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Abstract

We present an efficient coreset construction algorithm for large-scale Support

Vector Machine (SVM) training in Big Data and streaming applications. A

coreset is a small, representative subset of the original data points such that a

models trained on the coreset are provably competitive with those trained on

the original data set. Since the size of the coreset is generally much smaller

than the original set, our preprocess-then-train scheme has potential to lead to

significant speedups when training SVM models. We prove lower and upper

bounds on the size of the coreset required to obtain small data summaries for

the SVM problem. As a corollary, we show that our algorithm can be used to

extend the applicability of any off-the-shelf SVM solver to streaming, distributed,

and dynamic data settings. We evaluate the performance of our algorithm

on real-world and synthetic data sets. Our experimental results reaffirm the
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favorable theoretical properties of our algorithm and demonstrate its practical

effectiveness in accelerating SVM training.

Keywords: Support vector machines, Coresets, data compression

1. Introduction

Popular machine learning algorithms are computationally expensive, or worse

yet, intractable to train on massive data sets, where the input data set is so

large that it may not be possible to process all the data at one time. A natural

approach to achieve scalability when faced with Big Data is to first conduct

a preprocessing step to summarize the input data points by a significantly

smaller, representative set. Off-the-shelf training algorithms can then be run

efficiently on this compressed set of data points. The premise of this two-step

learning procedure is that the model trained on the compressed set will be

provably competitive with the model trained on the original set – as long as the

data summary, i.e., the coreset, can be generated efficiently and is sufficiently

representative.

Coresets are small weighted subsets of the training points such that models

trained on the coreset are approximately as good as the ones trained on the

original (massive) data set. Coreset constructions were originally introduced

in the context of computational geometry [1] and subsequently generalized

for applications to other problems, such as logistic regression, neural network

compression, and mixture model training [2, 3, 4, 5, 6] (see [7] for a survey).

A popular coreset construction technique – and the one that we leverage in

this paper – is to use importance sampling with respect to the points’ sensitivities.

The sensitivity of each point is defined to be the worst-case relative impact of

each data point on the objective function. Points with high sensitivities have

a large impact on the objective value and are sampled with correspondingly

high probability, and vice-versa. The main challenge in generating small-sized

coresets often lies in evaluating the importance of each point in an accurate and

computationally-efficient way.
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1.1. Our Contributions

In this paper, we propose an efficient coreset construction algorithm to gener-

ate compact representations of large data sets to accelerate SVM training. Our

approach hinges on bridging the SVM problem with that of k-means clustering.

As a corollary to our theoretical analysis, we obtain theoretical justification

for the widely reported empirical success of using k-means clustering as a way

to generate data summaries for large-scale SVM training. In contrast to prior

approaches, our approach is both (i) provably efficient and (ii) naturally extends

to streaming or dynamic data settings. Above all, our approach can be used to

enable the applicability of any off-the-shelf SVM solver – including gradient-based

and/or approximate ones, e.g., Pegasos [8], to streaming and distributed data

settings by exploiting the composibility and reducibility properties of coresets [7].

In particular, this paper contributes the following:

1. A coreset construction algorithm for accelerating SVM training based on

an efficient importance sampling scheme.

2. An analysis proving lower bounds on the number of samples required by

any coreset construction algorithm to approximate the input data set.

3. Theoretical guarantees on the efficiency and accuracy of our coreset con-

struction algorithm.

4. Evaluations on synthetic and real-world data sets that demonstrate the

effectiveness of our algorithm in both streaming and offline settings.

2. Related Work

Training SVMs requires O(n3) time and O(n2) space in the offline setting

where n is the number of training points. Towards the goal of accelerating

SVM training in the offline setting, [9, 10] introduced the Core Vector Machine

(CVM) and Ball Vector Machine (BVM) algorithms, which are based on refor-

mulating the SVM problem as the Minimum Enclosing Ball (MEB) problem and
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Enclosing Ball (EB) problem, respectively, and by leveraging existing coreset

constructions for each; see [11]. However, CVM’s accuracy and convergence

properties have been noted to be at times inferior relative to those of existing

SVM implementations [12]; moreover, unlike the algorithm presented in this

paper, neither the CVM, nor the BVM algorithm extends naturally to streaming

or dynamic settings where data points are continuously inserted or deleted. Sim-

ilar geometric approaches, including extensions of the MEB formulation, those

based on convex hulls and extreme points, among others, were investigated by

[13, 14, 15, 16, 17, 18]. Another class of related work includes the use of canonical

optimization algorithms such as the Frank-Wolfe algorithm [19], Gilbert’s algo-

rithm [19, 20], and a primal-dual approach combined with Stochastic Gradient

Descent (SGD) [21].

SGD-based approaches, such as Pegasos [8], have been a popular tool of choice

in approximately-optimal SVM training. Pegasos is a stochastic sub-gradient

algorithm for obtaining a (1 + ε)-approximate solution to the SVM problem in

Õ(dnλ/ε) time for a linear kernel, where λ is the regularization parameter and d

is the dimensionality of the input data points. In contrast to our method, these

approaches and their corresponding theoretical guarantees do not feasibly extend

to dynamic data sets and/or streaming settings. In particular, gradient-based

approaches cannot be trivially extended to streaming settings since the arrival

of each input point in the stream results in a change of the gradient.

There has been prior work in streaming algorithms for SVMs, such as those

of [13, 15, 22, 18]. However, these works generally suffer from poor practical

performance in comparison to that of approximately optimal SVM algorithms

in the offline (batch) setting, high difficulty of implementation and application

to practical settings, and/or lack of strong theoretical guarantees. Unlike the

algorithms of prior work, our method is simultaneously simple-to-implement,

exhibits theoretical guarantees, and naturally extends to streaming and dynamic

data settings, where the input data set is so large that it may not be possible to

store or process all the data at one time.
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3. Problem Definition

Let P =
{

(x, y) : x ∈ Rd × 1, y ∈ {±1}
}
denote a set of n input points. Note

that for each point p = (x, y) ∈ P , the last entry xd+1 = 1 of x accounts for the

bias term embedding into the feature space2. To present our results with full

generality, we consider the setting where the input points P may have weights

associated with them. Hence, given P and a weight function u : P → R≥0, we

let P = (P, u) denote the weighted set with respect to P and u. The canonical

unweighted case can be represented by the weight function that assigns a uniform

weight of 1 to each point, i.e., u(p) = 1 for every point p ∈ P . For every T ⊆ P ,

let U(T ) =
∑
p∈T u(p). We consider the scenario where n is much larger than

the dimension of the data points, i.e., n� d.

For a normal to a separating hyperplane w ∈ Rd+1, let w1:d denote vector

which contains the first d entries of w. The last entry of w (wd+1) encodes the

bias term b ∈ R. Under this setting, the hinge loss of any point p = (x, y) ∈ P

with respect to a normal to a separating hyperplane, w ∈ Rd+1, is defined as

h(p, w) = [1− y〈x,w〉]+, where [·]+ = max{0, ·}. As a prelude to our subsequent

analysis of sensitivity-based sampling, we quantify the contribution of each point

p = (x, y) ∈ P to the SVM objective function as

fλ(p, w) =
1

2U(P )
‖w1:d‖22 + λh(p, w), (1)

where λ ∈ [0, 1] is the SVM regularization parameter, and h(p, w) = [1− y〈x,w〉]+
is the hinge loss with respect to the query w ∈ Rd+1 and point p = (x, y). Putting

it all together, we formalize the λ-regularized SVM problem as follows.

Definition 1 (λ-regularized SVM Problem). For a given weighted set of points

P = (P, u) and a regularization parameter λ ∈ [0, 1], the λ-regularized SVM

problem with respect to P is given by

min
w∈Rd+1

Fλ(P, w),

2We perform this embedding for ease of presentation later on in our analysis.
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where

Fλ(P, w) =
∑
p∈P

u(p)f(p, w). (2)

We let w∗ denote the optimal solution to the SVM problem with respect to P ,

i.e., w∗ ∈ argminw∈Rd+1 Fλ(P, w). A solution ŵ ∈ Rd+1 is an ξ-approximation

to the SVM problem if Fλ(P, ŵ) ≤ Fλ(P, w∗) + ξ. Next, we formalize the coreset

guarantee that we will strive for when constructing our data summaries.

Coresets.. A coreset is a compact representation of the full data set that provably

approximates the SVM cost function (2) for every query w ∈ Rd+1 – including

that of the optimal solution w∗. We formalize this notion below for the SVM

problem with objective function Fλ(·) as in (2) below.

Definition 2 (ε-coreset). Let ε ∈ (0, 1) and let P = (P, u) be the weighted set

of training points as before. A weighted subset S = (S, v), where S ⊂ P and

v : S → R≥0 is an ε-coreset for P if

∀w ∈ Rd+1 |Fλ (P, w)− Fλ (S, w)| ≤ εFλ (P, w) . (3)

This strong guarantee implies that the models trained on the coreset S with

any off-the-shelf SVM solver will be approximately (and provably) as good as

the optimal solution w∗ obtained by training on the entire data set P. This

also implies that, if the size of the coreset is provably small, e.g., logartihmic in

n (see Sec. 5), then an approximately optimal solution can be obtained much

more quickly by training on S rather than P, leading to computational gains in

practice for both offline and streaming data settings (see Sec. 6).

The difficulty in constructing coresets lies in constructing them (i) efficiently,

so that the preprocess-then-train pipeline takes less time than training on the

full data set and (ii) accurately, so that important data points – i.e., those that

are imperative to obtaining accurate models – are not left out of the coreset,

and redundant points are eliminated so that the coreset size is small. In the

following sections, we introduce and analyze our coreset algorithm for the SVM

problem.
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4. Method

Our coreset construction scheme is based on the unified framework of [4, 5] and

is shown in Alg. 1. The crux of our algorithm lies in generating the importance

sampling distribution via efficiently computable upper bounds (proved in Sec. 5)

on the importance of each point (Lines 1–10). Sufficiently many points are then

sampled from this distribution and each point is given a weight that is inversely

proportional to its sample probability (Lines 11–12). The number of points

required to generate an ε-coreset with probability at least 1 − δ is a function

of the desired accuracy ε, failure probability δ, and complexity of the data set

(t from Theorem 7). Under mild assumptions on the problem at hand (see

Sec. Appendix A.4), the required sample size is polylogarithmic in n.

Our algorithm is an importance sampling procedure that first generates

a judicious sampling distribution based on the structure of the input points

and samples sufficiently many points from the original data set. The resulting

weighted set of points S = (S, v), serves as an unbiased estimator for Fλ(P, w)

for any query w ∈ Rd+1, i.e., E[Fλ (S, w)] = Fλ(P, w). Although sampling points

uniformly with appropriate weights can also generate such an unbiased estimator,

it turns out that the variance of this estimation is minimized if the points are

sampled according to the distribution defined by the ratio between each point’s

sensitivity and the sum of sensitivities, i.e., γ(p)/t on Line 12 [23].

4.1. Computational Complexity

Coresets are intended to provide efficient and provable approximations to

the optimal SVM solution. However, the very first line of our algorithm entails

computing an (approximately) optimal solution to the SVM problem. This

seemingly eerie phenomenon is explained by the merge-and-reduce technique [24]

that ensures that our coreset algorithm is only run against small partitions of

the original data set [3, 24, 25]. The merge-and-reduce approach leverages the

fact that coresets are composable and reduces the coreset construction problem

for a (large) set of n points into the problem of computing coresets for n
2|S|
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Algorithm 1: Coreset(P, u, λ, ξ, k,m)

Input :A set of training points P ⊆ Rd+1 × {−1, 1} containing n

points, weight function u : P → R≥0, a regularization

parameter λ ∈ [0, 1], an approximation factor ξ > 0, a positive

integer k, a sample size m

Output :An weighted set (S, v) which satisfies Theorem 7

1 w̃ ← An ξ-approximation for the optimal SVM of (P, u);

2 õptξ ← Fλ(P, w̃)− ξ;

3 for y ∈ {−,+} do

4 Py ← all the points in P that are associated with the label y;

5
(
c
(i)
y , P

(i)
y

)k
i=1
← k-means++(P, k);

6 for every i ∈ [k] do

7 α
(i)
y ←

U(P\P (i)
y )

2λU(P )U
(
P

(i)
y

) ;
8 for every p = (x, y) ∈ P (i)

y do

9 p∆ ← c
(i)
y − yx;

10 γ(p)←

u(p)

U
(
P

(i)
y

) +λu(p) 9
2 max

{
4
9α

(i)
y ,

√
4
(
α

(i)
y

)2

+
2‖p∆‖22
9õptξ

− 2α
(i)
y

}
;

11 t←
∑
p∈P γ(p);

12 (S, v)← m weighted samples from P = (P, u) where each point p ∈ P is

sampled with probability q(p) = γ(p)
t and, if sampled, has weight

v(p) = u(p)
mq(p) ;

13 return (S, v);

points, where 2|S| is the minimum size of input set that can be reduced to half

using Algorithm 1 [3]. Assuming that the sufficient conditions for obtaining

polylogarithmic size coresets implied by Theorem 7 hold, the overall time required

is approximately linear in n.
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5. Analysis

In this section, we analyze the sample-efficiency and computational complexity

of our algorithm. The outline of this section is as follows: we first formalize

the importance (i.e., sensitivity) of each point and summarize the necessary

conditions for the existence of small coresets. We then present the negative

result that, in general, sublinear coresets do not exist for every data set (Lem. 4).

Despite this, we show that we can obtain accurate approximations for the

sensitivity of each point via an approximate k-means clustering (Lems. 5 and 6),

and present non-vacuous, data-dependent bounds on the sample complexity

(Thm. 7).

5.1. Preliminaries

We will henceforth state all of our results with respect to the weighted set of

training points P = (P, u), λ ∈ [0, 1], and SVM cost function Fλ (as in Sec. 3).

The definition below rigorously quantifies the relative contribution of each point.

Definition 3 (Sensitivity [3]). The sensitivity of each point p ∈ P is given by

s(p) = sup
w

u(p)fλ(p, w)

Fλ(P, w)
. (4)

Note that in practice, exact computation of the sensitivity is intractable,

so we usually settle for (sharp) upper bounds on the sensitivity γ(p) ≥ s(p)

(e.g., as in Alg. 1). Sensitivity-based importance sampling then boils down

to normalizing the sensitivities by the normalization constant – to obtain an

importance sampling distribution – which in this case is the sum of sensitivities

t =
∑
p∈P s(p). It turns out that the required size of the coreset is at least linear

in t [3], which implies that one immediate necessary condition for sublinear

coresets is t ∈ o(n).

5.2. Lower bound for Sensitivity

The next lemma shows that a sublinear-sized coreset cannot be constructed for

every SVM problem instance. The proof of this result is based on demonstrating
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a hard point set for which the sum of sensitivities is Ω(nλ), ignoring d factors,

which implies that sensitivity-based importance sampling roughly boils down to

uniform sampling for this data set. This in turn implies that if the regularization

parameter is too large, e.g., λ = θ(1), and if d� n (as in Big Data applications)

then the required number of samples for property (3) to hold is Ω(n).

Lemma 4. For an even integer d ≥ 2, there exists a set of weighted points

P = (P, u) such that

s(p) ≥ nλ+ d2

n (λ+ d2)
∀p ∈ P and

∑
p∈P

s(p) ≥ nλ+ d2

(λ+ d2)
.

We next provide upper bounds on the sensitivity of each data point with

respect to the complexity of the input data. Despite the non-existence results

established above, our upper bounds shed light into the class of problems for

which small-sized coresets are ensured to exist.

5.3. Sensitivity Upper Bound

In this subsection we present sharp, data-dependent upper bounds on the

sensitivity of each point. Our approach is based on an approximate solution to

the k-means clustering problem and to the SVM problem itself (as in Alg. 1).

To this end, we will henceforth let k be a positive integer, ξ ∈ [0, Fλ(P, w∗)] be

the error of the (coarse) SVM approximation, and let (c
(i)
y , P

(i)
y ), α(i)

y and p∆

for every y ∈ {+,−}, i ∈ [k] and p ∈ P as in Lines 4–9 of Algorithm 1.

Lemma 5. Let k be a positive integer, ξ ∈ [0, Fλ(P, w∗)], and let P = (P, u) be

a weighted set. Then for every i ∈ [k], y ∈ {+,−} and p ∈ P (i)
y ,

s(p) ≤ u(p)

U
(
P

(i)
y

)+λu(p)
9

2
max

4

9
α(i)
y ,

√√√√4
(
α

(i)
y

)2

+
2 ‖p∆‖22
9õptξ

− 2α(i)
y

 = γ(p).

Lemma 6. In the context of Lemma 5, the sum of sensitivities is bounded by

∑
p∈P

s(p) ≤ t = 4k +

k∑
i=1

3λVar(i)
+√

2õptξ

+
3λVar(i)

−√
2õptξ

,

where Var(i)
y =

∑
p∈P (i)

y
u(p) ‖p∆‖2 for all i ∈ [k] and y ∈ {+,−}.
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Theorem 7. For any ε ∈ (0, 1/2), δ ∈ (0, 1), let m be an integer satisfying

m ∈ Ω

(
t

ε2

(
d log t+ log(1/δ)

))
,

where t is as in Lem. 6. Invoking Coreset with the inputs defined in this context

yields a ε-coreset S = (S, v) with probability at least 1− δ in O (nd+ T ) time,

where T represents the computational complexity of obtaining an ξ-approximated

solution to SVM and applying k-means++ on P+ and P−.

Sufficient Conditions and the effect of k means on our sensitivity.. Theorem 7

immediately implies that, for reasonable ε and δ, coresets of poly-logarithmic

(in n) size can be obtained if d = O(polylog(n)), which is usually the case in our

target Big Data applications, and if
∑k
i=1

3λVar(i)+√
2õptξ

+
3λVar(i)−√

2õptξ

= O(polylog(n)).

Despite the fact that any k-partitioning of the data can be applied instead

of k-means for achieving upper bound on the sensitivities of the points, its

important to note that k-means actually acts as a trade-off mechanism between

the raw contribution and the actual contribution (the weight term and the max

term from Lemma 5, respectively). Choosing the best k can be done via binary

search over the values of k that minimize the sensitivity. We refer the reader to

literature on the Silhouette and Elbow methods [26] as ways to pick the optimal

k.

6. Results

In this section, we present experimental results that demonstrate and compare

the effectiveness of our algorithm on a variety of synthetic and real-world data sets

in offline and streaming data settings [27]. Our empirical evaluations demonstrate

the practicality and wide-spread effectiveness of our approach: our algorithm

consistently generated more compact and representative data summaries, and

yet incurred a negligible increase in computational complexity when compared

to uniform sampling.
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Measurements

Dataset
HTRU Credit Pathol. Skin Cod W1

Number of data-points (n) 17, 898 30, 000 1, 000 245, 057 488, 565 49, 749

Sum of Sensitivities (t) 475.8 1, 013.0 77.6 271.5 2, 889.2 24, 231.6

t/n (Percentage) 2.7% 3.4% 7.7% 0.1% 0.6% 51.3%

Table 1: The number of input points and measurements of the total sensitivity computed

empirically for each data set in the offline setting. The sum of sensitivities is significantly less

than n for virtually all of the data sets, which, by Thm. 7, ensures the sample-efficiency of our

approach on the evaluated scenarios.

Evaluation. We considered 6 real-world data sets of varying size and complexity

as depicted in Table 1. For each data set of size n, we selected a set of M =

15 geometrically-spaced subsample sizes m1, . . . ,mM ⊂ [log n, n4/5]. For each

sample size m, we ran each algorithm (Alg. 1 or uniform sampling) to construct

a subset S = (S, v) of size m. We then trained the SVM model as per usual

on this subset to obtain an optimal solution with respect to the coreset S, i.e.,

w∗S = argminw Fλ(S, w). We then computed the relative error incurred by the

solution computed on the coreset (w∗S) with respect to the ground-truth optimal

solution computed on the entire data set (w∗): |Fλ(P,w∗S)−Fλ(P,w∗)|/Fλ(P,w∗). The

results were averaged across 100 trials.

Figures 1 and 2 depict the results of our comparisons against uniform sampling

in the offline setting. In Fig. 1, we see that the coresets generated by our

algorithm are much more representative and compact than the ones constructed

by uniform sampling: across all data sets and sample sizes, training on our

coreset yields significantly better solutions to SVM problem when compared to

those generated by training on a uniform sample. For certain data sets, such as

HTRU, Pathological, and W1, this relative improvement over uniform sampling

is at least an order of magnitude better, especially for small sample sizes. Fig. 1

also shows that, as a consequence of a more informed sampling scheme, the

variance of each model’s performance trained on our coreset is much lower than

that of uniform sampling for all data sets.
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Figure 1: The relative error of query evaluations with respect uniform and coreset subsamples

for the 6 data sets in the offline setting. Shaded region corresponds to values within one

standard deviation of the mean.

Fig. 2 shows the total computational time required for constructing the

sub-sample (i.e., coreset) S and training the SVM on the subset S to obtain w∗S .

We observe that our approach takes significantly less time than training on the

original model when considering non-trivial data sets (i.e., n ≥ 18, 000), and

underscores the efficiency of our method: we incur a negligible cost in the overall

SVM training time due to a more involved coreset construction procedure, but

benefit heavily in terms of the accuracy of the models generated (Fig. 1).

Next, we evaluate our approach in the streaming setting, where data points

arrive one-by-one and the entire data set cannot be kept in memory, for the same

6 data sets. The results of the streaming setting are shown in Fig. 3. Figs. 3

portray a similar trend as the one we observed in our offline evaluations: our

approach significantly outperforms uniform sampling for all of the evaluated

data sets and sample sizes, with negligible computational overhead.

In sum, our empirical evaluations demonstrate the practical efficiency of our

algorithm and reaffirm the favorable theoretical guarantees of our approach: the

additional computational complexity of constructing the coreset is negligible

relative to that of uniform sampling, and the entire preprocess-then-train pipeline

is significantly more efficient than training on the original massive data set.

13



200 400 600 800
Subsample Size

0

2

4

6

8
To

ta
l R

un
ni

ng
 T

im
e 

(s
ec

on
ds

) HTRU
Uniform Sampling
Our Coreset
All Data

200 400 600 800
Subsample Size

0

10

20

30

40

50

60

To
ta

l R
un

ni
ng

 T
im

e 
(s

ec
on

ds
) CreditCard

Uniform Sampling
Our Coreset
All Data

200 300 400 500 600 700
Subsample Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

To
ta

l R
un

ni
ng

 T
im

e 
(s

ec
on

ds
) Pathological

Uniform Sampling
Our Coreset
All Data

500 1000 1500 2000 2500
Subsample Size

0

50

100

150

200

250

To
ta

l R
un

ni
ng

 T
im

e 
(s

ec
on

ds
) Skin

Uniform Sampling
Our Coreset
All Data

400 600 800 1000 1200 1400
Subsample Size

0

500

1000

1500

2000

To
ta

l R
un

ni
ng

 T
im

e 
(s

ec
on

ds
) Cod

Uniform Sampling
Our Coreset
All Data

6000 8000 10000 12000 14000
Subsample Size

0

50

100

150

200

To
ta

l R
un

ni
ng

 T
im

e 
(s

ec
on

ds
) W1

Uniform Sampling
Our Coreset
All Data

Figure 2: The total computational cost of constructing a coreset and training the SVM model

on the coreset, plotted as a function of the size of the coreset.
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Figure 3: The relative error of query evaluations with respect uniform and coreset subsamples

for the 6 data sets in the streaming setting. The figure shows that our method tends to fare

even better in the streaming setting (cf. Fig. 1).

7. Conclusion

We presented an efficient coreset construction algorithm for generating com-

pact representations of the input data points that are provably competitive

with the original data set in training Support Vector Machine models. Unlike

prior approaches, our method and its theoretical guarantees naturally extend to

streaming settings and scenarios involving dynamic data sets, where points are

14



continuously inserted and deleted. We established instance-dependent bounds

on the number of samples required to obtain accurate approximations to the

SVM problem as a function of input data complexity and established dataset

dependent conditions for the existence of compact representations. Our ex-

perimental results on real-world data sets validate our theoretical results and

demonstrate the practical efficacy of our approach in speeding up SVM training.

We conjecture that our coreset construction can be extended to accelerate SVM

training for other classes of kernels and can be applied to a variety of Big Data

scenarios.
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Appendix A. Proofs of the Analytical Results in Section 5

This section includes the full proofs of the technical results given in Sec. 5.

Appendix A.1. Proof of Lemma 4

Lemma 4. For an even integer d ≥ 2, there exists a set of weighted points

P = (P, u) such that

s(p) ≥ nλ+ d2

n (λ+ d2)
∀p ∈ P and

∑
p∈P

s(p) ≥ nλ+ d2

(λ+ d2)
.

Proof. Following [28], let n =
(
d
d/2

)
and let P = (P, u), where P ⊆ Rd+1 × {±1}

be set of n labeled points, and u : P → 1. For every p = (x, y) ∈ P , where

x ∈ Rd × {1} and y ∈ {±1}, among the first d entries of x, exactly d
2 entries are

equivalent to

y

√
2

d
,

where the remaining d
2 entries among the first d are set to 0. Hence, for our

proof to hold, we assume that P contains all such combinations and at least one

point of each label. For every p = (x, y) ∈ P , define the set of non-zero entries

of p as the set

Bp = {i ∈ [d+ 1] : xi 6= 0}.

Put p ∈ P and note that for bounding the sensitivity of point p, consider w

with entries defined as

∀i ∈ [d+ 1] wi =


0 if i ∈ Bp,

1√
2
d

otherwise.

Note that ‖w‖22 = d
2

(
1√

2
d

)2

= d2

4 . We also have that h(p, w) = 1 since

y〈x,w〉 =
∑
i∈Bp yxiwi = d

2 0 = 0. To bound the sum of hinge losses contributed

by other points q ∈ P \{p}, note that Bq\Bp 6= ∅. Then for every q = (x′, y′) 6= p,

y′〈x′, w〉 =
∑

i∈Bq\Bp

y′x′iwi ≥
1√

2
d

√
2

d
= 1,
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which implies that h(q, w) = 0. Thus,∑
q∈P

h(q, w) = 1.

Putting it all together,

s(p) = sup
w′∈Rd+1

Fλ(P,w′)6=0

fλ(p, w′)

Fλ(P, w′)
≥

d2

8n + λh(p, w)
‖w‖22

2 + λ
=

d2

8n + λ
d2

8 + λ
.

Since the above holds for every p ∈ P , summing the above inequality over

every p ∈ P , yields that

∑
p∈P

s(p) ≥
d2

8 + nλ
d2

8 + λ
∈ Ω

(
d2 + nλ

d2 + λ

)
.

Appendix A.2. Proof of Lemma 5

Lemma 5. Let k be a positive integer, ξ ∈ [0, Fλ(P, w∗)], and let P = (P, u) be

a weighted set. Then for every i ∈ [k], y ∈ {+,−} and p ∈ P (i)
y ,

s(p) ≤ u(p)

U
(
P

(i)
y

)+λu(p)
9

2
max

4

9
α(i)
y ,

√√√√4
(
α

(i)
y

)2

+
2 ‖p∆‖22
9õptξ

− 2α(i)
y

 = γ(p).

Proof. Let Py ⊆ P denote the set of points with the same label as p as in Line 4

of Algorithm 1. Consider an optimal clustering of the points in Py into k clusters

with centroids Cy = {c(1)
y , . . . , c

(k)
y } ⊆ Rd+1 being their mean as in Line 5, and

let α(i)
y be as defined in Line 7 for every i ∈ [k] and y ∈ {+,−}. In addition, let

P \ P(i)
y denote the weighted set

(
P \ P (i)

y , u
)
for every i ∈ [k] and y ∈ {+,−}.

Put p = (x, y) ∈ P and let i ∈ [k] be the index of the cluster which p belongs

to, i.e., p ∈ P (i)
y .

We first observe that for any scalars a, b ∈ R, max{a− b, 0} ≤ max{a, 0}+

max{−b, 0}. This implies that, by definition of the hinge loss, we have for every

q, q̂, w ∈ Rd+1

h(q, w) ≤ h(q̂, w) + [〈q − q̂, w〉]+ ,
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where [x]+ = max{0, x} as before. Hence, in the context of the definitions above

h(p, w) = h(p− c(p) + c(p), w) (A.1)

≤ h(c(p), w) + [〈c(p)− yx,w〉]+ (A.2)

= h(c(p), w) + [〈p∆, w〉]+ . (A.3)

Now let the total weight of the points in P
(i)
y be denoted by U

(
P

(i)
y

)
=∑

q∈P (i)
y

u(q). Note that since c(i)y is the centroid of P (i)
y (as described in Line 5 of

Algorithm 1), we have P (i)
y = 1

U
(
P

(i)
y

) ∑
q=(xq,yq)∈P (i)

y

u(q)yqxq. Observing that the

hinge loss is convex, we invoke Jensen’s inequality to obtain

fλ(c(i)y , w) ≤ 1

U
(
P

(i)
y

) ∑
q∈P (i)

y

u(q)f(q, w) =
Fλ(P, w)− Fλ(P \ P(i)

y , w)

U
(
P

(i)
y

) .

Applying the two inequalities established above to s(p)/u(p) yields that

s(p)

u(p)
= sup

w

fλ(p, w)

Fλ(P, w)
(A.4)

≤ sup
w

fλ(c
(i)
y , w) + λ [〈w, p∆〉]+

Fλ(P, w)
(A.5)

≤ sup
w

∑
q∈P (i)

y

u(q)fλ(q, w)

U
(
P

(i)
y

)
Fλ(P, w)

+
λ [〈w, p∆〉]+
Fλ(P, w)

(A.6)

= sup
w

Fλ(P, w)− Fλ(P \ P(i)
y , w)

U
(
P

(i)
y

)
Fλ(P, w)

+
λ [〈w, p∆〉]+
Fλ(P, w)

(A.7)

=
1

U
(
P

(i)
y

) + sup
w

λ [〈w, p∆〉]+ − Fλ(P \ P (i)
y , w)/U

(
P

(i)
y

)
Fλ(P, w)

(A.8)

By definition of Fλ(P \ P (i)
y , w), we have

Fλ(P \ P (i)
y , w) ≥

‖w1:d‖22 U
(
P \ P (i)

y

)
2U(P )

.
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Continuing from above and dividing both sides by λ yields

s(p)

λu(p)
≤ 1

λU
(
P

(i)
y

) + sup
w

[〈w, p∆〉]+ −
‖w1:d‖2 U(P\P (i)

y )
2λU(P )U

(
P

(i)
y

)
Fλ(P, w)

≤ 1

λu(Cp)
+ sup

w

[〈w, p∆〉]+ − α
(i)
y ‖w1:d‖22

Fλ(P, w)
,

where

α(i)
y =

U
(
P \ P (i)

y

)
2λU(P )U

(
P

(i)
y

) . (A.9)

Let

g(w) =
[〈w, p∆〉]+ − α

(i)
y ‖w1:d‖22

Fλ(P, w)

be the expression on the right hand side of the sensitivity inequality above, and

let ŵ ∈ argmaxw g(w). The rest of the proof will focus on bounding g(ŵ), since

an upper bound on the sensitivity of a point as a whole would follow directly

from an upper bound on g(ŵ).

Note that by definition of p∆ and the embedding of 1 to the (d+ 1)th entry

of the original d-dimensional point (with respect to p),

〈ŵ, p∆〉 = 〈ŵ1:d, (p∆)1:d〉,

where the equality holds since the (d+ 1)th entry of p∆ is zero.

We know that 〈ŵ, p∆〉 ≥ α
(i)
y ‖ŵ1:d‖22 ≥ 0, since otherwise g(ŵ) < 0, which

contradicts the fact that ŵ is the maximizer of g(w). This implies that for each

entry j ∈ [d] of the sub-gradient of g(·) evaluated at ŵ, denoted by ∇g(ŵ), is

given by

∇g(ŵ)j =

(
(p∆)j − 2α

(i)
y ŵj

)
Fλ(P, ŵ)−∇Fλ(P, ŵ)j

(
〈w, p∆〉 − α(i)

y ‖w1:d‖22
)

Fλ(P, ŵ)
2 ,

(A.10)

and that ∇g(ŵ)d+1 = 0 since the bias term does not appear in the numerator of

g(·).
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Letting γ = 〈ŵ, p∆〉 − α(i)
y ‖ŵ1:d‖22 and setting each entry of the gradient

∇g(ŵ) to 0, we solve for p∆ to obtain

(p∆)1:d =
γ∇Fλ(P, ŵ)1:d

Fλ(P, ŵ)
+ 2α(i)

y ŵ1:d.

This implies that

〈ŵ, p∆〉 =
γ 〈ŵ,∇Fλ(P, ŵ)〉

Fλ(P, ŵ)
+ 2α(i)

y ‖ŵ1:d‖22

Rearranging and using the definition of γ, we obtain

γ =
γ 〈ŵ,∇Fλ(P, ŵ)〉

Fλ(P, ŵ)
+ α(i)

y ‖ŵ1:d‖22 , (A.11)

where Lemma 5 holds by taking 9
2 outside the max term.

By using the same equivalency for p∆ from above, we also obtain that

‖p∆‖22 = 〈p∆, p∆〉 =

∥∥∥∥γ∇Fλ(P, ŵ)1:d

Fλ(P, ŵ)
+ 2α(i)

y ŵ

∥∥∥∥2

=
γ2

Fλ(P, ŵ)2
‖∇Fλ(P, ŵ)‖22 + 4

(
α(i)
y

)2

‖ŵ1:d‖22 + 4α(i)
y

γ 〈ŵ,∇Fλ(P, ŵ)〉
Fλ(P, ŵ)

,

but γ 〈ŵ,∇Fλ(P,ŵ)〉
Fλ(P,ŵ) = γ − α(i)

y ‖ŵ1:d‖22, and so continuing from above, we have

‖p∆‖22 =
γ2

Fλ(P, ŵ)2
‖∇Fλ(P, ŵ)‖22 + 4

(
α(i)
y

)2

‖ŵ1:d‖22 + 4α(i)
y (γ − α(i)

y ‖ŵ1:d‖22)

=
γ2

Fλ(P, ŵ)2
‖∇Fλ(P, ŵ)1:d‖22 + 4α(i)

y γ

= γ2x̃+ 4α(i)
y γ,

where x̃ =
‖∇Fλ(P,ŵ)‖22
Fλ(P,ŵ)2 . Solving for γ from the above equation yields for x̃ > 0

γ =

√
4
(
α

(i)
y

)2

+ ‖p∆‖2 x̃− 2α
(i)
y

x̃
. (A.12)

Now we subdivide the rest of the proof into two cases. The first is the

trivial case in which the sensitivity of the point is sufficiently small enough to be

negligible, and the second case is the involved case in which the point has a high

influence on the SVM cost function and its contribution cannot be captured by

the optimal solution w∗ or something close to it.
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Case g(ŵ) ≤ 3α
(i)
y the bound on the sensitivity follows trivially from the analysis

above.

Case g(ŵ) > 3α
(i)
y note that the assumption of this case implies that w∗ cannot

be the maximizer of g(·), i.e., ŵ 6= w∗. This follows by the convexity of the SVM

loss function which implies that the norm of the gradient evaluated at w∗ is 0.

Thus by (A.11):

γ = α(i)
y ‖w∗1:d‖22 .

Since Fλ(P, w∗) ≥ ‖w∗1:d‖22 /2, we obtain

s(p) ≤
α

(i)
y ‖w∗1:d‖22
Fλ(P, w∗)

≤ 2α(i)
y .

Hence, we know that for this case we have ‖∇Fλ(P, ŵ)‖2 > 0, Fλ(P, ŵ) >

Fλ(P, w∗) ≥ 0, and so we obtain x̃ > 0.

This implies that we can use Eq.(A.12) to upper bound the numerator γ of

the sensitivity. Note that γ from (A.12) is decreasing as a function of x̃, and so

it suffices to obtain a lower bound on x̃. To do so, lets focus on Eq.(A.11) and

let divide both sides of it by γ, to obtain that

1 =
〈ŵ,∇Fλ(P, ŵ)〉

Fλ(P, ŵ)
+
α

(i)
y

γ
‖w1:d‖22 .

By rearranging the above equality, we have that

〈ŵ,∇Fλ(P, ŵ)〉
Fλ(P, ŵ)

= 1−
α

(i)
y ‖w1:d‖22

γ
. (A.13)

Recall that since the last entry of p∆ is 0 then it follows from Eq.(A.10)

that ∇Fλ(P, ŵ)d+1 is also zero, which implies that

〈ŵ,∇Fλ(P, ŵ)〉 = 〈ŵ1:d,∇Fλ(P, ŵ)1:d〉

≤ ‖ŵ1:d‖2 ‖∇Fλ(P, ŵ)1:d‖2

= ‖ŵ1:d‖2 ‖∇Fλ(P, ŵ)‖2

(A.14)

where the inequality is by Cauchy-Schwarz.
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Combining Eq.(A.13) with Eq. (A.14) yields

‖ŵ1:d‖2 ‖∇Fλ(P, ŵ)‖2
Fλ(P, ŵ)

≥ 1−
α

(i)
y ‖w1:d‖22

γ

≥ 1−
α

(i)
y ‖ŵ1:d‖22

3α
(i)
y Fλ(P, ŵ)

≥ 1− α
(i)
y 2Fλ(P, ŵ)

3α
(i)
y Fλ(P, ŵ)

=
1

3
,

where the second inequality holds by the assumption of the case, the third

inequality follows from the fact that ‖ŵ1:d‖22 ≤ 2Fλ(P, ŵ).

This implies that

‖∇Fλ(P, ŵ)‖2
Fλ(P, ŵ)

≥ 1

3 ‖w1:d‖2
≥

√
2

3
√
Fλ(P, ŵ)

.

Hence by definition of x̃, we have that

x̃ ≥ 2

9Fλ(P, ŵ)
(A.15)

Plugging Eq.(A.15) into Eq.(A.12), we obtain that

γ

Fλ(P, ŵ)
≤ 9

2

√4
(
α

(i)
y

)2

+
2 ‖p∆‖22

9Fλ(P, ŵ)
− 2α(i)

y

 .

Recall that

Fλ(P, ŵ) ≥ Fλ(P, w∗) ≥ Fλ(P, w̃)− ξ,

which implies that

γ

Fλ(P, ŵ)
≤ 9

2

√√√√4
(
α

(i)
y

)2

+
2 ‖p∆‖22
9õptξ

− 2α(i)
y

 , (A.16)

where õptξ = Fλ(P, w̃)− ξ.
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Combining both cases, yields that

s(p) ≤ u(p)

U
(
P

(i)
y

) + u(p)λ max

2α(i)
y ,

9

2

√√√√4
(
α

(i)
y

)2

+
2 ‖p∆‖22
9õptξ

− 2α(i)
y

 ,

(A.17)

where Lemma 5 holds by rearranging Eq. A.17.

Appendix A.3. Proof of Lemma 6

Lemma 6. In the context of Lemma 5, the sum of sensitivities is bounded by

∑
p∈P

s(p) ≤ t = 4k +

k∑
i=1

3λVar(i)
+√

2õptξ

+
3λVar(i)

−√
2õptξ

,

where Var(i)
y =

∑
p∈P (i)

y
u(p) ‖p∆‖2 for all i ∈ [k] and y ∈ {+,−}.

Proof. We first observe that that

∑
p∈P

s(p) =
∑
i∈[k]

 ∑
p∈P (i)

+

s(p) +
∑
p∈P (i)

−

s(p)

 .

Thus we will focus on the summing the sensitivity of the all the points whose

label is positive. We note that

∑
i∈[k]

∑
p∈P (i)

+

u(p)

U
(
P

(i)
+

) =

k∑
i=1

1 = k. (A.18)

In addition, we observe that max {a, b} ≤ a + b for every a, b ≥ 0, which

implies that for every i ∈ [k] and p ∈ P (i)
+ ,

max

2α(i)
y ,

9

2

√√√√4
(
α

(i)
y

)2

+
2 ‖p∆‖22
9õptξ

− 2α(i)
y


≤ 2α(i)

y +
9

2

√√√√4
(
α

(i)
y

)2

+
2 ‖p∆‖22
9õptξ

− 2α(i)
y

 .

(A.19)

Since
√
a+ b ≤

√
a +
√
b for every a, b ≥ 0, we have for every i ∈ [k] and
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p ∈ P (i)
− , √√√√4

(
α

(i)
y

)2

+
2 ‖p∆‖22
9õptξ

− 2α(i)
y

≤ 2α(i)
y +

√
2 ‖p∆‖2

3
√
õptξ

− 2α(i)
y

=

√
2 ‖p∆‖2

3
√
õptξ

.

(A.20)

Hence by combining Eq.(A.18), Eq.(A.19), and Eq.(A.20), we yield that∑
i∈[k]

∑
p∈P (i)

+

s(p) ≤ k +
∑
i∈[k]

∑
p∈P (i)

+

2λα
(i)
+ +

9

2
λu(p)

√
2 ‖p∆‖2

3
√
õptξ

= k +
∑
i∈[k]

∑
p∈P (i)

+

2λα
(i)
+ +

∑
i∈[k]

λ
3Var(i)+√

2õptξ

≤ 2k +
∑
i∈[k]

λ
3Var(i)+√

2õptξ

,

where the inequality follows from definition of α(i)
y for every i ∈ [k] and y ∈ {+,−}

as defined in Eq.(A.9).

Since all of the previous arguments hold similarly for P−, we obtain that

∑
p∈P

s(p) ≤ 4k +
∑
i∈[k]

3Var(i)+√
2õptξ

+
3Var(i)−√

2õptξ

.

Appendix A.4. Proof of Theorem 7

Theorem 7. For any ε ∈ (0, 1/2), δ ∈ (0, 1), let m be an integer satisfying

m ∈ Ω

(
t

ε2

(
d log t+ log(1/δ)

))
,

where t is as in Lem. 6. Invoking Coreset with the inputs defined in this context

yields a ε-coreset S = (S, v) with probability at least 1− δ in O (nd+ T ) time,

where T represents the computational complexity of obtaining an ξ-approximated

solution to SVM and applying k-means++ on P+ and P−.
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Proof. By Lemma 5 and Theorem 5.5 of [3] we have that the coreset constructed

by our algorithm is an ε-coreset with probability at least 1− δ if

m ≥ c
(
t

ε2

(
d log t+ log(1/δ)

))
,

where we used the fact that the VC dimension of a SVMs in the case of a

linear kernel is bounded dim(F) ≤ d + 1 = O(d) [29], and c is a sufficiently

large constant which can be determined using similar techniques to that of [30].

Moreover, note that the computation time of our algorithm is dominated by

going over the whole weighted set P which takes O (n) and attaining an ξ-

approximation to the SVM problem at Line 1 followed by applying k-means

clustering as shown in Algorithm 1 which takes O (T ) time. This implies that

the overall time is O (nd+ T ).

Corollary 7. Let P be a weighted set, ε ∈
(
0, 1

2

)
and let S be an ε-coreset with

respect to P. Let w∗S = argminw∈Rd+1 Fλ (S, w) and let w∗P be defined similarly

with respect to P.

Fλ(P, w∗P) ≤ Fλ(P, w∗S) ≤ (1 + 4ε)Fλ(P, w∗P)

Proof. By Theorem 7, S = (S, v) is an ε-coreset for (P, u) with probability at

least 1− δ, which implies that

Fλ(P, w∗S) ≤ Fλ(S, w∗S)

1− ε
≤ Fλ(S, w∗P)

1− ε

≤ 1 + ε

1− ε
Fλ(P, w∗P) ≤ (1 + 4ε)Fλ(P, w∗P),

where the first and third inequalities follow from (S, v) being an ε-coreset (see

Definition 2), the second inequality holds by definition of w∗S , and the last

inequality follows from the assumption that ε ∈
(
0, 1

2

)
.

Sufficient Conditions. Theorem 7 immediately implies that, for reasonable ε and

δ, coresets of poly-logarithmic (in n) size can be obtained if d = O(polylog(n)),

which is usually the case in our target Big Data applications, and if

k∑
i=1

3λVar(i)+√
2õptξ

+
3λVar(i)−√

2õptξ

= O(polylog(n)).
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For example, a value of λ ≤ logn
n for the regularization parameter λ satisfies the

sufficient condition for all data sets with points normalized such that they are

contained within the unit ball. Note that the total sensitivity, which dictates how

many samples are necessary to obtain an ε-coreset with probability at least 1− δ

and in a sense measures the difficulty of the problem, increases monotonically

with the sum of distances of the points from their label-specific means.

Appendix B. Extension to Streaming Settings

As a corollary to our main method, Alg. 2 extends the capabilities of any

SVM solver, exact or approximate, to the streaming setting, where data points

arrive one-by-one. Alg. 2 is inspired by [4, 5] and constructs a binary tree, termed

the merge-and-reduce tree, starting from the leaves which represent chunks of

the data stream points. For each stream of l points, we construct an ε-coreset

using Algorithm 1, and then we add each resulted tuple to B1, a bucket which is

responsible for storing each of the parent nodes of the leaves (Lines 1-6).

Note that for every i > 1, the bucket Bi will hold every node which is a root

of a subtree of height i. Then, for every two successive items in each bucket

Bi, for every i ≥ 1, a parent node is generated by computing a coreset on the

union of the coresets, which is then, added to the bucket Bi+1 (Lines 7-11). This

process is done till all the buckets are emptied other than Bh, that will contain

only one tuple (S, v) which is set to be the root of the merge-and-reduce tree.

In sum, we obtain a binary tree of height h = Θ(log(n)) for a stream

of n data points. Thus, at Lines 4 and 10, we have used error parameter

ε′ = ε/(2 log(n)) and failure parameter δ′ = δ/(2 log(n)) in order to obtain

ε-coreset with probability at least 1− δ.

Coreset construction of size poly-logarithmic in n.. In case of the total sensitivity

being sub-linear in n where n denotes the number of points in P , which is obtained

by Lemma 5, we provide the following theorem which constructs a (1 + ε)-coreset

of size poly-logarithmic in n.
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Algorithm 2: Streaming-Coreset(P, u, `, λ, ξ, k)

Input :An input stream P in Rd+1 × {−1, 1} of n points, a leaf size

` > 0, a weight function u : P → R≥0, a regularization

parameter λ ∈ [0, 1], a positive integer k, and an

approximation factor ξ > 0.

Output :A weighted set (S, v)

1 Bi ← ∅ for every 1 ≤ i ≤ ∞;

2 h← 1;

3 for each set Q of consecutive 2` points from P do

4 (T, v)← Coreset(Q, u, λ, ξ, k, `); j ← 1;

5 Bj ← Bj ∪ (T, v);

6 for each j ≤ h do

7 while |Bj | ≥ 2 do

8 (T1, u1), (T2, u2)← top two items in Bj ;

9 Set ũ : T1 ∪ T2 → [0,∞) such that for every p ∈ T1 ∪ T2,

ũ(p) =

u1(p) p ∈ T1,

u2(p) otherwise
;

10 (T, v)← Coreset(T1 ∪ T2, ũ, λ, ξ, k, `) ;

11 Bj+1 ← Bj+1 ∪ (T, v);

12 h← max{h, j + 1};

13 Set (S, v) to be the only item in Bh

14 return (S, v)

Lemma 8. Let ε ∈
[

1
logn ,

1
2

]
, δ ∈

[
1

logn , 1
)
, λ ∈ (0, 1], a weighted set (P, u),

ξ ∈ [0, Fλ(P, w∗)] where w∗ ∈ argminw∈Rd+1 Fλ(P, w). Let t denote the total

sensitivity from Lemma 5 and suppose that there exists β ∈ (0.1, 0.8) such that

t ∈ Θ(nβ). Let ` ≥ max
{

2
β

1−β , c
(
t log2 (n)

ε2

(
d log t+ log(log n/δ)

))}
and let

(S, v) be the output of a call to Streaming-Coreset(P, u, `, λ, ξ, ). Then (S, v)
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is an ε-coreset of size

|S| ∈ (log n)
O(1)

.

Proof. First we note that using Theorem 7 on each node in the merge-and-reduce

tree, would attain that the root of the tree, i.e., (S, v) attains that for every w

(1− ε)lognFλ(P, w) ≤ Fλ ((S, v), w) ≤ (1 + ε)lognFλ(P, w),

with probability at least (1− δ)logn.

We observe by the properties of the natural number e,

(1 + ε)logn =

(
1 +

ε log n

log n

)logn

≤ eε logn,

which when replacing ε with ε′ = ε
2 logn in the above inequality as done at Lines 4

and 10 of Algorithm 2, we obtain that

(1 + ε′)logn ≤ e ε2 ≤ 1 + ε, (B.1)

where the inequality holds since ε ∈ [ 1
logn ,

1
2 ].

As for the lower bound, observe that

(1− ε)logn ≥ 1− ε log n,

where the inequality holds since ε ∈ [ 1
logn ,

1
2 ].

Hence,

(1− ε′)logn ≥ 1− ε′ log n = 1− ε

2
≥ 1− ε.

Similar arguments holds also for the failure probability δ. What is left

for us to do is setting the leaf size which will attain us an ε-coreset of size

poly-logarithmic in n (the number of points in P ).

Let ` ∈ (0,∞) be the size of a leaf in the merge-and-reduce tree. We observe

that a coreset of size poly-logarithmic in n, can be achieved by solving the

inequality

2`

2
≥ (2`)β ,
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which is invoked when ascending from any two leafs and their parent node at

the merge-and-reduce tree.

Rearranging the inequality, we yield that

`1−β ≥ 2β .

Since ` ∈ (0,∞), any ` ≥ 1−β
√

2β would be sufficient for the inequality to

hold. What is left for us to do, is to show that when ascending through the

merge-and-reduce tree from the leaves towards the root, each parent node can’t

be more than half of the merge of it’s children (recall that the merge-and-reduce

tree is built in a binary tree fashion, as depicted at Algorithm 2).

Thus, we need to show that,

2

i∑
j=1

βj

· `β
i

≤ 2

i−1∑
k=0

βk

· `βi−1

2
= 2

i−1∑
k=1

βk

· `β
i−1

,

holds, for any i ∈ [dlog ne] where log n is the height of the tree. Note that the

left most term is the parent node’s size and the right most term represents half

the size of both parent’s children nodes.

In addition, for i = 1, the inequality above represents each node which is a

parent of leaves. Thus, we observe that for every i ≥ 1, the inequality represents

ascending from node which is a root of a sub-tree of height i− 1 to it’s parent in

the merge-and-reduce tree.

By simplifying the inequality, we obtain the same inequality which only

addressed the leaves. Hence, by using any ` ≥ 2
β

1−β as a leaf size in the merge

and reduce tree, we obtain an ε-coreset of size poly-logarithmic in n.

Appendix C. The logic behind applying k-means clustering

First put in mind the bound from Lemma 5, and note that it was achieved by

using k-means++ clustering as depicted at Algorithm 1. Following our analysis

from Sec. Appendix A.2, we observe that we can simply use any k-partitioning

of the dataset, instead of applying k-means clustering. Moreover, we can also

simply choose k = 1 which translates to simply taking the mean of the labeled
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points. Despite all of above, we did choose to use a clustering algorithm as well

as having larger values for k and such decisions were inspired by the following

observations:

(i) k-means clustering aims to optimize the sum of squared distances between

the points and their respected center, which on some level, helps in lowering

the distance between points and their respected centers. Such observation

leads to having tighter bound for the sensitivity of each point, consequently

leading to lower coreset sizes; See Thm. 7.

(ii) Having larger k also helps lowering the distance between a point and its

respected center.

(iii) k-means clustering acts as a trade-off mechanism between

• the raw contribution of each point, which is translated into the weight

of the point divided by the sum of the weights with respect to the

cluster that each point is assigned to,

• and the actual contribution of each point which is translated to the

distance between each point and its respected center.

In light of the above, we observe that as k goes larger, the sensitivity of each

point gets closer and closer to being simply the raw contribution, which in case

of unweighted data set, is simply applying uniform sampling. Thus, for each

weighted (P, u), we simply chose k = log n where n denotes the total number of

points in a P .

This observation helps in understanding how the sensitivities that we are

providing for outliers and misclassified points actually quantifies the importance

of such points. specifically speaking, as k goes larger the outliers would mostly

be assigned to the same cluster and since in general there aren’t much of these

points, we end up giving higher sensitivities for such points (than others) due

to the fact that their raw contribution increases as the size of the cluster, they

belong to, decreases. When k isn’t large enough to separate these points from
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(a) At first, an optimal solution for the SVM

problem is found.

(b) We focus on the the positive labeled

points (blue points) and we find a k-means

clustering using k-means++, where we set

k = 3. The yellow points are the centers

found by the k-means++ algorithm

(c) Points in small clusters have higher sensitivities, which quantifies the importance of outliers and

misclassified points as they will be mostly in small clusters as k goes larger.

Figure C.4: Understanding the effect of k-means on the sensitivities of the points.

the rest of the data points, then the actual contribution kicks into play, which

then the mean of the cluster is shifted towards the “middle” between the outliers

and the rest of the points in that cluster, boosting the actual contribution of the

rest of points inside the same cluster; See Fig. C.4

Appendix C.1. Towards finding the best k value

In the context of clustering, specifically speaking, k-means clustering problem,

there is no definitive, provable way for determining the best k value, while

considering the computation cost needed for applying the k-means algorithm

(or alternatively k-means++). However, there are some tools which can point
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to the best k value from a heuristic’s point of view. Such tools include the

Silhouette Method and the Elbow Method. Fortunately enough, in our context,

using the same methods can aid us in finding a “good” trade-off between the raw

contribution and the actual contribution.

Although, such methods are proven to be useful in practice [26], in our

experiments, we simply chosen a constant value for k depending on the number

of points in the data set as elaborated in Section 6, and section Appendix D,

which is shown to be useful in practice at Figure 1 and Figure 3.

Appendix D. Experimental Details

Our experiments were implemented in Python and performed on a 3.2GHz

i7-6900K (8 cores total) machine with 64GB RAM. We considered the following

datasets in our evaluations.

1. HTRU — 17, 898 radio emissions, each with 9 features, of the Pulsar star.

2. CreditCard — 30, 000 client entries each consisting of 24 features that

include education, age, and gender among other factors.

3. Pathological — 1, 000 points in two dimensional space describing two

clusters distant from each other of different labels, as well as two points of

different labels which are close to each other.3

4. Skin — 245, 057 random samples of B,G,R from face images consisting of

4 dimensions.

5. Cod(-rna) — 488565 RNA records consisting each of 8 features.4

6. W1 — 49, 749 records of web pages consisting each of 300 features.

3We note that uniform sampling performs particularly poorly against this data set due to

the presence of outliers.
4This data set was attained by merging the training, validation and testing sets.
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Preprocessing step.. Each data set has gone through a standardization process

which aims to rescale the features so that they will have zero mean and unit

standard deviation. As for the case where a data set is unweighted, we simply

give each data point a weight of 1, i.e., u : P → 1 where P denotes the data

set, and the regularization parameter λ was set to be 1 throughout all of our

experiments.

k-means clustering.. In our experiments, we set k = log n where n is the number

of points in the dataset (each datasets has different k value). As for the clustering

itself, we have applied k-means++ [31] on each of P+ and P− as stated in our

analysis; see Sec. 5.

Evaluation under streaming setting.. Under streaming setting, the range for

sample sizes is the same as for running under offline settings (See Figures 1

and 2). What differs is the quality of the solver itself, which we use to show the

effectiveness of our coreset compared to uniform sampling, i.e., we have chosen

to make the solver (SVC of Sklearn) more accurate by lowering its optimal

tolerance.

Appendix E. Evaluations of Computational Cost for the Streaming

Setting
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Figure E.5: The total computational cost of constructing a coreset using the merge-and-reduce

tree and training the SVM model the coreset, plotted as a function of the size of the coreset.
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