
o 10 s. This helps to achieve real-time authentication. 

.4. ActID with other similar user identification 
pproaches 

n this section, we compare ActID with other similar user iden- 
ification approaches. Table 3 shows the comparison of Ac- 
ID with others in terms of a number of features, best clas- 
ification method, user set size, activity data size, and accu- 
acy. In the table, two measures including EER, and accuracy 
re used to show the results. EER is defined as the equal error 
ate which indicates that the proportion of false acceptances 
s equal to the proportion of false rejections. The lower the 
ER, the higher the accuracy of the identification. 
In the table, Nickel et al. (2012) uses the highest number of 

2 features with EER 8.24% whereas ( Gafurov et al., 2006 ) uses
nly one feature with EER 5% and 9%. We observe that both 

he highest and least number of features result in a significant 
ecrease in accuracy. ActID uses an optimum number of 10 
eatures which results in the highest accuracy of 100%. 
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Fig. 12 – Scalability of SWV. 

Fig. 13 – Impact of activity data size. 

Table 3 – Comparison of our approach versus other approaches. 

Paper Features Best Classification 

Method 
Size of User 
Set 

Activity data 
size 

Results 

Kumar et al. (2016) 31 features K-NN 12 2 min Accuracy: 95% 

Damaševi ̌cius et al. (2016a) 10 features Heuristic (random 

projections + PDFs 
+ Jaccard distance) 

14 Accuracy: 95.52% 

Liu et al. (2017) 20 features (time and 
frequency- domain) 

C4.5 decision tree 
classifier 

7 20 min Accuracy: 86.7% 

Johnston and Weiss (2015) 6 features Rotation Forest 59 5 min Accuracy: 84% 

Nickel et al. (2012) 52 features K-NN 20 1.7 min EER: 8.24% 

Al Kork et al. (2017) 3 types of features Manhatten method 23 4.5 min EER: 1.23% to 4.07% 

Gafurov et al. (2006) 1 feature Histogram Similarity 
and Cycle Length 
methods 

21 EER: 5%, 9% 

Our Approach 10 features (time and 
frequency- domain) 

SWV-SVM 30 10 sec Accuracy: 100% 
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Table 4 – List of high quality features. 

No. Features 

1. Energy ACC X 
2. Energy ACC Y 
3. Energy ACC Z 
4. Variance ACC X 
5. Variance ACC Y 
6. Variance ACC Z 
7. Mean ACC X 
8. Mean ACC Y 
9. Median ACC X 
10. Median ACC Y 
11. Root Mean Square ACC X 
12. Root Mean Square ACC Z 
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Johnston and Weiss (2015) uses 5 min of activity data and 
esults in a lesser accuracy of 84%. Al Kork et al. (2017) re- 
ults in low EER of 1.23% to 4.07% but collects 4.5 min of ac- 
ivity data. Liu et al. (2017) collects 20 min of activity data 
nd results in lesser accuracy of 86.7%. ActID only uses 10 s 
f activity data but results in the highest accuracy of 100%.
ickel et al. (2012) and Kumar et al. (2016) select K-NN as 
he best classification method, while ActID selects SWV-SVM.
ohnston and Weiss (2015) uses highest user set size of 59,
iu et al. (2017) uses lowest user set size of 7, whereas Ac- 
ID uses a user set size of 30. Damaševi ̌cius et al. (2016a) and
umar et al. (2016) results in accuracy of around 95% whereas 
ctID results in the highest accuracy of 100%. 
In summary, ActID uses an optimum number of features,

.e., 10 features, least amount of activity data, i.e., 10 s, yet re- 
ults in the highest accuracy of 100% when compared to oth- 
rs. 

.5. Discussion 

tability of High-Quality Features. We believe the results of 
ur feature selection method are consistent across a differ- 
nt number of users. To verify this hypothesis, we compare 
he top 15 selected features obtained based on 14-user and 30- 
ser datasets. We have the following two observations. First,
ll the top 15 features are from the accelerometer sensor. This 
upports our hypothesis that an accelerometer alone may be 
ufficient for identifying users based on their behavior. Sec- 
nd, 12 out of the top 15 resulted features are in common. This 
upports our hypothesis that the top-ranked features from our 
eature selection process are consistent with gait characteris- 
ics in different individuals. Table 4 lists the 12 common fea- 
ures. 

Analysis of the Perfect Accuracy. The accuracy results pub- 
ished in this study are based on a 30-user dataset, using our 
op 10 selected features as well as the optimal values of model 
arameters, including window size, sliding interval, and data 
egment size. Many factors may impact the accuracy, includ- 
ng the number of users, the types of users, the choice of pa- 
ameters, etc., so we believe, for larger size user sets, accu- 
acy may not always be 100% but it could still be very close 
o 100% , because in our experiments all participants are col- 
ege students who may have similar activity patterns, which 
an be considered as a challenging case for identification. In 

he future, we plan to verify the results of both the feature 
election method and the SWV classifier (based on features 
elected from our feature selection method) with a diversified 
nd large number of user sets. 
The two sessions of user data are collected at separate 

imes as we tried to avoid unnecessary similarity introduced 
n the data collection process. However, we also have to agree 
hat the changes in user’s moving patterns over time may have 
n impact on the identification accuracy. We are currently in- 
estigating new approaches that can cope with the pattern 

hanges. This is our future work. 
Efficiency Analysis of the Classification Algorithm. We be- 

ieve our classification algorithm is lightweight. First, because 
f the feature selection algorithm, we can significantly reduce 
he number of features. This reduces the complexity of the al- 
orithm while maintaining high accuracy. The feature evalua- 
ion is done before the classifiers are trained and it only needs 
o be done once. We can perform feature evaluation on a pow- 
rful device such as at the computing edge. Second, the clas- 
ifier training phase can be separated from the identification 

hase. The training phase is more computing-intensive than 

he identification phase. Third, the identification phase is only 
ased on a small amount of data, 10 s of activity data. Fourth,
e can adjust the sliding intervals to keep the classification 

hase even more lightweight; however, the impact of accu- 
acy also needs to be considered. All the above designs make 
he algorithm to be a lightweight algorithm. To verify these 
rguments, we conducted a preliminary experiment to evalu- 
te the computing cost of the proposed algorithm in terms of 
xecution time as summarized below. 
In the experiment, we first evaluated the execution time 

f identification on an old Macbook Air (Early 2015 model) 
ith a 1.6 GHz Intel Core 5 processor (64-bit dual-core) and 
GB memory size. The identification only took 4 millisec- 
nds. If we consider more computing-intensive tasks, fea- 
ure extraction and classifier training, the execution time is 
 s and 33 milliseconds respectively. Although we were not 
ble to find a direct performance comparison between the 
rocessing speed of Macbook Air (early 2015 model) and Ap- 
le Watch 6, we found a performance comparison between 

acBook Air (early 2015 model) processor and Snapdragon 

00, as well as Apple Watch 6 processor and Snapdragon 200.
his enables us to have an indirect comparison. The report 
rom Notebookcheck ( Hinum, 2020 ) said the processor of Ap- 
le Watch 6 is comparable to Snapdragon 200, while the pro- 
essor of MacBook Air (early 2015 model) is 10 times as fast 
s the processor of Motorola Moto E i.e., which uses Snap- 
ragon 200 Benchmarks (2021) . Therefore, we estimate that 
he execution time in the smartwatch (Apple Watch 6) would 
e approximately 20 s for feature extraction, 330 millisec- 
nds for classifier training, and 40 milliseconds for identifi- 
ation. When we offload the feature extraction and classi- 
er training to a smartphone like the iPhone 12, which ex- 
cutes 3 times as fast as MacBook Air (early 2015 model) 
 Benchmarks, 2021 ), the estimated execution time will be less 
han 1 s for feature extraction and 11 milliseconds for clas- 
ifier training. In conclusion, we believe our algorithm is suf- 
ciently lightweight to be executed on mobile devices, even 

or smartwatches like Apple Watch 6, especially when we of- 
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Table 5 – A summary of user identification based on activity sensor. 

Study Subjects Sensor Location Results 

Ailisto et al. (2005) 36 Waist EER: 6.4% 

Mantyjarvi et al. (2005) 36 Waist EER: 7% - 19% 

Gafurov et al. (2006) 21 Lower leg EER: 5%, 9% 

Al Kork et al. (2017) 23 Leg, hand, wrist, pant pocket, shirt 
pocket and bag (left and right side) 
Hand (holding smartphone) 

EER: 0.17% - 2.27% 

EER: 1.23% - 4.07% 

Derawi et al. (2010) 51 Pocket attached to the belt 
(right-hand side of the hip) 

EER: 20.1% 

Rong et al. (2007) 21 Waist EER: 5.6%, 21.1% 

Sun and Yuao (2012) 22 ankle EER: 3.03% 

Kwapisz et al. (2010) 36 Front pants leg pocket Accuracy: 82.1%, 
92.9% 

Thang et al. (2012) 11 Trouser pocket position Accuracy: 92.7% 

(SVM) 
Johnston and Weiss (2015) 59 Waist (smartwatch) EER: 2.6% - 8.1% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fload the heavy computing tasks to an edge device like the
iPhone. 

Currently, we are developing a continuous authentication
protocol based on both smartwatch and smartphone. We will
build a prototype to quantitatively evaluate the CPU utiliza-
tion rate, communication cost, and power consumption. 

5. Related work 

Activity-based user identification has been an interesting re-
search topic. In this section, we list a set of work that is related
to our research. 

5.1. Activity sensor-based user identification 

Biometrics-based user identification is an effective solution to
identify or verify individuals based on their unique physio-
logical or behavioral characteristics ( Vacca, 2007 ). Physiologi-
cal biometrics is associated with the precise measurements,
dimensions, and physical traits of an individual. In contrast
to physical biometrics, behavioral biometrics are easily gath-
ered with existing hardware or wearable sensors that require
less power consumption, requiring only software for analysis
purposes. Hence, it makes behavioral biometrics cost-effective
and easy to implement. Our study falls into the category of be-
havioral biometrics. 

In behavioral biometrics, activity sensor based user iden-
tification has shown great research potential in the last few
years. 

One of the most popular activity-based biometric charac-
teristics is gait because researchers have shown it to be feasi-
ble means for authentication. Table 5 summarizes some of the
recent studies on gait recognition based on the activity sensor.
Ailisto et al. (2005) were the first to propose sensor-based gait
authentication. Their gait authentication was based on the ac-
celeration sensor that was attached to the user’s waist. They
applied cross-correlation as a measure of similarity achieving
6.4% of EER. Their approach was further developed and ana-
lyzed by Gafurov et al. (2006) . Some designs have used sensors
attached to different parts of the body (e.g., leg, waist, hip, arm,
and all over the body) for gait authentication ( Al Kork et al.,
2017 ), which is not practical in real-life scenarios. Therefore,
we have not yet seen large-scale deployments of these tech-
nologies. 

5.2. Smartphone and wrist sensor based user 
identification 

Modern smartphones and wrist-wearables are equipped with
powerful sensors that capture activity sensor data of individ-
uals who carry them. These devices have become a rich data
source to measure human activities such as walking, jogging,
sitting, climbing stairs, and so on ( Su et al., 2014 ). Hence, these
devices are unobtrusive, easier to carry, and convenient to col-
lect activity data for user identification compared to other
technologies. Nickel et al. (2012) developed a method to extract
gait features using the K-Nearest Neighborhood algorithm
and demonstrated its feasibility on smartphones achieving an
EER of 8.24%. Al Kork et al. (2017) developed a multi-model bio-
metric database for human gait using wearable sensors and a
smartphone. They achieved a very low EER of 0.17% to 2.27%.
At the same time, it can be noted that they have used five sen-
sor nodes on different body locations in addition to a smart-
phone with built-in accelerometer and gyroscope sensors held
in hand. We, on the other hand, have used a single sensor
node in our method. Also, their data collection time is 4.5 min
while our data collection time is 60 s out of which we use
only 10 s of data. Garcia et al. (2016) were the first to consider
hand dynamics for authentication based on hand movement
while opening a door. They used sensors, namely, accelerome-
ter, gyroscope, and magnetometer embedded in Google Nexus
4 smartphones to collect sensor data. For classification, they
proposed a machine learning-based approach, consisting of
various statistical and physical features and Support Vector
Machine (SVM). With their approach, they achieved an accu-
racy of 92%. Most studies on smartphone-based gait recogni-
tion assume that the phone is placed at a fixed location (e.g.,
waist, pocket, or hand) so that they can disregard the varia-
tions introduced in the walking pattern captured by motion
sensors due to changes in the placement of the phone (e.g.,
from pocket to hand) ( Primo et al., 2014 ). However, in a real sit-
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ation, there is no precise location of the phone on the user’s 
ody and no proper framework that can locate the position of 
he phone automatically exists currently ( Kumar et al., 2016 ). 

Wrist-wearables like smartwatches and wristbands pro- 
ide great advantages over smartphones, particularly in 

ait authentication because users usually wear their smart- 
atches or wristbands in the same location and orientation.
ompared to the most common location for smartphones 
uch as pockets or handbags, the wrist location provides more 
ccurate information about a user’s movements ( Johnston and 
eiss, 2015 ). Wearable sensor based activity recognition has 
everal useful applications in health care, patient or elderly 
onitoring, rehabilitation training, and many other areas of 
uman interaction ( Xu et al., 2016 ). Due to its rising popularity,
ocation consistency, and wide applicability, it is more practi- 
al to collect activity data from wrist-wearables for user iden- 
ification. 

In Johnston and Weiss (2015) , Johnston et al. used a smart- 
atch to collect gait data and achieved the EER of 2.6% us- 

ng features derived from the accelerometer data and EER of 
.1% using data derived from gyroscope data. They showed 
heir result using 6 types of features, namely, average, stan- 
ard deviation, average absolute difference, the time between 

eaks, binned distribution, and average resultant accelera- 
ion by training five minutes of the dataset with a maxi- 
um identification accuracy of 84%. In both above studies, a 

ong duration of data was used for training the model. Our 
xperiment used only 10 s of data and provided a promis- 
ng result of 100%. In a realistic scenario where data acqui- 
ition time will be limited, our analysis is more feasible and 
ptimum. 
Kumar et al. (2016) proposed four continuous authentica- 

ion designs by using the characteristics of arm movements 
hile individuals walk. They collected motion data with a 
martwatch’s sensor. Their first design uses an accelerome- 
er sensor to capture acceleration of arms, the second design 

ses a gyroscope sensor to collect rotation of arms, and the 
hird one uses the combination of both accelerometer and ro- 
ation at the feature level and the fourth design uses fusion at 
core-level. 

A recent study done by Liu et al. (2017) , illustrated an ap- 
roach for authentication using 20 different features from 

ime and frequency domain. They adopted the C4.5 decision 

ree in their proposed scheme and achieved an accuracy of 
6.7%. The author concluded with the need for a feature se- 
ection strategy to improve the performance of the model and 
educe computational complexity. 

López-Fernández et al. (2015) proposed a multi-view gait 
ecognition on curved paths using local variations on the an- 
ular measurements along time. They have used a stream of 
mages from a certain number of fixed cameras (Eg. surveil- 
ance cameras) to recognize a user based on gait patterns 
hereas we used activity data from the accelerometer sen- 
or on the wrist of the user. We shared some similar ideas in 

he classifier design, but our design couples with a unique fea- 
ure selection and our identification approach has fewer con- 
traints on user movement and is less costly. In addition, we 
ave also introduced a mechanism to obtain optimal values 
f the parameters such as window size and sliding interval 
uring the sliding window process. 
This study is based on but significantly extends Ms. Nam- 
ata Kayastha’s Master’s Thesis ( Kayastha, 2019 ). The differ- 
nces are summarized below. The focus of the thesis is to de- 
elop a feature evaluation and selection mechanism, while in 

his paper, we focus on designing a multi-class classification 

lgorithm. In the evaluation of the thesis, the experiments are 
ased on a 14-user single-session dataset, while in this paper,
he experiments are based on a 30-user two-session dataset.
e have also improved the feature selection algorithms in this 
aper by applying correlation analysis and sensor reduction.
onsequently, the classification in this paper is based only on 

 set of accelerometer data, while the classification in the the- 
is uses both accelerometer and gyroscope data. Furthermore,
he thesis only utilizes and evaluates existing traditional clas- 
ification algorithms, but we designed and evaluated a novel 
liding window based voting classification algorithm in this 
aper. As a result, the paper improves classification accuracy. 
In summary, compared with many previous research, our 

xperiment only uses 10 s of data and we tackle the challenges 
aced by the previous studies. With our proposed framework,
e intend to keep the size of the feature set as small as pos-
ible, identify a set of high-quality features that can help dis- 
inctly identify individuals, provide a smooth user experience,
s well as provide a promising result. 

. Conclusion and future scope 

n this study, we proposed a novel ActID framework that ef- 
ectively addresses various real-time challenges of user au- 
hentication based on activity sensor data. We introduced a 
ovel Sliding Window Vote Classifier which significantly im- 
roved the identification accuracy over traditional classifiers.
t demonstrates that even a small amount of activity data 
nd optimal feature dataset is sufficient to uniquely identify 
 user. This suggests that a balance can be achieved between 

omputation time and accuracy while designing an identifica- 
ion protocol. Furthermore, the SVM classifier is shown to be 
he consistent and best classifier among the traditional classi- 
ers for user identification based on activity sensor data. Our 
mpirical analysis provided a mechanism to determine the 
ptimal window size and sliding interval, and to reduce the 
umber of sensors used to collect activity data. 
In the future, we plan to extend the ActId framework to 

ontinuous authentication applications and evaluate several 
actors such as a large number of user sets, spoofing, etc.
e would also introduce a mechanism to learn the biomet- 

ic changes of the user that occur as the user ages along with
 method to detect various activities of the user like walking,
unning, sitting, etc. 
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