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Isolated many-body quantum systems quenched far from equilibrium can eventually equilibrate, but it is not
yet clear how long they take to do so. To answer this question, we use exact numerical methods and analyze the
entire evolution, from perturbation to equilibration, of a paradigmatic disordered many-body quantum system in
the chaotic regime. We investigate how the equilibration time depends on the system size and observables. We
show that if dynamical manifestations of spectral correlations in the form of the correlation hole (“ramp”) are
taken into account, the time for equilibration scales exponentially with system size, while if they are neglected,
the scaling is better described by a power law with system size, although with an exponent larger than what is

expected for diffusive transport.

DOLI: 10.1103/PhysRevB.104.085117

I. INTRODUCTION

One major question in studies of nonequilibrium dynamics
of isolated many-body quantum systems is how long it takes
for an experimentally relevant observable to reach equilib-
rium. By equilibration we mean that, after initial transients,
the expectation value of the considered quantity exhibits small
fluctuations around its infinite-time average, being thus very
close to this saturation point for the vast majority of times,
and in addition to that, the size of these fluctuations decreases
as the system size increases [1-8].

The variety of approaches taken to address this question
and the lack of agreement among the existing results are
worrisome. Several analyses are based on assumptions about
the spectrum, observables, and initial conditions and often
provide bounds for the equilibration time. Some suggest that
this time should decrease with system size [9,10], others, that
it should depend weakly on it [11], and others yet that it should
increase with it [3-6,12—16], possibly exponentially [9,17].
Studies aligned with transport behavior [18-31], on the other
hand, expect the equilibration time to increase as a power law
with system size.

Confronted by so many options, it is worth stepping back
and trying first to identify a general scenario. For this pur-
pose, we focus on many-body quantum systems that are in
the chaotic regime and initial states that are far from equilib-
rium and that have energy expectation values away from the
edges of the many-body spectrum. With this choice, we avoid
the particularities of integrable models and nongeneric initial
states.

The largest possible timescale of quantum systems is given
by the inverse of their mean-level spacing, the so-called
Heisenberg time, which grows linearly with the dimension
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of the Hilbert space, and thus exponentially with the size
of many-body systems. The Heisenberg time is the absolute
upper bound for the equilibration time, but do experimental
observables take this long to equilibrate? This is the main
question addressed by this work. The answer is yes [32] if
the dynamical manifestations of spectral correlations, known
as a correlation hole [32—41] and sometimes referred to as
a “ramp” [42-44], are taken into account. However, as we
show here, these manifestations can in practice be neglected
for some observables, so that the time for them to reach equi-
librium can be defined at a point before the correlation hole.
In this case, the equilibration time scales as a power law with
system size, a result that is in better agreement with studies of
transport behavior [31,45].

We use exact numerical methods to study the time evolu-
tion of four observables in the chaotic regime of a disordered
spin-1/2 Heisenberg chain, which is a general setting for
theoretical and experimental studies of the nonequilibrium
quantum dynamics of one-dimensional systems with short-
range couplings. In addition to examining the scaling of the
equilibration time with system size, we also briefly discuss
its dependence on the disorder strength. We study two corre-
lation functions of local operators which have been accessed
experimentally, namely, the spin autocorrelation function and
the connected spin-spin correlation function. The former is
related to the imbalance used in experiments with cold atoms
[46] and the latter is measured in experiments with ion traps
[47]. Both are few-body observables and should thus reach
thermal equilibrium when the system is in the chaotic regime
[45,48,49]. We also study the survival probability, which is the
absolute square of the correlation function of the initial state
with its evolved counterpart and may be accessible to experi-
ments with cold atoms [50,51]. A semi-analytical expression
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exists for the evolution of this quantity in the chaotic regime,
which provides insights into our analysis [32,40]. Our fourth
observable is the inverse participation ratio, which describes
the spread of the initial state in the many-body Hilbert space
and whose logarithm is the participation second-order Rényi
entropy.

The article is organized as follows: Section II introduces
the disordered model, initial conditions, and observables. In
Sec. III, we revisit the concept of the correlation hole, its
timescales, and the equilibration time after it. In Sec. IV,
the correlation hole is neglected and a new definition for the
equilibration time is proposed. Its dependence on the disorder
strength is also provided. Conclusions are presented in Sec. V.
Additional numerical results are presented in the Appendix.

II. MODEL, INITIAL STATES, AND OBSERVABLES
A. Model

The disordered spin-1/2 Heisenberg chain that we con-
sider is a representative model of disordered interacting
one-dimensional systems and has been extensively used in ex-
perimental and theoretical studies of many-body localization
[52-57]. It is given by the following Hamiltonian:

L
A=Y "J8 S+, 1)
i=1
where §; = (S‘f, S‘iy, Sf) are spin-1/2 operators, L is the sys-
tem size, periodic boundary conditions are assumed, we set
J =1 and h; to be independent and uniformly distributed
random variables in [-W, W], with W being the onsite dis-
order strength. The system conserves the total magnetization
in the z direction, 85, = Y°F §%, and exhibits a transition to
the many-body localized phase at a critical disorder strength
W,.. The value of W, is still under debate [58—67]; some papers
estimate that 3 < W. < 4 and others that W, > 4.
We work in the 8, = 0 subspace that has the Hilbert-space
dimension D = (LI;Z)’ and consider finite systems away from
the critical region, 0.5 < W < 1, although a short discussion
for values of disorder closer to the critical region 1 < W < 3

is also provided.

B. Initial states and equilibration

We use initial states |W(0)) that are product states in the S°
basis, |¢,), suchas | 1] | --- 1), which can be experimentally
realized. We choose initial states with an energy expectation
value (W(0)| H |W(0)) far from the edges of the spectrum to
guarantee that they fall in the chaotic region of the many-body
Hamiltonian and that a given few-body observable O reaches
thermal equilibrium. In the absence of degeneracies in the
spectrum, the infinite time average of O expressed in terms
of the many-body eigenstates H |a) = E, |a) is given by

0=Y |Cl* (2| Oar), )

where C, = (a |V(0)).

We use either exact diagonalization or Krylov-space meth-
ods to evolve the system in time. All results are averaged
over 10* samples composed of 0.01D initial states and

10*/(0.01D) disorder realizations. The average over samples
is denoted by the angle brackets (-). We have also verified that
fixing a single initial state and using 10* disorder realizations
leads to equivalent results, although the numerical procedure
is less efficient. All statistical errors are accessed by using a
bootstrap procedure.

C. Observables

We study the time-evolution of the survival probability and
the inverse participation ratio, which are nonlocal quantities
in real space; and two correlation functions of local operators,
the spin autocorrelation function and the connected spin-spin
correlation function. The last two correlation functions are
few-body observables and therefore are expected to reach
thermal equilibrium in the chaotic limit of realistic systems
[45].

The survival probability is defined as

Ps(1) = [(W(0)|W (). 3)

Taking the mean gives

(Ps(t)) = <Z |ca|2|cﬂ|2e—"<Ea—Eﬂ”> + <Z |ca|4>, “)

atf

which is related to the spectral form factor,
(X asp e "Ea—Ep)ty  While (Ps(t)) is a true dynamical
quantity, which depends on the initial state through the
components C,, the spectral form factor involves only the
eigenvalues of the Hamiltonian and is used to study the
manifestation of level statistics in the time domain [68]. Filter
functions are sometimes added to it [44,69], but they do not
come from the quench dynamics, as the coefficients C, in
(Ps(t)). The survival probability is widely used in studies of
nonequilibrium quantum dynamics and the quantum speed
limit. Both the survival probability [32] and the spectral form
factor [69] have been used in the analysis of the many-body
localization transition and exhibit a robust correlation hole
in the chaotic regime, which fades away as the system
approaches the many-body localized phase [32,38-40,69].

The other nonlocal quantity that we consider is the inverse
participation ratio,

Ter(1) = Y [{al W), )

which measures the spreading in time of the initial state
|W(0)) over the many-body Hilbert space; the symbol |¢,)
denotes a state of the computational basis. Its logarithm,
—InIpr(#), corresponds to the second-order Rényi entropy.
The minimum of the inverse participation ratio indicates the
full spread of the initial state in its energy shell.

The spin autocorrelation function measures the proximity
of the spin configuration in the z direction at a time ¢ to the
initial spin configuration,

L

4 A N
I0) = 7 D (WolSO)Si 1), (6)

i=1

where S%(t) = eM'§5(0)e=". For the Néel initial state
[ A -+ ), it reduces to the density imbalance between
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even and odd sites that is measured in experiments with cold
atoms [46].
The connected spin-spin correlation function is defined as

4
Ct) =7 Y [WOISSE 1w @)

i=1
— (WIS WO (W @)ISF,, 1W(@)] (N

and has been measured in experiments with ion traps [47].

III. EQUILIBRATION AFTER THE CORRELATION HOLE

In this section we analyze the appearance of the correlation
hole for the four observables introduced above and discuss the
use of the time after the interval of the hole as a definition of
the equilibration time. How the timescale for the correlation
hole depends on the system size L and on the disorder strength
h [32] and how its depth depends on / [38—40] were studied
before for the survival probability and the spin autocorrelation
function. Here, we investigate how the depth of the correlation
hole depends on the system size and whether it survives in the
thermodynamic limit for the four quantities considered.

A semi-analytical expression for the entire evolution of the
average of the survival probability was derived for realistic
chaotic many-body quantum systems with short-range inter-
actions [32,40], as the one described by Eq. (1), and it is given
by

1 — (Ps)

— 2T —
(Ps(n)) = D-1) [Dbl(l"t) bz(

I't
)|+
where

2 = (WO)IAW(0) — (WOIAwO) )
is the squared width of the energy distribution of the initial
state, (Ps) is the mean of the infinite-time average of Ps(¢),

2

f(Emax + itF2> f<Emm + itF2>
er — €I —_——
J2r J2r
(10)

—I'%?

(I =&
: 4N

’

N is a normalization constant, erf is the error function, Emax
and E, are the largest and smallest eigenvalues of H, respec-
tively, and

1-2t+tIn(2t+1), t<1

tln(3) — 1, t>1

by(t) = { an

is the two-level form factor.

The decay of the survival probability is controlled by
b% (I't). This function and the b, function meet at the time 7, o
D?3 T, where the survival probability reaches its minimum
value of ~2/D. After this point, the evolution is described
entirely by the b, function, which brings (Ps(¢)) from its min-
imum up to the saturation value, which is ~3/D. Saturation
happens at the Heisenberg time #y o< D/T".

The time interval governed by the b, function, where
(Ps(1)) < (Ps), is known as a correlation hole [32-37,39,40]
or ramp [42-44]. This is a dynamical manifestation of spectral
correlations, and, therefore, a dynamical signature of quantum
chaos. The point in time where the ramp starts, ¢,,, has been
referred to as the Thouless time [32,69]. It coincides with the

time where the inverse participation ratio reaches its minimum
value [32], indicating that ¢, is the time that it takes for the
initial state to maximally spread over the many-body Hilbert
space and acquire weight over the unperturbed many-body
states |¢,) in its microcanonical energy shell given by the
width I

The evolution of the mean survival probability for the spin
model (1) is shown in Fig. 1(a) for different system sizes.
There is an excellent agreement between the numerical results
and expression (8) when W = 0.5, which corresponds to the
deep chaotic regime. The correlation hole is evident in all the
curves after a sufficient number of samples is used for the
averages [70], and it does not fade away as L increases. This
means that the complete equilibration of this quantity takes
place only after the hole ends at the Heisenberg time #y;. Since
this time is exponentially long in the system size L, we use
exact diagonalization to resolve the entire dynamics, which
limits the accessible systems sizes to L = 18.

A correlation hole is also visible for the spin autocorre-
lation function, as depicted in Fig. 1(c), suggesting that for
sufficiently small system sizes, where it develops for times
that are not exceedingly long and reaches minimum values
that are not too small, the hole might be experimentally de-
tected.

In contrast with the survival probability and the spin auto-
correlation function, the effects of the spectral correlations in
the evolution of (Ipr(¢)) [Fig. 1(b)] and of (C(¢)) [Fig. 1(d)]
are minor and the correlation hole is hardly discernible. Fur-
thermore, the analysis in Figs. 1(e)-1(h) of the relative depth
of the correlation hole [38,39,71],

K = L Limin (12)

where (O)min stands for the value of a given observable 0 at
the minimum of the correlation hole, indicates that, contrary
to what happens for (Ps(¢)), the hole for (Ipr(?)), (Z(2)),
and (C(t)) gets smaller as the system size increases. This
motivates an alternative definition of the equilibration time for
these three quantities, which neglects the correlation hole, as
done below in Sec. IV.

When the survival probability is evolved using full random
matrices taken from a Gaussian orthogonal ensemble (GOE),
it is known analytically that (Ps) ~ 3/D and (Ps)min ~ 2/D
[32,36], which yields « = 1/3. In Fig. 1(e), we show « for the
survival probability of the spin model as a function of system
size for different disorder strengths in the chaotic regime. The
relative depth clearly converges to x = 1/3, which is indicated
with a horizontal dashed line. The correlation hole is therefore
a robust property of the survival probability.

Contrary to the survival probability, the relative depth « for
(Ir (1)) [Fig. 1(0)], (Z(r)) [Fig. 1(2)], and (C(r)) [Fig. 1(h)]
decays with L. In the case of the inverse participation ratio
and the connected spin-spin correlation function, the decay
is exponential, while for the spin autocorrelation function, the
results are more subtle and make apparent the danger of finite-
size effects. While for W = 0.5, « decreases monotonically
with L, for W = 0.75 and W = 1, « increases for small values
of L and the decay becomes clear only for L > 14.
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FIG. 1. (upper panels) Time evolution of the mean (a) survival probability (Ps(¢)), (b) inverse participation ratio (Ipr(?)), (c) spin
autocorrelation function (Z(¢)), and (d) connected spin-spin correlation function (C(¢)) for different system sizes, as indicated in panel (a), and
for disorder strength W = 0.5, as shown in panel (b). The horizontal dotted-dashed lines mark the asymptotic values and the stars indicate the
crossing time ¢*. In panel (a), the numerical data overlap with the curves for the semi-analytical expression in Eq. (8). (lower panels) Relative
depth of the correlation hole k as a function of L for (e) (Ps(¢)), (f) (Ipr(?)), (g) (Z(¢)), and (h) (C(¢)) for three values of the disorder strength
in the chaotic regime, as indicated in panel (e). The horizontal dashed line in panel (e) corresponds to the value k = 1/3 obtained for GOE
random matrices. Most error bars in panels (e)—(h) are smaller than the symbols.

One sees that the dynamical behavior of the four quantities
considered transcends any simple categorization in terms of
locality or nonlocality in real space. One might be tempted to
associate the visible onset of the correlation hole, at least for
the relatively small system sizes that we study, with nonlocal-
ity in time. However, to confirm this speculation, quantities
other than the spin autocorrelation function and the survival
probability, which is also an autocorrelation function, need to
be investigated.

IV. EQUILIBRATION BEFORE THE CORRELATION HOLE

Ignoring the correlation hole, we can define the equi-
libration time as the point where (O(r)) first crosses the
infinite-time average (O). We denote this time by ¢*, which
is clearly much smaller than the Heisenberg time, t* < t.
These crossing points are marked with stars in Figs. 1(a)-1(d).
The fact that the correlation hole exists for a finite-size system,
even if this is minor, indicates that * is well defined, because
finding its value consists of finding a crossing point. This
is to be contrasted with the determination of the Heisenberg
time . Since the b, (¢) function, which controls the evolution
in the interval of the correlation hole, follows a power-law
behavior at long times, finding #y relies on an arbitrary thresh-
old § between the observable and its infinite-time average,
[{O(tw)) — O]/O = 8, as discussed in Ref. [32].

A. Weak disorder region: 0.5 < W <1

For sufficiently weak disorder, W = 0.5 [72], we can make
use of the semi-analytical expression (8) to estimate the de-
pendence of t* on system size. At long times, disregarding the
correlation hole, the decay of (Ps(¢)) is given by [73,74]

2 2 2 2
eiEmax/F + giEmin/r

-1 ~
(Ps(t > T )>decay — 27 N2I22

13)

Using that Epin, Emax, and I'? are extensive, namely, propor-
tional to the size of the system, and that the survival proba-
bility saturates at (Ps) ~ 3/D, we find that t*ocexp(0.22L),
which agrees very well with the crossing time obtained nu-
merically for L = 10, 12, 14, 16, 18, 20, 22. Knowing the
saturation value of the survival probability, we can evolve
|W(t)) up to a vicinity of t* only, which is a major sav-
ings compared with the evolution up to ty. This allows us
to use Krylov-space methods for the time evolution of the
survival probability and access to system sizes L > 18. For
the seven system sizes considered, we verified that the expo-
nential scaling of r* with L is indeed better than a power-law
scaling.

While an analytical expression is not available for the
time-dependence of the inverse participation ratio, in the weak
disorder regime, its saturation value is known analytically,
(Tpg) ~ 2/D [75], so we can also obtain t* for system sizes
L > 18. To do that, we apply a Savitzky-Golay filter to smooth
the curves for (Ipr(#)) and then extract the crossing time
[76]. For this quantity, which is nonlocal in real space just
as the survival probability, we find that a power-law scaling of
t* with L actually works better than an exponential scaling.
This makes us suspect that the exponential dependence of
the crossing time with system size found for the survival
probability may be related to the prevalence of the correla-
tion hole, a conjecture that is further reinforced by the next
results.

For the two few-body observables, we do not have ana-
lytical results for the saturation values, hence our analysis
is restricted to five system sizes. In Figs. 2(a) and 2(d), we
fix the system size at L = 18 and mark the crossing time for
the curves of (Z(¢)) and (C(¢)) obtained for different disorder
strengths. In Figs. 2(b) and 2(e), we present the scaling anal-
ysis for both quantities and those values of W. We find that,
similarly to the inverse participation ratio, the dependence of
t* with L is better fit with a power law than an exponential,
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FIG. 2. (upper [lower] panels) Analysis of the crossing time for the spin autocorrelation function (Z(¢)) [connected spin-spin autocorrela-
tion function (C(¢))]. (a) [(d)] Evolution of the mean spin autocorrelation function [connected spin-spin autocorrelation function] for L = 18.
Each curve corresponds to a different disorder strength W, as indicated. The horizontal dotted-dashed lines represent the asymptotic value of
the observable and the crossing time ¢* is marked with a star. (b) [(e)] Scaling of the crossing time #* with L. Symbols are the data and solid
lines give power-law fits to t* oc LY. Error bars indicate the standard deviation of the bootstrap procedure. (c¢) [(f)] Exponent y extracted from
the power-law fit to the data points in panel (b) [(e)] as a function of W. Error bars indicate the standard deviation on the fitted exponent.

that is,

t* o« LY with y > 3. 14)

The exact value of the exponent y varies with the disorder
strength, as shown in Figs. 2(c) and 2(f). For disorder strength
0.5 < W < 1, we find that, on average, y ~ 3.8 £0.3. The
value of the exponent is somewhat close to that argued in
Ref. [28], but larger than the value which typically appears
in studies of transport behavior [31,45]. In particular, in
Ref. [28], it was argued that matrix elements of local operators
in the energy basis of chaotic Hamiltonians remain correlated
down to frequencies parametrically lower (corresponding to
parametrically larger times) than those expected from the
diffusive scaling, beyond which true random-matrix behavior
occurs, while other measures of thermalization seemed oth-
erwise fulfilled. The observation that these elements remain
correlated down to such low frequencies was further tested
numerically in Ref. [77], although the scaling of a critical
frequency with system size could not be obtained.

We stress that the system has to be evolved for very long
times to obtain the time for the saturation of the dynamics,
which limits the system sizes that can be explored. This is
particularly problematic for the few-body observables, where
only five system sizes were considered. Thus, any conclusion
regarding the scaling analysis over such a small range of
points should be taken with reservation.

We expect to obtain results analogous to those in Secs. III
and IV A for chaotic clean models, since the correlation hole
is, of course, present there as well. However, the procedure
to extract the equilibration time requires sufficiently smooth
curves, which is more difficult to achieve in the absence
of disorder average. To reveal the correlation hole in clean
models, one needs to resort to averages over initial states and
running averages. In Appendix, we show the evolution of the
survival probability and the spin autocorrelation function for
a model without onsite disorder, so that the reader can see that

the behaviors are similar to those in Fig. 1, but the curves are
much less smooth.

B. Near critical region: 1 < W < W,

Figure 2 shows the crossing time ¢* of the few-body ob-
servables computed for disorder strengths slightly larger than
the coupling parameter, W 2 J. The power-law fit is still
better than the exponential one, although y [Eq. (14)] for
W = 1.5 is larger than five, as seen in Figs. 2(c) and 2(f). The
scaling analysis with L of the crossing time for W > 1 is more
difficult, because in this region, the use of random matrices for
guidance is no longer justified and longer propagation times
are typically required to obtain equilibration. We leave open
the question of whether the scaling with system size remains a
power law with even larger exponents or becomes exponential
as the critical point is approached (see related discussions in
Refs. [27,31]). In the following, we analyze how the crossing
time #* depends on the disorder strength for a fixed L.

It was shown that the time for the minimum of the corre-
lation hole, t,,, for the survival probability and for the spin
autocorrelation function grows exponentially as the disorder
strength increases [32], which was later confirmed for the
spectral form factor [69]. It is thus relevant to examine the de-
pendence of t* on W, although its behavior is not conclusive,
as can be seen from Fig. 3. Considering disorder strengths
W e [1, 3], the time ¢* is best fit with a stretched exponential,
but if we consider disorder strengths closer to the critical
point, W > 1.75, we see that either an exponential depen-
dence t* o exp(W/W') or a critical form ¢*o<|W —W,|~# with
an exponent B ~ 2.6 £ 0.08 describes the data reasonably
well for all the quantities, except for the inverse participation
ratio, which exhibits strong fluctuations in its correspond-
ing crossing times. The quality of the fits varies depending
on the quantity: the survival probability is better described
by an exponential form [Fig. 3(a)], while the few-body
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FIG. 3. Dependence of the crossing time #* on (a) [(b)] the
disorder strength W [the difference |W — W,|; with W, = 3.7] for
the survival probability (Ps(¢)), inverse participation ratio (Ipr(?)),
spin autocorrelation function (Z(¢)), and the connected spin-spin
correlation function (C(¢)) for system size L = 16. The symbols
representing each quantity are shown in panel (a). The dashed
[dotted-dashed] lines in (a) [(b)] correspond to exponential [power-
law] fits obtained with the points for W > 1.75. Error bars indicate
the standard deviation of the bootstrap procedure.

observables seem to have critical scaling [Fig. 3(b)]. With
respect to Fig. 3(b), we did not see a qualitative change in
our conclusions when varying W, from 3.5 to 6.

C. Alternative definition of the equilibration time

The two definitions for the equilibration time proposed
in this work lead to a time that increases with the system
size. The observation that the equilibration time increases with
system size can be intuitively understood as the time it takes
for an initial excitation to visit the full system, a situation
that is expected to occur in systems with extensive conserved
quantities where there is transport, such as the Hamiltonian
with short-range couplings in Eq. (1).

The experimental confirmation of our results depends on
several factors, such as the ability to reach very long co-
herence times, the accuracy of the measurements, and the
quantity measured. Consider, for example, the inverse partic-
ipation ratio in Fig. 1(b), whose minimum value decreases
with increasing system size. If the experimental precision
would be limited to 10~ one might conclude that the equi-
libration time decreases as L increases. If, however, the
experiment would directly measure the entropies, In[Ipg(#)]

or — Y [{¢n| ()| In[|(¢,|W(2))|*], that limiting resolution
would be circumvented. In practice, it is therefore worthwhile
to keep in mind possible discrepant conclusions between the-
ory and experiment due to experimental limitations.

V. CONCLUSIONS

We investigated how the equilibration time of the disor-
dered spin-1/2 Heisenberg chain depends on the system size
L for four different observables. For chaotic systems and
few-body observables, this time can also be identified with
the thermalization time. If the correlation hole is taken into
account when defining the equilibration time, then the latter
coincides with the Heisenberg time and thus grows exponen-
tially with L. This is what happens for the survival probability,
where the correlation hole persists in the thermodynamic
limit. However, for the inverse participation ratio, the spin au-
tocorrelation function, and the connected spin-spin correlation
function, the correlation hole fades away as L increases, which
justifies neglecting it. In this case, we defined the equilibration
time as the point where the evolution of the observables first
crosses their infinite-time averages. The dependence of this
crossing time on system size is best described by a power law.

Chaotic systems with static Hamiltonians conserve at least
the total energy, have diffusive energy transport and their
equilibration time, namely, the time it takes for a nonunifor-
mity in the energy density to spread across the system, is
expected to be bounded from below by L2. In the particular
case of disordered chaotic systems, transport is presumably
subdiffusive [18,19,24,29,62], in which case their equilibra-
tion time is bounded from below by LY with y > 2, although
for very weak disorder, y should eventually approach the
lower bound y =~ 2 corresponding to diffusive transport. Inter-
estingly, even for the lowest disorder that we study, W =~ 0.5,
the equilibration (crossing) time for the few-body observables
considered scales as LY with y > 3, so it is parametrically
larger than the time it takes to make the energy density homo-
geneous. In future studies, we plan to explore in more detail
in which sense the system seems to remain out of equilibrium
for times L? < t < L3, where the energy density has already
spread out, but other few-body observables, such as the spin
autocorrelation function and the connected spin-spin correla-
tion function, have not yet equilibrated.

We have provided a brief analysis of the dependence of
the crossing time #* on the disorder strength close to the crit-
ical point, but it is hard to discern between an exponentially
growing t* with W and a critical behavior t* oc |W — W, | £,
The survival probability seems to be better described by the
former, while the few-body observables appear to show the
critical scaling with an exponent 8 ~ 2.6.

In summary, by analyzing the entire evolution of physical
observables up to equilibration in a paradigmatic many-body
quantum system, we were able to identify their equilibration
time without any assumptions or approximations. Taking the
correlation hole into account, the equilibration time increases
exponentially with the system size. Disregarding the correla-
tion hole, the equilibration time for the few-body observables
considered and the inverse participation ratio grows as a power
law with the system size, although still exponentially for the
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survival probability. We leave it as an open question for future
studies to determine whether this apparent difference in the
scaling is related to the vanishing of the correlation hole in
the thermodynamic limit.
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APPENDIX: CLEAN MODEL

We consider here a one-dimensional XX Z chain with peri-
odic boundary conditions, but, in contrast with Eq. (1), it does
not have random onsite disorder and contains instead a single
defect (impurity) on site L/2. The Hamiltonian is given by

L
H=hp8,+7) (858, + 88, + a8:8:,,). (AD

i=1

We set the coupling constant to J = 1, the anisotropy param-
eter to A =1.2, and Az, = 1.0, which guarantees that the
system is chaotic [78,79]. We add two small defects, hls’f and
hLS‘Z, where h; ; are small numbers uniformly distributed in
[—0.1, 0.1], to break symmetries and to use the averages over
realizations to reduce finite-size effects. As in the main text,
we work in the 8%, = 0 subspace.
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FIG. 4. Time evolution of the mean (a) survival probability
(Ps(¢)) and (b) spin autocorrelation function for different system
sizes, as indicated in panel (a), of the clean chaotic model in Eq. (A1).
The horizontal dotted-dashed lines mark the asymptotic values and
the stars indicate the crossing time ¢*.

In Fig. 4, we show the time evolution of the survival
probability [Fig. 4(a)] and the spin autocorrelation function
[Fig. 4(b)]. All results are averaged over 10* samples com-
posed of 0.01D random product states in the S° basis and
10*/(0.01D) realizations for h, ;. Figure 4 exhibits features
very similar to those in Figs. 1(a) and 1(c), including the
appearance of the correlation hole, but the curves are now
visibly much less smooth than the corresponding curves in
Fig. 1.
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